

1 **Daytime ~~journal~~ variation of aerosol indirect effect for warm**
2 **marine boundary layer clouds in the eastern north Atlantic**

5 Shaoyue Qiu¹, Xue Zheng¹, David Painemal^{2,3}, Christopher R. Terai¹, and Xiaoli Zhou^{4,5}

7 ¹Atmospheric, Earth and Energy Division, Lawrence Livermore National Laboratory, Livermore, California, USA

8 ² Science Directorate, NASA Langley Research Center, Hampton, VA, USA

9 ³ Analytical Mechanics Associates, Hampton, VA, USA

10 ⁴Chemical Sciences Laboratory, NOAA, Boulder, CO, USA,

11 ⁵Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA

13 *Correspondence to:* Shaoyue Qiu (qiu4@llnl.gov)

15 Submit to Atmospheric Chemistry and Physics July 21, 2023.

18 **Abstract.** Warm boundary layer clouds in the Eastern North Atlantic region exhibit significant diurnal variations in
19 cloud properties. However, the diurnal cycle of the aerosol indirect effect (AIE) for these clouds remains poorly
20 understood. This study takes advantage of recent advancements in the spatial resolution of geostationary satellites to
21 explore the daytime variation diurnal cycle of AIE by estimating the cloud susceptibilities to changes in cloud
22 droplet number concentration (N_d). Cloud retrievals for four months of July (2018-2021) from SEVIRI on Meteosat-
23 11 over this region are analyzed. Our results reveal a significant "U-shaped" daytime cycle in susceptibilities of
24 cloud liquid water path (LWP), cloud albedo, and cloud fraction. Clouds are found to be more susceptible to N_d
25 perturbations at noon and less susceptible in the morning and evening. The magnitude and sign of cloud
26 susceptibilities depend heavily on the cloud state defined by cloud LWP and precipitation conditions. Non-
27 precipitating thin clouds account for 44% of all warm boundary layer clouds in July and they contribute the most to
28 the observed diurnal daytime variation. Non-precipitating thick clouds are the least frequent cloud state (10%), they
29 exhibit more negative LWP and albedo susceptibilities compared to thin clouds. Precipitating clouds are the
30 dominant cloud state (46%), but their cloud susceptibilities show minimal variation throughout the day.

31 We find evidence that the daytime variation diurnal cycle of LWP and albedo susceptibilities for non-precipitating
32 clouds are influenced by a combination of the diurnal transition between non-precipitating thick and thin clouds and
33 the "lagged" cloud responses to N_d perturbations. The daytime variation diurnal cycle in cloud fraction susceptibility
34 for non-precipitating thick clouds can be attributed to the daytime diurnal variation in cloud morphology (e.g.,
35 overcast or broken). The dissipation and development of clouds do not adequately explain the observed variation in
36 cloud susceptibilities. Additionally, daytime diurnal variation of cloud susceptibility is primarily driven by variation
37 in the intensity of cloud response rather than the frequency of occurrence of cloud states. Our results imply that

38 polar-orbiting satellites with overpass time at 13:30 local time underestimate daytime mean value of cloud
39 susceptibility, as they observe susceptibility daily minima in the study region.

40
41

42 **1. Introduction**

43 Warm boundary layer clouds, including stratus, stratocumulus, and cumulus clouds, are prevalent over the
44 sub-tropical oceans, account for over 30% of the global annual mean cloud coverage (Warren et al., 1988; Wood,
45 2012). These clouds have a significant net negative radiative forcing on the surface radiation budget. However, our
46 understanding of the aerosol indirect effect (AIE) on these clouds, particularly the impact of aerosols on cloud
47 amount, brightness, and lifetime, remains a significant source of uncertainty in estimating the radiative forcing from
48 human activities. The AIE plays a critical role in the Earth's radiation budget through its interactions with clouds. It
49 consists of two effects: the Twomey effect, which involves the increase in cloud droplet number from increasing
50 aerosols, and leads to an increase in cloud albedo (α_c) from due to smaller droplets when the cloud liquid water path
51 (LWP) is held constant (Twomey, 1977), and the cloud adjustment effect, which encompasses the impact of aerosols
52 on cloud amount, cloud water, and α_c through modulating cloud processes (e.g., Albrecht, 1989; Xue and Feingold,
53 2006; Chen et al., 2014; Gryspeerdt et al., 2019). The Twomey effect has been well studied and quantified (e.g.,
54 Bréon et al., 2003; Feingold et al., 2003; Penner et al., 2004). The cloud adjustment effect , on the other hand, is are
55 highly variable with large uncertainties in signs and magnitudes depending on cloud state, boundary layer, and
56 meteorological conditions among other factors (e.g., Han et al., 2002; Wang et al., 2003; Small et al., 2009; Sato et
57 al., 2018).

58 Previous studies have made significant progress in identifying different cloud processes and feedback
59 mechanisms to explain the responses of CF, LWP, and α_c to aerosol perturbations (e.g., as summarized in Steven
60 and Feingold, 2009; Fan et al., 2016; Gryspeerdt et al., 2019). The cloud adjustment effect is influenced by two key
61 feedback mechanisms: precipitation suppression, and sedimentation-evaporation-entrainment.

62 Under clean conditions and for clouds predominantly precipitating, an increase in the cloud droplet number
63 concentration (N_d) and associated decrease in droplet sizes, reduces precipitation efficiencyefficiency, and
64 decreases water loss from precipitation. Consequently, this promotes an increase in cloudiness and cloud LWP
65 (Albrecht, 1989; Qian et al., 2009; Li et al., 2011; Terai et al., 2012, 2015). For non-precipitating clouds, decreased
66 cloud drop size due to increases in N_d impacts CF and LWP through their impact on the entrainment rate. A
67 decrease in cloud droplet size diminishes the sedimentation rate in clouds, causing an accumulation of cloud water
68 near the cloud top. This increased cloud water in the entrainment zone enhances cloud-top radiative cooling,
69 entrainment rate, and evaporation, resulting in a decrease in CF and cloud LWP (Bretherton et al., 2007; Chen et al.,
70 2014; Toll et al., 2019; Gryspeerdt et al., 2019).

71 Additionally, the faster evaporation rates from smaller droplets enhance cloud-top cooling, downward
72 motion in clouds, total kinetic energy, and horizontal buoyancy gradient. The processes listed above, in turn,
73 increase evaporation and entrainment rate and, thus, forming a positive feedback loop (Wang et al., 2003; Xue and
74 Feingold, 2006; Small et al., 2009; Toll et al., 2019). Furthermore, among non-precipitating clouds, thick clouds
75 with larger LWP exhibit stronger cloud-top longwave radiative cooling rate and therefore stronger cloud-top
76 entrainment rate (e.g., Sandu et al., 2008, Williams and Igel, 2021). Therefore, the classification of cloud states (e.g.,
77 precipitating conditions and thickness) is essential for accurately quantifying the AIE and discerning opposing cloud

78 processes. In this study, we classify cloud states based on the LWP- N_d parameter space, as these variables provide
79 the most informative metrics for cloud susceptibility (Zhang et al., 2022).

80 This study ~~focuses~~ on the Eastern North Atlantic (ENA) region, where the U.S. Department of Energy
81 (DOE) Atmospheric Radiation Measurement program (ARM) deployed the ground-based user facility at the Azores
82 archipelago (Mather and Voyles, 2013). During the summer over ENA region, warm boundary layer clouds exhibit
83 pronounced diurnal variations in their properties and cloud states. ~~For example, b~~Based on ARM surface radar and
84 lidar observations, the frequency of stratocumulus clouds is highest at night, accompanied by an increase in the
85 fraction of precipitating clouds. Throughout the daytime, both cloud fraction and precipitation fraction experience a
86 slight decrease, followed by an increase after sunset (Remillard et al, 2012). The retrieved cloud microphysical
87 properties from ARM ground-based observations show similar “U-shaped” diurnal variations in cloud LWP, liquid
88 water content, and optical thickness (Dong et al., 2014). Additionally, numerical studies have revealed a distinct
89 diurnal cycle of AIE for marine stratocumulus clouds, attributed to changes in cloud properties; ~~and~~ boundary layer
90 thermodynamic conditions, ~~and sea surface temperature~~ (e.g., Sandu et al., 2008, 2009). However, ~~the ARM~~
91 ~~ground based observation is at a fixed location without a sufficient spatial coverage~~ observational analyses based on
92 ~~the ground-based observations at the ENA site or in-situ measurements from field campaigns are often based on a~~
93 ~~few cases with limited samples and insufficient spatial coverage~~ (e.g., Liu et al., 2016; Wang et al., 2021; Zheng et
94 al., 2022). ~~T~~here have been few observational ~~studies~~analyses investigating the diurnal cycle of AIE in the ENA
95 region. With recent advancements in the spatial resolution of geostationary satellites, this study aims to investigate
96 the diurnal variation of the AIE in warm boundary layer clouds over the ENA region and gain a better understanding
97 of the underlying mechanisms.

98 Both cloud properties and meteorological conditions have substantial spatiotemporal variability~~ties~~ and
99 distinct diurnal variations. Furthermore, changes in meteorological conditions can in turn influence cloud and
100 aerosol properties. One of the main challenges in understanding the AIE lies in isolating the impacts of the
101 confounding meteorological drivers on clouds and aerosols from AIE on clouds. To address this challenge,
102 Gryspeerdt et al. (2016) proposed the use of N_d as an intermediary variable for AIE, instead of using aerosol optical
103 depth (AOD) or aerosol index. The use of N_d circumvents the well-known dependency of AOD on CF and surface
104 wind speed, which does not necessarily reflect actual changes in aerosol loading. Moreover, the control of relative
105 humidity and aerosol type on AOD prevents to establish a direct link between AOD and aerosol concentration or
106 cloud condensation nuclei (CCN).

107 Another common method to disentangle meteorological impacts is to sort the controlling meteorological
108 factors of cloud state, such as relative humidity, lower tropospheric stability, vertical velocity, and examine the AIE
109 accordingly (e.g., Chen et al., 2014; Gryspeerdt et al., 2019). However, this approach overlooks important
110 information, including the frequency of occurrence of specific environmental conditions, the spatiotemporal co-
111 variation of meteorological factors, and the correlations among them. Zhou et al. (2021) and Zhang et al. (2022)
112 proposed a new ~~method aspect~~ to estimate the cloud susceptibility within a ~~confined space (e.g., a~~ $1^\circ \times 1^\circ$ ~~or~~
113 $2^\circ \times 2^\circ$ ~~grid box~~) of each satellite snapshot by assuming consistent meteorological conditions within this spatial
114 domain. Additionally, it is important to note that meteorological conditions influence albedo susceptibility by

115 altering the frequency of occurrence of different cloud states (e.g., precipitating and non-precipitating). Specifically,
116 within a particular cloud state, meteorological conditions offer limited information regarding cloud susceptibility
117 (Zhang et al, 2022).

118 The second main source of uncertainty in observational AIE studies arise from inferring processes in a
119 temporally evolving system based on snapshots of observations (Mülmenstädt and Feingold, 2018). Due to the
120 limited temporal or spatial resolution of the observations, most studies assume a Markovian system, where clouds
121 and AIE are assumed to only relate to the current state of the system and have no memory of the past states.

122 However, this assumption contradicts the nature of the cloud system. As found by model simulations and
123 observations, the Observational and modeling studies have shown that aerosol-cloud interaction processes take hours
124 to reach the equilibrium state and the sensitivity of AIE is time dependent. Recent advancements in the
125 spatiotemporal resolutions of the geostationary satellite offer an opportunity to address this issue. For instance, using
126 Gaussian process emulation, Glassmeier et al. (2021) used applied a Gaussian-process emulation and derived the
127 adjustment equilibration timescale for LWP to be ~20 hours. to find found that the LWP adjustment for non-
128 precipitating clouds takes ~20 hours to reach the equilibrium state. By satellite observations-By tracking the ship
129 tracks in satellite observations along its source emission location in satellite observations, Gryspeerdt et al. (2021)
130 quantified the timescale found a similar AIE timescale of AIE of to be ~20 hours or longer and the magnitude of
131 LWP susceptibility increases with time. In addition, By tracking cloud systems in satellite observations, Christensen
132 et al. (2020) found discovered that influence of aerosols on cloud LWP, CF, and cloud top height persists two to
133 three days by tracking cloud systems in satellite observations. To conclude In summary, the sensitivity of cloud
134 responses to N_d perturbations changes with time and, thus, the assumption that AIE has no memory of its past state
135 likely fails is inadequate. Christensen et al. (2020) tracked the influence of aerosols on cloud lifetime and
136 development at different cloud stages, and Gryspeerdt et al. (2021) quantified the timescale of aerosols' impact on
137 CF and LWP. Nonetheless, the direct evaluation of the impact of cloud memory on the quantified cloud
138 susceptibility remains unexplored. to the best of our knowledge.

139 To facilitate a process-level understanding of the drivers behind the diurnal variation of AIE for warm
140 boundary layer clouds, we will classify warm boundary layer~~these~~ clouds into three states: precipitating clouds, non-
141 precipitating thick clouds, and non-precipitating thin clouds. We investigate the changes in both the frequency of
142 occurrence of cloud states and the magnitude intensity of AIE for different cloud states throughout the day.
143 Additionally, we track document the temporal changes in cloud state within each fixed $1^\circ \times 1^\circ$ grid box and
144 quantify the influences of cloud memory and state transition on AIE. Section 2 describes the datasets as well as the
145 methodology employed to quantify cloud susceptibilities, distinguish precipitating clouds from the satellite
146 retrievals, and track cloud states. We present our results in Section 3. Section 3.1 characterizes the general
147 conditions of warm boundary clouds over the ENA region during the summer. Section 3.2 introduces the LWP- N_d
148 parameter space and illustrates the dependence of cloud responses to N_d perturbations on cloud states. We then,
149 discuss the mean daytime diurnal variation of cloud susceptibilities for all cloud states in Section 3.3, followed by an
150 analysis of the AIE diurnal-daytime variation of AIE for each cloud state and the impact of the state transition on
151 AIE in Section 3.4. In Section 3.5, we decompose the contributions to the daytime diurnal variation of cloud

152 susceptibility into two components, one is from changes in the frequency of occurrence of different cloud states and
153 the other is from changes in the intensity of AIE during the day. Section 4 includes discussions on the similarities
154 and differences in findings between this study and previous studies of AIE and Section 5 is the summary and
155 conclusions of this study.

156 **2. Dataset and Methodology**

157 We use cloud retrievals derived from the Spinning Enhanced Visible InfraRed Imager (SEVIRI) on
158 Meteosat-11, with a spatial resolution of 3 km at nadir and a half-hourly temporal resolution over the ENA region
159 (33-43°N, 23-33°W). SEVIRI cloud products are derived using the Satellite ClOud and Radiation Property retrieval
160 System (SatCORPS) algorithms (e.g., Painemal et al., 2021), based on the methods applied by the Clouds and the
161 Earth's Radiant Energy System (CERES) project, and specifically tailored to support the ARM program over the
162 ARM ground-based observation sites (Minnis et al. 2011, 2020). Given the purpose of this study on quantifying the
163 AIE on warm boundary layer clouds, we focus on four months of July (2018-2021), a period that coincides with the
164 highest frequency of occurrence of warm boundary layer clouds over the ARM ENA site (Rémillard et al. 2012;
165 Dong et al., 2014, 2023).

166 The cloud mask algorithm implemented in SatCORPS is described in Trepte et al. (2019). SatCORPS cloud
167 properties are based on the shortwave-infrared split-window technique during daytime (VISST, Minnis et al. 2011,
168 2020), with cloud optical depth (τ) and effective radius (r_e) being derived using an iterative process that combines
169 reflectance and brightness temperatures from the 0.64 μm and 3.9 μm channels. Cloud LWP is computed from τ and
170 r_e using the formula $LWP = \frac{4r_e\tau}{3Q_{ext}}$, where Q_{ext} represents the extinction efficiency and assumed constant of 2.0
171 (Minnis et al. 2011, 2020). The top-of- atmosphere (TOA) broadband shortwave α_c is derived from an empirical
172 radiance-to-broadband conversion using the satellite imager's visible channel and CERES Single Scanning Footprint
173 (SSF) shortwave fluxes, and dependent on solar zenith angle and surface type (Minnis et al. 2016). Cloud top height
174 computations follows the methodology in Sun-Mack et al. (2014).

175 To validate the Meteosat-11 retrieved cloud mask and the detection of boundary layer clouds, we compare
176 the boundary layer cloud fractions derived from Meteosat-11 with the ground-based observations at the ARM ENA
177 site. As seen in Fig. ~~the~~ S1, both the diurnal variation and the mean CF of Meteosat-11 agree well with ARM
178 observations. More details on the methodology for the evaluation study are included in the supplementary material.

179 Our analysis focuses on warm boundary layer clouds with cloud tops below 3km and a liquid cloud phase.
180 To focus specifically on boundary layer cloud cases without including the edges of deep clouds, we apply a stricter
181 threshold than merely using the pixel-level cloud top height. We define boundary layer clouds as those with 90% of
182 their cloud tops below 3km, labeling all contiguous cloudy pixels as distinct cloud objects.

183 Cloud N_d is retrieved based on the adiabatic assumptions for warm boundary layer clouds, as in Grosvenor
184 et al. (2018) according to the following equation:

185
$$N_d = \frac{\sqrt{5}}{2\pi k} \left(\frac{f_{ad} c_w \tau}{Q_{ext} \rho_w r_e^5} \right)^{1/2} \quad (1)$$

186 In Equation (1), k represents the ratio between the volume mean radius and r_e , assumed to be constant of 0.8 for
187 stratocumulus; f_{ad} is the adiabatic fraction of the observed liquid water path and assumed to be 0.8 for
188 stratocumulus clouds (Brenguier et al., 2011; Zuidema et al., 2012); c_w is the condensation rate, which is a function
189 of ~~cloud~~ temperature and pressure; Q_{ext} is the extinction coefficient, approximated as 2 in this study; and ρ_w is the
190 density of liquid water. While the different components of Eq. (1) could contribute to the uncertainties in N_d , errors
191 in r_e are the dominant drivers in Eq. (1) (Grosvenor et al., 2018).

192 To minimize uncertainties associated with bias in satellite cloud microphysical retrievals, we only select
193 pixels with a minimum r_e of $3\mu\text{m}$, a minimum τ of 3, and a solar zenith angle (SZA) of less than 65° (e.g., Painemal
194 et al., 2013; Painemal, 2018; Zhang et al., 2022). The SZA threshold of 65° was chosen to minimize biases observed
195 at high solar zenith angle in r_e and τ (e.g., Grosvenor & Wood, 2014; Grosvenor et al., 2018).

196 In addition, to reduce ~~the~~ uncertainties associated with the adiabatic assumption in the N_d retrieval, we
197 implement a filtering process. For each cloud, we exclude ~~cloudy~~ pixels at the cloud edge, defined as those adjacent
198 to ~~a~~-cloud-free pixels, following a similar sampling strategy suggested by Gryspeerdt et al. (2022). Therefore, all
199 cloud properties in this study refer to the properties of cloud body without cloud edge. It is worthy of note that
200 shallow cumulus clouds with diameters smaller than 9km are not included. The removal of ~~cloud~~-edge pixels
201 accounts for $\sim 14\%$ of the cloudy pixels. Furthermore, we removed grid boxes containing islands due to the
202 uncertainties in Meteosat retrievals over contrasting underlying surface (~~not shown~~). Lastly, to avoid unrealistically
203 large retrievals, we eliminate pixels with the retrieved N_d values exceeding 1000 cm^{-3} , which constituted only
204 0.002% of the data.

205 Cloud susceptibility is quantified as the slopes between cloud properties and N_d using a least-square
206 regression. As found by Arola et al. (2022) and; Zhou and Feingold (2023), the retrieved cloud susceptibilities are
207 sensitive to small-scale cloud heterogeneity, the co-variability between cloud properties and N_d , and the spatial scale
208 of cloud organization. To smooth the noise reduce the biases resulting from the heterogeneity and co-variability, To
209 facilitate the analysis, we first average the 3-km pixel-level cloud retrievals and N_d (Eq. 1) to a regular
210 $0.25^\circ \times 0.25^\circ$ grid for each half-hourly time step. As suggested by Feingold et al (2022), N_d retrieval was
211 performed at pixel level using Eq. (1), and then averaged to a 0.25° resolution. This grid averaging process helps to
212 eliminate spatial correlations arising from small scale cloud processes and reduces the influence of extreme values
213 on the regression slopes.

214 To further mitigate the impact from ~~spatial and temporal~~ co-variability between of cloud properties and N_d
215 at larger spatiotemporal scales~~on the derived relationships~~, cloud susceptibility is estimated within a $1^\circ \times 1^\circ$ grid
216 box at each satellite time step (e.g., Zhou et al., 2021; Zhang et al, 2022). Besides the co-variability~~Moreover,~~
217 Estimating the cloud susceptibility over a confined space also help to constrain the meteorological impacts on AIE,
218 with the assumption of a homogeneous meteorological condition within this spatial scale. Next, susceptibilities are
219 calculated using the 0.25° smoothed data if the number of data points within the $1^\circ \times 1^\circ$ box exceeds six (from a
220 maximum of 16 data points). It is important to note that when computing the $0.25^\circ \times 0.25^\circ$ averaged~~the mean~~
221 cloud properties~~at the 0.25° resolution~~, only data from cloudy pixels are used to ensure that the estimated
222 susceptibility is not weighted by CF or impacted by satellite artifacts. Lastly, due to the minimal spatial variability

223 of cloud susceptibility in the study region, the 1° cloud susceptibility is averaged over the study region (33–43°N,
 224 23–33°W) to characterize the diurnal daytime variation of AIE. Additionally, results and conclusions of this study
 225 are not sensitive to the size of the box calculating the cloud susceptibility (e.g., over a $0.8^\circ \times 0.8^\circ$ box or over a
 226 $1.5^\circ \times 1.5^\circ$ box, not shown).

227 Because of the nonlinear relationships between LWP and N_d , the LWP susceptibility is defined as the slope
 228 in logarithmic scale, that is: of the log-log regressions $d\ln(LWP)/d\ln(N_d)$ (e.g., Gryspenert et al. 2019). The
 229 albedo susceptibility is estimated as the slope of change in between α_c with and $\ln(N_d)$ equivalent to
 230 perturbations as $d\alpha_c/d\ln(N_d)$ (e.g., Painemal 2018). Lastly, the CF susceptibility is estimated as $dCF/d\ln(N_d)$.
 231 The mean CF is defined as the fraction of cloudy pixels excluding cloud edge to the sum of cloudy and clear pixels
 232 within each $0.25^\circ \times 0.25^\circ$ box. Due to the highly variable nature of CF, the variability variation in the 0.25° CF
 233 could arise may result from quantifying edges or centers of the same cloud layer rather than instead of from N_d
 234 perturbations. To assess test the potential influence of cloud morphology geometry on the retrieved CF susceptibility,
 235 we excluded removed any $1^\circ \times 1^\circ$ grid box scene meeting the following three criteria: with variation in the 1) the
 236 difference between the maximum and minimum 0.25° CF greater than 0.9, 2) while the variation in the $0.25^\circ N_d$
 237 less than 60 cm^{-3} , and 3) the 0.25° CF in the $1^\circ \times 1^\circ$ grid box sample the same cloud. The 0.9 and 60 cm^{-3}
 238 thresholds represent ~45% of the data. With the three thresholds combined, a ~~A~~ total of 17,000 scenes were removed,
 239 which accounts for ~24% of the total samples. Removing these scenes does not change the conclusions of CF
 240 susceptibility in this study (not shown), which demonstrates that cloud morphology, geometry has minimal impact on
 241 the retrieved CF susceptibility. Furthermore, as we removed N_d retrievals at cloud edge where N_d likely suffers
 242 large uncertainties, and α_c pixels at cloud edge are set as clear for consistency in the calculation of the CF
 243 susceptibility. Removing the cloud edge decreases the four-month mean CF for warm boundary layer clouds from
 244 21.6% to 19.0%.

245 The susceptibility of the shortwave radiative fluxes to N_d (F_0) is estimated as the sensitivity of the TOA
 246 shortwave upward radiative flux (SW_{TOA}^{up}) to N_d perturbations (e.g., Chen et al. 2014; Painemal 2018; Zhang et al.
 247 2022). The mean SW_{TOA}^{up} over a $1^\circ \times 1^\circ$ grid box is estimated using Eq. (2), with the assumption that the clear-sky
 248 albedo over the ocean is small compared to the cloud albedo:

$$249 \quad \overline{SW_{TOA}^{up}} = \overline{SW_{TOA}^{dn}} \cdot \overline{\alpha_c} \cdot \overline{CF}, \quad (2)$$

250 where SW_{TOA}^{dn} is the grid-box mean TOA shortwave downward radiative flux, which is estimated based on the
 251 latitude, longitude, date, and overpass time of each pixel, α_c and CF are the grid-box mean values. Then, F_0 is
 252 estimated using the calculated α_c and CF susceptibilities, and the $1^\circ \times 1^\circ$ grid-box mean cloud properties as shown
 253 in the equation below:

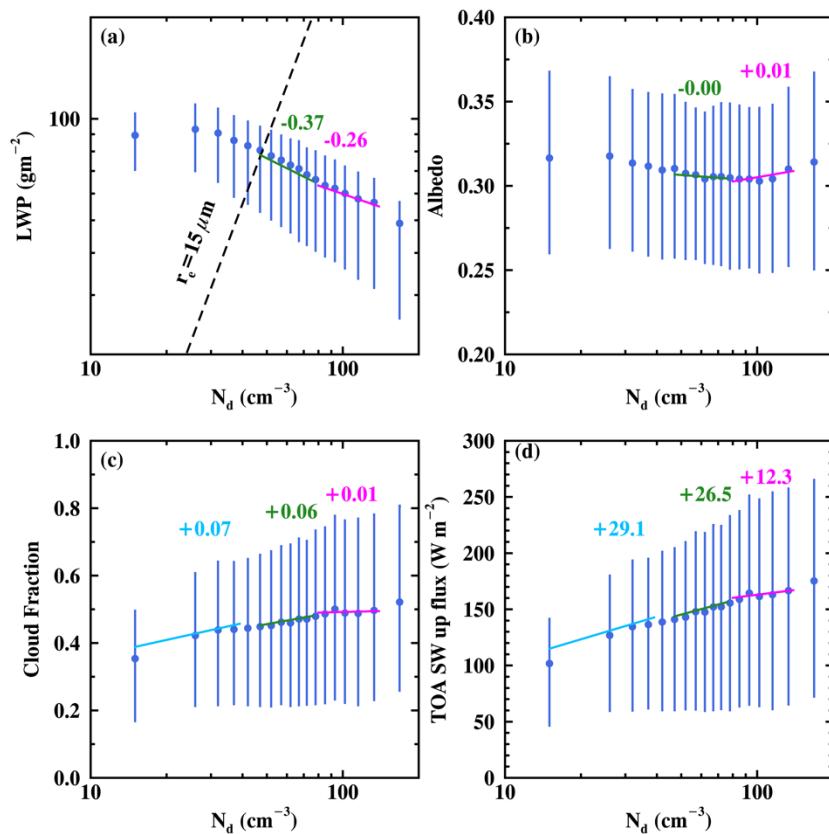
$$254 \quad F_0 = -\frac{dSW_{TOA}^{up}}{d\ln(N_d)} = -\overline{SW_{TOA}^{dn}} \cdot \left(\frac{d\alpha_c}{d\ln(N_d)} \cdot \overline{CF} + \frac{dCF}{d\ln(N_d)} \cdot \overline{\alpha_c} \right). \quad (3)$$

255 F_0 is in the unit of $W \text{ m}^{-2} \ln(N_d)^{-1}$, and a positive value indicates a decrease in the SW_{TOA}^{up} , which is a *warming*
 256 effect at the surface.

257 To minimize uncertainties in the linear regression for the estimated susceptibility, we analyze regressions
 258 that exhibited a goodness of fit exceeding the 95% confidence interval (i.e., $\chi^2 < \chi^2_{0.95,c}$), and an absolute

259 correlation coefficient greater than 0.2 (e.g., Painemal, 2018; Zhang et al., 2022). There is a total of $\sim 1195,000$
260 samples of the 1° cloud susceptibilities in this study, applying the goodness of fit thresholds result in ~~an~~ exclusions
261 of $\sim 33,000$ ~~43,000~~ ~~262,5000~~ samples for different susceptibilities, which ~~are~~ $\sim 28\text{-}37\%$ of the data. Sensitivity
262 test shows that including cases that fail the goodness of fit test will not change the results and conclusions of this
263 study (not shown). ~~SM~~ore specifically, including these cases decrease the magnitude of cloud susceptibilities for all
264 three cloud states, but the signs of cloud responses to N_d perturbations remain consistent.

265 Since precipitating and non-precipitating clouds exhibit distinct responses to aerosol perturbations due to
266 the effect of precipitation suppression and the wet-scavenging feedback, it is critical to distinguish between these
267 two cloud states when estimating AIE. Previous studies have utilized various methods based on the effective radius
268 threshold (e.g., Gryspeerdt et al., 2019, Toll et al., 2019; Zhang et al., 2022) and the rain rate threshold (e.g., Duong
269 et al., 2011; Terai et al., 2015) from satellite retrievals. In our study, we validate these two methods using the
270 precipitating mask estimated from ground-based observations with a radar reflectivity threshold together with the
271 lidar-defined cloud base at the ARM ENA site (e.g., Wu et al., 2020). The thresholds of $r_e > 12 \mu\text{m}$ and $r_e > 15 \mu\text{m}$
272 yield hit rates of 0.79 and 0.73, respectively. However, the false alarm rate is higher for $r_e > 12 \mu\text{m}$ (0.21) compared
273 to $r_e > 15 \mu\text{m}$ (0.1). Rain rate is computed using the empirical relationships derived from ground-based
274 measurements in Comstock et al. (2004) as $R = 0.0156 (LWP/N_d)^{1.75}$. Using a threshold of $R > 0.05 \text{ mm/h}$ results
275 in a hit rate of 0.65. Consequently, we use the $r_e > 15 \mu\text{m}$ threshold to define precipitating clouds in this study.


276 To investigate the dependences of cloud susceptibility AIE on previous cloud states and quantify the
277 influence of cloud memory on the estimated cloud susceptibility, we track ept for tracking the historical cloud state
278 over a $1^\circ \times 1^\circ$ grid box fixed location with time for a two-hour period, rather than tracking cloud parcels in space
279 and time. During the summer in the study region, low wind conditions prevail in the boundary layer, with the mean
280 wind speed being less than 10 m/s for 85% of the time and less than 7 m/s for 60% of the time. Therefore, in most
281 cases, less than half of the clouds exit the grid box within the two hours, allowing us to track the previous cloud state
282 within the same grid box (i.e., from an Eulerian perspective). A two-hour tracking window is used to define changes
283 in cloud state over the $1^\circ \times 1^\circ$ grid box. Given the typical boundary layer mean wind speed, horizontal advection
284 would have limited impact on cloud state transition. Section 3.4 includes more details and discussions on the
285 sensitivity of tracking time and the influence of advection on our classification. The influence of cloud memory is
286 assessed by comparing the cloud susceptibilities of clouds that undergo a transition in cloud state with those that do
287 not experience such a transition. Section 3.4 includes provides more details and discussions on the sensitivity of
288 tracking time and the influence of advection on our classification.

289 3. Results

290 3.1 General cloud conditions and mean cloud responses to N_d perturbations

291 In the ENA region, characterized by dominant Bermuda High with its prevailing ridge and zonal synoptic
292 pattern (Mecham et al., 2018), the summer season gives rise to the annual peak in boundary layer cloud coverage ~~at~~
293 ENA. The monthly mean low-level CF retrieved from Meteosat-11 reaches its maximum of 35% in July, compared

294 to an annual mean of 17% during the four-year study period (not shown). This region represents a typical clean
 295 marine condition, situated far from continental influences, which results in a consistently lower N_d compared to
 296 polluted marine regions, such as the northeastern (NE) Pacific near California or the northwestern Atlantic near the
 297 Gulf of Maine. In July, the mean N_d over the ENA region is 65 cm^{-3} with the lower 5th and upper 95th percentile
 298 of 15 and 160 cm^{-3} , respectively. The retrieved N_d values [in this study](#) closely align with in-situ measurements
 299 from the Aerosol and Cloud Experiments in Eastern North Atlantic (ACE-ENA) field campaign. For instance, the
 300 in-situ measured N_d in July 2017 varied from 25 to 150 cm^{-3} , with a mean value of 65 cm^{-3} (e.g., Yeom et al.,
 301 2021; Zhang et al., 2021). Moreover, our satellite [retrieved](#) N_d exhibits good agreement with retrievals based on
 302 ground-based observations at the ARM ENA site (e.g., Dong et al., 2014; Wu et al., 2020) and the MODerate
 303 resolution Imaging Spectroradiometer (MODIS, e.g., Bennartz 2007; Bennartz and Rausch 2017).

304
 305 Figure 1. Relationships between N_d and cloud properties: (a) cloud LWP, (b) cloud albedo, (c) cloud fraction, and
 306 (d) TOA shortwave upward radiative flux. The dots represent the mean values, while the whiskers indicate the upper
 307 and lower 25th percentile. In (a), the dashed line denotes $r_e = 15 \mu\text{m}$, serving as an indicator of precipitation
 308 occurrence, with precipitating clouds located to the left of the line. Blue, green, and magenta lines in panels (a)-(d)
 309 represent the regression slopes of the mean cloud properties, and the mean $\ln(N_d)$, for $N_d < 40 \text{ cm}^{-3}$, N_d between
 310 40 and 80 cm^{-3} , and $N_d > 80 \text{ cm}^{-3}$, respectively.

311
 312 Previous studies have demonstrated that clouds exhibit diverse responses to aerosol perturbations under
 313 clean and polluted conditions (e.g., Fan et al. 2016; Mülmenstädt and Feingold, 2018). [Cloud properties derived](#)
 314 [from satellite retrievals show consistent distinct responses under clean \(low\) and polluted \(high\) conditions](#). Figure
 315 1 shows the relationships between the climate mean cloud properties, derived from the pixel-level SEVIRI cloud

316 products, and averaged to the $1^\circ \times 1^\circ$ resolution, as a function of the $1^\circ \times 1^\circ$ mean N_d values. To quantify these
317 responses, cloud susceptibility is estimated as the slope of the mean cloud variable changes across N_d bins. In
318 pristine conditions ($N_d < 40 \text{ cm}^{-3}$, ~28% of data), clouds predominantly precipitate ($r_e > 15 \mu\text{m}$, Fig. 1a). The mean
319 cloud LWP features a slight increase followed by a decrease with increasing N_d . This result departs from the
320 precipitation suppression hypothesis, in which LWP typically increases. The absence of a precipitation suppression
321 signal is likely attributed to the relatively modest precipitation that witnessed by clouds occurred in this
322 region during summer (e.g., Wu et al., 2020; Zheng and Miller, 2022), where the resulting in a minimal effect of
323 precipitation suppression effect is minimal and the a dominant entrainment drying effect dominates. In terms of α_c ,
324 the potential decrease in α_c resulting from attributed to a the decreased LWP reduction offsets the potential
325 increases in α_c caused by the Twomey effect, resulting in a net zero change in mean α_c for clouds with $N_d < 40$
326 cm^{-3} (Fig. 1b). Furthermore, the majority of precipitating clouds are broken clouds, with the a mean CF that
327 increases with N_d from 0.35 to 0.45 (Fig. 1c). Consequently, the mean SW_{TOA}^{up} flux increases from 100 to 140
328 $W \text{ m}^{-2}$ as N_d increases from 10 to 40 cm^{-3} . This increase in CF for precipitating clouds aligns with previous study
329 over the north Atlantic region across all seasons (e.g., Gryspeerdt et al., 2016). In summary, despite the slight
330 decrease in mean LWP with increasing N_d for precipitating clouds, the mean cloud albedo remains relatively
331 constant, while the mean CF increases, resulting in an overall increase in the TOA reflected shortwave flux by
332 clouds.

333 Under relatively polluted conditions with $N_d > 40 \text{ cm}^{-3}$ (~72% of data), the mean LWP shows a
334 decreasing trend with N_d . For N_d values between $40-80 \text{ cm}^{-3}$, the $\ln(\text{LWP}) - \ln(N_d)$ slope is -0.3744 , while for N_d
335 exceeding 80 cm^{-3} , the slope reaches -0.263 (green and magenta lines in Fig. 1a). This negative adjustment of
336 LWP for non-precipitating clouds is consistent with the sedimentation-evaporation-entrainment feedback hypothesis,
337 as well as with previous studies of stratocumulus clouds in other regions (e.g., Gryspeerdt et al., 2019; Zhang et al.,
338 2022). The mean α_c remains nearly constant within the N_d range of $40-80 \text{ cm}^{-3}$ (Fig. 1b). As LWP decreases at a
339 slower rate for $N_d > 80 \text{ cm}^{-3}$, the Twomey effect becomes more dominant and leads to a slight increase in α_c with a
340 slope of 0.012 (magenta line in Fig. 1b). For non-precipitating clouds, the mean CF slightly increases with
341 increasing N_d with a CF susceptibility of 0.06 and 0.013 (green and magenta lines in Fig. 1c). As a result, the SW_{TOA}^{up}
342 flux exhibits a weaker susceptibility compared to precipitating clouds (Fig. 1d).

343 3.2 Daytime mean cloud susceptibilities in the LWP- N_d space

344 One limitation of the relationships derived from the mean cloud properties with sorted N_d is the
345 confounding effect from meteorological impacts on cloud properties and cloud susceptibilities. As a comparison,
346 Fig. 2 shows the mean cloud susceptibility estimated within each half-hourly snapshot's $1^\circ \times 1^\circ$ grid box and
347 averaged in the LWP- N_d parameter space. There are around 727,000-82,000 samples of the 1° cloud
348 susceptibilities in this study. The number of samples for different cloud susceptibilities are slightly different due to
349 the goodness of fit test for each regression. We calculate the mean susceptibilities for LWP- N_d bins with more than
350 100 cloud susceptibility samples. Blank bins in Fig. 2 are bins with less than 100 samples. Figure 2e shows the
351 occurrence frequency of samples for the LWP susceptibility in Fig. 2a.

With the assumption that the meteorological condition is homogeneous in each grid box, the estimated cloud susceptibilities exhibit much stronger relationships for all cloud variables compared to the climatological mean adjustment rates shown in Fig. 1. The disparities between the two methods suggest that [the meteorological confounders](#) [influences on clouds likely dampens](#) [tends to obscure](#) the signal of the AIE over the ENA region. Moreover, the cloud responses [from both](#) for [both](#) precipitating and non-precipitating clouds exhibit consistent signs between the half-hourly (Fig. 2) and climatological-mean approaches (Fig. 1). This consistency is likely attributed to the confined domain ($10^\circ \times 10^\circ$) and the focus on July in this study, which limit the spatial and temporal covariability between cloud properties and N_d . This consistency also demonstrates that the overall cloud responses to N_d perturbations primarily depend on cloud states (e.g., precipitating conditions and cloud thickness).

The dependence of cloud response on cloud state is illustrated in Fig. 2. We define three cloud states: (1) *the precipitating clouds* ($r_e > 15 \mu\text{m}$), (2) *the non-precipitating thick clouds* ($r_e < 15 \mu\text{m}$, $LWP > 75 \text{ gm}^{-2}$), and (3) *the non-precipitating thin clouds* ($r_e < 15 \mu\text{m}$, $LWP < 75 \text{ gm}^{-2}$), similar to the definition in Zhang et al. (2022).

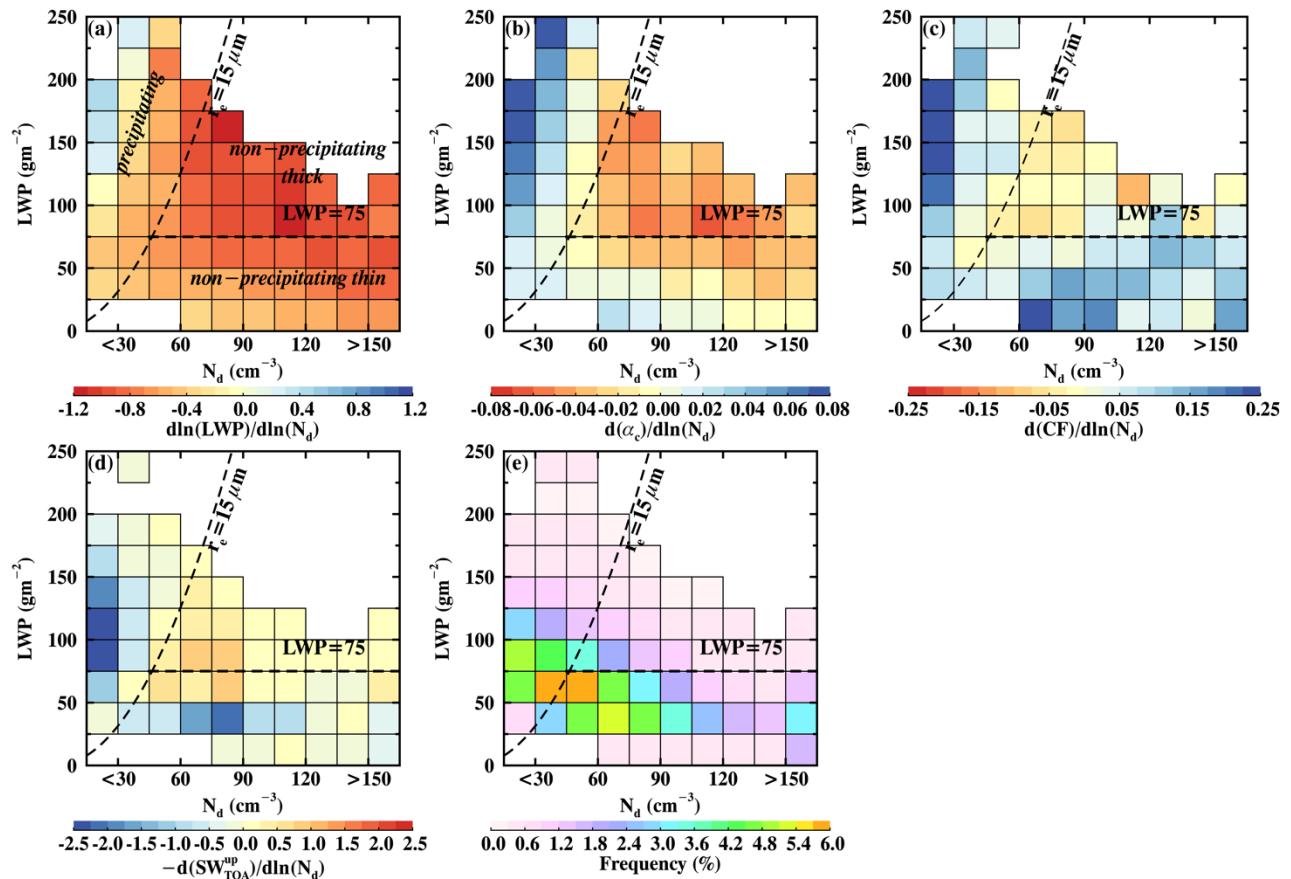


Figure 2. Mean cloud susceptibilities for different N_d and LWP bins during the daytime. (a) cloud LWP susceptibility ($d\ln(LWP)/d\ln(N_d)$), (b) cloud albedo susceptibility ($d\alpha_c/d\ln(N_d)$), (c) cloud fraction susceptibility ($dCF/d\ln(N_d)$), (d) cloud shortwave susceptibility ($-dSW_{TOA}^{up}/d\ln(N_d)$) weighted by the frequency of occurrence of samples of each bin, and (e) frequency of occurrence of samples in each bin. The dashed lines in (a)-(e) indicate $r_e = 15 \mu\text{m}$ and $LWP = 75 \text{ gm}^{-2}$, as thresholds for precipitation (precipitating clouds located to the left of the line) and thick clouds (with $LWP > 75 \text{ gm}^{-2}$). The defined three clouds states are noted in (a).

a. *Precipitating clouds*

372 Among warm boundary layer clouds, precipitating clouds are the dominant cloud state in July over the
373 study region, with a the total frequency of occurrence ofis 46% (Fig.2e). The increase in cloud LWP with increasing
374 N_d is observed primarily in heavily precipitating thick clouds with $N_d < 30 \text{ cm}^{-3}$ and $\text{LWP} > 125 \text{ gm}^{-2}$ (Fig. 2a).
375 However, these clouds occur relatively infrequently at ENA, accounting for only 2% of the total warm boundary
376 cloud population (Fig. 2e). In contrast, most of the precipitating clouds at ENA are lightly precipitating with
377 $15 < r_e < 20 \mu\text{m}$ (Fig.2e and Fig. S2c) and they exhibit a slight decrease of LWP with N_d (Fig. 2a). The mean LWP
378 susceptibility for lightly precipitating clouds ranges from -0.5 to -0.2 for different bins, with a mean value of -0.4 .
379 The standard deviations of LWP susceptibility in different LWP- N_d bins vary between 0.4 to 1.2, while the LWP
380 susceptibilities for precipitating clouds are significantly different than other two cloud states at a 95% confidence
381 level. The slight decrease in LWP for lightly precipitating clouds aligns with previous findings over the Pacific,
382 Atlantic, and global oceans for marine stratocumulus (e.g., Fig S4 in Zhang and Feingold, 2023).

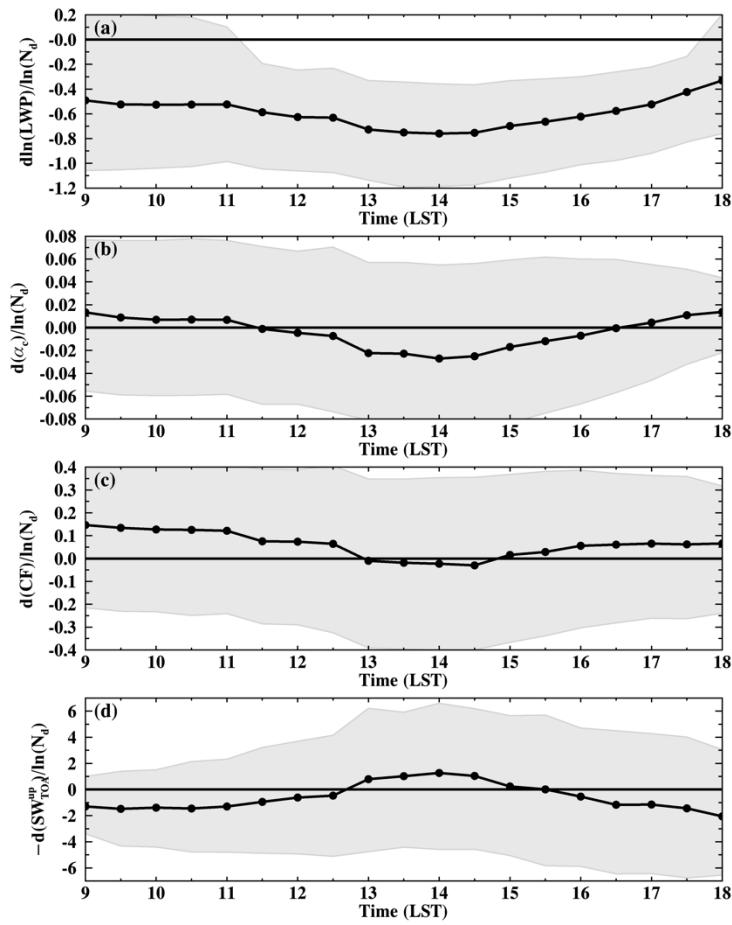
383 The contrasting response of LWP to N_d perturbations for lightly and heavily precipitating clouds can be
384 attributed to the interplay of two competing processes: the depletion of LWP caused by the sedimentation-
385 evaporation-entrainment feedback and the accumulation of LWP resulting from the precipitation suppression
386 feedback. Heavily precipitating clouds are predominantly overcast with a mean CF of 0.65 (Fig. S2a) and a mean r_e
387 of $25 \mu\text{m}$ (Fig. S2c). Precipitation acts to stabilize the boundary layer, remove water from cloud top, and reduce the
388 entrainment rate (Sandu et al., 2007, 2008). Therefore, heavily precipitating clouds exhibit smaller entrainment rate
389 than non-precipitating clouds with similar LWP. The increase of LWP from precipitating suppression feedback
390 outweighs the decrease of LWP from entrainment feedback and results in a net increase in LWP (e.g., Chen et al.,
391 2014; Toll et al., 2019). Precipitation suppression and entrainment weakening work in concert and result in a net
392 increase in LWP with increasing N_d . In lightly precipitating clouds, however, the suppression effect of drizzle on the
393 entrainment rate is minimal. Therefore, the decrease in LWP from entrainment overpowers the increases in LWP
394 from precipitating suppression, leading to a net decrease in LWP with increasing N_d (e.g., Xue and Feingold, 2006).

395 Precipitating clouds generally exhibit brighter cloud albedo with increasing N_d as a result of the weak
396 negative and positive LWP adjustment, particularly in heavily precipitating clouds (Fig. 2b). For lightly precipitating
397 clouds, The α_c susceptibilities range from −0.040.02 to $0.07 \ln(N_d)^{-1}$, with a mean of 0.02 $\ln(N_d)^{-1}$. The
398 suppression of precipitation by N_d also lead to a significant increase in CF for heavily precipitating clouds, with
399 slopes greater than $0.25 \ln(N_d)^{-1}$ (Fig. 2e). For most of the lightly precipitating clouds, the mean CF exhibits have
400 small variation with N_d perturbations, with the CF susceptibilities for lightly precipitating clouds show
401 variation ranging between $\pm 0.025 \ln(N_d)^{-1}$ (Fig. 2c). The standard deviation of the 1° α_c and CF susceptibilities for
402 different precipitating bins ranges between 0.05–0.15 and 0.3–0.6, respectively. The α_c and CF susceptibilities for
403 precipitating clouds are significantly different than other two cloud states at a 95% confidence level. Considering the
404 combined effects of increased α_c and CF, the meantotal radiative response for precipitating clouds amounts to -13
405 $W \text{ m}^{-2} \ln(N_d)^{-1}$, which is a cumulative shortwave susceptibility of bins classified as precipitating clouds in Fig. 2d,
406 weighted by their frequency of occurrence a summation of the shortwave susceptibility in Figure 2d for bins
407 classified as precipitating clouds. The contributions from CF and α_c effects are of -9.5 and $-3.5 W \text{ m}^{-2} \ln(N_d)^{-1}$,
408 respectively (Eq. 3).

409 *b. Non-precipitating thick clouds*

410 Non-precipitating thick clouds are less frequent, the total frequency of occurrence is 10% (Fig. 2e). ~~For non-precipitating clouds, the~~ Their cloud LWP responses of cloud LWP to N_d perturbations differ from that of precipitating clouds. ~~The intensified evaporation from small droplets at high concentrations (e.g., Xue and Feingold, 2006; Small et al., 2009) and the enhanced entrainment due to large LWP (e.g., Sandu et al., 2008, Williams and Igel, 2021) lead to a minimum in LWP susceptibilities of -1.2 at the high LWP and high ends (Fig. 2a). The LWP susceptibility for non-precipitating thick clouds is the most negative among the three cloud states, and it reaches a minimum value of -1.2 at the high-LWP and high- N_d ends (Fig. 2a).~~ As LWP and N_d decrease, the LWP susceptibility gradually increases from -1.2 to -0.65. ~~This negative susceptibility is likely explained by the evaporation enhancement associated with smaller droplets at high N_d values (e.g., Xue and Feingold, 2006; Small et al., 2009), which works in concert with an entrainment strengthening expected in clouds with large LWP (e.g., Sandu et al., 2008, Williams and Igel, 2021).~~ The mean LWP susceptibility for non-precipitating thick clouds is -0.94. Consistent with the negative LWP susceptibility, non-precipitating thick clouds become less reflective with increasing N_d -for all N_d bins with $LWP > 75 \text{ gm}^{-2}$ (Fig. 2b). ~~The mean α_c albedo susceptibility is $-0.04 \ln(N_d)^{-1}$, also~~ Due to the enhanced entrainment and evaporation, ~~with increasing N_d , the mean CF mostly also~~ decreases ~~with increasing N_d , for non-precipitating thick clouds~~ with the mean CF susceptibilities ranging from ~~-0.05 to~~ -0.1 to $+0.04 \ln(N_d)^{-1}$ (Fig. 2c). Considering the decrease in both α_c and CF, non-precipitating thick clouds exhibit a warming effect ~~at~~ on the surface, the ~~mean total~~ radiative response is $+4.4 \text{ W m}^{-2} \ln(N_d)^{-1}$ (Fig. 2d), with contributions from the albedo effect and the CF effect of 2.9 and $1.5 \text{ W m}^{-2} \ln(N_d)^{-1}$, respectively (Fig. 2d).

429 *c. Non-precipitating thin clouds*


430 Non-precipitating thin clouds are more common than thick clouds during summer, with a total frequency of occurrence of 44% (Fig. 2e). Compared to non-precipitating thick clouds, ~~they exhibit consistent negative but slightly weaker LWP responses to N_d perturbations. The mean LWP susceptibilities range from -0.9 to -0.4 in different LWP- N_d bins with a mean of -0.7 (Fig. 2a).~~ Similar to non-precipitating thick clouds, non-precipitating thin clouds mostly become darker with increasing N_d . Interestingly, with largely decreased LWP, the mean CF mostly increase for all N_d conditions, the CF susceptibilities range from $+0.02$ to $+0.25 \ln(N_d)^{-1}$ (Fig. 2c). ~~they exhibit less negative LWP and α_c susceptibilities, but with an opposite increasing trend in CF (Figs. 2b, e).~~ The opposite signs in LWP and CF susceptibilities for non-precipitating thin clouds cannot be solely explained by the sedimentation- evaporation- entrainment feedback. ~~The sedimentation- evaporation- entrainment feedback alone cannot explain the opposite signs in LWP and CF susceptibilities for non-precipitating thin clouds. A possible explanation for the increased CF is that the enhanced entrainment rate and cloud top radiative cooling rate from aerosol perturbations help to mix the boundary layer, facilitate moisture transport from the ocean surface to cloud, and therefore facilitate favor new cloud formation and extend cloud lifetime (e.g., Christensen et al. 2020).~~ This hypothesis is consistent with and supported by the relative low CF for these clouds (Fig. S2a) and the diurnal variation in LWP susceptibility for non-precipitating thin clouds, which will be discussed in the next section. ~~The opposite signs of LWP and CF susceptibilities indicate that the AIE might likely redistribute cloud water horizontally~~

446 and make the thin clouds thinner and wider. In the next section, two additional hypotheses regarding the
447 development/dissipation of clouds and the transition of cloud states will be tested (Table 1). Due to increases in CF,
448 non-precipitating thin clouds have a cooling effect on the surface, with the radiative response of $+4.4$
449 $W\ m^{-2}\ ln(N_d)^{-1}$. The CF radiative effect from increased CF dominates the albedo effect from darker clouds and
450 lead a net cooling at the surface. The mean radiative response is $-5.2\ W\ m^{-2}\ ln(N_d)^{-1}$, with CF and albedo
451 contributions of -8.3 and $+3.1\ W\ m^{-2}\ ln(N_d)^{-1}$, respectively (Fig. 2d).

452 To sum up, the magnitudes and signs of the responses of cloud LWP, α_c , and CF to N_d perturbations
453 primarily depend on the cloud states. Precipitating clouds mostly become thinner and brighter with increasing N_d ,
454 accompanied by ~~an~~^a slight increase in CF. An increase in LWP with increasing N_d is observed only for heavily
455 precipitating clouds with $N_d < 30\ cm^{-3}$ and $LWP > 125\ gm^{-2}$. Non-precipitating thick clouds become thinner, less
456 reflective ~~from~~ TOA, and decrease in cloudiness with N_d perturbations. On the other hand, non-precipitating thin
457 clouds become ~~slightly~~ thinner and less reflective, but their cloudiness increase as N_d increases. Given the
458 dependence of AIE on cloud state, we will apply the cloud state classification ~~in established here will be applied in~~
459 the next following two sections ~~with the goal of~~ facilitating a process-level understanding of cloud responses and
460 the ~~daytime~~ diurnal variation in cloud susceptibilities.

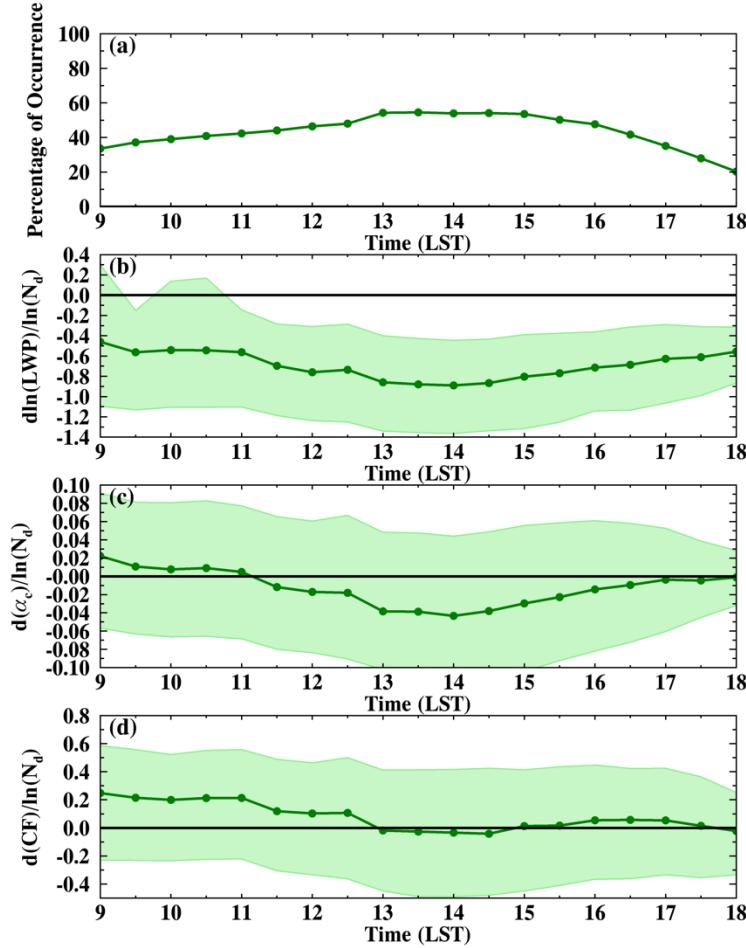
461 3.3 ~~Daytime~~ Diurnal variation of cloud susceptibility

462 As discussed in the introduction, warm boundary layer clouds exhibit a distinct diurnal cycle in both cloud
463 properties and frequency of occurrence of cloud states during summer. In this section, we investigate the
464 ~~daytime~~ diurnal variation of cloud susceptibility from 9 to 18 local standard time (LST) using the half-hourly
465 Meteosat-11 retrievals. The domain mean ~~diurnal~~ daytime variation of ~~satellite-based~~ cloud susceptibility is
466 estimated from each half-hourly time step within each $1^\circ \times 1^\circ$ box and then averaged over the study domain (33 -
467 43°N , 23 - 33°W) during the four months. In ~~Over~~ the study domain, there is little spatial variability in cloud
468 susceptibilities and the diurnal cycle of the cloud susceptibility ~~forever~~ the $1^\circ \times 1^\circ$ box at the ARM ENA site agree
469 well with the domain mean pattern (not shown). Furthermore, diurnal cycle of the cloud microphysical properties
470 (e.g., r_e , τ , LWP, N_d) show little difference between the domain mean value or that averaged over the $1^\circ \times 1^\circ$ box at
471 the ARM ENA site. The cloud microphysics retrievals from Meteosat-11 agree well with retrievals based on ground-
472 based radar and lidar observations in the ~~diurnal~~ daytime variation (not shown). Therefore, the ARM ENA site at the
473 Azores archipelago can represent the cloud properties and the AIE for warm boundary layer clouds over the study
474 region.

475
 476 Figure 3. Daytime variation of cloud susceptibilities. (a) cloud LWP susceptibility ($d\ln(LWP)/d\ln(N_d)$), (b) cloud
 477 albedo susceptibility ($d\alpha_c/d\ln(N_d)$), (c) cloud fraction susceptibility ($dCF/d\ln(N_d)$), and (d) cloud shortwave
 478 susceptibility ($-dSW_{TOA}^{up}/d\ln(N_d)$). The shaded areas represent the lower and upper 25th percentile of the cloud
 479 susceptibilities for each time step and the solid lines with dots represent the mean values
 480 the solid lines with symbols represent the mean values. The black solid lines without symbols in (a)-(d) represent the daytime mean values of
 481 cloud susceptibilities.

482
 483 Warm boundary layer clouds reveal witness distinct and significant diurnal daytime variations in cloud
 484 susceptibilities (Fig. 3). For example, the mean LWP susceptibility exhibits a magnitude of change of 0.4 from
 485 morning to evening noon, which corresponds to approximately 30-40% of the overall variability in LWP
 486 susceptibility (Fig. 3a). Similarly, the α_c and CF susceptibility undergo magnitude of diurnal changes of
 487 approximately 20-30% compared to the overall variability (Figs. 3b and c). The high variability in cloud
 488 susceptibility highlights the complex synoptic, meteorological and cloud conditions as well as the interplay between
 489 them synoptic conditions that varies diurnally and cloud states in the ENA region. Nevertheless, the
 490 diurnal daytime variation of cloud susceptibility is statistically significant at a 95% confidence level based on a
 491 student's t-test. Interestingly, all three cloud variables exhibit a "U-shaped" diurnal cycle in cloud susceptibilities
 492 with less negative/more positive values in the morning and evening and more negative values at noon. Additionally,
 493 the α_c and CF susceptibilities switch signs from positive in the morning to negative at noon, and then become

494 positive again in the evening. The switch in sign for albedo susceptibility is statistically significant at a 95%
495 confidence level, while the switch in sign for CF susceptibility is not statistically significant. As both α_c and CF
496 increase with increasing N_d in the morning, AIE has a cooling effect ~~on-at~~ the surface and the estimated shortwave
497 susceptibility is $-1.4 \text{ W m}^{-2} \ln(N_d)^{-1}$. During 13-1~~56~~ LST, the shortwave susceptibility switches sign to a
498 warming effect of $+1.2 \text{ W m}^{-2} \ln(N_d)^{-1}$ (Fig. 3d).


499 Given the pronounced diurnaldaytime variation of cloud susceptibility, *how can we explain this distinct*
500 diurnaldaytime *variation, and which state of cloud contributes most to the diurnaldaytime variation?* One possible
501 explanation is the increased occurrence of precipitating clouds in the morning and evening during summer
502 (Remillard et al, 2012), which increase cloud susceptibility, as depicted in Fig. 2. To investigate this hypothesis and
503 quantify the impacts of different cloud states on the variabilities of cloud susceptibilities, we examined the
504 diurnaldaytime variation of cloud susceptibility for each cloud state, along with the diurnaldaytime shift in cloud
505 state occurrence frequency for each cloud state.

506 3.4 DaytimeDiurnal variation of cloud susceptibility for different cloud states

507 3.4.1 Non-precipitating thin clouds

508 Non-precipitating clouds mainly consist of thin clouds, with a daytime mean occurrence of 44% (Fig. 4a).
509 The highest occurrence of non precipitating thin clouds is observed around noon, which is consistent with ground-
510 based radar reflectivity measurement at the ENA site (Remillard et al, 2012). Furthermore, as seen in Fig. 4, not
511 only the frequency of cloud occurrence, but also the susceptibilities of LWP, α_c , and CF show distinct
512 diurnaldaytime fluctuations. For example, the mean LWP susceptibility decreases from -0.4 to -0.9 , and the mean
513 α_c susceptibility decreases from 0.02 to $-0.04 \ln(N_d)^{-1}$ from morning to noon, followed by increases in both LWP
514 and α_c susceptibilities in the afternoon. The CF susceptibility is highly positive in the morning and decreases to near
515 zero after 13 LST. In addition, cloud susceptibility for thin clouds in the morning is statistically significantly
516 different fromthan that at noon and in the evening at a 95% confidence level.

517

518
 519 Figure 4. Daytime variation of (a) percentage of occurrence of non-precipitating thin clouds to warm boundary layer
 520 clouds, (b) cloud LWP susceptibility ($d\ln(LWP)/d\ln(N_d)$), (c) cloud albedo susceptibility ($d\alpha_c/d\ln(N_d)$), and (d)
 521 cloud fraction susceptibility ($dCF/d\ln(N_d)$) for non-precipitating thin clouds. The shaded areas represent the lower
 522 and upper 25th percentile of the cloud susceptibilities for each time step and the solid lines with dots represent the
 523 mean values and the solid lines without symbols in (a)–(d) represent the daytime mean values.

524 To explain the decrease of cloud susceptibility of non-precipitating thin clouds from morning to noon, we

525 test two hypotheses (H₁₂ and H₂₃ in Table 1). Hypothesis H₂₃ is related to the dissipation of thin clouds during this
 526 time period, which is caused by increased solar radiation and a decreased LWP due to increased solar
 527 radiation. During the dissipation, if homogeneous mixing dominates, both LWP and r_e decrease. As r_e is raised to
 528 the power of $-\frac{5}{2}$ in Eq. (1) compared to τ being raised only to the power of $\frac{1}{2}$, the decreases of LWP and r_e could
 529 still result in an increase in the retrieved N_d . Consequently, a The decreased LWP decrease and increased N_d
 530 increase leads to a decrease in LWP susceptibility during the dissipation (Gryspeerdt et al., 2019). To examine this
 531 hypothesis (H₂), non-precipitating thin clouds are classified as: growing, dissipating, or constant based on the
 532 changes in the mean CF, cloud susceptibilities for the three groups are shown in Fig. are S4S3. More specifically, we
 533 calculate the change in the mean CF within a 30-minute window for each fixed $1^\circ \times 1^\circ$ box. If the mean CF increase
 534 (decrease) more than 10%, clouds are classified as growing (dissipating). If the change in CF is less than 10%,
 535 clouds are classified as constant. Similar results are obtained using classification methods based on different CF

536 thresholds (e.g., from 10% to 30%), and during different time windows from 30-minutes to two hours or changes in
 537 the mean LWP (not shown).

538 Table 1. List of hypotheses and associated explanations for the daytime variation of LWP and CF susceptibilities for
 539 different cloud states.

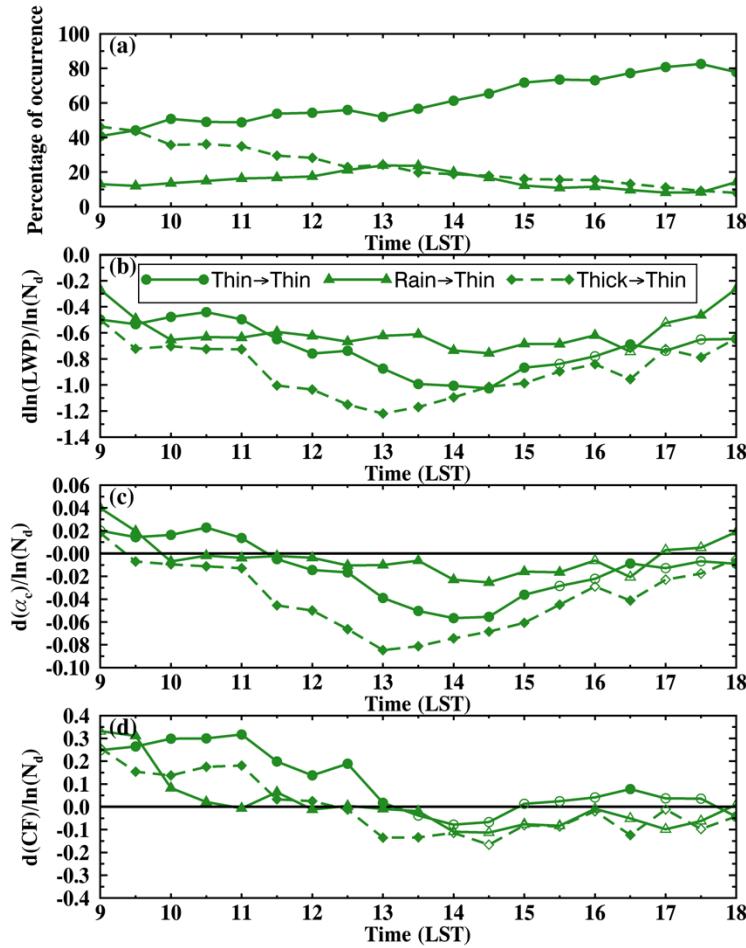
<u>-</u>	<u>Cloud state</u>	<u>Hypotheses:</u>	
<u>Daytime evolution of LWP susceptibility</u>	<u>Non-precipitating thin clouds</u>	<u>H1*:</u>	<u>Non-precipitating thick clouds transition to thin clouds from morning to noon, which leads to a daily minimum LWP susceptibility at noon.</u>
		<u>H2*:</u>	<u>Cannot explain. Clouds that are growing or dissipating have similar LWP susceptibilities as clouds with constant CF.</u>
	<u>Non-precipitating thick clouds</u>	<u>H1:</u>	<u>Thin clouds develop to thick clouds from noon to evening, which leads to an increase in LWP susceptibility.</u>
		<u>H2:</u>	<u>Cannot explain.</u>
	<u>Precipitating clouds</u>	<u>H1:</u>	<u>Non-precipitating thin clouds transition to precipitating clouds in the afternoon, which leads to a decrease in LWP susceptibility.</u>
		<u>H2:</u>	<u>Cannot explain.</u>
<u>Daytime evolution of CF susceptibility</u>	<u>Non-precipitating thin clouds</u>	<u>H1:</u>	<u>Thick clouds transitioned to thin clouds from morning to noon, leading to a decrease in CF susceptibility</u>
		<u>H2:</u>	<u>Cannot explain.</u>
	<u>Non-precipitating thick clouds</u>	<u>H1:</u>	<u>Cannot explain.</u>
		<u>H2:</u>	<u>Cannot explain.</u>
	<u>Precipitating clouds</u>	<u>H3*:</u>	<u>Mostly overcast clouds in the morning and evening. CF of overcast clouds is less sensitive to N_d perturbations.</u>
		<u>H1:</u>	<u>Thin clouds transition to precipitating clouds in the afternoon, and lead to a decrease in CF susceptibility</u>
		<u>H2:</u>	<u>Cannot explain.</u>

540 *H1: LWP and CF responses to N_d perturbations slower than the transition of cloud state.

541 *H2: Dissipation or development of clouds.

542 *H3: Changes in cloud morphology.

543


544 As seen in Fig. Fig. S4S3b, the LWP susceptibility for non-precipitating thin clouds in the growing or
 545 dissipating stages are similar or less negative than clouds that remain constant in CF, which contradicts the
 546 hypothesis H2. Additionally, the occurrence of dissipating and developing thin clouds remain relatively constant
 547 throughout the day (Fig. Fig. S4S3a), which differs from our hypothesis that thin clouds dissipate in the morning.
 548 Therefore, the decrease in LWP susceptibility in the morning is *unlikely* to be attributed to the dissipation or
 549 development of thin clouds. Yet, due to the observational limitation on estimating the mixing process from satellite
 550 retrievals, further investigation is needed to quantify the impact of cloud dissipation and the mixing type on the N_d -
 551 LWP relationship.

552 Besides the change in CF, dissipation/development of clouds can be defined by change in LWP. However,
553 as our definition of thin and thick clouds use LWP thresholds, results based on change in LWP are similar to results
554 shown in Fig. 5, but with weaker signal (not shown). This indicates that classification of precipitating verses non-
555 precipitating clouds is necessary in distinguishing cloud responses to N_d perturbations than merely using the LWP
556 threshold.

557 Hypothesis H12 is related to the response time of cloud LWP and CF to N_d perturbations. Both numerical
558 model simulations and observations have shown that the influence of aerosols on cloud LWP, achieved through
559 adjusting the entrainment rate, may take four hours to become apparent and up to 20 hours to reach an equilibrium
560 (Glassmeier et al. 2021; Gryspeerdt et al., 2021). Similarly, the impact of aerosols on CFCF increases gradually
561 from increasing aerosols and may take approximately three to four hours to reach its maximum effect after the initial
562 perturbation (Gryspeerdt et al., 2021). Therefore, we hypothesize that during the diurnal transition of cloud stateif
563 clouds change state during the adjustment time, changes in entrainment rate, LWP responses, as well as CF
564 responses, are slower than the 30 mins resolution of the geostationary satellite and clouds may still retain the
565 “memory” of their susceptibilities from the previous states. The possible physical processes and mechanisms for this
566 hypothesis is that the LWP susceptibility is mainly driven by cloud top evaporation and entrainment rate. The
567 positive feedback among entrainment, evaporative cooling, long-wave radiative cooling, and mixing from cloud top
568 form a positive feedback loop and set up an environment conducive to enhanced entrainment and evaporation.
569 These feedback and environment will not change immediately even when the cloud LWP decrease and cloud
570 transition to a thin state or vice versa. With the diurnal variation in cloud properties and transition in cloud state,
571 resulting init leads to a diurnal variation evolution in cloud susceptibility. This hypothesis is tested in Figure 5.

572
573 To quantify the dependence of current cloud susceptibility on previous cloud states, we track the cloud state
574 for each $1^\circ \times 1^\circ$ box backward in time for two hours and classify the non-precipitating thin clouds into three groups
575 (Fig. 5): (1) thin clouds that are currently classified as thin clouds and didn't change states in the past two hours
576 (thin \rightarrow thin), (2) thin clouds that evolved from precipitating clouds (rain \rightarrow thin), and (3) thin clouds that decayed
577 from non-precipitating thick clouds (thick \rightarrow thin). -This backward tracking classification is applied at each time
578 step.

579 —————As shown in Fig. 5a, at 9 LST, ~50% of the non-precipitating thin clouds originate from thick
580 clouds in previous hours. The transition from thick to thin clouds is likely caused by the increased solar radiation
581 after sunrise, leading to cloud turbulents decoupling from the ocean surface and a decrease in cloud LWP. -In the
582 evening, on the other hand, around 80% of the thin clouds are thin clouds in previous hours. In addition, less than
583 20% of the non-precipitating thin clouds transitionare from precipitating clouds.

584
585 Figure 5. Daytime variation of non-precipitating thin clouds transition from non-precipitating thin clouds (thin →
586 thin, solid line with circle symbols), precipitating clouds (rain → thin, solid line with triangle symbols), and non-
587 precipitating thick clouds (thick → thin, dashed line with diamond symbols) in previous two hours. Symbols for
588 different state transitions are noted in (b). In (b)-(d), filled markers indicate data points that are significantly
589 different from the other two groups ($p < 0.05$), while open markers indicate statistical insignificance.

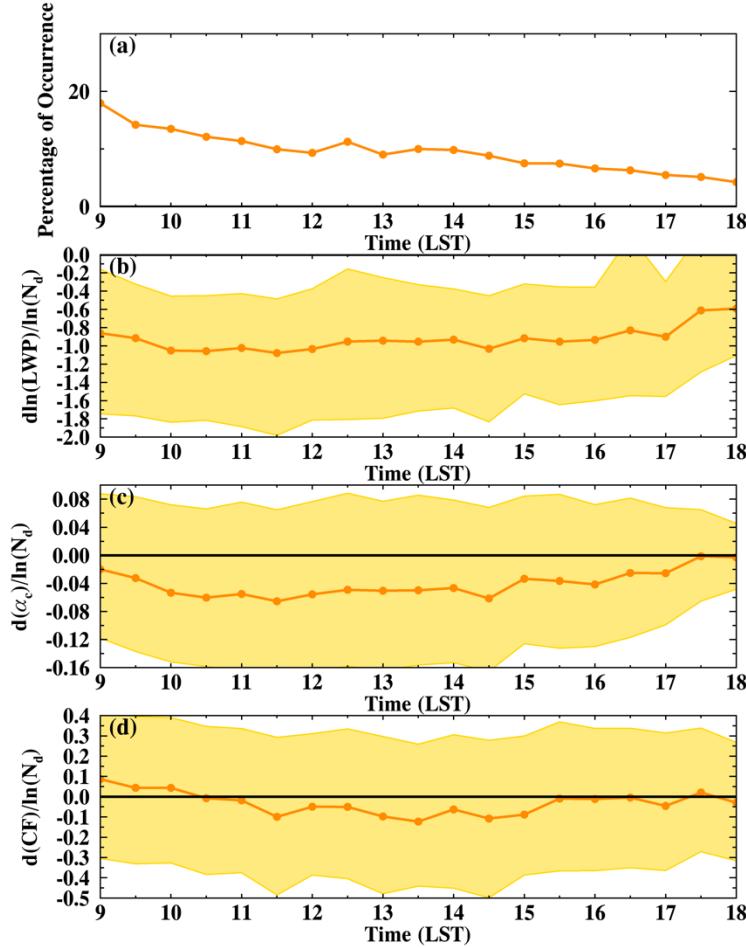
590

591 In consistent with our hypothesis, non-precipitating thin clouds that are previously thick have
592 significantly more negative LWP and α_c susceptibilities than thin clouds that are previously thin or precipitating
593 (Figs. 5b and c). This difference is consistent with results shown in Fig. 2 between thick and thin clouds and could
594 be attributed to the enhanced entrainment in the thick clouds. The differences between the two categories are most
595 pronounced from late morning to early afternoon and less pronounced in the early morning and evening. Such
596 pattern is likely attributed to the daytime evolution of marine boundary layer and cloud coupling state. For example,
597 In the early morning (e.g., 9-10 LST), even with higher frequency of occurrence of thick clouds transitioning to thin
598 clouds, the LWP susceptibility for the thick-to-thin category is less negative compared to later time (dashed line
599 with diamond symbols in Figs 5a, b). -This is attributed due to the less negative LWP susceptibility for non-
600 precipitating thick clouds in earlier time (e.g., 7-9 LST, not shown), in connection with a well-mixed decoupled
601 boundary layer able to transporting moisture from the ocean to the clouds, which and compensates the moisture loss

602 from aerosol-enhanced entrainment (e.g., Sandu et al., 2008;), so that both thick and thin clouds exhibit less
603 negative LWP susceptibilities. From late morning to early afternoon, with deepening of boundary layer and clouds
604 decoupled from surface, LWP susceptibility for thick clouds largely decreases and reaches a daily minimum, which
605 contributes to the largest difference between the thin-to-thin and thick-to-thin categories shown in Fig. 5b. From
606 afternoon to evening, with the increase of LWP susceptibility for non-precipitating thick clouds, and the difference
607 between the two categories is less pronounced.) The differences among the three groups are more pronounced in the
608 morning when a larger portion of thin clouds are decayed from thick clouds. In the afternoon, with less than 10% of
609 thin clouds transitioning from thick or precipitating clouds, the differences among the three groups become less
610 significant. These results support our hypothesis that clouds retain the memory of their responses to N_d perturbations
611 from their previous states.

612 Similar to LWP, responses of CF to N_d perturbations in the morning retain the memory of the previous
613 state of clouds. As seen in Figure 5d, thin clouds that transitioned from thick clouds or precipitating clouds have
614 significantly less positive CF susceptibility than thin clouds that ~~are~~ were previously thin, particularly in the
615 morning. As the CF susceptibility for thin clouds that transitioned from precipitating clouds and thick clouds
616 greatly decrease from morning to noon, the CF susceptibility for thin clouds decrease from large positive to near
617 zero from morning to noon (Fig. 4c). A maximum in CF susceptibility in the early morning is likely associated with
618 the Another possible explanation on the evolution of CF susceptibility is the influence of aerosols on boundary layer
619 mixing and the evolution of boundary layer from morning to noon. The enhanced entrainment rate and radiative
620 cooling rate from N_d perturbations help to destabilize the boundary layer and transport moisture from the ocean
621 surface to clouds, facilitating new cloud formation (e.g., Christensen et al. 2020). As the boundary layer is
622 mostly typically well mixed in the morning with clouds coupled to the surface, the impact of aerosols on CF is
623 strongest in the morning and gradually decrease from morning to noon. This is likely due to the less positive CF
624 susceptibility for non-precipitating thick and precipitating clouds in the morning, which will be discussed in section
625 3.4.2 and 3.4.3. In the afternoon, on the other hand, thin clouds transition from all three states have near-zero CF
626 responses to N_d perturbations. Further analyses and model simulations are needed to better understand aerosols'
627 impact and the associated diurnal evolution of entrainment rate, boundary layer mixing, cloud cover and lifetime to
628 explain the observed daytime variation of CF susceptibility for non-precipitating thin clouds.

629 The impact of the cloud memory of AIE on current cloud susceptibility is also evident within a 30-minute
630 window when a transition of cloud state just occurs (Fig. S5S4). Consistent with the findings in Fig. 5, thin
631 clouds that transition from thick clouds exhibit much more negative LWP and α_c susceptibilities compared to thin
632 clouds that remain thin during the 30 minutes. However, due to the limited Yet, the number of cases experiencing a
633 transition in cloud state within a 30-minute window is limited (Fig. S5S4a), the differences in cloud susceptibilities
634 between thin cloud undergoing a change in cloud states and those that do not are statistically insignificant after 14
635 LST. In addition, the impact of the transition in cloud state on the current cloud susceptibility persists for at least
636 four hours (Fig. S6S5). As It is important to note that our tracking method does not follow individual cloud parcels
637 to track changes in their states, and the influence of cloud advection may become more significant over longer
638 tracking time, such as four hours. Therefore, a two-hour tracking window is used in this study.

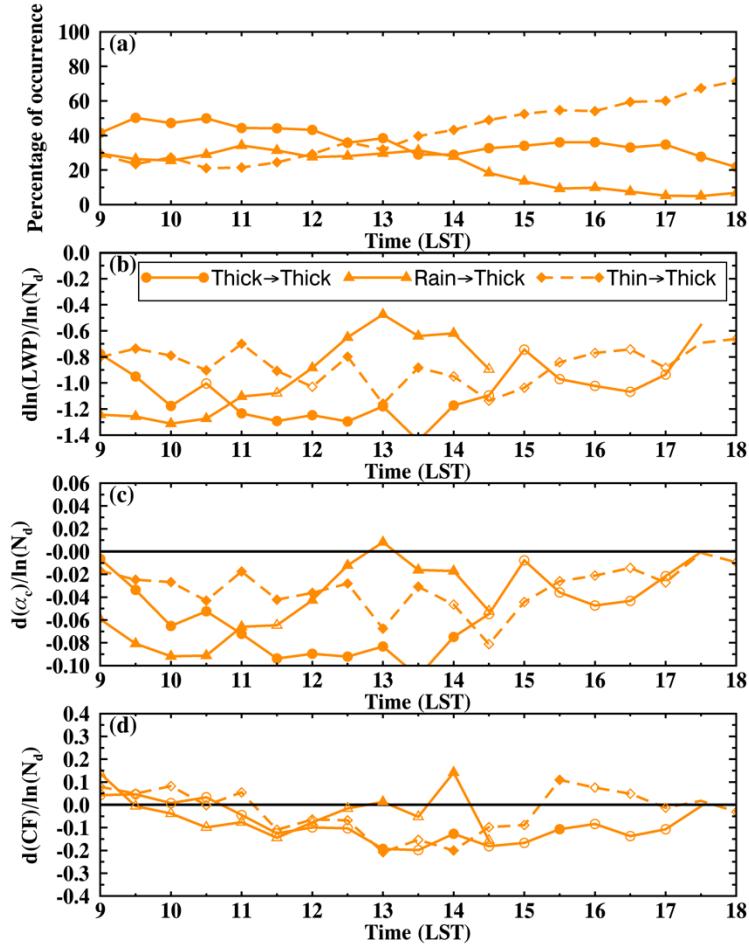

639 As discussed in the method section, while the advective effects in our study are expected to be modest, we
640 further isolate their impact, by performing an analysis for cloud scenes with wind speed of less than 7 m/s (60% of
641 time), when clouds are somewhat stationary in two hours. Influence of transition in cloud state is consistent as in
642 Fig. 5 with more negative LWP and α_c susceptibilities for thin clouds transitioned from thick clouds, while the
643 signal is slightly stronger (not shown). To further isolate test the influence of cloud advection from the tracked
644 transition of cloud state and cloud susceptibilities, we focus on low wind conditions with wind speed of less than
645 7m/s, when clouds are considered stationary during the two hour period (60% of time). The influence of cloud state
646 transition on cloud susceptibility is stronger with larger differences in LWP and α_c susceptibilities between clouds
647 experiencing transition in cloud state than with clouds that did not (not shown). Therefore, is consistency confirms
648 that we believe our tracking method can extract capture the signal of cloud state transition and and its impact on
649 cloud susceptibilities during summer in the is study region.

650 In summary, the “U-shaped” diurnaldaytime variations in LWP and α_c susceptibilities for non-precipitating
651 thin clouds are likely due to a combined effect of the transition in cloud state and cloud retaining the memory of AIE
652 of their previous state. From morning to noon, as non-precipitating thick clouds transition evolve to thin clouds, they
653 retain their memory of the large negative LWP susceptibility. Therefore, both LWP and α_c susceptibilities decrease
654 from morning to noon for thin clouds and reach their daily minima at noon. In the afternoon, as a growing
655 percentage of thin clouds persist as thin clouds in previousduring the next hours, LWP and α_c susceptibilities
656 gradually increase to less negative and near zero, respectively. Table 1. Hypotheses for the diurnaldaytime variation
657 of LWP and CF susceptibilities for warm boundary layer clouds.

Hypotheses	Diurnal-Diurnal variation of LWP-susceptibility		Diurnal-Diurnal variation of CF-susceptibility	
	Non-precipitating thin-clouds	Non-precipitating thick-clouds	Non-precipitating thin-clouds	Non-precipitating thick-clouds
H1: Changes in cloud morphology	<u>N/A</u> <u>Not applicable</u>	<u>Not applicable</u> <u>N/A</u>	<u>Not applicable</u> <u>N/A</u>	Mostly-everest clouds in the morning and evening. CF of everest clouds is less sensitive to perturbations.
H2: LWP responses to perturbations are slower than the state-transition.	Non-precipitating thick-clouds transition to thin clouds from morning-to-evening, which leads to a daily-minimum LWP-susceptibility.	Thin-clouds develop to thick clouds from noon to evening, which leads to an increase in LWP susceptibility.	Non-precipitating thin-clouds transition to precipitating clouds in the afternoon, which leads to a decrease in LWP susceptibility.	Thick-clouds transitioned to thin clouds from morning-to-evening, leading to a decrease in CF susceptibility.
H3: Dissipation or development of clouds that are growing or dissipating have similar LWP susceptibilities as clouds with constant CF.	Cannot explain.	Cannot explain.	Cannot explain.	Cannot explain.

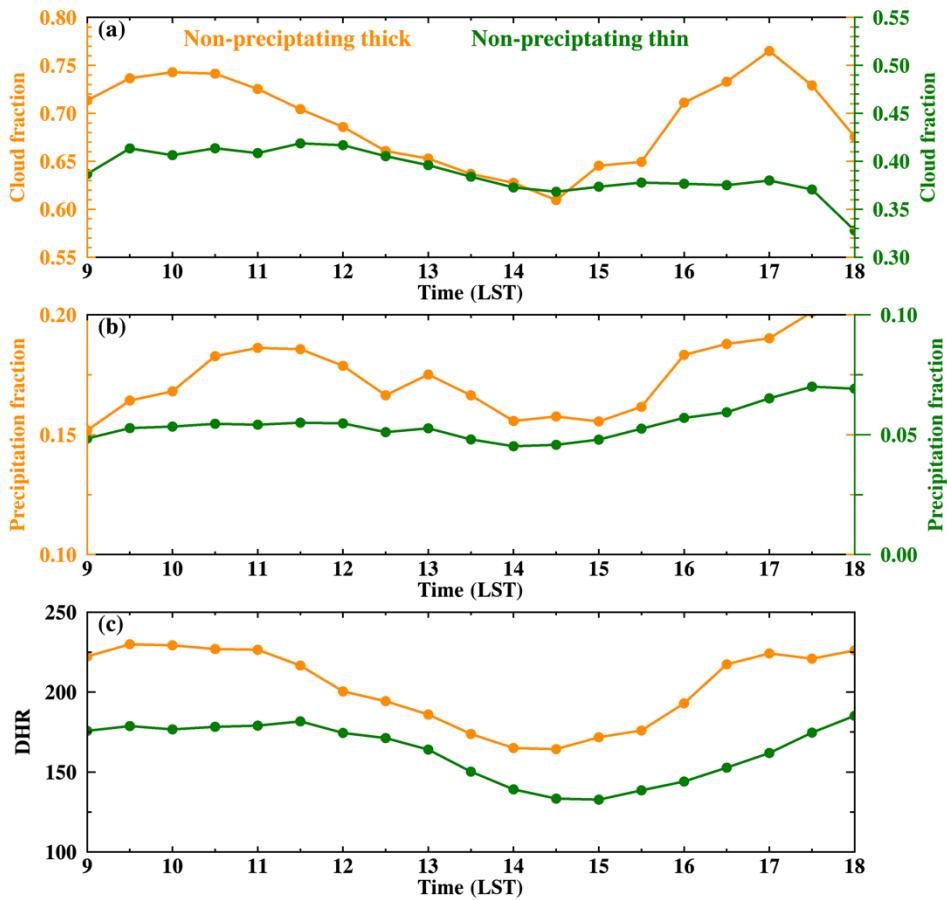
		659 660
Precipitating clouds	<u>Not applicable</u> : N/A	
Thin clouds transition to precipitating clouds in the afternoon and lead to a decrease in CF susceptibility		
Cannot explain		

661 3.4.2 Non-precipitating thick clouds


662
 663 Figure 6. Daytime variation of (a) percentage of occurrence of non-precipitating thick clouds to warm boundary
 664 layer clouds, (b) cloud LWP susceptibility ($d\ln(LWP)/d\ln(N_d)$), (c) cloud albedo susceptibility ($d\alpha_c/d\ln(N_d)$),
 665 and (d) cloud fraction susceptibility ($dCF/d\ln(N_d)$) for non-precipitating thick clouds. The shaded areas represent
 666 the lower and upper 25th percentile of the cloud susceptibilities for each time step—and the solid lines with dots
 667 represent the mean valuesThe solid lines without symbols in (a)–(d) represent the daytime mean values.

668

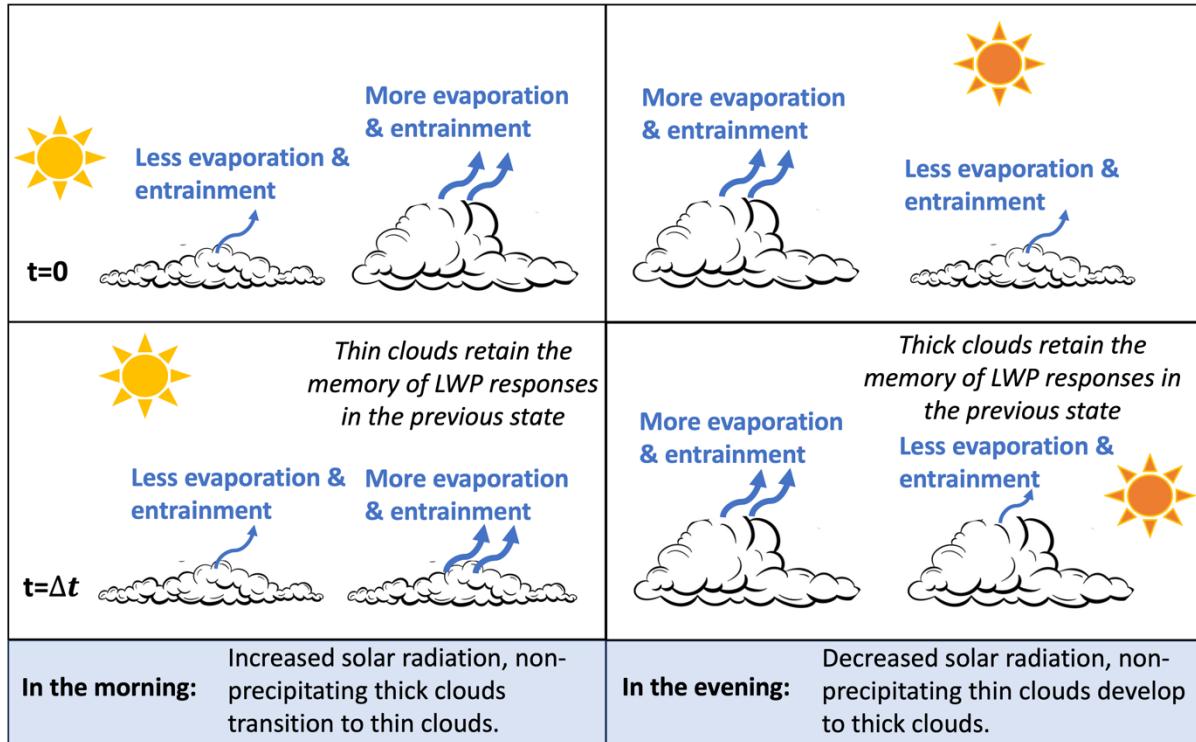
669 Consistent with Fig. 2e, non-precipitating thick clouds are the least frequent warm boundary layer cloud
 670 state during summer over the ENA region. Their percentage of occurrence continuously decreases from 20% in the
 671 morning to less than 5% in the evening (Fig. 6a). As shown in Figs. 6b and e, the For LWP and α_c , their
 672 susceptibilities for thick clouds first decrease from less negative to more negative in the morning and then increase
 673 from noon to evening (Fig. 6b and c, respectively). CF susceptibility is weakly positive in the early morning,
 674 becomes weakly negative from late morning to early afternoon, and increases to near zero in the evening (Fig. 6d).
 675 The diurnal daytime variation evolutions of LWP and α_c susceptibilities for thick clouds exhibit consistent
 676 trend with is close to the cloud susceptibilities for thin clouds transition from thick clouds shown in Fig. 5 but with a
 677 lag of two hours. For example, the LWP susceptibility for thick clouds decreases from –0.8 to –1.1 from 9 to 11


678 LST and it increase from -1.1 to -0.8 from 11 to 16 LST; while the LWP susceptibility for the thick-to-thin
679 category in Fig. 5b decreases from -0.8 to -1.2 from 11 - 13 LST and increases to -0.6 from 13 to 18 LST. d (thick
680 →thin, dash line with diamond symbols), which This result supports our hypothesis on cloud retaining its memory
681 of AIE of its previous cloud state.

682 To gain insight into the observed evolution of LWP and α_c susceptibility from morning to evening, we
683 investigate the influence of cloud state transition on cloud susceptibility for non-precipitating thick clouds (Figure
684 7), which is summarized as H12 in Table 1. As shown in Fig. 7a, around 40% of thick clouds sustain as thick clouds
685 in from the previous two hours during in the morning period; whereas during the late afternoon to evening, with
686 decreasing solar radiation, more than 60% of thick clouds are developed from thin clouds in previous two hours.
687 Consistent with the findings presented in Fig. 5, thick clouds that are previously thick exhibit significantly more
688 negative LWP susceptibility compared to thick clouds that are previously thin (Fig. 7b). These differences are
689 particularly prominent in the from late morning to noon and become not insignificant in the afternoon. As discussed
690 before, difference between the thick-to-thick and the thin-to-thick categories are due to the LWP susceptibilities for
691 thick and thin clouds of previous time, while the smaller differences in the early morning and afternoon could be
692 attributed to the expected stronger turbulence and cloud coupling states at these times. However, as the total
693 percentage of thick clouds decrease to less than 10% in the afternoon (Fig. 6a), the limited number of samples for all
694 three groups results in non-significant differences in LWP susceptibility among them. Additionally, Fig. 7d indicates
695 that transition in cloud state cannot account for explain the diurnal daytime variation in CF susceptibility for thick
696 clouds, as all three groups are insignificantly different from each other.

697
698 Figure 7. Daytime variation of non-precipitating thick clouds transition from non-precipitating thick clouds (thick →
699 non-precipitating thin clouds (thin → thick, dash line with diamond symbols) in previous two hours. Symbols for
700 different state transitions are noted in (b). In (b)-(d), filled markers indicate data points that are significantly
701 different from the other two groups ($p < 0.05$), while open markers indicate statistical insignificance.
702

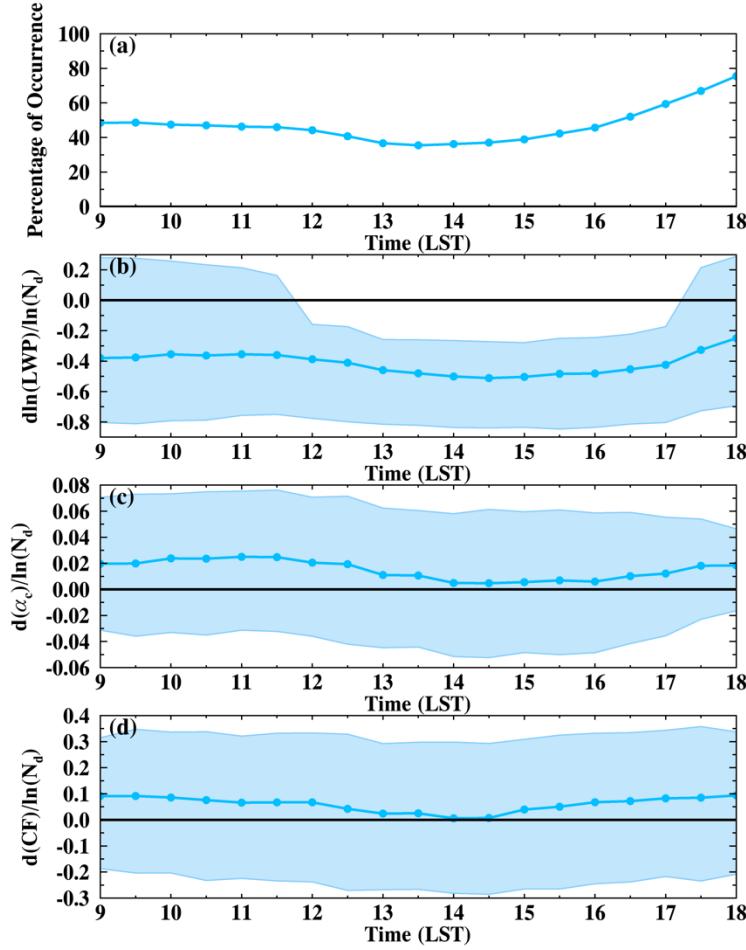
703 To understand the driving [force mechanism](#) for the [diurnal daytime](#) variation in CF susceptibility shown in
704 Figure 6d, we calculate the mean cloud properties for non-precipitating thin and thick clouds, as shown in Fig. [S38](#). In the morning, non-precipitating thick clouds are predominantly overcast clouds with a mean CF of 75% (Fig.
705 [S38a](#)). To distinguish between overcast and broken clouds, we calculate the diameter-to-height ratio (DHR) for each
706 cloud, where diameter is estimated by the square root of the area and height is defined as the 90th percentile of cloud
707 tops. As shown in Fig. [S38c](#), thick clouds are mostly overcast in the morning with a mean DHR of 230. Compared to
708 broken clouds, overcast clouds have less room for CF to increase, which results in a less positive CF susceptibility
709 for thick clouds compare to thin-[CF](#). After 10 am, non-precipitating thick clouds start to break. The mean CF
710 decreases from 75% at 10 am to 60% at 2 pm and the DHR decreases from 230 to 170. As CF for broken clouds is
711 more sensitive to N_d perturbations, CF susceptibility decreases to $-0.13 \ln(N_d)^{-1}$, which is consistent with the
712 daytime mean negative CF susceptibility shown in Fig. 2c. From afternoon to evening, clouds transition to overcast
713 again (Fig. [S38](#)), and the CF susceptibility increases back to zero. This impact of cloud morphology (e.g., overcast
714 or broken clouds) on [diurnal daytime](#) variation of CF susceptibility is summarized as H34 in Table 1.
715



716
 717 Figure 8. Diurnal variation of (a) cloud fraction, (b) pixel-level precipitation fraction, and (c) diameter-to-height
 718 ratio (DHR) for non-precipitating clouds. Different colors represent different cloud states as indicated in (a). Please
 719 note that the non-precipitating thin cloud in (a) and (b) use the y-axis on the right side.

720 In conclusion The previous results are summarized as follows: LWP susceptibility for non-precipitating
 721 thick clouds first decreases from less negative to more negative in the morning and then increase from noon to
 722 evening, which is likely attributed to the transition from thin to thick clouds. In the morning, 40% to 50% of thick
 723 clouds are previously thick clouds, these clouds exhibit a large negative LWP susceptibility. In the afternoon, 60-
 724 70% of with increasing percentage of thick clouds develop from thin clouds in previous hours and retain the
 725 memory of LWP susceptibility of thin clouds. Therefore, LWP susceptibility gradually increases in the afternoon,
 726 and becomes similar to that of thin clouds (Fig. 4b, 6b). DiurnalDaytime variation in CF susceptibility for thick
 727 clouds is likely attributed to changes in cloud morphology. In the morning and evening, thick clouds are mostly
 728 overcast with CF less sensitive to N_d perturbations, resulting in a near zero CF susceptibility. From late morning to
 729 early afternoon, the overcast thick clouds break down and CF decrease with increasing N_d likely due to the
 730 enhanced entrainment and evaporation.

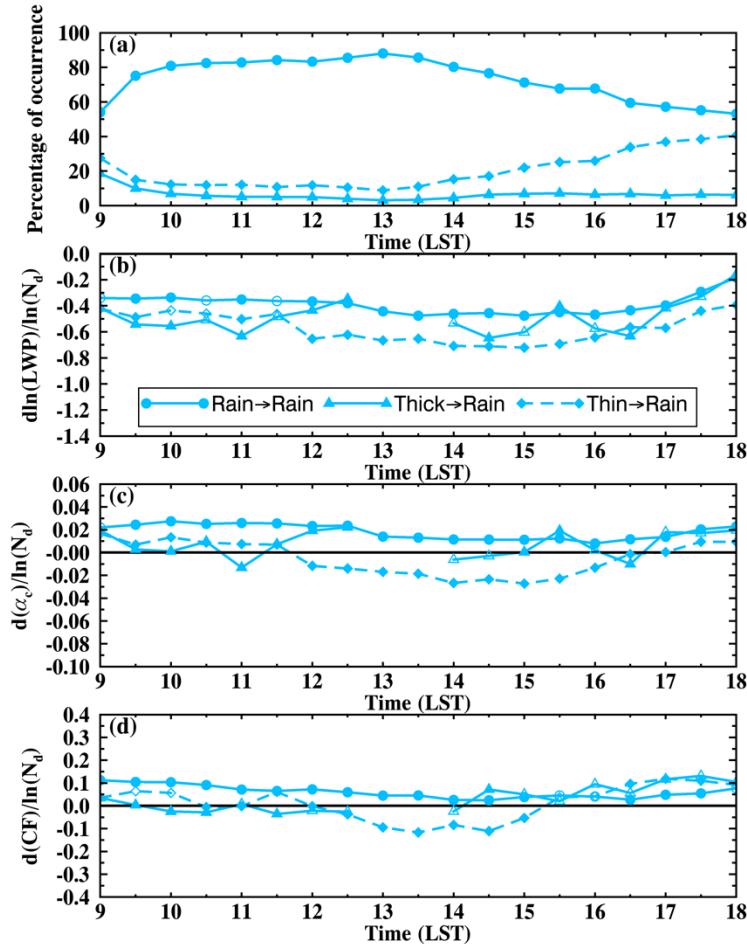
731 The impact of cloud memory and transition of cloud state on the diurnaldaytime variation of LWP
 732 susceptibility is summarized as a schematic figure shown in Fig. 9. From morning to noon, as non-precipitating
 733 thick clouds transition to thin clouds, they retain their memory of the large negative LWP susceptibility of


734 [their previous state](#). Therefore, LWP susceptibility for thin clouds [decreases from morning to noon and](#) reach its
 735 daily minima in the early afternoon. From early afternoon to evening, with non-precipitating thin clouds developing
 736 to thick clouds, LWP susceptibility for thick clouds increase.

737
 738 Figure 98. Schematic figure of influence of cloud memory and transition of cloud state on the LWP susceptibility
 739 and its [diurnaldaytime](#) variation.

740 3.4.3 Precipitating clouds

741 [As shown in Figure 9a, precipitating clouds, depicted in Figure 9Figs. 10a, -](#) are the dominant cloud state in
 742 this region, accounting for 46% of the warm boundary layer clouds, compared to 44% of non-precipitating thin
 743 clouds. The frequency of precipitating clouds is higher in the morning and evening compared to noon. Throughout
 744 the day, the mean LWP susceptibility remain consistently negative, fluctuating between -0.5 to -0.3 , with
 745 minimum values between 14–16 LST (Fig. 9Figs. 10b). The [diurnaldaytime](#) variability in LWP susceptibility for
 746 precipitating clouds is much lower than that for non-precipitating thin (e.g., from -0.9 to -0.4) and thick (e.g., from
 747 -1.1 to -0.6) clouds. The negative LWP susceptibility is likely due to the prevalence of lightly precipitating clouds,
 748 with a mean precipitating fraction ranging from 0.2 to 0.5 (Fig. S2d). The influence of precipitation suppression is
 749 smaller than that of the entrainment enhancement. Similarly, α_c susceptibility fluctuates between 0 to 0.02
 750 throughout the day, with near zero α_c susceptibility in early afternoon (Fig. 9Figs. 10c). Despite the minimal
 751 [diurnaldaytime](#) variation, the LWP and α_c susceptibilities at 13-16 LST are statistically significant different [than](#)
 752 [from](#) cloud susceptibilities in the morning and evening at 95% confidence level with the two-tailed t-test. The CF
 753 susceptibility for precipitating clouds also shows minimal [diurnaldaytime](#) variation compared to non-precipitating
 754 clouds, with a mean value ranging from 0 to 0.1 (Fig. 9Figs. 10d).

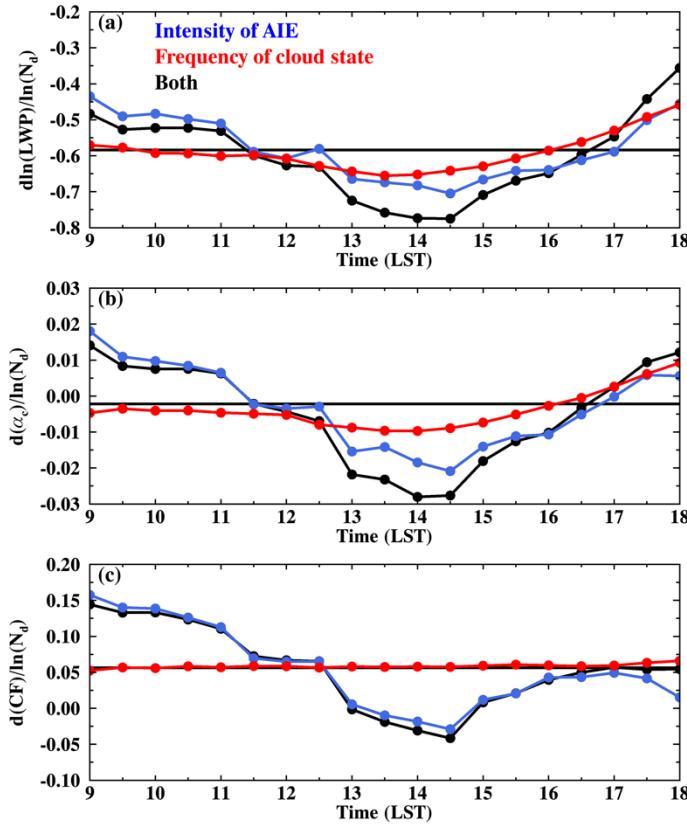


755
 756 Figure 109. Daytime variation of (a) percentage of occurrence of precipitating clouds to warm boundary layer
 757 clouds, (b) cloud LWP susceptibility ($d\ln(LWP)/d\ln(N_d)$), (c) cloud albedo susceptibility ($d\alpha_c/d\ln(N_d)$), and (d)
 758 cloud fraction susceptibility ($dCF/d\ln(N_d)$) for precipitating clouds. The shaded areas represent the lower and
 759 upper 25th percentile of the cloud susceptibilities for each time step. The solid lines without symbols in (a)–(d) represent the daytime mean values.

760
 761 Consistent with non-precipitating clouds, the diurnal daytime variation of LWP and α_c susceptibilities for
 762 precipitating clouds can be attributed to the transition of cloud states. For example, as shown in [Figure 10](#)[Figs. 11b-d](#),
 763 precipitating clouds that transition from non-precipitating thin clouds exhibit significantly more negative/less
 764 positive cloud susceptibilities than precipitating clouds that are previously precipitating. Meanwhile, α_c and CF
 765 susceptibilities switch signs from positive to negative in the afternoon for precipitating clouds transition from non-
 766 precipitating thin clouds compared to that are previously precipitating ([dash line with diamond symbols in Figs. 11c,](#)
 767 [d](#)). Starting from 13 LST, when non-precipitating thin clouds transition to precipitating clouds ([Fig. 10](#)[Fig. 11a](#)),
 768 LWP and α_c susceptibilities begin to decrease and reach their daily minimum in the late afternoon. Interestingly, as
 769 non-precipitating thin clouds transition to precipitating clouds ([Fig. 10](#)[Figs. 11b and c, thin → rain, thick → rain](#)),
 770 their LWP and α_c susceptibilities exhibit both less negative values and smaller diurnal daytime variations compared
 771 to thin/thick clouds that remain as thin/thick ([Figs. 5b and c, thin → thin, Figs. 7b and e, thick → thick](#)). The
 772 underlying reason for this observation is currently unclear and worth warrants further investigations on the
 773 sensitivity of AIE for clouds experiencing transition in cloud states, especially between precipitating and non-

774 precipitating clouds. FurthermoreLastly, the percentage of precipitating clouds that transition from non-precipitating
 775 thick clouds is less than 7% (Fig. 10Fig. 11a). Due to the limited number of cases, precipitating clouds that evolve
 776 from non precipitating thick clouds do not exhibit significantly more negative LWP susceptibilities, especially
 777 during the period from 11 to 14 LST when the transition percentage decreases to 3%.

778 In conclusion, precipitating clouds exhibit smaller diurnaldaytime variation in cloud susceptibilities
 779 compared to non-precipitating thin and thick clouds. The decrease of LWP and α_c susceptibilities for precipitating
 780 clouds in the afternoon is likely contributed by the transition of non-precipitating thin clouds to precipitating clouds.


781
 782 Figure 110. Daytime variation of precipitating clouds transitioned from precipitating clouds (rain \rightarrow rain, solid line
 783 with circle symbols), non-precipitating thick clouds (thick \rightarrow rain, solid line with triangle symbols), and non-
 784 precipitating thin clouds (thin \rightarrow rain, dash line with diamond symbols) in previous two hours. Symbols for different
 785 state transitions are noted in (b). In (b)-(d), filled markers indicate data points that are significantly different from
 786 the other two groups ($p < 0.05$), while open markers indicate statistical insignificance.

787 Combining the results shown here and results in section 3.4.1, we can answer the question raised at the end
 788 of in section 3.3: which cloud state contributes the most to the daytime variation of cloud susceptibility. The non-
 789 precipitating thin clouds exhibit similar diurnaldaytime variations in LWP, α_c , and CF susceptibility as than the
 790 warm boundary layer clouds- (Fig. 4 vs. Fig. 3), with clouds being less susceptible to N_d perturbations in the morning
 791 and evening and more susceptible at noon. Additionally, non-precipitating thin clouds have highest frequency at

792 noon. On the other hand, precipitating clouds, despite their higher percentage of occurrence than thin clouds, exhibit
793 minimal diurnaldaytime variation in cloud susceptibility. Therefore, the pronounced diurnaldaytime variations in
794 cloud susceptibilities for warm boundary layer clouds primarily stem from non-precipitating thin clouds. The
795 distinct daytime evolution patterns for the three clouds states highlight the importance of cloud state classification in
796 quantification of cloud susceptibility. In addition, the asymmetric evolution patterns of LWP, α_e , and CF
797 susceptibility for non precipitating thick and precipitating clouds indicate that the daytime variation of cloud
798 susceptibility is not due to retrieval uncertainties related to SZA.

799 **3.5 Contribution to the diurnaldaytime variation of cloud susceptibility**

800 As discussed in the previous section, both the frequency of occurrence of cloud states and the intensity of
801 cloud responses to N_d perturbations exhibit pronounced diurnaldaytime variations. In this section, we aim to
802 compare the contribution of these two components to the overall diurnaldaytime variation in cloud susceptibilities
803 by fixing one component constant at a time. The contribution from changes in the frequency of cloud states is
804 represented by the red lines in Fig.11Fig.12, which is estimated by weighting the daytime mean cloud susceptibility
805 (Figs. 2a-c) with the half-hourly frequency of occurrence of clouds in the LWP- N_d parameter space, assuming a
806 constant intensity of cloud susceptibilityAIE during the daytime. The contribution from changes in the intensity of
807 cloud susceptibilityAIE intensity is depicted by the blue lines, which is estimated by weighting the half-hourly cloud
808 susceptibility in the LWP- N_d parameter space with the daytime mean frequency of occurrence of clouds (Fig. 2e),
809 assuming a constant frequency during the daytime. The black line in Fig. 1244 represents the observed susceptibility
810 shown in Fig. 3, which considers and it includes the contributions from diurnaldaytime variations in both
811 components.

812
 813 Figure 124. Daytime variation in cloud susceptibility contributed from the variability in the intensity of
 814 susceptibility (blue lines with symbols), variability in the frequency of occurrence of cloud state (red lines with
 815 symbols), and from both (black lines with symbols). (a) cloud LWP susceptibility ($d\ln(LWP)/d\ln(N_d)$), (b) cloud
 816 albedo susceptibility ($d\alpha_c/d\ln(N_d)$), (c) cloud fraction susceptibility ($dCF/d\ln(N_d)$). The horizontal black solid
 817 lines without symbols in (a)-(c) are the daytime mean susceptibility.

818 When comparing the net observed diurnaldaytime variation of cloud susceptibilities (black lines) with the
 819 contributions from changes in the intensity of AIE and the frequency of cloud state (blue and red lines, respectively),
 820 we find that the diurnaldaytime changes in cloud susceptibility is primarily driven by changes in the intensity of
 821 cloud susceptibilitiesAIE during the day. Additionally, as shown in Figs. 124a and b, the red lines are close to the
 822 daytime mean values in the morning, which indicates that variations in the frequency of different cloud states have
 823 minimal impact on changes in LWP and α_c susceptibilities in the morning. On the other hand, in the afternoon, both
 824 shifts in cloud states and changes in intensities contribute to the changes in LWP and α_c susceptibilities. Compared
 825 with LWP and α_c susceptibilities, the daytime variation of CF susceptibility shows minimal sensitivity to changes in
 826 cloud state frequency. This limited impact stems from the fact that the daytime fluctuation in cloud state frequency
 827 is predominantly influenced by precipitating and non-precipitating thin clouds. Meanwhile, the daytime mean CF
 828 susceptibilities for precipitating and non-precipitating thin clouds closely align, measuring at 0.08 and 0.09,
 829 respectively (Fig. 2c). This convergence diminishes the influence of alterations in the frequency of these two cloud
 830 states.

831 In summary, the daytime variation of cloud susceptibility is largely driven by the variation in its intensity.
 832 Since polar-orbiting satellites can only observe the intensity of AIEcloud responses to N_d perturbations across

833 different cloud states at their overpass time, they cannot fully capture the diurnal variation of cloud susceptibilities
834 driven by the ~~diurnal~~ variation in ~~AIE intensity~~~~the intensity of cloud susceptibility~~. Given that all three cloud
835 susceptibilities reach their daily minimum at around 13:30 LST, studies based on polar-orbiting satellite with
836 overpass time at noon may ~~be~~ underestimating the daily mean value of cloud susceptibility.

837 **4. Discussions**

838 In this study, we quantify the instantaneous responsesusceptibility of warm boundary layer clouds to N_d
839 perturbation using the pixel-level SEVIRI cloud retrievals of each time step. For heavily precipitating clouds, LWP
840 increases under pristine condition (e.g., $N_d < 30 \text{ cm}^{-3}$, Fig. 2a). For lightly precipitating and non-precipitating
841 clouds, LWP decreases with N_d . The N_d -LWP relationship found~~found~~ in this study is consistent with that in
842 Gryspeerdt et al. (2019) using global mean cloud retrievals from MODIS and AMSR-E at coarser resolution of
843 $1^\circ \times 1^\circ$ and daily timescale. This consistency between different satellite measurements at different temporal and
844 spatial scales greatly enhance our confidence in the retrieved relationship.

845 This study further distinguishes non-precipitating clouds into thin and thick clouds based on their LWP. A
846 consistent decreasing trend in cloud water is found for both states, yet non-precipitating thick clouds exhibit more
847 negative LWP susceptibility ($\frac{d\ln(\text{LWP})}{d\ln(N_d)} = -0.94$) compared to thin clouds ($\frac{d\ln(\text{LWP})}{d\ln(N_d)} = -0.71$). The LWP
848 susceptibilities estimated in this study are more negative than those in Zhang et al. (2022) and Zhang and Feingold
849 (2023), based on similar classification of cloud states. Particularly, we found that non-precipitating thin clouds have
850 a decreasing trend in cloud water and a warming effect ~~at~~on the surface radiation while these are opposite in Zhang
851 et al. (2022) and Zhang and Feingold (2023). We speculate this difference~~This is due to different seasons and study~~
852 regions between our and their studies. The summer boundary layer in the ENA region is deeper and less stable with
853 higher cloud tops is due to the less stable troposphere, deeper boundary layer, and the higher cloud tops over the
854 ENA regions(e.g., Klein and Hartmann, 1993; Ding et al., 2021; King et al., 2013) compared to the NE Pacific in
855 Zhang et al. (2022) and the study regions~~NE Atlantic region~~ in Zhang and Feingold (2023). The less stable
856 condition-~~over the studied region leads to a deeper boundary layer, and~~ deeper clouds could lead to and a stronger
857 cloud-top entrainment rate ~~at the cloud top, all of which may cause and result in~~ a more negative LWP susceptibility
858 (Possner et al., 2020; Toll et al., 2019).

859 Regarding the CF adjustment to N_d perturbation, a daytime mean positive response is found for
860 precipitating and non-precipitating thin clouds and a negative response for non-precipitating thick clouds (Fig. 2c).
861 Few studies have quantified the instantaneous CF adjustment rate at 30-minute intervals at 30-mins resolution for a
862 directly comparison of CF susceptibility. However, similar results are found using measurements and retrievals from
863 different platforms at various spatial and timescales, which greatly increase our confidence in the observed CF
864 responses toward N_d perturbation. For example, using MODIS measurement, Kaufman et al. (2005) found an
865 increase in the longitudinal mean cloudiness for warm boundary layer clouds with increasing AOD in all four
866 regions of the Atlantic Ocean characterized by distinct aerosol types. Using the natural experiment of volcanic
867 eruption at Holuhraun in Iceland, Chen et al. (2022) found that aerosols from the eruption increase the monthly

868 mean cloud cover by 10% over the North Atlantic. By tracking the cloud trajectory using geostationary satellite^s,
869 Christensen et al. (2020) found that aerosol enhance both CF and cloud lifetime in the timescale of 2-3 days,
870 especially under stable conditions. It is worth noting that a decrease in CF was not observed in these studies, likely
871 due to the prevalence of non-precipitating thin clouds and precipitating clouds in the Atlantic or the NE Pacific (e.g.,
872 Zhang and Feingold, 2023) that mask the signal from non-precipitating thick clouds without distinguishing cloud
873 states.

874 Lastly, the distinct “U-shaped” daytime variation in all three cloud properties found in this study (Fig. 3a-c)
875 is unlikely due to the systematic bias in r_e and τ retrievals at large SZA based on the following two aspects. Firstly,
876 if the daytime variation is driven by retrieval bias at large SZA, we would expect the susceptibility exhibiting a
877 symmetric pattern at local noon. As shown in Figs. 10 and 6, the LWP and α_c susceptibilities for precipitating and
878 non-precipitating thick clouds exhibit asymmetric pattern at local noon: with a decreasing trend from 13 LST and a
879 daily minimum at 16 LST, and a continuously increasing trend from 11 to 18 LST, respectively. In addition, the CF
880 susceptibilities for all three cloud states show asymmetric patterns at local noon. Secondly, if the retrieval
881 uncertainty dominates the signal, we would expect less variation in cloud susceptibilities for overcast clouds, which
882 suffer less uncertainties in cloud retrievals from the plane-parallel assumption and the cloud 3-D effect. However,
883 the opposite is found from the sensitivity test where overcast clouds exhibit stronger daytime variation in cloud
884 susceptibilities (not shown).

885 5. Conclusions

886 Using N_d as an intermediary variable, this study investigates the aerosol indirect effect (AIE) for warm boundary
887 layer clouds and its diurnal daytime variation over the ENA region with the half-hourly and 3-km cloud property
888 retrievals from SEVIRI on the Meteosat-11. To constrain meteorological impacts on clouds and aerosol-cloud
889 interaction, cloud susceptibilities are estimated within a $1^\circ \times 1^\circ$ grid box for each satellite time step. Based on the
890 daytime mean cloud susceptibilities in the LWP- N_d parameter space, the sign and magnitude of cloud
891 susceptibilities strongly depend on the cloud states (Fig. 2). Accordingly, warm boundary layer clouds are classified
892 into three states: precipitating clouds ($r_e > 15 \mu\text{m}$), non-precipitating thick clouds ($r_e < 15 \mu\text{m}$, $\text{LWP} > 75 \text{ gm}^{-2}$), and
893 non-precipitating thin clouds ($r_e < 15 \mu\text{m}$, $\text{LWP} < 75 \text{ gm}^{-2}$).

894
895 Precipitating clouds exhibit contrasting responses in cloud LWP, with increases observed for heavily
896 precipitating clouds and decreases for lightly precipitating clouds. Positive α_c and CF susceptibilities are identified
897 for both heavily and lightly precipitating clouds. The net all-sky radiative forcing of the AIE on precipitating clouds
898 is estimated to be $-13 \text{ W m}^{-2} \ln(N_d)^{-1}$, with contributions from the CF and α_c effects of -9.5 and -3.5
899 $\text{W m}^{-2} \ln(N_d)^{-1}$, respectively.

900 For non-precipitating clouds, both thick and thin clouds show negative LWP susceptibility with more
901 negative values found for thick clouds with higher LWP and N_d . This is likely attributed to the larger cloud top
902 radiative cooling rate and stronger entrainment for thick clouds. becomes more negative with increasing LWP and,

903 likely due to the enhanced entrainment, leading to stronger evaporation and reductions in LWP with increased.
904 Consistent with the evaporation-entrainment feedback hypothesis, non-precipitating thick clouds exhibit decreasing
905 a decrease in CF and α_c with increasing N_d , and have results in a net warming effect at the surface and a radiative
906 forcing of $+4.4 \text{ W m}^{-2} \ln(N_d)^{-1}$. On the other hand, non-precipitating thin clouds show an increasing response in
907 CF and a weaker LWP and responses and less negative α_c susceptibility an increasing response in CF. Additionally,
908 the radiative effect from increasing CF ($-8.3 \text{ W m}^{-2} \ln(N_d)^{-1}$) outweighs that from a darker cloud
909 ($+3.1 \text{ W m}^{-2} \ln(N_d)^{-1}$) and The increase in CF compensates for the decrease of and leads to a net cooling effect of
910 $-5.24 \text{ W m}^{-2} \ln(N_d)^{-1}$.

911 Warm boundary layer clouds exhibit strong manifest distinct and significant ($p < 0.05$) diurnaldaytime
912 variations in cloud LWP, α_c , and CF susceptibilities, with all three cloud susceptibilities exhibiting “U-shaped”
913 diurnal patterns with clouds being less susceptible in the morning and evening and more susceptible at local noon
914 where susceptibilities are lowest during the early afternoon (Fig. 3). Meanwhile, there is little spatial variability in
915 cloud susceptibilities in the study region and the diurnal cycle of cloud susceptibility over the $1^\circ \times 1^\circ$ box at the
916 ARM ENA site agree well with the domain mean value, which imply the regional representativeness of the ARM
917 ENA site of AIE. Based on our analysis of the diurnaldaytime variation of cloud susceptibility for different cloud
918 states (Figs. 4, 6, 9), we find that the diurnaldaytime variations in cloud susceptibilities for all warm boundary layer
919 clouds are primarily driven by non-precipitating thin clouds. They have similar “U-shaped” diurnaldaytime patterns
920 in cloud susceptibilities and constitute approximately 44% of the warm boundary layer clouds in this region (Fig. 4).

921
922 DiurnalDaytime variation in LWP and α_c susceptibilities for non-precipitating thin clouds is likely due
923 attributed to the combined effect of transition in cloud state while clouds sustaining the memory of responses to N_d
924 of the previous state and the relatively slow cloudowner response of clouds to perturbation than the satelliteat
925 timescales greater than 30 min (H12 in Table 1). From morning to noon, with increasing solar radiation, non-
926 precipitating thick clouds evolve to thin clouds. Thin clouds decayed from thick show significantly more negative
927 LWP and α_c susceptibilities than thin clouds that are previously thin (Fig. 5). Therefore, LWP and α_c
928 susceptibilities decrease from morning to noon for thin clouds and reach their daily minima at noon (Fig. 4). In the
929 afternoon, thin clouds develop to thick clouds while retaining the memory of less susceptible to N_d perturbations
930 (Fig. 7) and therefore leads to an increase in LWP and α_c susceptibilities for non-precipitating thick clouds in the
931 afternoon (Fig. 6). As non-precipitating clouds transition from thick to thin, the “memory” of LWP responses to
932 perturbations is retained. Consequently, the LWP susceptibility for thin clouds transition from thick clouds is 0.2–0.4
933 more negative compared to those that are previously thin clouds, which accounts for 40–60% of the observed
934 changes (Fig. 5). The differences are larger in the morning when cloud state transitions are more frequent. Similarly,
935 non-precipitating thick clouds that develop from thin clouds in previous hours exhibit 0.2–0.5 less negative LWP
936 susceptibility than thick clouds that remain consistently thick (Fig. 7). Meanwhile, diurnaldaytime variation in CF
937 susceptibility for non-precipitating thick clouds is more likely driven by changes in cloud morphology rather than
938 the transition of cloud state (Fig. S38, H1–H3 in Table 1). Compared to non-precipitating clouds, precipitating clouds
939 exhibit smaller diurnaldaytime variation in cloud susceptibility (Fig. 9Figs. 10). The decrease of cloud susceptibility

940 for precipitating clouds in the afternoon is likely attributed to the transition of non precipitating thin clouds to
941 precipitating clouds. (Fig. 10).

942 The diurnaldaytime variation in cloud susceptibility is primarily driven by changes in the intensity of cloud
943 susceptibilitiesAIE from morning to noon, rather than changes in the frequency of occurrence of different cloud
944 states (Fig. 124). As the polar-orbiting satellites only observe cloud susceptibilities across different cloud states
945 during a specific overpass time, they overlook the change in the intensity of cloud susceptibilities during the day.
946 and all three cloud susecptibilities reach their daily minimum at noon. Based on the estimated diurnaldaytime
947 variation, usingMore specifically, based on the daytime variation of cloud susceptibilities found in this study,
948 satellite retrievalsLWP susceptibility estimated at 13:30 LST could underestimate the daytime mean value of LWP
949 susceptibility by 26.3% (-0.76 compared to -0.60), underestimate the α_c susceptibility by 475% (-0.023
950 compared to -0.004), and underestimate the CF susceptibility by 120% (-0.019 compared to $+0.055$). NoticeeIt is
951 worth noting that both the daytime variation and the daytime mean values of cloud susceptibilities in this study are
952 estimated based on the regression analysis on spatial data within each satellite time step, with the assumption that
953 the temporal change of cloud properties from N_d perturbations can be represented by the spatial relationships.

954 This study underscores the importance of considering the diurnal cycle of cloud susceptibilities when
955 quantifying AIE and their impacts on clouds and radiation. The classification of cloud states enables us to
956 distinguish the sign, magnitude, and underlying processes driving the diurnal variation of AIE.

957 To further advance our understanding of the diurnal variation of AIE, several avenues for future research
958 can be pursued. Firstly, it is important to address uncertainties associated with satellite retrievals, which can
959 propagate into uncertainties in the retrieved N_d , as discussed in Grosvenor et al. (2018). Future study could utilize
960 active sensors to reduce these uncertainties, particularly during nighttime conditions. Moreover, using the retrieved
961 N_d as a proxy of aerosol concentration may introduce uncertainties related to cloud processes that can act as sources
962 or sinks of N_d , potentially buffer the relationships between N_d and cloud condensation nuclei. Future investigations
963 are needed to better understand the relationships, and how they vary with different cloud processes and throughout
964 the day. Lastly, this study encompasses all warm boundary layer clouds without considering the highly diverse
965 meteorological regimes and the associated cloud types in the ENA region. Classification of the synoptic and
966 meteorological conditions associated with different cloud states and aerosol properties would contribute to a more
967 comprehensive understanding, allowing for the disentanglement of the impacts of meteorology from AIE.

968
969

970 **Data availability:**

971 SEVIRI Meteosat-11 cloud retrieval products, produced by NASA LaRC SatCORPS group, are available from the
972 Atmospheric Radiation Measurement (ARM) Data Discovery website at <https://adc.arm.gov/discovery/>, Minnis
973 Cloud Products Using Visst Algorithm (visstgridm11minnis). The ARM ground-based radar and lidar observations
974 are available from ARM Data Discovery, KAZRARSCL, (arselkazr1kollias).

975

976 **Acknowledgment:**

977 We are grateful to the Atmospheric Radiation Measurement (ARM) user facility, a U.S. Department of Energy
978 (DOE) Office of Science user facility managed by the Biological and Environmental Research Program for
979 providing ARM observation data and archiving SEVIRI Meteosat-11 cloud retrieval products. We mainly used the
980 computing resources from the National Energy Research Scientific Computing Center (NERSC), which is supported
981 by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We
982 appreciate the constructive comments from two anonymous reviewers that helped improve the final results. This
983 work was performed under the auspices of the U.S. DOE by LLNL under contract DE-AC52-07NA27344. (LLNL-
984 JRNL-851496)

985

986 **Financial support:**

987 This work is supported by the DOE Office of Science Early Career Research Program and the ASR Program. DP
988 acknowledges the support of the NASA CloudSat CALIPSO Science Recompete Program.
989

990 **Competing interests:**

991 The authors declare that they have no conflict of interest.
992
993

994 **References**

995 Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, *Science*, 245, 1227–1230,
996 <https://doi.org/10.1126/science.245.4923.1227>, 1989.

997 [Arola, A., Lipponen, A., Kolmonen, P., Virtanen, T. H., Bellouin, N., Grosvenor, D. P., Gryspeerdt, E., Quaas, J., &](#)
998 [Kokkola, H. \(2022\). Aerosol effects on clouds are concealed by natural cloud heterogeneity and satellite](#)
999 [retrieval errors. *Nature Communications*, 13\(1\), 7357. <https://doi.org/10.1038/s41467-022-34948-5>](#)

1000 Bennartz, R.: Global assessment of marine boundary layer cloud droplet number concentration from satellite, *J. Geophys. Res.*, 112, D02201, doi:10.1029/2006JD007547, 2007.

1001 Bennartz, R. and Rausch, J.: Global and regional estimates of warm cloud droplet number concentration based on 13 years of AQUA-MODIS observations, *Atmos. Chem. Phys.*, 17, 9815–9836, <https://doi.org/10.5194/acp-17-9815-2017>, 2017.

1002 Bréon, F.-M., Tanré, D., and Generoso, S.: Aerosol effect on cloud droplet size monitored from satellite, *Science*, 295, 834–838, 2002.

1003 Bretherton, C. S., Blossey, P. N., and Uchida, J.: Cloud droplet sedimentation, entrainment efficiency, and subtropical stratocumulus albedo, *Geophys. Res. Lett.*, 34, L03813, <https://doi.org/10.1029/2006GL027648>, 2007.

1004 Brenguier, J. L., Burnet, F., & Geoffroy, O.: Cloud optical thickness and liquid water path – does the coefficient vary with droplet concentration? *Atmospheric Chemistry and Physics*, 11(18), 9771–9786.
1005 <https://doi.org/10.5194/acp-11-9771-2011>, 2011

1006 Chen, Y.-C., Christensen, M., Stephens, G. L., and Seinfeld, J. H.: Satellite-based estimate of global aerosol–cloud radiative forcing by marine warm clouds, *Nature Geosci.*, 7, 643–646, <https://doi.org/10.1038/ngeo2214>, 2014.

1007 Chen, Y., Haywood, J., Wang, Y., Malavelle, F., Jordan, G., Partridge, D., Fieldsend, J., De Leeuw, J., Schmidt, A., Cho, N., Oreopoulos, L., Platnick, S., Grosvenor, D., Field, P., & Lohmann, U.: Machine learning reveals climate forcing from aerosols is dominated by increased cloud cover. *Nature Geoscience*, 15(8), 609–614, 2022.
1008 <https://doi.org/10.1038/s41561-022-00991-6>

1009 Christensen, M. W., Jones, W. K., and Stier, P.: Aerosols enhance cloud lifetime and brightness along the stratus–tocomulus transition, *P. Natl. Acad. Sci. USA*, 117, 17591–17598, <https://doi.org/10.1073/pnas.1921231117>, 2020.

1010 Comstock, K. K., Wood, R., Yuter, S. E., and Bretherton, C. S.: Reflectivity and rain rate in and below drizzling stratocumulus, *Q. J. Roy. Meteorol. Soc.*, 130, 2891–2918, doi:10.1256/qj.03.187, 2004.

1011 Ding, F., Iredell, L., Theobald, M., Wei, J., & Meyer, D. : PBL Height From AIRS, GPS RO, and MERRA-2 Products in NASA GES DISC and Their 10-Year Seasonal Mean Intercomparison. *Earth and Space Science*, 8(9). <https://doi.org/10.1029/2021ea001859>, 2021

1012 Dong, X., Xi, B., Kennedy, A., Minnis, P., & Wood, R.: A 19-month record of marine aerosol–cloud–radiation properties derived from DOE ARM mobile facility deployment at the Azores. Part I: Cloud fraction and single-layered MBL cloud properties. *Journal of Climate*, 27(10), 3665–3682. <https://doi.org/10.1175/JCLI-D-13-00553.1>, 2014.

1031 Dong, X., Xi, B., Qiu, S., Minnis, P., Sun-Mack, S., & Rose, F. : A radiation closure study of Arctic stratus cloud
1032 microphysical properties using the collocated satellite-surface data and Fu-Liou radiative transfer model.
1033 *Journal of Geophysical Research: Atmospheres*, 121(17), 10,175-110,198.
1034 <https://doi.org/10.1002/2016jd025255>, 2016

1035 Dong, X., Zheng, X., Xi, B., & Xie, S.: A Climatology of Midlatitude Maritime Cloud Fraction and Radiative Effect
1036 Derived from the ARM ENA Ground-Based Observations. *Journal of Climate*, 36(2), 531–546,
1037 <https://doi.org/10.1175/JCLI-D-22-0290.1>, 2023.

1038 Duong, H. T., Sorooshian, A., and Feingold, G.: Investigating potential biases in observed and modeled metrics of
1039 aerosol-cloud precipitation interactions, *Atmos. Chem. Phys.*, 11, 4027–4037, doi:10.5194/acp-11-4027-2011,
1040 2011.

1041 Fan, J. W., Wang, Y., Rosenfeld, D., and Liu, X. H.: Review of aerosol-cloud interactions: mechanisms,
1042 significance, and challenges, *J. Atmos. Sci.*, 73, 4221–4252, 2016.

1043 Feingold G, Eberhard W, Veron D, Previdi M. First measurements of the Twomey indirect effect using ground-
1044 based remote sensors. *Geophys Res Lett.* 30 (6). <https://doi.org/10.1029/2002GL016633>, 2003.

1045 [Feingold, G., Goren, T., & Yamaguchi, T. \(2022\). Quantifying albedo susceptibility biases in shallow clouds.](https://doi.org/10.5194/acp-22-3303-2022)
1046 [Atmospheric Chemistry and Physics](https://doi.org/10.5194/acp-22-3303-2022), 22(5), 3303–3319. <https://doi.org/10.5194/acp-22-3303-2022>.

1047 Glassmeier, F., Hoffmann, F., Johnson, J. S., Yamaguchi, T., Carslaw, K. S., and Feingold, G.: Aerosol-cloud-
1048 climate cooling overestimated by ship-track data, *Science*, 371, 485–489,
1049 <https://doi.org/10.1126/science.abd3980>, 2021.

1050 Grosvenor, D. P., & Wood, R.: The effect of solar zenith angle on MODIS cloud optical and microphysical
1051 retrievals within marine liquid water clouds. *Atmospheric Chemistry and Physics*, 14(14), 7291-7321.
1052 <https://doi.org/10.5194/acp-14-7291-2014>, 2014

1053 Grosvenor, D. P., Sourdeval, O., Zuidema, P., Ackerman, A., Alexandrov, M. D., Bennartz, R., Boers, R., Cairns,
1054 B., Chiu, J. C., Christensen, M., Deneke, H., Diamond, M., Feingold, G., Fridlind, A., HAOEnerbein, A., Knist,
1055 C., Kollias, P., Marshak, A., McCoy, D., Merk, D., Painemal, D., Rausch, J., Rosenfeld, D., Russchenberg, H.,
1056 Seifert, P., Sinclair, K., Stier, P., van Diedenhoven, B., Wendisch, M., Werner, F., Wood, R., Zhang, Z., and
1057 Quaas, J.: Remote Sensing of Droplet Number Concentration in Warm Clouds: A Review of the Current State
1058 of Knowledge and Perspectives, *Rev. Geophys.*, 56, 409–453, <https://doi.org/10.1029/2017RG000593>, 2018.

1059 Gryspeerdt, E., Quaas, J., and Bellouin, N.: Constraining the aerosol influence on cloud fraction, *J. Geophys. Res.-*
1060 *Atmos.*, 121, 3566– 3583, <https://doi.org/10.1002/2015JD023744>, 2016.

1061 Gryspeerdt, E., Goren, T., Sourdeval, O., Quaas, J., Mülmenstdt, J., Dipu, S., Unglaub, C., Gettelman, A., and
1062 Christensen, M.: Constraining the aerosol influence on cloud liquid water path, *Atmos. Chem. Phys.*, 19, 5331–
1063 5347, <https://doi.org/10.5194/acp-19-5331-2019>, 2019.

1064 Gryspeerdt, E., Goren, T., and Smith, T. W. P.: Observing the timescales of aerosol–cloud interactions in snapshot
1065 satellite images, *Atmos. Chem. Phys.*, 21, 6093–6109, <https://doi.org/10.5194/acp-21-6093-2021>, 2021.

1066 Gryspeerdt, E., McCoy, D. T., Crosbie, E., Moore, R. H., Nott, G. J., Painemal, D., Small-Griswold, J., Sorooshian,
1067 A., and Ziemb, L.: The impact of sampling strategy on the cloud droplet number concentration estimated from
1068 satellite data, *Atmos. Meas. Tech.*, 15, 3875–3892, <https://doi.org/10.5194/amt-15-3875-2022>, 2022.

1069 Han, Q., Rossow, W. B., Zeng, J., and Welch, R.: Three Different Behaviors of Liquid Water Path of Water Clouds
1070 in Aerosol–Cloud Interactions, *J. Atmos. Sci.*, 59, 726–735, [https://doi.org/10.1175/1520-0469\(2002\)059<0726:TDBOLW>2.0.CO;2](https://doi.org/10.1175/1520-0469(2002)059<0726:TDBOLW>2.0.CO;2), 2002.

1071 Kaufman, Y. J., Koren, I., Remer, L. A., Rosenfeld, D., & Rudich, Y.: The effect of smoke, dust, and pollution
1072 aerosol on shallow cloud development over the Atlantic Ocean. *Proc Natl Acad Sci U S A*, 102(32), 11207–
1073 11212. [https://doi.org/10.1073/pnas.0505191102, 2005](https://doi.org/10.1073/pnas.0505191102)

1074 King, M. D., Platnick, S., Menzel, W. P., Ackerman, S. A., & Hubanks, P. A.: Spatial and Temporal Distribution of
1075 Clouds Observed by MODIS Onboard the Terra and Aqua Satellites. *IEEE Transactions on Geoscience and*
1076 *Remote Sensing*, 51(7), 3826–3852. [https://doi.org/10.1109/tgrs.2012.2227333, 2013](https://doi.org/10.1109/tgrs.2012.2227333)

1077 Klein, S. A., & Hartmann, D. L.: The seasonal cycle of low stratiform clouds. *Journal of Climate*, 6(8), 1587–1606.
1078 [https://doi.org/10.1175/1520-0442\(1993\)006<1587:tscols>2.0.co;2](https://doi.org/10.1175/1520-0442(1993)006<1587:tscols>2.0.co;2), 1993.

1079 Liu, J., Li, Z., and Cribb, M.: Response of marine boundary layer cloud properties to aerosol perturbations
1080 associated with meteorological conditions from the 19-month AMF-Azores campaign, *J. Atmos. Sci.*, 73, 4253–
1081 4268, [https://doi.org/10.1175/JAS-D-15-0364.1, 2016.](https://doi.org/10.1175/JAS-D-15-0364.1)

1082 Mather, J. H., & Voyles, J. W.: The Arm Climate Research Facility: A Review of Structure and Capabilities, *Bull.*
1083 *Am. Meteorol. Soc.*, 94, 377–392, [https://doi.org/10.1175/BAMS-D-11-00218.1, 2013](https://doi.org/10.1175/BAMS-D-11-00218.1).

1084 Mecham, D. B., Wittman, C. S., Miller, M. A., Yuter, S. E., and De Szeke, S. P.: Joint synoptic and cloud
1085 variability over the Northeast Atlantic near the Azores, *J. Appl. Meteorol. Clim.*, 57, 1273–1290, 2018.

1086 Minnis, P., Sun-Mack, S., Young, D. F., Heck, P. W., Garber, D. P., Chen, Y., Spangenberg, D. A., Arduini, R. F.,
1087 Trepte, Q. Z., Smith, W. L., Ayers, J. K., Gibson, S. C., Miller, W. F., Hong, G., Chakrapani, V., Takano, Y.,
1088 Liou, K., Xie, Y., and Yang, P.: CERES edition-2 cloud property retrievals using TRMM VIRS and Terra and
1089 Aqua MODIS data–Part I: Algorithms, *IEEE Trans. Geosci. Remote Sens.*, 49, 4374–4400,
1090 [https://doi.org/10.1109/TGRS.2011.2144601, 2011](https://doi.org/10.1109/TGRS.2011.2144601).

1091 Minnis, P., K. Bedka, Q. Trepte, C. R. Yost, S. T. Bedka, B. Scarino, K. Khlopenkov, and M. M. Khaiyer: A
1092 consistent long-term cloud and clear-sky radiation property dataset from the Advanced Very High Resolution
1093 Radiometer (AVHRR). Climate Algorithm Theoretical Basis Document (C-ATBD), CDRP-ATBD-0826 Rev 1
1094 - NASA, NOAA CDR Program, 159 pp., DOI:10.789/V5HT2M8T,
1095 https://www1.ncdc.noaa.gov/pub/data/sds/cdr/CDRs/AVHRR_Cloud_Properties_NASA/AlgorithmDescription_01B-30b.pdf, 2016.

1096 Minnis, P., Sun-Mack, S., Chen, Y., Chang, F., Yost, C. R., Smith, W. L., Heck, P. W., Arduini, R. F., Bedka, S. T.,
1097 Yi, Y., Hong, G., Jin, Z., Painemal, D., Palikonda, R., Scarino, B. R., Spangenberg, D. A., Smith, R. A., Trepte,
1098 Q. Z., Yang, P., and Xie, Y.: CERES MODIS Cloud Product Retrievals for Edition 4–Part I: Algorithm
1099 Changes, *IEEE T. Geosci. Remote*, 11152, 1–37, [https://doi.org/10.1117/12.2532931, 2020](https://doi.org/10.1117/12.2532931).

1100

1101

1102 Morrison, H., van Lier-Walqui, M., Fridlind, A. M., Grabowski, W. W., Harrington, J. Y., Hoose, C., et al.:
1103 Confronting the challenge of modeling cloud and precipitation microphysics. *Journal of Advances in Modeling*
1104 *Earth Systems*, 12, e2019MS001689. <https://doi.org/10.1029/2019MS001689>, 2020.

1105 Painemal, D., Minnis, P., and Sun-Mack, S.: The impact of horizontal heterogeneities, cloud fraction, and liquid
1106 water path on warm cloud effective radii from CERES-like Aqua MODIS retrievals, *Atmos. Chem. Phys.*, 13,
1107 9997–10003, <https://doi.org/10.5194/acp-13-9997-2013>, 2013.

1108 Painemal, D.: Global Estimates of Changes in Shortwave Low-Cloud Albedo and Fluxes Due to Variations in Cloud
1109 Droplet Number Concentration Derived From CERES-MODIS Satellite Sensors, *Geophys. Res. Lett.*, 45,
1110 9288–9296, <https://doi.org/10.1029/2018GL078880>, 2018.

1111 Painemal, D., Spangenberg, D., Smith Jr., W. L., Minnis, P., Cairns, B., Moore, R. H., Crosbie, E., Robinson, C.,
1112 Thornhill, K. L., Winstead, E. L., and Ziemba, L.: Evaluation of satellite retrievals of liquid clouds from the
1113 GOES-13 imager and MODIS over the midlatitude North Atlantic during the NAAMES campaign, *Atmos.*
1114 *Meas. Tech.*, 14, 6633–6646, <https://doi.org/10.5194/amt-14-6633-2021>, 2021.

1115 Penner, J. E., Dong, X., and Chen, Y.: Observational evidence of a change in radiative forcing due to the indirect
1116 aerosol effect, *Nature*, 427, 231–234, 2004.

1117 Possner, A., Eastman, R., Bender, F., & Glassmeier, F.: Deconvolution of boundary layer depth and aerosol
1118 constraints on cloud water path in subtropical stratocumulus decks. *Atmospheric Chemistry and Physics*, 20(6),
1119 3609–3621. <https://doi.org/10.5194/acp-20-3609-2020>, 2020

1120 Rémillard, J., Kollias, P., Luke, E., and Wood, R.: Marine Boundary Layer Cloud Observations in the Azores, *J.*
1121 *Climate*, 25, 7381–7398, <https://doi.org/10.1175/JCLI-D-11-00610.1>, 2012.

1122 Sandu, I., Brenguier, J., Geoffroy, O., Thouron, O., and Masson, V.: Aerosol impacts on the diurnal cycle of marine
1123 stratocumulus, *J. Atmos. Sci.*, 65, 2705–2718, 2008.

1124 Sandu, I., Brenguier, J.-L., Thouron, O., and Stevens, B.: How important is the vertical structure for the
1125 representation of aerosol impacts on the diurnal cycle of marine stratocumulus? *Atmos. Chem. Phys.*, 9, 4039–
1126 4052, doi:10.5194/acp-9-4039-2009, 2009.

1127 Sato, Y., Goto, D., Michibata, T., Suzuki, K., Takemura, T., Tomita, H., and Nakajima, T.: Aerosol effects on cloud
1128 water amounts were successfully simulated by a global cloud-system resolving model, *Nat. Commun.*, 9, 985,
1129 <https://doi.org/10.1038/s41467-018-03379-6>, 2018.

1130 Small, J., Chuang, P., Feingold, G. & Jiang, H.: Can aerosol decrease cloud lifetime? *Geophys. Res. Lett.* 36,
1131 L16806, 2009.

1132 Stevens, B. and Feingold, G.: Untangling aerosol effects on clouds and precipitation in a buffered system, *Nature*,
1133 461, 607–613, doi:10.1038/nature08281, 2009.

1134 Stevens, B. & Seifert, A.: Understanding the macrophysical outcomes of microphysical choices in simulations of
1135 shallow cumulus convection. *J. Meteorol. Soc. Jpn* 86A, 141–163, 2008.

1136 Sun-Mack, S., Minnis, P., Chen, Y., Kato, S., Yi, Y., Gibson, S. C., et al.: Regional apparent boundary layer lapse
1137 rates determined from CALIPSO and MODIS data for cloud-height determination. *Journal of Applied*
1138 *Meteorology and Climatology*, 53(4), 990–1011, 2014.

1139 Terai, C. R., Wood, R., Leon, D. C., and Zuidema, P.: Does precipitation susceptibility vary with increasing cloud
1140 thickness in marine stratocumulus? *Atmos. Chem. Phys.*, 12, 4567–4583, doi:10.5194/acp-12-4567-2012, 2012.

1141 Terai, C. R., Wood, R., and Kubar, T. L.: Satellite estimates of precipitation susceptibility in low-level marine
1142 stratiform clouds, *J. Geophys. Res.*, 120, 8878–8889, doi:10.1002/2015JD023319, 2015.

1143 Toll, V., Christensen, M., Quaas, J., and Bellouin, N.: Weak average liquid-cloud-water response to anthropogenic
1144 aerosols, *Nature*, 572, 51–55, <https://doi.org/10.1038/s41586-019-1423-9>, 2019.

1145 Trepte, Q. Z., and Coauthors: Global cloud detection for CERES edition 4 using Terra and Aqua MODIS data. *IEEE
1146 Trans. Geosci. Remote Sens.*, 57, 9410–9449, <https://doi.org/10.1109/TGRS.2019.2926620>, 2019.

1147 Twomey, S.: The Influence of Pollution on the Shortwave Albedo of Clouds, *J. Atmos. Sci.*, 34, 1149–1152,
1148 [https://doi.org/10.1175/1520-0469\(1977\)034<1149:TIOPOT>2.0.CO;2](https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2), 1977.

1149 Wang, S., Wang, Q., and Feingold, G.: Turbulence, Condensation, and Liquid Water Transport in Numerically
1150 Simulated Nonprecipitating Stratocumulus Clouds, *J. Atmos. Sci.*, 60, 262–278, [https://doi.org/10.1175/1520-0469\(2003\)060<0262:TCALWT>2.0.CO;2](https://doi.org/10.1175/1520-
1151 0469(2003)060<0262:TCALWT>2.0.CO;2), 2003.

1152 Wang, Y., Zheng, X., Dong, X., Xi, B., Wu, P., Logan, T., and Yung, Y. L.: Impacts of long-range transport of
1153 aerosols on marineboundary-layer clouds in the eastern North Atlantic, *Atmos. Chem. Phys.*, 20, 14741–14755,
1154 <https://doi.org/10.5194/acp-20-14741-2020>, 2020.

1155 Warren, S. G., C. J. Hahn, J. London, R. M. Chervine, and R. L. Jenne: Global distribution of total cloud cover and
1156 cloud type amounts over ocean, *Tech. Note NCAR/TN-317 + STR*, 42, Natl. Cent. for Atmos. Res., Boulder,
1157 Colo., <https://doi.org/10.2172/5415329>, 1988.

1158 Williams, A. S., & Igel, A. L.: Cloud top radiative cooling rate drives non-precipitating stratiform cloud responses to
1159 aerosol concentration. *Geophysical Research Letters*, 48, e2021GL094740.
1160 <https://doi.org/10.1029/2021GL094740>, 2021.

1161 Wood, R.: Stratocumulus Clouds, *Mon. Weather Rev.*, 140, 2373–2423, [https://doi.org/10.1175/MWR-D-11-00121.1](https://doi.org/10.1175/MWR-D-11-
1162 00121.1), 2012.

1163 Wu, P., Dong, X., Xi, B., Tian, J., & Ward, D. M.: Profiles of MBL cloud and drizzle microphysical properties
1164 retrieved from ground-based observations and validated by aircraft in situ measurements over the Azores.
1165 *Journal of Geophysical Research: Atmospheres*, 125, e2019JD032205. <https://doi.org/10.1029/2019JD032205>,
1166 2020.

1167 Wu, P., X. Dong, and B. Xi: A climatology of marine boundary layer cloud and drizzle properties derived from
1168 ground-based observations over the Azores. *J. Climate*, 33, 10133–10148, [https://doi.org/10.1175/JCLI-D-20-0272.1](https://doi.org/10.1175/JCLI-D-20-
1169 0272.1), 2020.

1170 Xi, B., Dong, X., Minnis, P., & Khaiyer, M. M.: A 10 year climatology of cloud fraction and vertical distribution
1171 derived from both surface and GOES observations over the DOE ARM SPG site. *Journal of Geophysical
1172 Research*, 115(D12). <https://doi.org/10.1029/2009jd012800>, 2010

1173 Xue, H. and Feingold, G.: Large-Eddy Simulations of Trade Wind Cumuli: Investigation of Aerosol Indirect Effects,
1174 *J. Atmos. Sci.*, 63, 1605–1622, <https://doi.org/10.1175/JAS3706.1>, 2006.

1175 Yeom, J. M., Yum, S. S., Shaw, R. A., La, I., Wang, J., Lu, C., et al.: Vertical variations of cloud microphysical
1176 relationships in marine stratocumulus clouds observed during the ACE ENA campaign. *Journal of Geophysical*
1177 *Research: Atmospheres*, 126, e2021JD034700. <https://doi.org/10.1029/2021JD034700>, 2021.

1178 Zhang, Z., Song, Q., Mechem, D. B., Larson, V. E., Wang, J., Liu, Y., Witte, M. K., Dong, X., and Wu, P.: Vertical
1179 dependence of horizontal variation of cloud microphysics: observations from the ACE-ENA field campaign and
1180 implications for warm-rain simulation in climate models, *Atmos. Chem. Phys.*, 21, 3103–3121,
1181 <https://doi.org/10.5194/acp-21-3103-2021>, 2021.

1182 Zhang, J., Zhou, X., Goren, T., and Feingold, G.: Albedo susceptibility of northeastern Pacific stratocumulus: the
1183 role of covarying meteorological conditions, *Atmos. Chem. Phys.*, 22, 861–880, <https://doi.org/10.5194/acp-22-861-2022>, 2022.

1185 Zhang, J., and Feingold, G.: Distinct regional meteorological influences on low-cloud albedo susceptibility over
1186 global marine stratocumulus regions, *Atmos. Chem. Phys.*, 23, 1073–1090, <https://doi.org/10.5194/acp-23-1073-2023>, 2023.

1188 Zheng, Q., and Miller, M. A.: Summertime Marine Boundary Layer Cloud, Thermodynamic, and Drizzle
1189 Morphology over the Eastern North Atlantic: A Four-Year Study, *J. Climate*, 35, 4805–4825,
1190 [https://doi.org/10.1175/JCLI-D-21-0568.1, 2022](https://doi.org/10.1175/JCLI-D-21-0568.1).

1191 [Zheng, X. J., B. K. Xi, X. Q. Dong, P. Wu, T. Logan, and Y. Wang, 2022: Environmental effects on aerosol–cloud](#)
1192 [interaction in non-precipitating marine boundary layer \(MBL\) clouds over the eastern North Atlantic.](#)
1193 [Atmospheric Chemistry and Physics, 22, 335–354, <https://doi.org/10.5194/acp-22-335-2022>.](#)

1194 Zhou, X., Zhang, J., & Feingold, G.: On the importance of sea surface temperature for aerosol-induced brightening
1195 of marine clouds and implications for cloud feedback in a future warmer climate. *Geophysical Research Letters*,
1196 48, e2021GL095896. <https://doi.org/10.1029/2021GL095896>, 2021.

1197 [Zhou, X., & Feingold, G. \(2023\). Impacts of mesoscale cloud organization on aerosol-induced cloud water](#)
1198 [adjustment and cloud brightness. Geophysical Research Letters, 50, e2023GL103417.](#)
1199 <https://doi.org/10.1029/2023GL103417>

1200 Zuidema, P., Leon, D., Pazmany, A., & Cadeddu, M.: Aircraft millimeter-wave passive sensing of cloud liquid
1201 water and water vapor during VOCALS-REx. *Atmospheric Chemistry and Physics*, 12(1), 355–369.
1202 [https://doi.org/10.5194/acp-12-355-2012, 2012](https://doi.org/10.5194/acp-12-355-2012)

1203

1204