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Abstract.

The classification of river catchments into groups with similar biophysical characteristics is useful to understand and predict

their hydrological behavior. The increasing availability of remote sensing and other large-scale geospatial datasets have enabled

the use of advanced data-driven approaches to classify catchments using traits such as topography, geology, climate, land cover,

land use, and human influence. Unsupervised clustering algorithms based on the Euclidean distance are commonly used for5

trait-based classification, but are not suitable for high dimensional data. In this study we present a new network-based method

for multi-scale catchment classification, which can be applied to large datasets and used to determine the traits associated with

different catchment groups. In this framework two networks are analyzed in parallel; the first where the nodes are traits, and

the second where the nodes are catchments. In both cases, edges represent pairwise similarity and a network cluster detection

algorithm is used for the classification. The traits network is used to investigate redundancy in the trait data and to condense10

this information into a small number of interpretable categories. The catchments network is used to classify the catchments

into clusters, and to identify representative catchments for the different groups using the degree centrality metric. We apply this

method to classify 9067 river catchments across the contiguous United States at both regional and continental scales using 274

non-categorical traits. At the continental scale, we identify 25 interpretable trait categories and 34 catchment clusters of size

greater than 50. We find that catchments with similar trait categories are typically located in the same region, with different15

spatial patterns emerging among clusters dominated by natural and anthropogenic traits. We also find that the catchment clusters

exhibit distinct hydrological behavior based on an analysis of streamflow indices. This network approach provides several

advantages over traditional means of classification including better separation of clusters, the use of alternate similarity metrics

that are more suitable for high dimensional data, and reducing redundancy in the trait information. The paired catchment-

trait networks enables analysis of hydrological behavior using the dominant trait categories for each catchment cluster. The20

approach can be used at multiple spatial scales, since the network topologies adjust automatically to reflect the trait patterns at

the scale of investigation. Finally, the representative catchments identified as hub nodes in the network can be used to guide

transferable observational and modeling strategies. The method is broadly applicable beyond hydrology for classification of

other complex systems that utilize different types of trait datasets.
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1 Introduction25

Catchments are complex environmental systems that consist of diverse natural and anthropogenic components interacting non-

linearly in space and time. A fundamental challenge in hydrology is to understand how these interacting components influence

critical catchment functions such as stream flow and solute exports (Troch et al., 2015). This is difficult to determine even for

catchments with little to no human influence because of the spatial heterogeneity of processes across regions with different

characteristics leading to the problem of "uniqueness of place" (Beven, 2000). For the majority of catchments, this challenge is30

compounded due to anthropogenic activities that cause more complex behavior that are not easily modeled (Sivakumar et al.,

2015; Sivapalan, 2006).

The classification of river catchments into groups with similar characteristics has been called out as a practical approach to

address the diversity of hydrologic behavior (McDonnell and Woods, 2004; McDonnell et al., 2007; Wagener et al., 2007). A

classification system would establish the baseline for similarities and differences among catchments, and would be extremely35

beneficial for both modeling and experimental analysis (Dooge, 1986). Several regionalization approaches that attempt to

transfer knowledge (observations, theory, or model predictions) from well observed sites to other less-observed regions, such

as those used for predictions in ungaged basins (PUBs), rely on the concept of similarity for extrapolation (Guo et al., 2021;

Merz and Blöschl, 2004). The ultimate goal of a classification process is to discover the laws governing the behavior of a

system under investigation. By looking at the collective behavior of a group of similar elements, the unique contributions from40

individual elements average out, revealing the fundamental characteristics that regulate catchment functions (Sokal, 1974).

There is a long history of using physical characteristics and other properties (i.e., their traits) to classify catchments in

hydrology, as described in Wagener et al. (2007). The simplest approach uses dimensionless numbers or indices such as stream

order (Horton, 1945; Strahler, 1952) and Peclet numbers (Redner, 2001) as organizing constructs. More complex approaches

use distribution functions (e.g. hypsometric curve; Langbein (1947)), and conceptual or mathematical models. A common45

approach is to group catchments by hydroclimactic region such as the Koppen classification (Koppen, 1918) or the Budyko

framework (Budyko, 1974). Many studies use the dynamic behavior of a catchment as quantified by the signatures of a function

of interest as the basis for classification instead of traits (see references in McMillan (2020)), and find the results to be consistent

with knowledge about watershed processes (McMillan et al., 2022). However, signature-based classification cannot be used for

unmonitored sites, which is a significant issue given the paucity of stream flows and other hydrological measurements.50

There has been a dramatic increase in the amount of regional to global scale geospatial datasets produced over the past

two decades, which has enabled a new era of data-driven hydrology (Hubbard et al., 2020). A few data products such as the

Geospatial Attributes of Gages for Evaluating Streamflow, version II (GAGES-II; Falcone (2011)), StreamCat (Hill et al.,

2016), Caravan (Kratzert et al., 2023) and Hysets (Arsenault et al., 2020) now provide extensive information on hundreds of

traits such as land surface structure, climate conditions, vegetation, land use and other human influences across thousands of55

catchments. Thus new methods for classification that go beyond simplistic trait representations to account for a diverse array

of natural and anthropogenic catchment properties are now possible, and would be extremely useful to understand or predict

complex system behavior. A classification approach would use the trait features as vectors in a multidimensional space and the
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relationships among the catchments defined by a distance metric on this space. This approach has been used in recent attempts

to group regions with unsupervised machine learning algorithms such as K-means and hierarchical clustering (Sawicz et al.,60

2011; Wainwright et al., 2022; Kumar et al., 2011).

However, the analysis of large multivariate datasets has two main challenges that need to be addressed. The first is mul-

ticollinearity, which is the possibility of information redundancy in the data due to the presence of multiple variables that

provide similar information. Machine learning algorithms for classification generally have degraded performance when multi-

collinearity is present. The second issue is the "curse of dimensionality" (Bellman, 2010), a phenomenon that emerges when65

using distance metrics to compute the relationship amongst data points represented as vectors of features (e.g., traits) in a

multidimensional space. When the number of dimensions increases, the density of data points drastically decreases making

the feature space more sparse (Houle et al., 2010), and causes the difference between the furthest and the closest distance to

a point to approach zero (Beyer et al., 1999). This results in degraded performance of similarity measures, and in particular

some metrics such as the commonly used Euclidean distance are more affected than others (Aggarwal et al., 2001).70

Many algorithms typically used for unsupervised classification, including machine learning methods such as K-means and

hierarchical clustering do not address the dual issues of multicollinearity and data dimensionality. The K-means algorithm

(MacQueen, 1967) is widely used across many fields and relies on the establishment of cluster centroids in a vectorial space

that act as representative points for the clusters. The data points are associated with a cluster by minimizing their Euclidean

distance, based on the variances within the clusters. However, as the dimension of the vector space grows, the Euclidean75

distance becomes unreliable to properly quantify the relationship among the data points (Aggarwal et al., 2001). Additionally,

the Euclidean distance discards information about the directionality of the data, producing a value that reflect only the relative

position of data points in the vector space, and neglecting the contribution of the different components that can be relevant for

classification. Another group of algorithms for cluster identification are referred to as agglomerative hierarchical clustering.

This class of methods aims to build a hierarchy amongst the data points, and different strategies can be used to find the optimal80

partitioning. Some of the most notable methods are the complete and single linkage clustering, which respectively aim to

maximize or minimize the distance of two points belonging to a different cluster (Müllner, 2011). Although these two methods

do not necessarily rely on the Euclidean distance, they are quite sensitive to outliers because they are based on the extreme (i.e.,

maximum or minimum) distances between points. Such dependence on single data points for partitioning goes against one of

the main concepts in the characterization of complex systems, where emergent properties (i.e., the grouping into clusters), are85

the result of a collective phenomena rather than the disproportionate contribution of a single element. The Ward’s algorithm

(Ward, 1963) mitigates the issue of outliers by introducing the minimum variance method, but is based on the Euclidean

distance and therefore subject to the same drawbacks as the K-means method.

Approaches based on network science have been used to investigate complex systems for many applications involving large

datasets (Newman, 2018; Börner et al., 2007). The ability of networks to capture complex interactions among different parts of90

a system and to highlight emergent behaviors has been proven to be extremely powerful (Strogatz, 2001; Boccaletti et al., 2006).

By treating each element as a node, and the relationship amongst them as edges, the structure of a network provides a natural

and intuitive representation of a complex system (Barrat et al., 2004; Albert and Barabási, 2002). Modeling the relationships
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amongst elements of a complex system as a network also enables the use of suitable distance metrics for large datasets,

presenting a solution to address the issues of data dimensionality and multicollinearity. Networks are used extensively in many95

different scientific domains. For example, in social science, political polarization has been detected with the presence of clusters

in a social network (Conover et al., 2011). In biology, protein-protein interaction networks are essential to understand the cell

physiology (Jeong et al., 2001), and plant trait networks are used to understand plant adaptation to different environments by

examining the complex relationships between their functional traits (He et al., 2020). In hydrology, the concept of networks

has mainly been associated with the tree-like structure of rivers, and has enabled advances in understanding geomorphological100

processes (Rinaldo et al., 2006; Rodríguez-Iturbe and Rinaldo, 2001; Tejedor et al., 2017; Czuba and Foufoula-Georgiou,

2014). The use of networks as a generic framework for hydrological investigation has been postulated (Sivakumar, 2015) and

the concepts of complex flow networks have been used to understand river transport in deltas (Sivakumar et al., 2015; Tejedor

et al., 2018). However, to date, network theory has not been used for understanding relationships between catchments or their

traits.105

In this study, we introduce a novel, network-based method to classify catchments at multiple scales based on traits repre-

senting their climatic conditions, vegetation, topography, soils, land use, and anthropogenic characteristics. This unsupervised

method utilizes two parallel networks to extract clusters of similar traits and catchments, while using dimensionality reduction

and a cosine distance metric, to address the issues of information redundancy and high dimensionality present in large geospa-

tial datasets. This approach enables characterization of catchments using a small number of interpretable trait categories, and110

provides a more generalizable approach to regionalization of hydrologic behavior. We demonstrate the utility of our network-

based method for analyzing catchment properties and associated hydrological behavior for 9067 catchments and 274 traits

across the continental United States. To our knowledge, this is the first instance where networks have been used for trait-based

catchment classification in the hydrological sciences. Our methods are broadly applicable beyond catchment classification for

analysis of other environmental traits (e.g., plant functional traits or microbial traits) and large datasets.115

2 Methods

In this section, we describe the dataset and the workflow for unsupervised trait-based classification of watersheds using the net-

work approach. The steps in our classification workflow (Fig. 1) include: (1) downselection and preprocessing of traits from the

GAGES-II dataset (Sect. 2.1) by transforming and standardizing trait values (Sect. 2.2), (2) removal of redundant information

and multicollinearity using the principal component analysis (PCA), which produces low dimensional vector representations120

of both traits and catchments (Sect. 2.3), (3) computation of the pairwise similarities of the dimensionally-reduced vectors of

both catchments and traits (Sect. 2.4), (4) generation of two similarity networks, one where nodes are catchments and another

where nodes are traits (Sect. 2.5). In both cases edge weights represent the pairwise similarities within the respective sets, (5)

classification via a clustering algorithm to identify trait categories and groups of catchments with similar traits (Sect. 2.6), (6)

characterization of the catchment clusters using the over and under expression of traits categories (Sect. 2.8), (7) evaluation of125

the spatial coherence between catchment clusters (Sect. 2.7), (8) selection of representative catchments using network central-
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Figure 1. A schematic of the workflow used in this study.

ity measures (Sect. 2.9), (9) identifying hydrological behavior based on streamflow indices across the catchment clusters and

association with their characteristic traits expression (Sect. 2.10).
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2.1 Datasets

The primary dataset used in this study is the Geospatial Attributes of Gages for Evaluating Streamflow, version II (GAGES-130

II), as described in Falcone (2011). This dataset contains a comprehensive set of geospatial characteristics for 9,322 gaged

catchments in the contiguous United States (CONUS), as well as Alaska, Hawaii, and Puerto Rico with long flow records (at

least 20 complete years of discharge record since 1950) or having an active record as of water year 2009. Here, we refer to

’catchments’ as the area upstream of each individual gaging station in the GAGES-II dataset, of which 2,057 are considered

pristine (’reference’) and 7,265 are disturbed by human influences (’non-reference’).135

The geospatial attributes, referred to as ’traits’ in this paper, are compiled from various data sources for the CONUS (see

Falcone et al. (2010) for details). The 354 traits in the dataset span climate (e.g. historical average precipitation and air tem-

perature), soil types and composition, geomorphology (e.g. topography), vegetation (e.g. extent of forests), surface waters (e.g.

extent of lakes and wetlands), stream characteristics (e.g., sinuosity and stream order), and anthropogenic influences (e.g. prox-

imity to developed areas, land use or presence of dams). Some traits have multiple representations; for example, elevation is140

provided at the location of the stream gage and as an average across the catchment.

Many of the climate traits are calculated from the 800 m gridded PRISM dataset (Daly et al., 2000), which is derived from

30-year records that span different time periods (primarily 1961-1990 or 1971-2000). We highlight that the runoff variables

present in the dataset are not measured values of the discharge, but instead are estimates from 1951-2000 computed by a

water balance model for 4 km grids using precipitation and temperature as inputs (Wolock and McCabe, 1999). Land use145

and land cover data are derived from the 2006 USGS National land cover dataset. We selected the GAGES-II dataset for our

unsupervised classification because of its comprehensiveness across catchments, diversity of traits and spatial coverage.

The second dataset used in this study consists of streamflow data obtained from the USGS National Water Information

Service (USGS, 2022) for the period 1971 to 2000. We chose this time window to overlap with the period of data availability

for most of the traits used from GAGES-II.150

2.2 Data Filtering and Preprocessing

This study focuses on the 9067 stream gages from catchments that are present within the CONUS in the GAGES-II dataset,

excluding the gages in Alaska, Puerto Rico and Hawaii. Out of the 354 traits present in the dataset, we selected 274 that had

numerical values and discarded 74 categorical variables (e.g., geology type) or textual labels (e.g., county name). We also

discarded 6 additional traits: station identification number (STAID), the 2 digit hydrological unit (HUC02; Seaber et al. (1987)155

that each station belongs to, latitude (LAT_GAGE) andlongitude (LNG_GAGE) of the station, soil with variable drainage char-

acteristics (HGVAR) and mean watershed aspect (ASPECT_DEGREES). The STAID, HUC02, LAT_GAGE and LNG_GAGE

variables contain explicit information about the location of the gaging stations. We chose to exclude them to develop the classi-

fication scheme solely using natural and anthropogenic features, which avoids bias due to spatial proximity and is transferable

to any location. Additionally, their exclusion for the classification enables an unbiased evaluation of the emerging spatial pat-160

terns amongst the resulting catchment clusters. The HGVAR variable is removed because it has zero variance and thus cannot
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be standardized in the preprocessing routine. The ASPECT_DEGREES trait is removed because its periodicity has poor phys-

ical coherence (both the quantity 0 and 360 convey the same information but are represented by the extreme values of the

variable range). Furthermore the aspect information is present in two other variables that we include, ASPECT_EASTNESS

and ASPECT_NORTHNESS, which are the sine and cosine of the ASPECT_DEGREES variable respectively.165

The preprocessing step is composed of two operations (step 1 in Fig. 1). The first involves feature transformations of non-

monotonic traits to a consistent monotonic function. For example, several traits denote the presence of points of interest in the

basin such as dams and canals. However, when such a point is not present in the basin, the trait is assigned the value -999. This

creates an inconsistency with the physical distance values, and thus is remapped to be physically coherent for use as an input

in the PCA method. Further details on mapping of variables to monotonic functions are in Appendix A. The second step is170

data standardization, which involves subtracting the arithmetic mean from each variable and dividing the result by the standard

deviation. As a result, the standardized values will have zero mean and standard deviation equal to 1. The standardization is

essential for the PCA, which requires the data to have a zero mean, and additionally scales variables in the dataset that span

up to five orders of magnitude into a comparable set of values and variances needed for the PCA projections. Each of the 9067

catchments is represented as a vector of these filtered and remapped 274 traits. We provide the GAGES-II dataset preprocessed175

according to these steps as part of the dataset (Ciulla and Varadharajan, 2023).

2.3 Dimensionality Reduction

The next step in the workflow (Step 2 in Fig. 1) involves reducing the dimensionality of the pre-processed dataset using the

Principal Component Analysis (PCA) algorithm (Pearson, 1901), which is required for two reasons. First, it is used to mitigate

the issue of the curse of dimensionality, which results in reduction of performance of distance metrics in high-dimensional180

vector spaces such as the 274-dimensional trait vectors used to represent catchments in our study (Aggarwal et al., 2001).

Secondly, the dimensionality reduction minimizes the redundancy in the dataset caused when information present in one trait

is also represented (partially or totally) in other traits. Information redundancy is generally detrimental for machine learning

algorithms and needs to be addressed. This information redundancy can be detected by computing the trait correlations and

is referred to as multicollinearity. The traits in the GAGES-II dataset contain significant redundancies, with 84% of pair-wise185

Pearson correlation coefficients (Pearson, 1895) and 92% of pair-wise Spearman coefficients, which accounts for non-linear

relationships (Spearman, 1987), have a significant p-value of 0.05. The coefficient of determination between these two metrics

is equal to 0.76, which indicates that although nonlinear relationships among the traits are present, they are not so dominant to

prevent the use of a linear dimensionality reduction method such as PCA. Another factor that can affect the PCA algorithm’s

performance is the presence of outliers. We determined that the PCA is a reasonable choice for the GAGES-II dataset, since190

only 8.1% of the traits lies outside their “inner fence”, a common threshold for outliers, defined as the range between Q1 - 1.5

* IQR and Q3 + 1.5 * IQR for each trait, where Q1 and Q3 are the first and third quartiles respectively, and IQR = Q3 - Q1 is

the interquartile range.

The PCA algorithm collapses the dimensions of linearly correlated variables into a lower dimensional vector representation.

The information of the variables is retained in directions called principal components that maximize the variance of the original195
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Figure 2. Pictorial representation of (a) Dimensionality reduction via PCA of the original matrix M into the transformed matrix Mk,

encoding information about catchments and the matrix of principal components PCk, encoding information about the traits, and (b) The

generation of the catchments similarity matrix SC from the L2-normalized Mk and the traits similarity matrix ST from the L2-normalized

PCk.

data, thus addressing the issues of multicollinearity and high dimensionality. In the PCA, the dataset is represented as a matrix

M ∈ Rn×f where n is the number catchments and f is the number of traits, and each catchment is represented by a multidi-

mensional vector of traits in the f -dimensional space (Fig. 2). The PCA transforms the n×f matrix M into a new n×k matrix

Mk, where the catchments are represented by n low dimensional vectors of size k. The only free parameter of the algorithm is

the number of final dimensions k, which reflects the amount of information retained. By using the Cao’s implementation (Cao,200

1997) of the false nearest neighbors (FNN) method (Krakovská et al., 2015), we set k = 20 (see Appendix B for details).

Hence, the original matrix M is transformed into the matrix Mk ∈ Rn×k containing 9067 vectors of dimension 20, where

each vector is a low-dimensional representation of the traits in each of the catchments, which is used in the following steps of

our analysis. Complementary to Mk ∈ Rn×k, the matrix of principal components PCk ∈ Rf×k contains f = 274 vectors of

size k that encodes information about how the traits are expressed in the catchments. The analysis of PCk ∈ Rf×k is used to205

identify the relationships and information redundancy amongst the different traits. To summarize, the PCA results in a set of

n k-dimensional vectors that encodes the trait information for each catchment, and f k-dimensional vectors that describe the

traits expressions.
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2.4 Similarity Measure

We identify the relationships between catchments and traits using the cosine similarity as a distance metric. Cosine similarity210

is defined as in Eq. 1 (Salton, 1983):

SC(xxx,yyy) =
xxx ·yyy

∥xxx∥∥yyy∥
(1)

where x and y are two vectors with the same lengths. The cosine similarity is preferred over the classical Euclidean distance

metrics for two reasons. First, the reduced-order vectors from the PCA are still considered to be high-dimensional data for

distance calculations. Secondly, the cosine distance retains information about directionality of the data (see Appendix C for215

additional explanation about the rationale for the choice of this similarity measure).

The cosine similarity is computed as the dot product of the L2 normalized matrices Mk and PCk with their corresponding

transposed matrices (Fig. 2b). This results in two matrices SC and ST of size n×n and f × f that contain the pairwise

similarities between catchments and traits respectively. The diagonal elements of both matrices are unit values because they

are the results of the dot product of normalized vectors with themselves.220

2.5 Network Generation

In this study, we adopt networks as a tool to investigate the relationship among the catchments. For more details on network

theory see Appendix D. We use the cosine similarity matrix SC to build a network NC where nodes are catchments and the

edges represent their similarity (Step 4 in Fig. 1). In particular, the edge weights are the cosine similarity values mapped to a

range between 0 and 1 (Equation 2):225

A=
SC +1

2
(2)

Thus, two nodes are connected if they are similar as per the cosine metric, and the strength of the similarity is reflected by

the edge weights. The self-loops (i.e., an edge that originates from, and ends at the same node) given by the unitary values of

the diagonal similarity matrix are deliberately discarded. The connectivity patterns in the network reveals clusters of nodes that

are more similar to each other than to the rest of the network.230

By assigning an edge to each pair of nodes using the similarity metric we produce a fully connected network, namely a

network with all the possible NC(NC − 1)/2 edges.

Such a network is a relatively uninteresting one, because the presence of all possible edges hides eventual complex topolog-

ical patterns present in it. In order to reveal such patterns, we apply a filtering mechanism to our set of edges. In particular, we

use the disparity filter as described in Serrano et al. (2009). Such a method takes a network as an input and filters out some of235

its edges returning what is called the network backbone. The disparity filter assumes complete homogeneity among the edge

weights with the null hypothesis that the weights of the edges incident to a node are uniformly distributed. Then it retains

only the edges whose weight magnitude is incompatible with such an hypothesis according to a certain significance level. By

repeating this process for each node in the network, we generate the network backbone, where all the edges are statistically
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validated against the uniform distribution hypothesis. Only edges are affected by this technique, while the nodes are unaffected240

and their number in the network stays the same. The method does not prescribe a universal value for the significance level,

which has to be evaluated case by case.

In our implementation of the disparity filter, we choose a significance level where 95% of the nodes in the network belong to

the giant component, which is the connected component in a network that includes most of the nodes. The choice of 100% of

the nodes in the giant component is impractical because there could be nodes that potentially never connect to any other ones,245

making the 100% value impossible to reach.

The procedure used for generating the catchments network is also used to produce a network of traits NT via the matrix ST

where each node is a trait and the edges connect two traits, with weights representing how similarly they are expressed across

the catchments. Similar to the catchment case, we extract the backbone network to reveal complex patterns among groups of

traits.250

For catchments, the backbone network NC contains 9067 nodes and 559207 edges. The number of edges corresponds to

only 1.4% of the ones that can possibly be present in a fully connected network of such a size. In the case of the traits, the

backbone network NT has 274 nodes and 1422 edges, comprising 3.8% of all the possible edges. These networks are used in

the following step to identify clusters of similar catchments and traits.

2.6 Clusters Identification255

A complex network is a network with non trivial connectivity patterns (Strogatz, 2001; Boccaletti et al., 2006). One of the

main hints of the presence of such patterns is given by the heterogeneous distribution of the values of the clustering coefficient,

a topological measure of the tendency of a network to form groups of nodes that are more connected to each other than with

the rest of the network (Wasserman and Faust, 1994; Scott and Carrington, 2023). Appendix E contains a detailed discussion

on clustering coefficients. These groups of nodes are called clusters and there are a variety of algorithms to discover them260

(Fortunato, 2010).

To obtain the division of nodes into clusters, we implement the Infomap clustering algorithm (Rosvall and Bergstrom, 2008)

for both the catchment and the trait networks. This is an agglomerative clustering method for networks that starts by assigning

each node to its own cluster and uses the map equation as described in Rosvall et al. (2009) to optimize the iterative merging of

these partitions. One advantage of using the Infomap algorithm is its capability of splitting already formed clusters at successive265

iterations, if this action benefits the clustering optimization function.

When applied to the catchment network, 95% of the nodes in the entire network are contained in the top 71 clusters ranked

based on their size. We provide the number of clusters at 95% coverage because, as usual for complex networks, the cluster

size spans several orders of magnitude, and thus accounting for all the clusters is inappropriate. The cluster size ranges from 1

to 953 nodes, with the latter comprising about 10% of the nodes of the entire network. Because of how the catchment network270

is built, catchments within a cluster have more similar traits than with the rest of the network. When the Infomap algorithm is

applied to the traits network, the number of top clusters in size that comprises 95% of the network is 20 and their sizes range

from 1 to 25. For this network, the clusters denote groups of traits that have similar expression patterns across the catchments.
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The cluster identification represents the first milestone of our workflow (Step 5 in Fig. 1), resulting in classification of both

traits and catchments using a completely unsupervised methodology. The only choices we made were informed by statistical275

analysis to set the two free parameters of the framework, namely the number of dimensions for the PCA algorithm and the

confidence level for the backbone disparity filter.

2.7 Spatial Homogeneity of Catchment Clusters

Contrary to supervised methods that compute model performance using testing data, unsupervised algorithms like ours do not

have a direct means of assessing their performance. Thus, to identify a measure of performance of our unsupervised catchment280

classification, we use the principle of Tobler’s first law of geography, which states that "everything is related to everything else,

but near things are more related than distant things" (Tobler, 1970). This law, applied to our classification analysis, would mean

that there is a higher probability of catchments that are geographically close to each other belonging to the same cluster. To

quantify this concept we compute the global homogeneity measure Hglobal as the average probability that for each catchment

the nearest neighbor in terms of spatial proximity belongs to the same cluster. This quantity can be interpreted as geographical285

homogeneity in the sense that catchments surrounded by others within the same cluster make the system more homogeneous.

Hglobal =
1

NC

∑
i

hi (3)

and

hi =

1 if ci = cj

0 otherwise
(4)

Here NC is the total number of catchments, j is the closest catchment to catchment i, ci and cj are the clusters that catchments290

i and j belong to. Hglobal provides a single value for the entire set of catchments, where values closer to 1 indicate that the

system is more homogeneous. Additionally, we compute a within cluster homogeneity measure, Hi
cluster, as the probability

of finding catchments belonging to cluster i within the convex hulls Ai of all catchments in ci. This metric is similar to the

relative abundance of species in ecology, and is computed for each cluster as the ratio between the number of catchments N i
A

belonging to ci in convex hull Ai, and the overall number of catchments NA within this area:295

Hi
cluster =

N i
A

NA
(5)

If a convex hull contains only one type of catchment cluster, which by default will be the cluster that generates the convex

hull, then the value of Hi
cluster is equal to 1, indicating complete homogeneity.

2.8 Characterization of Catchments Clusters

One of the goals of this study is to provide a methodology that enables the interpretability of the resulting catchment classi-300

fication. This would correspond to answering the question: what are the characteristic traits of the catchments belonging to
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a particular cluster? We answer this question by identifying the set of traits that are over or under expressed amongst all the

nodes of a particular catchment cluster (Step 6 in Fig. 1).

This is done by computing the z-score of each trait for each catchment in the dataset. This value represents the unique

expression of a trait in a specific catchment. Next, the z-score values are aggregated for each catchment cluster as an arithmetic305

average producing a mean z-score of each trait for each catchment cluster:

zuv =
1

∥cv∥
∑
w∈cv

xuw −µu

σu
(6)

Here zuv is the mean z-score of the trait u in the cluster cv of size ∥cv∥. The value xuw is the value of the trait u for the

node w in the cluster cv . µu and σu are the average and standard deviation of the trait u in the entire dataset.

In this way, a high absolute value of the average z-score represents a substantive expression of a trait in a particular catchment310

cluster, with positive values indicating overexpression and negative values denoting underexpression of the trait.

However, investigating the unique expression of each of the 274 traits for each catchment cluster would disregard the re-

dundancy of information identified by the trait clusters and neglect eventual collective contribution of several traits. Instead,

a better analysis of trait expression can be achieved by considering their z-score values within the context of other traits in

the dataset, by leveraging the clusters produced by the trait similarity network. So, instead of investigating the expression of315

each trait in isolation, we aggregate the z-scores of all the traits belonging to each cluster in the network of traits. In this way

we characterize each catchment cluster by the expression of a few, easily interpretable groups of traits (referred to as trait

categories). The advantage of the investigation of catchment clusters in the context of the network of traits will become more

evident when we discuss the results in Sect. 3.

2.9 Identification of Representative Catchments320

One advantage of modeling a system as a network is the ability to use a multitude of metrics from graph theory (Newman,

2018; Börner et al., 2007). One of the most used ones is the degree centrality (Börner et al., 2007), defined as the number of

edges incident to a node.The nodes at the other end of these edges are referred to as neighbors. The interpretation of the degree

varies according to the nature of the edges but, in general, nodes with a high degree play a more important role in the network

and are often referred to as hubs. In the case of a similarity network, a node with a high degree centrality identifies an element325

that is very similar to many others, while a low degree node is similar to fewer nodes, and zero degrees indicates that the node

is disconnected from the rest of the network. High degree nodes in similarity networks are the best candidates to be selected

as representative nodes because they have the highest number of neighbors. By sorting the nodes according to their degree

centrality, we can select a small number that are representative of the entire network.

We apply this concept to the network of catchments to select a small set that are representative of the cluster they belong to330

(Step 8 in Fig. 1). This is done by ranking catchments within each cluster and selecting nodes based on the degree centrality

measure. However, we do not simply choose the nodes that have the highest degree centrality, since that could potentially lead

to selection of two or more nodes that are topologically close to each other but both share a high number of neighbors, thus
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undermining network coverage and resulting in redundant choices of representative catchments. Thus, to promote network

coverage and minimize superfluous representation, our method first selects the node with the highest degree centrality in a335

cluster, and then removes both the selected node and its neighbors from the cluster. The new degree-based ranking for the

remaining nodes is then updated due to the removal of nodes. We continue this selection process until the size of the union

set of representative catchments and their neighbors is equal to 95% of the size of the cluster they are extracted from. Using

this methodology, nodes with an initially high degree centrality, which share many neighbors with a selected catchment (i.e.,

is topologically close from a network perspective), will have their degree reduced and are less likely to be selected.340

2.10 Analysis of Streamflow Indices

The unsupervised classification workflow developed in this study finds groups of similar catchments using only traits, and does

not use observations of hydrological variables such as stream flows or temperature. Hence, we can use the classification to

examine the hydrologic behavior of the catchment clusters and their associated trait expressions. Here, we focus on streamflow

regimes following the method in Olden and Poff (2003). They recommend using 34 representative flow indices, which are345

considered to minimize collinearity based on a review of 171 indices calculated using long-term flow records from 420 sites

from across the CONUS. The list of these indices can be found in the Table S1 in the data repository associated with this paper

(Ciulla and Varadharajan, 2023).

To compute the indices, we use the historical record of river mean daily discharge values for the 9067 gaging stations, re-

trieved using the BASIN-3D software (Varadharajan et al., 2022), which synthesizes timeseries data on-demand from different350

data sources including the USGS National Water Information System (NWIS) (USGS, 2022). We only consider the discharge

data from 1971 to 2000 to match the time range of most of the traits in the GAGES-II dataset. We eliminate stations with

more than 50% of missing values in our time range, resulting in a downselected set of 5251 stations. To compute the 34 hydro-

logic indices, we use the EFlowCalc package provided by Thibault (2021) that discards missing values in the computation of

aggregated measures such as averages or standard deviations.355

We aggregate indices as average values for each catchment cluster, after further downselecting to stations that are within 34

clusters containing at least 50 catchments. On average, 59% of the catchments in each of these 34 clusters have a corresponding

long-term flow record for which we computed the hydrological indices. Given this relatively high percentage, we use the

averaged streamflow indices from these catchments as proxies for the hydrological behavior of the entire cluster.

For all the hydrological indices, we use the statistical Kruskal–Wallis test (Kruskal and Wallis, 1952) to determine if there360

is a statistically significant difference between the distribution of the values between individual clusters and the rest of the

catchments. This test does not assume normality in the data distribution and is the non-parametric alternative to the ANOVA

method, which are necessary considerations because none of the streamflow index values were normally distributed as per the

Shapiro test (Shapiro and Wilk, 1965) . The result of the Kruskall-Wallis test indicates if the indices grouped according to the

clusters are drawn from the same distribution as the entire set. If that is not the case, it means that catchment clusters resulting365

from our trait-based classification have different streamflow characteristics.
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We conducted two additional statistical tests to further examine whether the hydrological indices of catchment clusters

are significantly distinct. The first is a nonparametric 1-sample Kolmogorov-Smirnov (K-S) Test that compares a sample

distribution to a reference one for each hydrological index. This expands on the Kruskall-Wallis test, but allows us to determine

the number of clusters that are statistically distinct from the entire catchment dataset. Here, each sample is constituted by the370

indices of one cluster and the reference distribution is based on all the catchments within the CONUS. The null hypothesis is

that samples are drawn from the reference distribution when using 0.05 as threshold for the p-value. The second is a 2-sample

K-S test comparing the distributions of indices for pairs of catchment clusters, which allows us to determine how different the

clusters are from each other. Here, each sample pair is constituted by the distribution of indices for the clusters being compared.

Similar to the one-sample test, the null hypothesis is that samples are drawn from the same distribution when using 0.05 as375

threshold for the p-value.

2.11 Comparison with Traditional Clustering Techniques

We compare the clusters obtained from our methodology that uses network theory and the cosine distance metric, with the

ones resulting from the traditional K-means and hierarchical clustering approaches. Since these are all unsupervised methods,

we cannot use any target variable to compute the accuracy of the classification to compare performance. For this reason, we380

identified two metrics to evaluate the performance of the different methods.

The first metric, which we refer to as “cluster similarity”, reflects the similarity between traits of the catchment clusters,

which are represented by the average trait z-scores aggregated across the catchments in each cluster as described in Sect. 2.8.

Here, each catchment cluster is compared to the others by calculating their pairwise cosine similarity. The highest value of the

cosine distance within each catchment cluster is used as a conservative measure of inter-cluster similarity, to assess how far385

apart the catchment clusters are from each other. The median value of the inter-cluster similarities represents how distinct the

clusters produced by each algorithm are. We aim to minimize this metric, since a good classification algorithm should produce

more distinct clusters.

The second metric is the silhouette score (Rousseeuw, 1987), which is a measure of intra-cluster similarity. It represents

how similar each element (i.e., a catchment) is to other elements within its cluster relative to elements in other clusters. The390

values of this metric range between -1 and 1, with higher values denoting that an element is well placed in its cluster compared

to other clusters. The silhouette values are averaged for all items in the dataset. A good clustering algorithm would produce

higher values of the silhouette score.

We use these two metrics to compare our clustering approach with the hierarchical clustering (in its common implementation

using the Ward criterion; Ward (1963) and the k-means clustering algorithm (MacQueen, 1967). Additionally, to determine the395

effects of the distance metric, we compare the results from our workflow that uses the cosine distance with a version where the

pairwise similarity between nodes is computed using the Euclidean distance. Finally, to show the robustness of our approach,

we examine various choices for the two free parameters in our workflow, namely the number of reduced dimensions after the

PCA (k) and the cluster granularity, which is governed by the disparity filter parameter α used to tune the removal of network

edges during the backbone extraction step (Sect. 2.5). Three different values of k are investigated; k=6 corresponding to 50%400
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of information retained after PCA, k=20 (our choice in the study) corresponding to 72% of retained information, and k=90

corresponding to 95% of retained information. For each value of k, we generate clusters with different α values, with the

number of clusters covering 95% of the dataset ranging between 20 and 120.

3 Results

3.1 The Traits Network405

The traits network has 274 nodes representing individual traits and 1422 edges connecting the nodes (Fig. 3). This network

encodes the similarity between catchment traits as edge weights. We use the network edges in the clustering to generate groups

of traits that are connected to each other, and hence contain similar information. This enables aggregation of our analysis from

individual, redundant traits to a smaller number of interpretable, higher-level trait categories that represent similar properties

of the catchments.410

The size of the clusters range from 35 nodes to 1 node (Table 1), where the 20 largest clusters contain 95% of all nodes in

the network. All the clusters are labeled with a unique numerical identifier and are assigned a name that is representative of

the trait category. For instance, we refer to cluster number 2 as the "Temperature" trait category since it includes nodes like

average annual air temperature for the watershed (T_AVG_BASIN), and other related quantities such as the mean day of the

year of first freeze (FST32SITE). Analogously, cluster number 0 includes nodes like the percentages of watershed land covered415

by development areas at high (DEVHINLCD06), low (DEVLOWNLCD06) and medium intensity (DEVMEDNLCD06). Thus

we identify cluster 0 as "Developed Areas" to indicate the presence of these and other traits that represent the extent of

human development in the catchment. A full list of traits contained in each cluster of the network is provided in Table F1 in

the appendix. A more comprehensive table of trait categories, which includes descriptions of each trait, as well as the traits

network topology is provided in the dataset associated with this paper (Ciulla and Varadharajan, 2023) .420

ID Cluster name Cluster size Anthropogenic

0 Developed Areas 35 yes

1 Precipitation and Runoff 31 no

2 Temperature 22 no

3 Croplands 22 yes

4 Croplands and Canals 16 yes

5 Croplands and Dams 15 yes

6 Barren Soil and Deciduous Forests 12 no

7 Elevation 12 no

8 Evergreen Forests 12 no

9 Woody Wetlands and Croplands 11 yes
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ID Cluster name Cluster size Anthropogenic

10 Lakes, Ponds and Reservoir 10 yes

11 Pastures and Grasslands 10 yes

12 Fine Soils 10 no

13 Major Dams 9 yes

14 Summer Precipitation 7 no

15 Herbaceous Wetlands 7 no

16 Mixed Forests 6 no

17 Coarse Soil 6 no

18 Perennial Ice and Snow 5 no

19 Shrublands 5 no

20 Lower Order Streams 5 no

21 Higher Order Streams 4 no

22 Non Croplands 1 yes

23 Overland Flow 1 no

24 Bulk Density 1 no

Table 1: The list of trait categories identified by our methodology as clusters generated by the network connectivity patterns

using the GAGES-II trait dataset. The IDs match the numbers in Fig. 3, while cluster names are humanly assigned to represent

the majority of the traits in the cluster. Cluster size refers to the number of nodes in the cluster, and the ’anthropogenic’ column

indicates if the traits within the cluster are associated with human activities.

3.2 The Catchment Network

In the catchments network, each of the 9067 catchments is a node and the 559207 edges connect pairs of catchments with

similar traits. The network provides information about catchment similarity, and nodes belonging to a cluster are more similar

to each other than the rest of the network. The clusters range from 953 nodes to 1 node in size. The top 71 clusters contain 95%

of the nodes in the network, while the 34 clusters with size greater than 50 nodes cover 84% of all nodes. We provide the data425

for the catchments network topology and partitioning into clusters in Ciulla and Varadharajan (2023).

Figure 4 shows the spatial distribution of catchment clusters using the coordinates of their corresponding gaging stations.

We find that catchments within a cluster tend to be located in the same region, even though no geographical coordinates were

used as traits in our network methodology. For example, large portions of the Midwestern US are predominantly cluster 2

(green circles) and the coastal area of the Southeastern US are cluster 4 (purple circles). However, cluster 1 (orange circles), is430

distributed across the CONUS and comprises agglomerates of dense nodes separated by long distances. The global homogene-

ity measure of the catchments is 0.71, which means that the nearest neighbors for 71% of the catchments belong to the same
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Figure 3. The network of traits, where the nodes are traits and edges represent their pairwise similarity. The nodes are colored according to

the different clusters and matching color numbers are in descending size order as shown in Table 1.

cluster. This is significantly higher than the homogeneity measure of 0.04 when clusters are randomly distributed throughout

the CONUS. In Sect. 3.3, we show how the predominant traits of the catchment clusters can be used to interpret this result.

3.3 Characterization of Catchments Clusters with Trait Categories435

We infer traits that are over- or under- expressed in each catchment cluster using the z-scores from the traits network. We

use two clusters as examples (Fig. 5) to highlight how the network methodology allows interpretation of the characteristics of

each catchment cluster. The catchments within cluster 0 (blue circles) are spread across the Western US only, while cluster

1 (orange circles) is distributed across the CONUS. The z-scores of every trait for the two clusters are shown in Fig. 6 (a,b),

where each node in the network is sized according to the absolute values of their z-score, while the color reflects the sign (of440
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Figure 4. Geographical representation of the catchment clusters, where each symbol represents a catchment, and is located at its corre-

sponding gaging station. The catchment network representation with nodes and edges is shown in the figure inset. The numerical identifiers

correspond to the IDs in Table 2. The colors depict different clusters, and are consistent between the map and the network diagram. Note

that due to the lack of a palette with enough distinguishable colors, some of the clusters are indicated using different symbols when colors

overlap.

over or under expression). For both catchment clusters, the respective traits network contains entire groups of over and under

expressed nodes.

Leveraging the trait clusters, we condense the information of the unique expression of the 274 traits into 25 interpretable

categories by computing the cluster-wide average of the traits z-scores (see examples in Fig. 6 c,d). Cluster 0 (blue circles)

shows over expression of the category Elevation (z-score=1.49) and Evergreen forests (z-score=1.04) and under expression445

of the Temperature category (z-score=-1.28). Based on the expression of these and other trait categories, we infer that the

blue cluster generally represents mountainous forested areas. Cluster 1 (orange circles) is dominated by the trait category

named Developed areas (z-score=2.29), indicating the catchments represented by the orange nodes are located in proximity

to developed areas such as cities. The fact that this cluster is dominated by an anthropogenic category is consistent with the

heterogeneous nature of its spatial pattern. In contrast, the rather homogeneous distribution of catchment cluster 0 is likely due450

to the prominence of climatic trait categories that are more correlated with the geographical location.

The list of trait categories and their relative z-score values associated with all the catchment clusters identified using our

methodology is provided in the dataset Ciulla and Varadharajan (2023). A brief summary for clusters with size greater than 50

is shown in Table 2 along with their corresponding spatial homogeneity measures.
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Figure 5. Spatial distribution of two of the catchment clusters from Fig. 4, shown separately for easier visualization. Maps showing the

spatial distributions individually for the 34 clusters of size greater than 50 are included in the file S2 of the dataset associated with this paper

(Ciulla and Varadharajan, 2023)

ID Size Brief Descriptor of Dominant Trait Categories Homogeneity

0 953 Low Temperature, High Elevation, Evergreen Forests 0.53

1 729 Developed Areas 0.12

2 673 Croplands, Fine Soils 0.57

3 450 High Elevation, Low Summer Precipitation, Shrublands 0.28

4 419 High Temperature, Low Elevation, Wetlands 0.79

5 395 Low Temperature, High Summer Precipitation, Mixed Forests 0.49

6 341
High Precipitation and Runoff, High Elevation, Low Summer Precipitation, Evergreen

Forests
0.33

7 337 High Precipitation and Runoff, Evergreen Forests 0.80

8 292 Low overall Precipitation and Runoff, High Temperature, Shrublands 0.28

9 240 Pastures and Grasslands 0.69

10 214 High Temperature, Low Elevation, Woody Wetlands and Croplands 0.55

11 210 Low Temperature, Lakes and Reservoirs, Wetlands 0.63

12 202 Low Summer Precipitation, Mixed Forest, Shrublands 0.70

13 195 High Summer Precipitation, High Temperature, Croplands 0.17
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14 186 Low Temperature, Herbaceous Wetlands, Croplands 0.53

15 177 Low Precipitation, Pastures and Grasslands 0.19

16 170 High Temperature, Shrublands 0.67

17 138 High Precipitation and Runoff, Barren Soil and Deciduous Forests 0.82

18 132 High Temperature, Major Dams 0.07

19 124 High Temperature, Pastures and Grasslands 0.71

20 112 Low Temperature, High Summer Precipitation, Croplands, Mixed Forests 0.36

21 108 High Elevation, Barren Soils and Deciduous Forests 0.10

22 100 High Summer Precipitation, Lakes and Reservoirs 0.11

23 98 High Summer Precipitation, Barren Soils and Deciduous Forests 0.54

24 95 Croplands, Fine Soils 0.63

25 76 High Temperature, Low Elevation, High Summer Precipitation 0.30

26 69 Wetlands and Croplands 0.59

27 64 High Summer Precipitation, Barren Soils and Deciduous Forests 0.76

28 63 Low Temperature, High Elevation, Low Summer Precipitation, Lakes and Reservoirs 0.07

29 61 High Summer Precipitation, Croplands 0.62

30 61 High Temperature, Major Dams, Woody Wetlands and Croplands 0.17

31 54 High Temperature, High Summer Precipitation, Mixed Forests 0.29

32 53 High Temperature, Low Summer Precipitation, Developed Areas 0.19

33 51 High Temperature, Low Elevation 0.12

Table 2: Table of dominant trait categories and spatial homogeneity measures of the 34 catchment clusters with at least 50

nodes. The clusters are sorted by decreasing size (i.e., number of nodes in the cluster). Values shown are the cluster unique

ID, cluster size, a brief descriptor based on the dominant over and under expressed traits categories, and cluster geographical

homogeneity measure.

3.4 The Representative Catchments455

Here, we provide an example of how our methodology can be used to identify representative catchments using the two clusters

highlighted in Sect. 3.3. A total of 10 catchments are considered representative of cluster 0, and 14 are considered representative

of cluster 1 (Fig. 7). In both cases, the selected catchments represent at least 95% of the nodes in each cluster. The selected

representative nodes are geographically distributed within the spatial domain of the cluster they belong to. This behavior is

the result of the combined effect of (1) the intrinsic multiscale connection patterns in the network, where heterogeneity at460

different scales produces groups of more densely connected nodes within the clusters, and (2) the strategy of node selection,
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Figure 6. Network of traits for (a) cluster 0 (blue circles) and (b) cluster 1 (orange circles) shown in Fig. 5. Nodes are colored according to

the z-score values computed for the two catchment clusters. Node size is proportional to the absolute values of the z-score. Traits that are

over expressed are shown in red, and those that are under expressed are shown in blue. In this way nodes depicting over and under expressed

traits have bigger nodes and are more visible. The cluster aggregated z-scores are shown as barcharts for (c) the cluster 0 (blue circles) and

(d) cluster 1 (orange circles) from Fig. 5.

which promotes representative nodes to be spread across each cluster. These representative catchments can be used to prioritize

locations for observations or modeling purposes.

3.5 Hydrological Indices and Trait Categories

The results of the statistical tests are summarized in appendix in Table G1 for all 34 streamflow indices. When averaged for465

all the indices, 83% of the clusters for the 1-sample K-S test and 79% for the 2-sample K-S test reject the null hypothesis,

meaning that the distribution of their streamflow indices is mostly distinct from the overall distribution at the continental scale.
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Figure 7. Geographical representation of clusters 0 and 1, highlighting locations of their representative nodes. The catchment names, as

specified in the GAGES-II dataset, are shown in the figure legend with same color as the circles in the map.

These results show that the trait-based clustering approach results in distinct signature classification. See Sect. 4.5 for further

discussion about the distinct hydrological behavior across the catchment clusters.

3.6 Comparison with Traditional Clustering Techniques470

The two metrics, cluster similarity and silhouette score, indicate that our workflow performs better than traditional unsupervised

methods of classification (Fig. 8). We also find that the network-based clustering (red and green points) is considerably superior

to both k-means (yellow points) and hierarchical clustering (blue points) across the different values of k and cluster granularity

(Fig. H1 in appendix). This is evident from the consistently low values of the median cluster similarity and higher values of

silhouette scores for our methodology. Also, the network generated using the cosine distance as a similarity metric (red points)475

performs better than its counterpart that uses the Euclidean distance (green points). This confirms that the cosine similarity

should be preferred as a distance metric in high dimensions and the directionality of the data can contain valuable information.
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Figure 8. Median cluster similarity values (a) and silhouette scores (b) for different clustering methods and similarity measures used in the

network analysis. The number of reduced dimensions after PCA is equal to 20, corresponding to 72% of retained information. The vertical

black dashed line refers to the cluster granularity used in the paper. The colored dashed lines are shown for visualization of trends. Lower

values of the median cluster similarity metric (a) correspond to better clustering performance. Higher values of the silhouette scores (b)

correspond to better clustering performance.

4 Discussion

4.1 Advantages of our network-based workflow as a tool for classification

In this study, we present a novel methodology to classify river catchments in an unsupervised manner using network science.480

We chose to use the GAGES-II dataset as the source of information for catchment characterization because of its comprehensive

set of over 300 natural and anthropogenic traits across more than 9000 catchments in the CONUS. In our methodology, we

use the combination of the PCA algorithm, networks, and the cosine similarity metric to mitigate the issues of information

redundancy and high dimensionality in the data. In particular, the distance metrics perform worse (referred to as "degradation")

as the number of dimensions grows (Aggarwal et al., 2001). One of the consequences of this phenomenon is that the ratio of485

the distances of the nearest and farthest neighbors to a given point in high dimensions approaches 1, meaning that the points

become uniformly distant from each other (Beyer et al., 1999). The PCA partly resolves these issues by projecting the original

high dimensional vector data into a smaller set of orthogonal directions called principal components. However, there are

limitations to how small the resulting vectors can be, because data compression inevitably results in some loss of information.

It is not uncommon to retain a high number of dimensions after PCA (20 in our case), which still results in degradation of the490

distance metric and has some redundant information. Thus applying K-means or hierarchical clustering algorithms after PCA

on large dimensional datasets is not a solution to addressing the issues of multicollinearity and high data dimensionality, given

the dependence of these methods on the Euclidean distance.

Hence, we use networks to model the relationships amongst elements of the system represented by the high dimensional

vectors. The elements are the nodes of a network connected by edges that represent their pairwise distance metric, which are495

not bound to be points in a vectorial space. Instead we use their vectorial representation to compute any appropriate distance

metric and that information is reflected in the connection between nodes as edge weights. Thus, the task of finding clusters in
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the Euclidean space is shifted to the identification of connectivity patterns in a network. In this respect, the network constitutes

a generalized tool for system analysis where edges can represent different types of distance metrics or other pairwise relational

quantities. In our study, we chose to use the cosine distance to describe the relationships amongst the reduced vectors of both500

traits and catchments since it is more appropriate for use in high dimensions and preserves the directionality of the data. The

rationale for the choice of this similarity metric over the Euclidean distance is discussed in Appendix C. The use of the network

enables us to move to this alternate distance metric, surmounting issues encountered by common methods like the K-means

and Ward’s hierarchical clustering that rely on the Euclidean distance to generate the division into classes. Once we set up

our investigation as a network analysis the problem of classification is translated into finding clusters in the networks. Many505

clustering algorithms are available for network science (Fortunato, 2010), and our method implements the widely used Infomap

algorithm (Rosvall and Bergstrom, 2008).

We have demonstrated that our network-based workflow outperforms the K-means or the Ward’s hierarchical algorithms for

two different metrics (see Sect. 3.6), particularly with the parameters we chose for dimensionality reduction and the disparity

filter (black dashed lines in Fig. 8 corresponding to k = 20 dimensions retained). We conclude that our method produces more510

distinct clusters, and is hence a better choice than traditionally used classification approaches.

In addition to addressing the challenges of information redundancy and data dimensionality, our analysis using the catchment-

trait networks is also interpretable, as it can quantitatively determine trait categories that are over or under expressed in catch-

ment clusters (Sect. 4.2). Additionally, we are able to use a variety of network-specific metrics that highlight the role of the

elements of the system at different scales of the network. For example, we use the degree centrality computed using the nearest515

neighbors of a node as a local measure to identify catchments that have a high number of connections to others. In a similarity

network, a node with a high degree measure means it is similar to many other nodes, and hence we use the degree centrality

to generate sets of representative catchments. At an intermediate scale, the clustering coefficient reveals how many neighbors

of a node are connected to each other, revealing heterogeneous, non-trivial connectivity patterns that indicate the presence of

clusters. At a global scale across the network, we leverage the flow of information traveling through the nodes in the Infomap520

algorithm (Rosvall et al., 2009) to generate the clusters. Additionally, statistical methods can be applied to select the informa-

tion contained in the edges of the network (see Sect. 4.4.2 for an example). Although we demonstrate the use of this workflow

for catchment classification, the methodology can easily be extended to analyze other types of environmental trait datasets such

as microbial or plant traits.

4.2 Interpretability and Redundancy Analysis525

Machine learning techniques are capable of proficiently learning patterns in the data (Bishop and Nasrabadi, 2006), but are

often black-box methods that are difficult to interpret. In the case of supervised approaches, the accuracy of a method can

be evaluated using a test set, which is not an option for unsupervised algorithms because of the lack of labeled data. Hence,

we simultaneously analyze the information from the networks of traits and catchments to interpret the results for a deeper

understanding of the specific set of traits that result in classification of a catchment cluster.530
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Specifically, we characterize the clusters of catchments by investigating the traits that are over or under expressed, which

are grouped into a small, interpretable set of trait categories. The generation of the higher-level trait categories reduces the

number of redundant traits by aggregating them into clusters, which allows for easier human interpretation. For example, a set

of traits related to air temperatures, when clustered together are no longer isolated measures and are easier to interpret when

presented as an aggregated "Temperature" category. To illustrate how our approach helps with reducing trait redundancy, we535

computed the spearman correlation coefficients (ρ) between streamflow indices and catchment traits, which account for non

linearities in the data. We find that traits belonging to the same trait categories have similar correlations with the streamflow

indices (Fig. I1 in appendix). We find that the spearman correlation coefficients between the streamflow indices and individual

catchment traits can be effectively represented as an aggregated median value for the trait categories generated in our method

(Fig. 10), which indicates that our reduced set of trait categories are sufficient to determine the general relationships between540

traits and hydrological signatures. Thus, interpretability is enabled with the generation of a small number of trait categories

whose composition can be easily visualized and statistically analyzed.

Topological proximity at the cluster level is also meaningful. Clusters that share a connection, and are close to each other,

are also more related to each other. For example, cluster 3 in the trait network, which includes agricultural traits, and cluster 5,

which has traits related to cropland as well as dams are topologically close with many shared edges, and also appear intuitively545

to be related to each other.

Figure 9. (a) Geographical representation of the two catchment clusters that are spread across most of the Western US. (b) Bar charts showing

the difference in z-scores of the trait categories between the two clusters shown in the map. Positive values denote categories more present

in cluster 0 (blue circles), while negative values are more present in cluster 3 (red circles).

Finally, the identification of dominant traits is not only useful to characterize individual catchment clusters (Fig. 6), but can

also be used to compare across different clusters. For example, in Fig. 9 we show the differences between the traits categories of

two catchments clusters located in the Western US. Since the cluster locations overlap geographically, we use the differences in

the z-score values of the trait categories to understand how the groups were split by identifying which categories are relatively550
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over expressed in the two clusters. We can deduce that cluster 0 refers to catchments with higher precipitation and runoff,

higher elevation and the presence of evergreen forests, while the cluster 3 has higher temperatures and shrublands. Note that

these are relative quantities, and in fact cluster 0 overall has lower precipitation and runoff in comparison to the rest of the

network as shown in Fig. 6. In the rest of the discussion sections, we leverage the trait categories associated with catchment

clusters to reveal insights relevant to their hydrological behavior.555

Figure 10. Heatmap showing spearman correlation coefficients between streamflow indices and the traits categories generated in the study.

The intensity of the colors show the degree of correlation or anticorrelation as indicated in the color bar. Gray boxes indicate correlations

that are above the significance level of p>0.05.

4.3 Spatial Homogeneity of Catchment Clusters with Natural and Anthropogenic Traits

The results in Sect. 3.5 show that in general the catchment clusters tend to be geographically co-located throughout the CONUS,

with a few exceptions. This means that the trait-based classification results in clusters that have some geographical homogene-

ity, which would not occur with a random distribution of clusters. However, at the cluster level, we see a high variability of

spatial homogeneity as shown in Table 2. This reveals that the geographical domain generated by each cluster (i.e., its convex560

hull), contains catchments from other clusters, and the extent of the relative abundance changes across clusters.

We leverage the information from the trait categories to investigate this variability. We find that most of the trait clusters

are composed of mostly anthropogenic or natural traits only. This result not only provides additional validation of the trait
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classification, but it can be used to identify the effects of human influence on the hydrological behavior of catchment clusters.

Thus we divide the catchment clusters into three groups of increasing (low, mid, high) human influence. Our hypothesis is that565

clusters dominated by natural factors, with little human disturbance, should exhibit more spatial homogeneity as a consequence

of the environmental forcing. Conversely, clusters with strong anthropogenic influences, like urban areas or dams, are less

coupled to natural factors and should display lower homogeneity. A middle ground is constituted by clusters where the human

impact is interlaced with natural factors like in croplands. We first sorted the catchment clusters from the lowest to the highest

value of cluster homogeneity (Fig. 11a). The six clusters with strong anthropogenic influence are amongst the last ten with570

respect to their spatial homogeneity, confirming that the human activities are associated with a more heterogeneous spatial

distribution of catchment clusters. However, none of the clusters have a homogeneity measure lower than the one assuming

a random cluster distribution. Note that the spatial homogeneity is computed using geographical coordinates and does not

account for the elevation of the catchments. This could explain lower homogeneity values in some of the catchment clusters

dominated by natural factors.575

Figure 11. (a) Bar chart of the cluster homogeneity measures sorted in ascending order. The colors represent the anthropogenic influence,

with high values in red, low in green and mid (i.e. interlaced human and natural factors) in yellow. The bars shown as black lines represent

values assuming random co-location of clusters. (b) Examples of convex hulls for a cluster with significant human influence (cluster 18), one

with predominantly natural traits (cluster 7), and a cropland dominated cluster (cluster 26). The color of the convex hull polygon matches the

color of the catchments cluster that generated it.

4.4 Trait Relevance at Different Spatial Scales

So far, our study has only focused on the classification of the catchments at the continental scale. However, our proposed

method can be applied at multiple spatial scales as long as relevant trait information is available. Here, we show two different

approaches that can be used for catchment classification at different scales.
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4.4.1 Multiscale analysis at regional and continental scales580

First, we apply the workflow previously used for the CONUS scale at the regional scales to obtain the trait and catchment

networks. We demonstrate this approach for the Upper Colorado River Basin (UCRB; USGS HUC 14). There are 368 catch-

ments within this area, which is about 25 times smaller than the total number across the CONUS. Similar to the results from

the CONUS-scale, we find a well-defined geographical coherence among the nodes of each catchment cluster (Fig. 12).

Figure 12. (a) Geographical representation of the network of catchments in the Upper Colorado River Basin, with the HUC 14 boundary

shown in black and the locations of the gaging stations used to map the catchment clusters (similar to Fig. 4). (b) Bar charts of the z-scores

of the trait categories for two of the clusters in this basin. The colors in the map and the bar charts match. The blue nodes are located on the

east side of the basin while the orange ones are distributed in the lower half of the basin.

Not surprisingly, the trait network connectivity and cluster composition changes to reflect the characteristics of this subset585

of catchments. The characteristic z-scores calculated for this subset can provide interpretation of the traits expression in this

region. New trait clusters emerge that are more relevant to the UCRB, like the one representing areas at high elevation cov-

ered with sandy soils. Some trait clusters, like the one consisting of temperature-related traits or the cluster associated with

shrubland-dominated environments are present at both the CONUS and this particular regional scale. The complete list of traits

network clusters for the UCRB is available in Ciulla and Varadharajan (2023).590
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4.4.2 Edge Weights Filter Tuning

Another way to capture insights at different spatial scales is to tune the edge filtering parameter as discussed in Sect. 2.5.

By changing the significance level of the disparity filter, we tune the connectivity of the network of catchments to generate

larger or smaller clusters. There is no prescribed granularity at which the system should be investigated, and we can make

adjustments to fit the goals of the analysis. Here, we provide an example where a smaller value of the significance level acts595

as a higher threshold for the edge weights, reducing the number of edges in the network of catchments and producing smaller

clusters. Here, cluster 4, generated using the original filter threshold that was spread across most of the South Atlantic US

(purple circles in Fig. 4) is split into the two new clusters as shown in Fig. 13. We again use the difference between the z-scores

of the trait categories in the two newly generated clusters to interpret the partitioning. We find that the difference is primarily

due to separation of catchments that have predominant traits as Herbaceous Wetlands, Croplands and Canals and moderately600

higher temperatures and summer precipitation, which tend to be concentrated in the Florida peninsula, in contrast to those with

Evergreen Forests and Lower Order Streams, which were more prevalent in the rest of the original cluster (Fig. 13b).

Figure 13. (a) Geographical representation of two clusters, shown in different colors, of the network of catchments generated with smaller

significance level of the disparity filter. The union of the nodes of these two clusters corresponds to the cluster 4 in the South Atlantic US

in the original catchment network that are shown as purple circles in Fig. 4. (b) Bar chart of the difference between the z-scores of the two

clusters. The color of the bars matches the cluster where the category is over expressed.

4.5 Distinct Hydrological Behavior of Catchment Clusters

In this study, we have so far analyzed the characteristics of river catchments at regional to CONUS scales with their physical

traits. Here we extend our analysis to examine possible connections between the catchment clusters and their hydrological605

behavior. In Sect. 3.5, we show that the distributions of hydrological indices calculated using stream flows are statistically
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different when aggregated by catchment cluster, indicating that the partitioning with the traits generates clusters that have

distinct hydrological behavior.

Figure 14. Boxplot of the hydrologic indices ma41 (mm/d) (a) and fh6 (b) representing the mean annual runoff and the yearly average

number of moderate floods events per catchment respectively. The x-axis shows the catchment clusters of size greater than 50 sorted in

descending size order. The values in the y axis are indices aggregated by catchment clusters. The colors of the bars match the colors of the

clusters in Fig. 4.
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We can leverage the interpretability provided by the trait categories to hypothesize predominant factors that influence the

distinct hydrological behavior in the catchment clusters. To illustrate this, we first examine the distributions of two indices from610

Olden and Poff (2003), mean annual runoff (ma41) and the average yearly number of moderate floods events in a watershed

(fh6) (see Fig. 14). In fh6, a flood is considered moderate when the stream flow exceeds 3 times the value of the median flow.

Cluster 7 (gray box in Fig. 14) displays the highest median and the highest upper whisker for ma41, which is the 75th percentile

plus 1.5 times the interquartile range. The catchments in this cluster are predominantly located in the Pacific Northwest (Fig.

4). From the analysis of the over expressed trait categories, we find that this cluster is characterized by high precipitation. Not615

surprisingly, we find catchments in the Pacific Northwest with higher precipitation also have greater average flows. Cluster 1

(orange box in Fig. 14b) displays the highest median and the highest upper whisker for fh6, and contains catchments in prox-

imity to developed areas (Fig. 6d). Hence we can hypothesize that predominantly developed catchments are more vulnerable

to moderate flooding, which is consistent with a previous finding from Ombadi and Varadharajan (2022) showing that catch-

ments with a higher percentage of impervious cover in the GAGES-II dataset generally have increased runoff ratios in both620

temperate and arid climates. The boxplots of the full set of hydrological indices included in this study are presented in Ciulla

and Varadharajan (2023).

Additionally, we utilize the ability to determine correlations between stream flow indices and a reduced set of interpretable

trait categories (Sect. 4.2). We find that across the 9067 catchments, mean annual runoff (ma41) is not just positively correlated

with traits related to precipitation, but also with the presence of mixed forests (ρ= 0.45) and to a lesser degree evergreen forests625

(ρ= 0.25). The ma41 index is also negatively correlated with the ’pastures and grasslands’ trait category (ρ=−.40). This

highlights the role of vegetation in mediating flows, and is somewhat counterintuitive given that in the absence of management,

forested catchments with higher evapotranspiration would be expected to have lower flows compared to grasslands. Similarly,

the fh6 index is not just positively correlated with precipitation traits, but also with traits related to developed areas (ρ=

0.40), croplands (ρ= 0.32) and temperature (ρ= 0.43). It is also inversely correlated with elevation (ρ=−0.45), presence630

of shrublands (ρ=−0.38), evergreen forests (ρ=−0.28), coarse soils and groundwater (ρ=−0.35). These relationships are

consistent across other flood indices. For example, the fh7 index showing the propensity for heavy floods (above 7 times

median flows) similarly has a moderate positive correlation with temperature (ρ= 0.44) and overland flow (ρ= 0.38), and

a moderate negative correlation with elevation (ρ=−0.39) and coarse soils/groundwater (ρ=−0.43). This indicates how

flooding is affected by the complex relationships between land use, vegetation, soil infiltration capacity and base flows.635

These examples highlight the use of our methodology to demonstrate how specific hydrological behaviors can be connected

to catchment traits such as their climatic conditions, topography, land use or anthropogenic influence. The ability to link

catchment traits to specific hydrological behaviors, enables further analysis of the factors that influence different stream flow

characteristics (e.g. high versus low flows). In particular, the distinction between anthropogenically-influenced trait categories

and natural traits (see Table 1) enables further analysis of human activities on hydrologic behavior.640
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4.6 Examining Diversity of Hydrologic Behavior within Catchment Clusters

We can also use our methodology to gain insights into the traits that may result in diversity of hydrologic behavior within

similar catchments. For this purpose we selected catchment subsets that are considered outliers - i.e. where the index is either

above the 90th percentile or below the 10th percentile of all indices in the cluster, for each streamflow index and for each

cluster of catchments. We compare the z-scores (Z) of the traits associated with the catchment subsets relative to the entire645

catchment cluster to evaluate whether there are differences in traits that would explain the anomalous hydrological behavior.

As an example, we look at catchments within a cluster that have distinct baseflow regimes, based on a baseflow index (ml17) in

Olden and Poff (2003) that represents the 7-day minimum flows divided by mean annual daily flows. The results for anomalous

catchments have higher than normal (>90th percentile) baseflow are shown in Fig. 15, where the size and color of the bubbles

are the relative z-scores of the trait categories.650

We focus on a crop-dominated catchment cluster such as the one generally encompassing the Ohio Valley region (cluster 2),

displayed in the third row of the bubble plot. This cluster is characterized by relatively low elevation, presence of croplands and

fine soil as indicated by the higher z-scores of these trait categories relative to the rest of the CONUS catchments (Fig. 16a).

Using our approach, we can identify the over and under expressed traits of the catchments with anomalously high baseflows in

cluster 2 that generally has low elevation croplands. In Fig. 15, we find there is a positive association of high baseflows with655

coarse soils (Z=0.98) and a negative one with fine soils (Z=-0.51), which is not surprising. In addition, there is an association

of high baseflows with the “Non-cropland” trait category (third last column with green label, Z=0.85), which aggregates all

non-agricultural land use such as urban areas and forests. This indicates that within the context of a cropland-dominated cluster,

the catchments that have relatively lower areas of croplands have higher baseflows. Interestingly, there is also a strong positive

association of high baseflows with shrubland (Z=1.12) and a moderate negative association with temperature (Z=-0.65). One660

possible explanation for these results is that pumping groundwater for agriculture decreases the groundwater input into streams

resulting in lower baseflows. This depletion of groundwater discharge into streams does not occur in shrublands or other areas

without croplands.

Another catchment cluster with a strong agricultural presence is cluster 14, generally located in North and South Dakota,

which are characterized by low temperatures, herbaceous wetlands and croplands (Fig. 16b). Similar to cluster 2, there is a665

positive association of anomalously high baseflows with coarse soils (Z=0.76) and non-croplands (Z=1.10), and a negative

association with fine soils (Z=-0.84). However, in comparison to cluster 2, several other factors have a positive association

with high baseflows including precipitation/summer precipitation (Z=0.90, Z=1.04 respectively), the presence of lakes, ponds

and reservoirs (Z=1.19), herbaceous wetland areas (Z=0.76), evergreen/mixed/deciduous forests (Z=0.58, Z=0.74, Z=0.88

respectively), and developed areas (Z=0.66). There is also a negative association with overland flows (Z=-0.82). This reveals670

that, in catchment cluster 14, anomalously high baseflows are more likely in the presence of surface water bodies such as lakes

and wetlands that have the potential for increased surface-groundwater exchange. High baseflows also occur in forested areas

of these agricultural catchments, potentially indicating that the partitioning of precipitation is weighted towards infiltration and

recharge over evapotranspiration in these catchments.
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Figure 15. Bubble plot showing the z-scores of catchments where the baseflow is above the 90th percentile relative to the entire catchment

cluster. The baseflow index is computed as the seven-day minimum flow divided by mean annual daily flows (averaged across all years).

Bubble size is proportional to the absolute value of the z-score. Colors separate positive from negative values as indicated by the colorbar.

Catchment clusters are displayed on the vertical axis using an identifier consistent with the one used in the original paper, a name describing

their main characteristics, their approximate geographical area (if applicable), and the number of anomalous catchments above the 90th per-

centile shown in parenthesis in parenthesis. Only clusters with an anomalous set of catchments larger than 10 are included. Traits categories

are displayed on the horizontal axis and are sorted in descending order, according to their size in terms of number of nodes in the traits

network, and colored consistently with the trait clusters in said network. The last row of each plot refers to the average value of the trait

z-scores of the clusters displayed in the plot and provides an idea of how much a trait category is over or under expressed across different

clusters with different characteristics.

Overall, averaged z-scores for all catchments in the CONUS (shown in the last row of Fig. 15) indicates there is a moderate675

positive association of anomalously high base flows with the presence of lakes, ponds and reservoirs (11th column in light blue,

Z=0.29), and with coarse soils and groundwater trait categories (18th column in gray, Z=0.40). Conversely, there is a negative

link to fine soils (13th column in green, Z=-0.25). This indicates the potential for surface-groundwater exchange in regions

where water bodies are present, and not surprisingly the importance of soil texture in mediating baseflow through infiltration

and recharge.680
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Figure 16. (a) Bar chart of traits z-scores of for the catchment cluster 2, characterized by croplands and fine soils. The catchments in this

cluster are generally located in the Ohio Valley region. (b) Bar chart of traits z-scores of for the catchment cluster 14 , characterized by low

temperatures, croplands and wetlands. The catchments in this cluster are generally located in North and South Dakota.

4.7 Application for regionalization studies

Our methodology can be used as initial steps of typical workflows used for predictions for unmonitored basins, which is (1) to

classify catchments into groups for regionalization, and (2) to select a subset of traits from a large predictor space, a common

challenge in many large sample studies. For the former, we choose to classify catchments using traits, since geospatial datasets

are now available with a lot of trait information that allows us to do catchment classification at large spatial scales including685

for unmonitored catchments. For the latter, we find that we can condense a very large dataset containing hundreds of traits into

25 trait categories with the network approach, due to the redundancy in the traits. Thus our paired catchment-trait networks

approach not only classifies catchments into clusters, but enables the reduction of a large dataset of traits into an interpretable

set of trait categories by eliminating their redundancy. This provides the ability to identify distinct trait categories that are over-

or under-expressed in catchment clusters to streamflow behaviors. The parallel analysis of cluster and traits data as networks690

is an important characteristic that distinguishes our method from other typical unsupervised clustering workflows.

5 Conclusions

In this study, we demonstrate a new network-based method for unsupervised classification of river catchments using their

environmental and anthropogenic traits. This approach builds two parallel networks - the first identifies similar catchments, and

the second reduces the large set of redundant traits into a small, interpretable set of trait categories. The method outperforms695

traditional unsupervised approaches for classification and enables simultaneous analysis of the catchment clusters and co-

expression of the trait categories. This makes it possible to identify the predominant traits that result in the partitioning of
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catchments into different groups, as well as their distinct hydrologic behaviors.This trait-based approach can be used beyond

hydrological applications to classify high dimensional datasets that have correlated information.

Using this method, we classified 9,067 catchments in the continental United States based on 274 traits from the GAGES-II700

dataset. The resulting clusters tend to be geographically coherent, even though no coordinates were used as inputs, revealing

spatial patterns for catchments with predominantly natural or anthropogenic traits. The method can be implemented at multi-

ple spatial scales for which trait data are available. As expected, the catchment clusters and associated trait expressions vary

according to the spatial scale used for the analysis. We also find that the catchment clusters display distinct streamflow char-

acteristics, as quantified by hydrological indices, indicating the potential for using the trait-based classification to understand705

and predict hydrological behavior.

We can also leverage network-specific metrics, like the degree centrality using this workflow. We demonstrate their utility by

identifying a small set of watersheds that are representative for a group of catchments with specific traits. These representative

sites can be used to determine locations to conduct observations or modeling activities that are transferable to other catchments.

Catchments are complex systems and their hydrological behavior is determined by the combined effect of multiple, co-710

dependent traits. Thus, networks are an extremely useful tool for investigating catchment properties and behavior, since they

enable a holistic approach to the study of the system. The collective analysis of traits creates the opportunity to average out the

unique characteristics of individual catchments, and characterize emergent hydrological behaviors across spatial scales.

Code and data availability. The daily observations of streamflow and specific conductance used in this study are publicly available from

USGS NWIS at https://waterdata.usgs.gov/nwis. The characteristics of catchments from GAGES-II dataset are publicly available and can715

be accessed at https://pubs.er.usgs.gov/publication/70046617. The data and scripts used for this study are publicly available with a CCBy4

license in the U.S. Department of Energy ESS-DIVE data repository and are accessible with the doi:10.15485/1987555 (Ciulla and Varad-

harajan, 2023). The code is also accessible via https://github.com/iNAIADS/catchments-similarity.

Appendix A: Data preprocessing

The traits in GAGES-II with prefix "RAW_" describe the straight line distance (in km) of water stations from points of interest720

such as dams, canals, etc. If no such point of interest is present in the basin, the trait is assigned a missing value of -999. This

choice of missing values makes the trait non-monotonic because they have small positive values for stations in close proximity

to a point of interest, large values for stations far from it, and a large negative value when the point is not present in the

catchment. We transform these traits by computing the inverse of the variable for values greater than 0 (Fig. A1). The arbitrary

-999 values are mapped into zeros. When gaging stations geographically coincide with the point of interest, the original zero725

distances are replaced with the maximum of the newly transformed values. In this way, the newly transformed trait values are

monotonic and are a continuous and differentiable function of the distance.
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Figure A1. A pictorial representation of the trait mapping performed on a) the original variable denoting distance from a point of interest,

and b) the resulting mapped values.

Appendix B: Cao’s method

The only free parameter of the PCA method is the number k, which is the final dimension of the reduced space. We determine

k using the false nearest neighbors method (FNN) from (Krakovská et al., 2015), which is based on the assumption that two730

points that are near each other in a sufficiently low dimensional space should remain close as the dimensions increase. In

particular, we use the Cao’s version of FNN (Cao, 1997), where the average distances E(k+1) of the closest neighbor of

all the elements in the space of dimension k+1 are divided by the same quantity computed in the k-dimensional space. For

sufficiently high values of k, the ratio R(k) = E(k+1)/E(k) approaches the value of 1, indicating that the average distances

are not changing in two consecutive dimensions. We chose an arbitrary value of 1.05 to define the threshold below which the735

value R(k) is assumed to be constant. The value k̂ for which R(k̂)< 1.05 determines the number of principal components

to retain in the PCA method. For our dataset, the value of k̂ is 20. By choosing k̂ = 20 dimensions in the reduced space, we

account for 71.6% of the total variance of the original data.

Appendix C: Cosine similarity

We present a comparison of the cosine similarity, our choice for the similarity measure, against the widely used euclidean740

distance and highlight why the latter is not the best choice to capture relationships within high-dimensional vectors.

The first reason is that vectors associated with two random points in an n-dimensional space have a high probability of being

almost orthogonal when the number of dimensions n diverges (Aggarwal et al., 2001). Thus:

xxx ·yyy −−−−→
n→∞

0 xxx,yyy ∈ Rn (C1)

The euclidean distance DE between two vectors xxx and yyy is:745

DE(xxx,yyy) =

√√√√ n∑
i

(xi − yi)2 =
√

∥xxx∥2 + ∥yyy∥2 − 2xxx ·yyy (C2)
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Figure B1. Ratio R(k) as a function of the number of dimensions of the PCA. The horizontal dashed line in red indicates the arbitrary value

R= 1.05.

where ∥ · ∥ represents the euclidean norm.

In the case of high-dimensional vectors, applying Equation C1 on Equation C2 causes the Euclidean distance to become a

function of solely the vector norms:

DE(xxx,yyy)−−−−→
n→∞

√
∥xxx∥2 + ∥yyy∥2 (C3)750

This is not desirable because we lose the information about the relationship between the vectors, which is of interest when

computing a distance metric. Although there is no definitive size threshold above which the effect of the high dimensional-

ity will be prevalent, we expect that the effect would not be negligible even in the 20-dimensional space obtained after our

dimensionality reduction step through the PCA.

Another consideration when choosing a distance measure is the type of information it provides. In the case of the Euclidean755

distance, the directionality of the vectors associated with the data point does not influence the metric. Figure C1 illustrates

an example in 2 dimensions where the directionality of the data is not captured by the euclidean distance. In particular, the

points A and B have swapped coordinates (xA = yB and yA = xB) with xA = yB << yA = xB . Instead C has the same B y

coordinate (yB = yC) and x so that the euclidean distance between A and B dE(A,B), and B and C dE(B,C) are the same. So

the Euclidean distance would indicate as equal the relationship between two points with swapped coordinates, which should760

depict two very different elements, and between one of the two and a third one that shares exactly one coordinate, while the

second coordinate is simply greater.
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Conversely, the cosine distance captures the difference between A-B and B-C, because it considers the directionality. Specif-

ically, the angle αAB between A and B is much greater than the one αBC between B and C leading to a bigger cosine distance.

The cosine similarity captures the information contained in the different coordinates of the data points. In our methodology,765

the coordinates are the components given by the principal components as computed by the PCA, which represent a mixture

of traits. We contend that in a trait based approach the directionality is important both before and after the dimensionality

reduction and needs to be captured.

Figure C1. A pictorial representation of the qualitative difference between euclidean distance and cosine similarity. The point B is equidistant

to A and C as per the euclidean distance metric even though its coordinate values are swapped with respect to A.

Hence, to mitigate the effects of dimensionality and include information on directionality, we use the cosine similarity instead

of the Euclidean distance to compute the relationship between vectors. Computationally, the cosine similarity is computed as770

the dot product of a matrix with normalized row vectors and its transpose. In Equation 1, the dot product between the two

vectors is the numerator of a ratio with the vector norms. Since it is a multiplicative factor, the dot product is retained regardless

of how small its value is. For the Euclidean metric, a negligible value of the dot product will be outweighed by the norms of

the vectors.

Finally, it is worth noting that the Euclidean distance and the cosine similarity are related to each other, and are equivalent775

when applied to normalized vectors. Specifically, when the vectors are normalized, then Equation C2 becomes

DE =
√

2(1−SC) =
√
2DC (C4)

where DC = 1−SC is defined as the cosine distance.
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Appendix D: Brief Introduction to Networks

A network G is a mathematical object constituted by two sets {N,E} where N is the set containing the nodes of the network780

and E is the set of pairs of nodes called edges: E = {e= (a,b)s.t.a,b ∈N}. A network is a great tool to model relationships

and interactions among the elements of a system (Börner et al., 2007). The elements of the system are represented as nodes

while the relationships are described by the edges. If the relationship between a pair of nodes is commutative, then the network

is called undirected, meaning that there is no directionality in the edge: (a,b) = (b,a). Edges with the same node as endpoints

are self-loops, and may or may not be present according to what the edges represent. An edge can be simply present or not (for785

which unweighted networks are appropriate), or it can carry a weight representing the strength of the edge whose interpretation

depends on the system under analysis. The maximum number of edges present in an undirected network with no self-loops, is

the number of possible combinations of pairs of elements in N without considering the order
(|N |

2

)
= |N |(|N |−1)/2. Here, |N |

is the number of nodes and also represents the size of the network. A network that has all possible edges is called complete,

and its edge number is O(|N |2). This rarely occurs for real world phenomena, and hence typically the number of edges in790

real-world networks is much smaller than O(|N |2) (Newman, 2005). This is a crucial point, because it is the arrangement of

edges and their eventual heterogeneous distribution, namely the network topology, that gives rise to connectivity patterns that

reveal insights about the system. We refer to networks as being complex when they display non-trivial topological features,

with patterns of connection between their elements that are neither regular and yet not purely random. All this information is

condensed in an adjacency matrix, where both rows and columns are nodes, and each element of the matrix is the weight of795

the edge between the two nodes identifying the matrix element and zero otherwise. If the network is undirected such a matrix

is symmetric. For a complete review of network properties refer to (Newman, 2018).

Appendix E: Clustering Coefficient

The clustering coefficient is a network measure that quantifies the connections among the neighbors of a certain node (Wasser-

man and Faust, 1994; Scott and Carrington, 2023).This measure ranges from zero (corresponding to the situation where no800

neighbors of a node are connected to each other) to one (where all the neighbors of a node are connected to each other). We

compute the clustering coefficient for all the nodes in both the catchments and traits networks and show the results as a prob-

ability density function in E1. In both cases, the clustering coefficient spans the entire possible range of 0 to 1. In the network

of catchments the average clustering coefficient, computed by averaging the clustering coefficient of all nodes, is 0.61, while

in the network of traits it is equal to 0.75. This means that in both cases, on average, more than half of the possible connections805

among neighbors are present. This fact indicates the presence of a group of nodes well connected with each other, and is the

first indication of the presence of complex connectivity patterns that can lead to the formation of clusters in both networks.

In the traits network the value with the highest probability is one, meaning that there are parts of the network that form

complete cliques, namely subsets of nodes that have all the possible edges allowed among them. This fact confirms the intuition

that some of the attributes provide redundant information, because their similarity, in terms of co-expression as learned by the810

PCA, generates such tightly connected areas.
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Figure E1. Probability distribution function of clustering coefficients for the network of catchments, in blue, and the network of traits, in

orange.

Appendix F: Traits Network Clusters Composition

Cluster ID: 1 ; Cluster Name: Developed Areas ; Cluster Size: 35 ; Anthropogenic: yes

PDEN_2000_BLOCK, PDEN_NIGHT_LANDSCAN_2007, IMPNLCD06,

PDEN_DAY_LANDSCAN_2007, DEVNLCD06, MAINS800_DEV, RIP100_DEV, RIP100_22,

RIP800_DEV, DEVLOWNLCD06, MAINS800_22, RIP800_22, ROADS_KM_SQ_KM, MAINS100_22,

MAINS100_DEV, RD_STR_INTERS, MAINS100_21, MAINS800_21, RIP100_21, DEVOPENNLCD06,

RIP800_21, DEVMEDNLCD06, FRESHW_WITHDRAWAL, NLCD01_06_DEV, DEVHINLCD06,

MAINS100_23, MAINS100_24, MAINS800_23, MAINS800_24, RIP100_23, RIP100_24, RIP800_23,

RIP800_24, HGAC, DDENS_2009

Cluster ID: 2 ; Cluster Name: Precipitation and Runoff ; Cluster Size: 30 ; Anthropogenic: no
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RUNAVE7100, WB5100_ANN_MM, NOV_PPT7100_CM, PPTAVG_BASIN, OCT_PPT7100_CM,

WB5100_NOV_MM, DEC_PPT7100_CM, WD_SITE, WDMAX_BASIN, WB5100_MAY_MM,

PPTAVG_SITE, WB5100_APR_MM, WB5100_JUN_MM, WD_BASIN, WDMAX_SITE,

APR_PPT7100_CM, WB5100_OCT_MM, WB5100_DEC_MM, JAN_PPT7100_CM,

FEB_PPT7100_CM, MAR_PPT7100_CM, WB5100_JAN_MM, WB5100_FEB_MM,

WB5100_MAR_MM, WB5100_SEP_MM, WB5100_JUL_MM, WB5100_AUG_MM, RH_BASIN,

RH_SITE, PRECIP_SEAS_IND

Cluster ID: 3 ; Cluster Name: Temperature ; Cluster Size: 22 ; Anthropogenic: no

T_AVG_BASIN, T_AVG_SITE, T_MAX_BASIN, T_MAX_SITE, T_MIN_BASIN, T_MIN_SITE, PET,

FEB_TMP7100_DEGC, MAR_TMP7100_DEGC, APR_TMP7100_DEGC, MAY_TMP7100_DEGC,

SEP_TMP7100_DEGC, OCT_TMP7100_DEGC, NOV_TMP7100_DEGC, DEC_TMP7100_DEGC,

FST32F_BASIN, AUG_TMP7100_DEGC, RFACT, JAN_TMP7100_DEGC, JUN_TMP7100_DEGC,

JUL_TMP7100_DEGC, FST32SITE

Cluster ID: 4 ; Cluster Name: Croplands ; Cluster Size: 22 ; Anthropogenic: yes

MAINS800_PLANT, PLANTNLCD06, MAINS100_PLANT, RIP100_PLANT, RIP800_PLANT,

NITR_APP_KG_SQKM, PHOS_APP_KG_SQKM, MAINS100_82, CROPSNLCD06,

MAINS800_82, RIP100_82, RIP800_82, CDL_CORN, CDL_SOYBEANS, FRAGUN_BASIN, PAS-

TURENLCD06, MAINS100_81, MAINS800_81, RIP100_81, RIP800_81, CDL_OTHER_HAYS,

HIRES_LENTIC_DENS

Cluster ID: 5 ; Cluster Name: Croplands and Canals ; Cluster Size: 16 ; Anthropogenic: yes

RAW_DIS_NEAREST_CANAL, CANALS_PCT, CANALS_MAINSTEM_PCT, PCT_IRRIG_AG,

CDL_RICE, PCT_NO_ORDER, NPDES_MAJ_DENS, PESTAPP_KG_SQKM, CDL_ORANGES,

HYDRO_DISTURB_INDX, STREAMS_KM_SQ_KM, HGBD, RAW_DIS_NEAREST_MAJ_NPDES,

ASPECT_NORTHNESS, RAW_AVG_DIS_ALLCANALS, RAW_AVG_DIS_ALL_MAJ_NPDES

Cluster ID: 6 ; Cluster Name: Croplands and Dams ; Cluster Size: 15 ; Anthropogenic: yes

CDL_OTHER_CROPS, RAW_DIS_NEAREST_DAM, RAW_AVG_DIS_ALLDAMS, CDL_BARLEY,

CDL_DURUM_WHEAT, CDL_DRY_BEANS, CDL_POTATOES, RAW_DIS_NEAREST_MAJ_DAM,

RAW_AVG_DIS_ALL_MAJ_DAMS, MAJ_DDENS_2009, CDL_SPRING_WHEAT, CDL_OATS,

HGBC, CDL_SUNFLOWERS, CDL_ALFALFA

Cluster ID: 7 ; Cluster Name: Barren Soil and Deciduous Forests ; Cluster Size: 12 ; Anthropogenic: no

MINING92_PCT, PADCAT1_PCT_BASIN, BARRENNLCD06, DECIDNLCD06, MAINS100_31,

MAINS800_31, RIP100_31, RIP800_31, RIP800_41, MAINS100_41, MAINS800_41, RIP100_41

Cluster ID: 8 ; Cluster Name: Elevation ; Cluster Size: 12 ; Anthropogenic: no
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ELEV_MAX_M_BASIN, ELEV_MEDIAN_M_BASIN, SNOW_PCT_PRECIP,

ELEV_MEAN_M_BASIN, T_MINSTD_BASIN, LST32F_BASIN, ELEV_MIN_M_BASIN,

ELEV_SITE_M, T_MAXSTD_BASIN, ELEV_STD_M_BASIN, LST32SITE, SLOPE_PCT

Cluster ID: 9 ; Cluster Name: Evergreen Forests ; Cluster Size: 12 ; Anthropogenic: no

PADCAT3_PCT_BASIN, MAINS100_42, MAINS100_FOREST, MAINS800_42, RIP100_FOREST,

RIP100_42, MAINS800_FOREST, FORESTNLCD06, EVERGRNLCD06, RIP800_42, PAD-

CAT2_PCT_BASIN, RIP800_FOREST

Cluster ID: 10 ; Cluster Name: Woody Wetlands and Croplands ; Cluster Size: 11 ; Anthropogenic: yes

MAINS100_90, TOPWET, RIP800_90, CDL_PEANUTS, ROCKDEPAVE, MAINS800_90, RIP100_90,

WOODYWETNLCD06, PERDUN, CDL_WWHT_SOY_DBL_CROP, CDL_COTTON

Cluster ID: 11 ; Cluster Name: Lakes, Ponds and Reservoirs ; Cluster Size: 10 ; Anthropogenic: yes

ARTIFPATH_PCT, MAINS800_11, RIP100_11, STOR_NID_2009, STOR_NOR_2009,

HIRES_LENTIC_PCT, HIRES_LENTIC_MEANSIZ, WATERNLCD06, RIP800_11, MAINS100_11

Cluster ID: 12 ; Cluster Name: Pastures and Grasslands ; Cluster Size: 10 ; Anthropogenic: yes

CDL_FALLOW_IDLE, GRASSNLCD06, MAINS100_71, MAINS800_71, RIP100_71, RIP800_71,

CDL_SORGHUM, CDL_WINTER_WHEAT, CDL_PASTURE_GRASS, ASPECT_EASTNESS

Cluster ID: 13 ; Cluster Name: Fine Soils ; Cluster Size: 10 ; Anthropogenic: no

AWCAVE, CONTACT, NO200AVE, SILTAVE, NO10AVE, KFACT_UP, NO4AVE, CLAYAVE, HGC,

HGD

Cluster ID: 14 ; Cluster Name: Major Dams ; Cluster Size: 9 ; Anthropogenic: yes

ARTIFPATH_MAINSTEM_PCT, PCT_6TH_ORDER_OR_MORE, DRAIN_SQKM, NDAMS_2009,

POWER_NUM_PTS, MAJ_NDAMS_2009, POWER_SUM_MW, HIRES_LENTIC_NUM,

STRAHLER_MAX

Cluster ID: 15 ; Cluster Name: Summer Precipitation ; Cluster Size: 7 ; Anthropogenic: no

SEP_PPT7100_CM, WDMIN_BASIN, WDMIN_SITE, MAY_PPT7100_CM, JUN_PPT7100_CM,

JUL_PPT7100_CM, AUG_PPT7100_CM

Cluster ID: 16 ; Cluster Name: Herbaceous Wetlands ; Cluster Size: 7 ; Anthropogenic: no

HGAD, OMAVE, MAINS100_95, RIP100_95, RIP800_95, EMERGWETNLCD06, MAINS800_95

Cluster ID: 17 ; Cluster Name: Mixed Forests ; Cluster Size: 6 ; Anthropogenic: no

HGCD, MIXEDFORNLCD06, MAINS100_43, MAINS800_43, RIP100_43, RIP800_43

Cluster ID: 18 ; Cluster Name: Coarse Soils ; Cluster Size: 6 ; Anthropogenic: no

BFI_AVE, HGA, PERMAVE, HGB, SANDAVE, WTDEPAVE

Cluster ID: 19 ; Cluster Name: Perennial Ice and Snow ; Cluster Size: 5 ; Anthropogenic: no
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SNOWICENLCD06, MAINS100_12, MAINS800_12, RIP100_12, RIP800_12

Cluster ID: 20 ; Cluster Name: Shrublands ; Cluster Size: 5 ; Anthropogenic: yes

SHRUBNLCD06, MAINS100_52, MAINS800_52, RIP100_52, RIP800_52

Cluster ID: 21 ; Cluster Name: Lower Order Streams ; Cluster Size: 5 ; Anthropogenic: no

PCT_1ST_ORDER, RRMEDIAN, BAS_COMPACTNESS, PCT_2ND_ORDER, RRMEAN

Cluster ID: 22 ; Cluster Name: Higher Order Streams ; Cluster Size: 4 ; Anthropogenic: no

PCT_3RD_ORDER, MAINSTEM_SINUOUSITY, PCT_5TH_ORDER, PCT_4TH_ORDER

Cluster ID: 23 ; Cluster Name: Non Croplands ; Cluster Size: 1 ; Anthropogenic: yes

CDL_ALL_OTHER_LAND

Cluster ID: 24 ; Cluster Name: Overland Flow ; Cluster Size: 1 ; Anthropogenic: no

PERHOR

Cluster ID: 25 ; Cluster Name: Bulk Density ; Cluster Size: 1 ; Anthropogenic: no

BDAVE

Table F1: List of traits aggregated by the traits network clusters. For each cluster we provide an header including a unique ID,

a representative name, the size of the cluster in terms of nodes, indicate if the cluster includes anthropogenic factors, and the

list of traits in the cluster.

Appendix G: Hydrological Indices Statistics

Hydro-

logical

index

Description
K-W

test

K–S

test one-

sample

K–S test

two-

samples

ma41 Mean annual flow divided by catchment area (mm/day) True 97.06 95.19

dh13 Mean annual of 30-day maximum divided by median flow True 94.12 90.55

mh14
Median of the highest annual daily flow divided by the median annual

daily flow
True 97.06 90.37

ma5 Skewness in daily flow True 91.18 90.20

mh16
Mean of the 10th percentile from the flow duration curve divided by

median daily flow across all years
True 91.18 88.95

ma3 Coefficient of variation in daily flows True 94.12 88.95

fh7
Mean number of high flow events per year using an upper threshold of

7 times the median flow over all years
True 94.12 87.88
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Hydro-

logical

index

Description
K-W

test

K–S

test one-

sample

K–S test

two-

samples

ra6
Median of difference between natural logarithm of flows between two

consecutive days with increasing flow
True 88.24 86.27

fh6
Mean number of high flow events per year using an upper threshold of

3 times the median flow over all years
True 100.00 85.92

th3
Maximum proportion of the year (number of days/365) during which

no floods have ever occurred over the period of record
True 85.29 85.20

fl3
Total number of low flow spells (threshold equal to 5% of mean daily

flow)
True 82.35 83.60

fh3
High flood pulse count (high flood: at least 3 times median of daily

flows)
True 85.29 83.07

ml21
Coefficient of variation in annual minimum flows averaged across all

years
True 85.29 81.46

ml17
Seven-day minimum flow divided by mean annual daily flows averaged

across all years
True 94.12 81.28

dh16
Coefficient of variation of high flood pulse (high flood: at least 75th

percentile of daily flows)
True 91.18 80.93

dl13 Mean annual of 30-day minimum divided by median flow True 79.41 80.39

fh2
Coefficient of variation of high flood pulse count (high flood: at least

75th percentile of daily flows)
True 88.24 78.97

ml18
Coefficient of variation of seven-day minimum flow divided by mean

annual daily flows averaged across all years
True 76.47 78.25

fl2 Coefficient of variation of low flood pulse count True 94.12 77.36

ta1 Constancy True 79.41 77.36

ml4 Mean minimum monthly flow for the months of April (m3/s) True 79.41 77.36

dh20
Mean duration of high flood pulse (high flood: at least 25th percentile

of median flows) (days)
True 85.29 77.18

mh10 Mean maximum flows for the months of October (m3/s) True 94.12 76.47

tl2 Variability in Julian date of annual minimum (days) True 82.35 76.11

mh8 Mean maximum flows for the months of August (m3/s) True 85.29 75.94

ma11
Spread in 75th-25th percentile range on decimal logarithm transformed

daily flows
True 76.47 75.58

dl17 Coefficient of variation of low flood pulse count True 79.41 75.22
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Hydro-

logical

index

Description
K-W

test

K–S

test one-

sample

K–S test

two-

samples

dh15
Mean duration of high flood pulse (high flood: at least 75th percentile

of daily flows) (days)
True 79.41 74.15

ra8
Number of negative and positive changes in water conditions from one

day to the next
True 70.59 73.98

ra5 Ratio of days where the flow is higher than the previous day True 67.65 67.02

ra9
Coefficient of variation of the number of negative and positive changes

in water conditions from one day to the next
True 64.71 62.75

fl1 Low flood pulse count (low flood: below 25th percentile of daily flows) True 61.76 59.36

dl18 Number of zero-flow days (days) True 70.59 56.33

dl16 Mean duration of low flood pulse (days) True 47.06 50.98

Table G1: Table showing the results from statistical tests comparing the distributions of streamflow indices of catchment

clusters resulting from our network-based methodology. The first two columns list the streamflow indices used in this study as

alphanumeric codes with brief descriptions as in Olden and Poff (2003). The last 3 columns show the result of the Kruskall-

Wallis (K-W) test indicating that not all the samples have the same distribution, 1-sample and 2-sample Kolmogorov-Smirnov

(K-S) tests. The indices are sorted according to the 2-sample Kolmogorov-Smirnov Test in descending order.
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Appendix H: Comparison with Traditional Unsupervised Techniques

Figure H1. Median cluster similarity values (a, c, e) and silhouette scores (b, d, f) for different clustering methods and similarity measures

used in the network analysis. The number of reduced dimensions after PCA is equal to (a, b) 6, (c, d) 20 (used in the study) and (e,f) 90

corresponding to 50%, 72% and 95% of retained information respectively. The vertical black dashed line refers to the cluster granularity

used in the paper. The colored dashed lines are shown for visualization of trends. Lower values of the median cluster similarity metric (a, c,

e) correspond to better clustering performance. Higher values of the silhouette scores (b, d, f) correspond to better clustering performance.
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Appendix I: Hydrological Indices Correlation with Traits815

Figure I1. Heatmap showing spearman correlation coefficients between streamflow indices and the traits used in the study. The intensity of

the colors show the degree of correlation or anticorrelation as indicated in the color bar. Traits on the horizontal axis are ordered and colored

according to the traits categories they belong to. Gray boxes indicate correlations that are above the significance level of p>0.05. The primary

purpose of this plot is to provide a visual representation of the redundancy in the correlations between the traits within the same category and

streamflow indices.
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