
In this manuscript the authors use a one way coupled drainage area to lake model setup 
to investigate future climate impact on spring processes including ice-off, 50% 
cumulative spring discharge, spring phytoplankton bloom and stratification onset. The 
bold and novel model setup include stream flow, nutrients and temperature (SWAT+, 
LOADEST, air2water) coupled to lake physics and biogeochemistry (GOTM, WET). The 
important findings of the authors show how the occurrence of important spring 
processes are occurring earlier in a future warmer climate. The manuscript is in a good 
order but would benefit from extra clarity, sliming down and expansion as my points 
hereunder show. 

We thank the reviewer for the thorough assessment and the requested clarifications, 
which allowed us to improve the manuscript. We respond to each comment below, 
with our responses in text boxes and proposed additions to the text in red.  

 

3A This manuscript continue and analyze deeper the effect of climate from the work 
done in Jiménez-Navarro et al. (2023). The reader needs to clearly understand what is 
the difference between the two works, both in regard to which questions are being 
addressed here as well as be given all relevant information for spring processes. This 
point runs throughout the rest of this review. 

We thank the reviewer for this comment, and realised that there was indeed no 
statement at the start of the model framework description that stated this study as a 
continuation of Jiménez-Navarro et al. This will now be added. The previous paper 
described the setup of the models, the overall model performance, and the overall 
results of future climate projections. The present paper used the same model setup 
and simulations to look at spring events and how their timing might change under 
future climate conditions. We will add a line to clarify this. 

L. 77: The present study builds upon a coupled catchment-lake model setup created 
by Jiménez-Navarro et al. (2023). This model setup was used to simulate catchment 
discharges, nutrient loads, and in-lake conditions under present and future conditions, 
and in the present study, we additionally assessed simulations of spring events. 

We are aware that it can be challenging for readers to have information on the model 
in two separate places, and we strived to present (and if necessary, repeat) all 
necessary information for spring events in the current paper. The setup in two 
separate manuscripts was based on practical reasons, as we felt that a single paper 
with model descriptions, model performance statistics, future predictions, and 
additional analysis of spring events, would become too long and cluttered. We hope 
that our changes, to this comment and those below, will clarify the differences 
between the two studies. 

 

3B The method description need to be expanded and put in line with Jiménez-Navarro et 
al. (2023). Among other things I cannot see how many parameters was used in 
air2stream, which is not a statistical model, it is a semi deterministic model (a hybrid 
process-based and data-driven model). Additionally, more detailed information regarding 
the GOTAM-WET model coupling is required. One of the things I miss is how 
transparency in the lake is modeled/treated. Do the biological model adjust lake 
transparency, and how do this affect spring bloom and stratification onset? And how do 



the coupled model preform at deeper depth? The reader can now only see what 
happens at 3 m depth. 

We used air2stream with 8 parameters. This information will be added. 

L. 81: … and air2stream (8-parameter version, Toffolon and Piccolroaz, 2015; 
Piccolroaz et al., 2018),… 

Yes, model components from the WET model (inorganic matter, particulate organic 
matter, and phytoplankton biomass) contribute to the turbidity. We will add this 
information. We did not run tests with and without biological feedback regarding 
transparency. However, the final value for the transparency parameter “g2” was very 
high (5.62 m, giving an extinction coefficient of only 0.18 m-1, this information can be 
found in the Supplement of Jiménez-Navarro et al., 2023), therefore a very clear water 
column without considering the WET components. In the final model, the biological 
components therefore contributed a lot to the turbidity of the water column (Secchi 
depth varied between 6 m and 1 m), which is in line with observations in Erken (clear 
water – Secchi depth > 4 m - outside of the growing season, more turbid during the 
spring and summer blooms, when Secchi depths of 1.5 – 3 m are common). 

L. 85: Light absorption by components in the WET model (inorganic matter, particulate 
organic matter, and phytoplankton biomass) feeds back to the physical model. 

Performance at deeper depth is also reported in the Supplementary Material of 
Jiménez-Navarro et al., (2023). We will add plots of the simulated model variables at 
15 m depth to the Supplement (section S1, Figure S1). However, we decided to not 
give further information about performance at deeper depth in the text. Despite its 
importance for lake dynamics, our focus is on spring events, when the lake is ice-
covered, fully mixed, or starting to stratify. In this period, profiles are mostly 
homogeneous, with the only clear exception being the onset of stratification, and this 
is the latest event studied here. As such, we felt that reporting on the performance at 
deeper depth in the main text would not be in line with the focus of the present study. 

New Figure S1: 



 

Caption Figure S1. Time series of modelled (black line) and observed (blue dots for 
calibration, red dots for validation period) GOTM-WET variables. 

 

3C the authors struggle with model correctness, needing to use a surface temperature 
threshold for ice-off despite having an ice module and need to explain discrepancies in 
stratification onset and chlorophyll spring peak. I ask myself how this can be and have 
some points here which might enlighten the manuscript. First do the grid resolution 
compared to measurement resolution affect the results? From Figure S5 timing of 
stratification it looks like the vertical lines denoting stratification onset do not match the 



data and should in fact be earlier for the measurements (red line crossing green 
threshold before timing of stratification). Is this due to a too short window for continuing 
stratification, is there an error in the script, or do the resolution play a role? As for data. 
The one way coupled catchment and lake model setup was calibrated from 2000 to 
2015 for the lake part and from 2007 to 2015 for the river part. Is the difference in 
calibration period affecting the results? Looking at Figure 2 for Ice-off this looks to be the 
case. And how do you deal with the 2000 to 2006 period in regard to river input into the 
lake model? Building on this, can the less than ideal  model correctness be explained by 
the location of measurements in and above the lake? Lake measurements come from a 
station at the deepest point in the lake ca 400 m from the eastern shore. This distance 
might be far enough away for near-shore processes to play a role, but are the location 
representative for the overall lake physics covering the central parts of the lake? 
Additionally but not required for this manuscript, it would have improved the results if the 
complete time frame of available data was considered for calibration, validation (if 
deemed necessary) could have been carried out in the start and not the end of available 
measurements see ex. Shen, H., Tolson, B. A. & Mai, J. Time to Update the Split‐
Sample Approach in Hydrological Model Calibration. Water Resour. Res. 58, (2022). 
https://doi.org/10.1029/2021WR031523. 

We will treat the points raised by the reviewer separately. 

We attribute the issues with the ice module to the lack of snow parameterisation in 
GOTM (L. 108-111). Although onset of ice is not affected by this, the offset (as 
predicted by the ice module) is likely to occur too early due to the lack of insulation 
that the snow provides. This is unfortunate, and an ice module including snow (such 
as Simstrat’s) would have been better, but the choice for GOTM enabled the use of 
the WET model and its elaborate description of biogeochemical processes. We used 
the temperature-threshold to compensate for this issue, although it is not optimal (as 
explained further below as well).  

The discrepancies in stratification onset had indeed to do with the time windows and 
density thresholds. Although the model simulates bottom-top density difference 
accurately most of the years (as seen in Supplement figure S5), the observed data is 
noisier than the modelled data, and the threshold approach occasionally defined 
different periods as the onset. We tested multiple thresholds (both regarding the time 
window and density difference), but there were some consistent mismatches 
regardless of the choice of threshold value (despite such methods being well-
established in literature). Still, our method is rather well-established in literature and 
these issues are unlikely to have an effect for the climate projections, as the degree of 
noise in the signal will be constant in the model. Also in reply to Reviewer 2’s 
comment 2B, we will clarify this further in the text. 

L. 157: As such, we concluded that it was noise in water temperature observations 
that caused the threshold method to occasionally fail, rather than an inability of the 
model to simulate the state of the lake. 

The shorter calibration period for the discharge was due to lack of measured 
discharge data before 2007. We do not understand the comment about Figure 2 in 
connection to the shorter calibration period for discharge, as the discharge did not 
seem to have a worse fit during the validation period. Regarding ice-off, we do indeed 
see a worse performance in 2020 and 2021. Rather than attributing this to the 
validation period, we expect this had to do with the exceptionally (though in coming 



decades perhaps normal) short period of ice cover in those years. The temperature-
threshold approach seemed to perform less well in such years. We will add this 
information to the manuscript. Moreover, since years with short or no ice cover will 
become more frequent, we will also add a line to the Discussion how this may impact 
our future projections. 

L. 155: Particularly, this occurred in years with short ice cover duration, in which the 2 
°C threshold may estimate ice-off to occur too late. 

Add after L. 205: The method to estimate ice-off from the model results (a 2 °C 
threshold) tended to simulate ice-off too late in years with low ice cover. Therefore, our 
study is likely underestimating the advancement rate of ice-off date, and ice may be 
disappearing even faster than the rates predicted here. 

Change to Table S1: indicate as annotation for years 2008, 2014, 2020, and 2021, for 
ice-off, that these years had the lowest recorded ice duration in the study period. 

Although the shoreline is not too far away from the monitoring location, there are no 
major inflows anywhere near, as the largest part of the watershed is to the west of the 
lake. The measurement location is at the edge of the main basin of the lake, and for 
example seiche movements are occasionally visible in the high-frequency data 
(though they have a frequency around one day, so disappear with daily averaging). 
Regarding the processes under study here, we do not foresee a major effect of the 
location where the measurements were chosen, though we acknowledge that 
measurements from a single location are only moderately representative of the whole 
lake. Ice cover is likely longer in secluded bays compared to the main basin, 
stratification can form in shallow areas first (thermal bars), and blooms may occur in 
bays while the main basin is less affected, but overall, we expect our measurements 
to be moderately representative, due to the open connection to the main basin.  

We appreciate the reviewer’s comment regarding using the full period for calibration, 
with potential validation at the start. Although the reviewer did not request particular 
changes to be made to the manuscript, we will take the opportunity to elaborate on 
this issue, perhaps for no other reason than that we find it interesting as well! We 
wanted to use the same model setup as Jimenez-Navarro et al. for reasons of clarity, 
but in general, this is an interesting proposition and it could be considered whether the 
model would have been more accurate if we had considered all data for calibration. In 
our view, the degree to which models have been established and are prone to 
overfitting, plays a large role here. Hydrological and hydrodynamical models are 
based on purely physical equations that have been widely applied (even if the models 
themselves have not) and are usually not heavily calibrated, so that overfitting, or 
other issues related to model stability, are less of a big risk. In biogeochemical 
models, however - at least the rather complex type that we used here -, many 
parameters are calibrated, many different equations are in use that describe the same 
process, overfitting is a real risk, and pools of N or P running dry can easily lead to 
unrealistic projections. A separate validation period may help to partially 
countermeasure these issues. Likewise, a validation period at the start could have 
downsides if there is still an effect of initial conditions, as biogeochemical models may 
need a longer spin-up than physical models. So, in this sense, we wonder if the 
recommendations of Shen et al. could/should be extended to biogeochemical models. 
Yet at the same time, data availability (both in frequency and period of coverage) is 
more pressing for biogeochemical variables, so being able to use the full period for 
calibration would have additional benefits as well. In short, we consider this topic 



outside the scope of our present study, but absolutely see the importance of looking 
further into this. We believe that the aquatic modelling community would benefit from 
an open discussion on this topic and indeed numerical testing of various methods, to 
find the advantages and limitations of different calibration and validation strategies. 

 

3D Lake processes are heavily dependent on local atmospheric conditions, so to for the 
drainage area processes. The authors used five GCM models which by their global 
nature are course resolved. The GCMs are bias correction toward local measurements 
in Jiménez-Navarro et al. (2023), but if I understand Supplementary table E 4th column 
(RMSE) this bias correction is almost nonexistent.  Taking the difference between GCM 
INM-CM5-0 and measurements as an example, mean air temperature RMSE (Root 
Mean Square Error) drops from the unbiased comparison of 5.712 oK to 5.687 oK after 
bias correction and for Wind Speed from 4.283 to 2.588 m/s, and improvement with <1% 
and ~40 % respectively. The bias correction of precipitation, a key input to the drainage 
area model, looks to have failed. Now I might misunderstand how the Bias correction 
results are shown, but this illustrate my first point. Can we trust that the calibration is still 
valid using the climate models as input? Additionally, the reader needs to know why 
these climate models and scenarios were selected. I suspect because they cover the 
extreme ranges of for example temperature, precipitation, wind speed etc.. Furthermore 
since the setup is used for projecting climate effects, is the time frame (for drainage area 
and lake) long enough so that the models capture the climate trend (which is small 
compared to seasonal variations)? It would help the reader to see how the trends during 
the setup/calibration period are in the model compared to measurements. 

We would argue that our bias-correction succeeded: the quantile mapping method that 
was used only aims to decrease the bias. The Supplementary table in Jiménez-
Navarro et al. (2023), referred to by the reviewer, indeed shows that Bias significantly 
decreased and, in many cases, also RMSE, though there were cases in which RMSE 
slightly increased. With regard to precipitation, the bias correction did not fail, but we 
admit that we should have used scientific notation to show the RMSE and Bias values, 
which now appear to be 0 due to the unit (kg/m2/s, or mm/s). For example, for GCM 
INM-CM5-0, the precipitation bias before correction was -2.7·10-6 mm/s, and after bias 
correction it was -8.5·10-7 mm/s. In some combinations of GCM and variable, the bias 
correction had indeed little effect, but only because the GCM prediction already was 
relatively unbiased compared to observations. 

A high NSE and low RMSE cannot be expected, as a hindcasted GCM is not intended 
to simulate the same weather events as were observed (e.g. a storm may pass at a 
different time than observed), but it should rather reflect the observed weather over a 
longer temporal scale (as opposed to a reanalysis dataset, which does intend to 
match observations as close as possible). A biased GCM, however, would be an 
indication of a biased prediction, and it is this that the quantile mapping mitigated. We 
therefore don’t consider this study to be less accurate in terms of its future projections 
than other studies, though of course these projections present a large degree of 
uncertainty. 

The five GCMs were selected because they represented a wider range of predictions 
compared to a single projection, but another main reason was that these GCMs 
provided all the necessary forcing needed to run both SWAT+ and GOTM-WET. 
Some other GCMs, for example EC-Earth-Veg and GFDL-ESM4 that were included in 
an earlier study using SWAT+ in Lake Erken (Jiménez-Navarro et al. 2021, doi: 



10.3390/f12121803), missed some variables that were needed to run GOTM-WET (at 
least without using a different approach compared to the other GCMs).  

We will now state in the manuscript that these GCMs provided the required forcing 
and that they were bias-corrected.  

L. 92: Each GCM provided the meteorological forcing required to run both SWAT+ and 
GOTM-WET and the projections were bias-corrected to locally observed 
meteorological data using quantile mapping (see Jiménez-Navarro et al., 2023). 

As in many climate projection studies, the time frame with measurements is indeed 
comparatively small to detect climatic trends, and the projected simulations are longer 
than the period with measurements itself. To test whether our model detected climatic 
trends during the calibration and validation period, we selected several model output 
variables that were predicted to show a trend with warming in Jiménez-Navarro et al. 
(2023): discharge, water temperature, oxygen, and NH4 concentration. Both 3- and 
15-m depths were assessed and annual averages were taken, and for simplicity, gaps 
in observations were linearly interpolated in order to fit a Mann-Kendall test. At a 0.05 
significance level, according to the Mann-Kendall test, only corresponding trends in 3- 
and 15-m simulated oxygen concentration could be found, and in the observations, 
none of the variables showed a similar trend as in the climate simulations. In short, the 
reviewer’s question could therefore be answered with “No, the calibration/validation 
time frame is not long enough to capture a climate trend”. It should be noted that over 
longer periods, climatic trends in historical data of Erken do become visible for 
physical parameters at least (see Moras et al., 2019, cited in manuscript). Still, we do 
not consider this a restriction for this study. Considering biogeochemical data, Lake 
Erken has a comprehensive dataset, covering a longer period than most other sites 
(even longer data is available, but less regular and less variables, which is why we do 
not model even further back). As such, for this type of studies, it presents an optimal 
site to do this, and a lack of climatic trends over a comparatively short period in both 
observations and model, does not invalidate the use of the model itself. Since these 
findings are more in line with the “general” model performance, we did not see a 
convenient place in the manuscript to add this information, as this would rather be 
added to the manuscript by Jiménez-Navarro et al. (2023). In the current paper, 
readers can see both observed and simulated spring event timing over the period with 
observed data in Figure 2. Nevertheless, we hope that this information satisfies the 
reviewer.  

 

3E Through the analysis of trends from the climate simulations, the authors treat the 
climate scenarios as constant change over time ex. Fig 3. This is not correct, in fact the 
gradient for each scenario change over time, especially for SSP 245. I suggest dividing 
the model output into 30 year chunks while conducting the analysis, or look at the 
amount of change from a reference to a far future period. 

Although the air temperature change is indeed not linear (at least for SSP 2-45), we 
chose a linear model because it fitted the response well (Figure 3). We retained the 
use of a linear model for ease of communication and to facilitate a comparison with 
previous studies, which report phenological trends often as well as “x days per 
decade”. From a practical point of view, the Mann-Kendall analysis allowed us to also 
assess relative changes. However, we agree that reporting the output as suggested 
by the reviewer has benefits, and it could further facilitate comparison with other 



studies and future meta-analyses. We now additionally report the values for the 
chunks 1985-2014, 2040-2069, and 2070-2099 in the Supplement and refer to these 
values in the Results and Discussion. It can indeed be seen there that some future 
trends do not seem to behave linearly, such as the chlorophyll peak date under SSP 
2-45 (although it should be noted that the mid-century period is not in the middle of the 
other two periods). Additionally, we will shortly discuss linearity and how the slopes 
should be interpreted, in the Discussion.   

Add after L. 224, and after the changes made in response to comments 1O and 2A of 
the other reviewers: Although the predicted changes in event timing are reported as 
linear trends, it should be noted that we do not assume that these changes are entirely 
linear. Especially in SSP 2-45, the development of air temperature through the 
simulation period is not linear, and the timing of events will not follow a linear trend 
over time either. In Supplement section S3, averages in separate time periods are 
reported, and for instance the advance in timing of the spring chlorophyll peak gives 
an indication of slowing down or stopping in the second half of the century under SSP 
2-45. Reported linear changes should therefore be seen as the average change over 
the period 1985-2100, and we did not investigate the shape of the trend during this 
period. 

New section in the Supplement: 

S3. Future projections - Time periods 1985-2014, 2040-2069, and 2070-2099 
Table S2. Average values for time periods 1985-2014, 2040-2069, and 2070-2099 under the SSP 2-

45 and 5-85 scenarios. 

   SSP 2-45  SSP 5-85 

Variable Unit 1985-2014 2040-2069 2070-2099  2040-2069 2070-2099 

Chlorophyll 

peak date 
DOY 108.31 87.46 89.66  86.01 77.64 

Peak spring 

chlorophyll 

concentration 

mg/m3 14.53 11.71 11.22  11.81 10.84 

50% spring 

discharge date 
DOY 78.37 60.43 59.13  57.52 55.31 

Cumulative 

spring discharge 
m3 8.92·106 1.10·107 1.16·107  1.20·107 1.29·107 

Ice-off date DOY 101.93 90.50 83.83  80.96 68.15 

Ice-on date DOY 3.79 28.01 35.03  34.21 45.24 

Number of days 

with ice 
days 72.02 31.31 24.16  21.06 7.04 

Average ice 

thickness 
m 0.155 0.061 0.048  0.039 0.014 

Stratification 

onset 
DOY 140.71 132.26 130.78  128.61 125.65 

End of 

stratification 
DOY 261.49 267.89 267.81  271.13 273.29 

Number of 

stratified days 
days 122.11 136.56 138.56  143.41 149.11 

Average 

Schmidt stability 

during 

stratification 

J/m2 177.71 221.87 232.13  236.61 266.61 

Average mixed 

layer depth 

during 

stratification 

m 6.53 6.35 6.32  6.00 6.01 

 

 



 


