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Response to Reviewer 1 Comments:

Major comment

COMMENT #1: The authors introduce a novel method to cluster catchments that is based
on traits. The dataset is impressive and the network-based classification is, to my
understanding, a relevant and innovative approach in this case. Methods and results are
well presented.

AUTHOR RESPONSE #1 - We thank the reviewer for the positive comments. The reviewer
brings up important concerns, and we have provided detailed responses below for each
concern that was raised. We have made substantial changes that address these comments
in the revised manuscript. We also tried to condense some of the original text and merged
Figures 6 and 7 of the original manuscript to make room for some of the major additions.

COMMENT #2 - My main concern with such unsupervised classification is how we can use
it for practical hydrological studies.

AUTHOR RESPONSE #2: We agree with the comments from both reviewers that we could
do more to demonstrate the utility of our methodology for hydrological applications. In
addition to responding to comments from reviewer 1 below, we note that we have done
additional analysis to show how we can gain hydrological insights from our approach in our
response to comments from reviewer 2.

COMMENT #3: From the introduction and discussion, it appears one aim of clustering is
application to ungauged basins. In this sense, the results of the paper are discouraging,
because the clustering technique does not succeed in relating ‘traits’ clusters to hydrological
behaviors, except for some specific hydrological traits. This part is essential, in my opinion,
for switching from a mere clustering exercise to something which could actually be useful in
hydrological practice. I do not know how the method can be tuned to improve the overlap
between the geographical and hydrological clusters, but my wish is that the authors tackle
this issue in the paper. I realize that this implies a significant change in the paper.

AUTHOR RESPONSE #3: As pointed out, one of the applications of our methodology is for
predictions in unmonitored basins (PUBs). We had originally demonstrated that our
approach to trait-based clustering (which the reviewer refers to as geographical clustering)
results in statistically distinct hydrological behavior (based on signatures) relative to other



catchments within the CONUS. We assume the reviewer thinks the results are
discouraging, based on the boxplots shown in Figure 13 in the original manuscript, where it
appears as though some of the distributions overlap for the two indices shown.

However, we would like to point out that our current approach does result in distinguishing
the streamflow behavior for most of the indices, indicating that there already is significant
overlap between the trait-based clustering and the hydrological groupings. We made the
following changes to address this comment.

First, we added the following text in Section 2.10, line numbers 364-373

“We conducted two additional statistical tests to further examine whether the hydrological
indices of catchment clusters are significantly distinct. The first is a nonparametric 1-sample
Kolmogorov-Smirnov (K-S) Test that compares a sample distribution to a reference one for
each hydrological index. This expands on the Kruskall-Wallis test, but allows us to
determine the number of clusters that are statistically distinct from the entire catchment
dataset. Here, each sample is constituted by the indices of one cluster and the reference
distribution is based on all the catchments within the CONUS. The null hypothesis is that
samples are drawn from the reference distribution when using 0.05 as threshold for the
p-value.

The second is a 2-sample K-S test comparing the distributions of indices for pairs of
catchment clusters, which allows us to determine how different the clusters are from each
other. Here, each sample pair is constituted by the distribution of indices for the clusters
being compared. Similar to the one-sample test, the null hypothesis is that samples are
drawn from the same distribution when using 0.05 as threshold for the p-value..

We then added the following text to results, section 3.5, lines 461-466

“The results of the statistical tests are summarized in appendix in Table G1 for all 34
streamflow indices. When averaged for all the indices, 83% of the clusters for the 1-sample
K-S test and 79% for the 2-sample K-S test reject the null hypothesis, meaning that the
distribution of their streamflow indices is mostly distinct from the overall distribution at the
continental scale. These results show that the trait-based clustering approach results in
distinct signature classification. See Sect. 4.5 for further discussion about the distinct
hydrological behavior across the catchment clusters.”

We also modified the text in discussion, section 4.1, lines 555-508

“We have demonstrated that our network-based workflow outperforms the K-means or the
Ward’s hierarchical algorithms for two different metrics (see Sect. 3.6), particularly with the
parameters we chose for dimensionality reduction and the disparity filter (black dashed lines



in Fig. 8 corresponding to k = 20 dimensions retained). We conclude that our method
produces more distinct clusters, and is hence a better choice than traditionally used
classification approaches.”

Table G1:Table showing the results from statistical tests comparing the distributions of streamflow indices
of catchment clusters resulting from our network-based methodology. The first two columns list the
streamflow indices used in this study as alphanumeric codes with brief descriptions as in Olden and Poff
(2003). The last 3 columns show the result of the Kruskall-Wallis (K-W) test indicating that not all the
samples have the same distribution, 1-sample and 2-sample Kolmogorov-Smirnov (K-S) tests. The
indices are sorted according to the 2-sample Kolmogorov-Smirnov Test in descending order.”



As mentioned in our earlier response, Specifically regarding the statements “the clustering
technique does not succeed in relating ‘traits’ clusters to hydrological behaviors, except for
some specific hydrological traits. This part is essential, in my opinion, for switching from a
mere clustering exercise to something which could actually be useful in hydrological
practice.” , we note that since the dataset of traits is large, and encompasses a broad set of
categories (climate, geology, land use, human activities etc.), it is expected that not all traits
(or trait clusters) are going to be related to hydrologic behavior. The question about which
traits are most relevant for a particular hydrologic function of interest, such as streamflows,
is still largely unresolved. In general, prior large sample studies such as (Eng et al., 2017)
and (Addor et al., 2018) have not had much success in using traits to predict hydrologic
signatures with statistical or classical machine learning approaches. Tackling the issue of
relating trait clusters to hydrologic behavior is a different study that is out of scope for this
paper. This is the subject of multiple follow-on studies and papers that we are working on,
which require building models to show the relationships between the trait clusters and
hydrologic signatures. Please see our response #4 below where we elaborate more on the
practical uses for our approach.

COMMENT #4: In the case the authors stick to unsupervised clustering, I guess that the
paper might be of interest, but in my opinion, the authors should:

● introduce in more details the practical implications of such clustering, and

AUTHOR RESPONSE #4:

We have added a significant amount of text to describe the practical implications of our
workflow as described below. Also see responses #12 and #13 for additional analysis that
was added as per reviewer 2’s suggestions.

First, we added a new Section 4.7, lines 677-686 with the following text:

“Our methodology can be used as initial steps of typical workflows used for predictions for
unmonitored basins, which is (1) to classify catchments into groups for regionalization, and
(2) to select a subset of traits from a large predictor space, a common challenge in many
large sample studies. For the former, we choose to classify catchments using traits, since
geospatial datasets are now available with a lot of trait information that allows us to do
catchment classification at large spatial scales including for unmonitored catchments. For
the latter, we find that we can condense a very large dataset containing hundreds of traits
into 25 trait categories with the network approach, due to the redundancy in the traits. Thus
our paired catchment-trait networks approach not only classifies catchments into clusters,
but enables the reduction of a large dataset of traits into an interpretable set of trait
categories by eliminating their redundancy. This provides the ability to identify distinct trait



categories that are over- or under-expressed in catchment clusters to streamflow behaviors.
The parallel analysis of cluster and traits data as networks is an important characteristic that
distinguishes our method from other typical unsupervised clustering workflows.”

We added the following text to Section 4.2, lines 532-538

“To illustrate how our approach helps with reducing trait redundancy, we computed the
spearman correlation coefficients (ρ) between streamflow indices and catchment traits,
which account for non linearities in the data. We find that traits belonging to the same trait
categories have similar correlations with the streamflow indices (Fig. I1 in appendix). We
find that the spearman correlation coefficients between the streamflow indices and
individual catchment traits can be effectively represented as an aggregated median value
for the trait categories generated in our method (Fig. 10), which indicates that our reduced
set of trait categories are sufficient to determine the general relationships between traits and
hydrological signatures. “





Figure I1. Heatmap showing spearman correlation coefficients between streamflow indices and the traits
used in the study. The intensity of the colors show the degree of correlation or anticorrelation as indicated
in the color bar. Traits on the horizontal axis are ordered and colored according to the traits categories
they belong to. Gray boxes indicate correlations that are above the significance level of p>0.05. The
primary purpose of this plot is to provide a visual representation of the redundancy in the correlations
between the traits within the same category and streamflow indices.

Figure 10. Heatmap showing spearman correlation coefficients between streamflow indices and the traits
categories generated in the study. The intensity of the colors show the degree of correlation or
anticorrelation as indicated in the color bar. Gray boxes indicate correlations that are above the
significance level of p>0.05.

We also added an additional example for the use of our methodology in Section 4.5, lines
620-637:

“Additionally, we utilize the ability to determine correlations between stream flow indices and
a reduced set of interpretable trait categories (Sect. 4.2). We find that across the 9067
catchments, mean annual runoff (ma41) is not just positively correlated with traits related to
precipitation, but also with the presence of mixed forests (ρ = 0.45) and to a lesser degree
evergreen forests (ρ = 0.25). The ma41 index is also negatively correlated with the
’pastures and grasslands’ trait category (ρ = −.40). This highlights the role of vegetation in
mediating flows, and is somewhat counterintuitive given that in the absence of
management, forested catchments with higher evapotranspiration would be expected to
have lower flows compared to grasslands. Similarly, the fh6 index is not just positively
correlated with precipitation traits, but also with traits related to developed areas (ρ = 0.40),



croplands (ρ = 0.32) and temperature (ρ = 0.43). It is also inversely correlated with elevation
(ρ = −0.45), presence of shrublands (ρ = −0.38), evergreen forests (ρ = −0.28), coarse soils
and groundwater (ρ = −0.35). These relationships are consistent across other flood indices.
For example, the fh7 index showing the propensity for heavy floods (above 7 times median
flows) similarly has a moderate positive correlation with temperature (ρ = 0.44) and
overland flow (ρ = 0.38), and a moderate negative correlation with elevation (ρ = −0.39) and
coarse soils/groundwater (ρ = −0.43). This indicates how flooding is affected by the complex
relationships between land use, vegetation, soil infiltration capacity and base flows.

These examples highlight the use of our methodology to demonstrate how specific
hydrological behaviors can be connected to catchment traits such as their climatic
conditions, topography, land use or anthropogenic influence. The ability to link catchment
traits to specific hydrological behaviors, enables further analysis of the factors that influence
different stream flow characteristics (e.g. high versus low flows). In particular, the distinction
between anthropogenically-influenced trait categories and natural traits (see Table 1)
enables further analysis of human activities on hydrologic behavior.”

Hence we argue that the trait categories generated using our method are interpretable in a
manner that is harder to do with a dimensionality reduction approach using eigenvectors,
where the contributions of traits can be distributed across many principal components. For
additional applications of our unsupervised clustering approach, we refer the reviewer to our
response #13 to reviewer 2 comments. Here we conducted additional analysis to identify
relationships between hydrologic signatures and the catchment clusters, as well as the
predominant traits of the catchments in those clusters. This analysis has produced new
insights that on its own can be used to generate hypotheses about processes that influence
hydrological behavior.

COMMENT #5:

● compare the obtained classification with a benchmark clustering approach.

AUTHOR RESPONSE #5: We acknowledge that the manuscript we submitted does not
provide sufficient evidence that our proposed method based on networks and cosine
similarity performs better than traditional unsupervised clustering algorithms. We thank the
reviewer for this suggestion and in response performed a more comprehensive analysis
comparing the performance of our method against benchmark hierarchical clustering and
k-means approaches. To address this comment, we made the following changes.

First, we added the following text to methods as a new section 2.11, lines 375-400

“We compare the clusters obtained from our methodology that uses network theory and the
cosine distance metric, with the ones resulting from the traditional K-means and hierarchical
clustering approaches. Since these are all unsupervised methods, we cannot use any target



variable to compute the accuracy of the classification to compare performance. For this
reason, we identified two metrics to evaluate the performance of the different methods.

The first metric, which we refer to as “cluster similarity”, reflects the similarity between traits
of the catchment clusters, which are represented by the average trait z-scores aggregated
across the catchments in each cluster as described in Sect. 2.8. Here, each catchment
cluster is compared to the others by calculating their pairwise cosine similarity. The highest
value of the cosine distance within each catchment cluster is used as a conservative
measure of inter-cluster similarity, to assess how far

apart the catchment clusters are from each other. The median value of the inter-cluster
similarities represents how distinct the clusters produced by each algorithm are. We aim to
minimize this metric, since a good classification algorithm should produce more distinct
clusters.

The second metric is the silhouette score (Rousseeuw, 1987), which is a measure of
intra-cluster similarity. It represents how similar each element (i.e., a catchment) is to other
elements within its cluster relative to elements in other clusters. The values of this metric
range between -1 and 1, with higher values denoting that an element is well placed in its
cluster compared to other clusters. The silhouette values are averaged for all items in the
dataset. A good clustering algorithm would produce higher values of the silhouette score.

We use these two metrics to compare our clustering approach with the hierarchical
clustering (in its common implementation using the Ward criterion; Ward (1963) and the
k-means clustering algorithm (MacQueen, 1967). Additionally, to determine the effects of
the distance metric, we compare the results from our workflow that uses the cosine distance
with a version where the pairwise similarity between nodes is computed using the Euclidean
distance. Finally, to show the robustness of our approach, we examine various choices for
the two free parameters in our workflow, namely the number of reduced dimensions after
the PCA (k) and the cluster granularity, which is governed by the disparity filter parameter α
used to tune the removal of network edges during the backbone extraction step (Sect. 2.5).
Three different values of k are investigated; k=6 corresponding to 50% of information
retained after PCA, k=20 (our choice in the study) corresponding to 72% of retained
information, and k=90 corresponding to 95% of retained information. For each value of k,
we generate clusters with different α values, with the number of clusters covering 95% of
the dataset ranging between 20 and 120.”

We added the following text to results, section 3.6, lines 468-474

“The two metrics, cluster similarity and silhouette score, indicate that our workflow performs
better than traditional unsupervised methods of classification (Fig. 8). We also find that the
network-based clustering (red and green points) is considerably superior to both k-means
(yellow points) and hierarchical clustering (blue points) across the different values of k and
cluster granularity (Fig. H1 in appendix). This is evident from the consistently low values of



the median cluster similarity and higher values of silhouette scores for our methodology.
Also, the network generated using the cosine distance as a similarity metric (red points)
performs better than its counterpart that uses the Euclidean distance (green points). This
confirms that the cosine similarity should be preferred as a distance metric in high
dimensions and the directionality of the data can contain valuable information.”

Figure H1. Median cluster similarity values (a, c, e) and silhouette scores (b, d, f) for different clustering methods and
similarity measures used in the network analysis. The number of reduced dimensions after PCA is equal to (a, b) 6,
(c, d) 20 (used in the study) and (e,f) 90 corresponding to 50%, 72% and 95% of retained information respectively.
The vertical black dashed line refers to the cluster granularity used in the paper. The colored dashed lines are shown
for visualization of trends. Lower values of the median cluster similarity metric (a, c, e) correspond to better clustering
performance. Higher values of the silhouette scores (b, d, f) correspond to better clustering performance.



Figure 8. Median cluster similarity values (a) and silhouette scores (b) for different clustering methods and similarity
measures used in the network analysis. The number of reduced dimensions after PCA is equal to 20, corresponding
to 72% of retained information. The vertical black dashed line refers to the cluster granularity used in the paper. The
colored dashed lines are shown for visualization of trends. Lower values of the median cluster similarity metric (a)
correspond to better clustering performance. Higher values of the silhouette scores (b) correspond to better clustering
performance.

Minor comments

COMMENT #6: l.5: please clarify the term “subject to degradation”

AUTHOR RESPONSE #6: The term “degradation” is often used in computational literature
dealing with metrics in high dimensions and refers to the property of a distance metric to
perform worse as the number of dimensions grows. This concept of “degradation” is related
to the “curse of dimensionality”. It can be understood by recognizing that, counter to our
intuition, what applies in three dimensions does not necessarily hold in higher dimensions.
For example, in high dimensions, most of the mass of the points distributed according to a
well behaved Gaussian distribution does not lie around the mean but becomes increasingly
distant from it. Most of the mass migrates toward the surface of the domain leaving the bulk
of the inner space empty. One of the consequences of this increased sparsity in high
dimensional space is that the ratio of the distances of the nearest and farthest neighbors to
a given point is almost 1, namely the points become uniformly distant from each other
(Beyer et al., 1999).

To clarify, we added the following to the manuscript in Section 4.1, lines 481-484

“In particular, the distance metrics perform worse (referred to as "degradation") as the number of
dimensions grows (Aggarwal et al., 2001). One of the consequences of this phenomenon is that
the ratio of the distances of the nearest and farthest neighbors to a given point in high
dimensions approaches 1, meaning that the points become uniformly distant from each other
(Beyer et al., 1999).”

COMMENT #7: l.43, l.48 and in many other places: problems with in-line referencing.



AUTHOR RESPONSE #7: Thanks for pointing that out. We have corrected these references.

COMMENT #8: Section 2.3: I understand that traits values are standardized, but are their
distributions normal? I guess no and I wonder how this may affect PCA and low dimensional
vectors extracted from PCA.

AUTHOR RESPONSE #8: The referee's intuition about the non-normality behavior of the
traits distribution is correct. The Shapiro-Wilk test, which checks if the data is drawn from a
normal distribution, reveals that none of the traits are normally distributed when testing with
a p-value of 0.05. However, the PCA method does not require normality in the input data.
However, there are other factors that have to be considered when choosing PCA as the
dimensionality reduction approach, which includes whether there are non-linear
relationships between the variables, and whether the dataset contains outliers. To address
these concerns, we added the following text in Section 2.3, lines 184-192:

“The traits in the GAGES-II dataset contain significant redundancies, with 84% of pair-wise
Pearson correlation coefficients (Pearson, 1895) and 92% of pair-wise Spearman
coefficients, which accounts for non-linear relationships (Spearman, 1987), have a
significant p-value of 0.05. The coefficient of determination between these two metrics is
equal to 0.76, which indicates that although nonlinear relationships among the traits are
present, they are not so dominant to prevent the use of a linear dimensionality reduction
method such as PCA. Another factor that can affect the PCA algorithm’s performance is the
presence of outliers. We determined that the PCA is a reasonable choice for the GAGES-II
dataset, since only 8.1% of the traits lies outside their “inner fence”, a common threshold for
outliers, defined as the range between Q1 - 1.5 * IQR and Q3 + 1.5 * IQR for each trait,
where Q1 and Q3 are the first and third quartiles respectively, and IQR = Q3 - Q1 is the
interquartile range. “

COMMENT #9: l.473-475: Please clarify the added values of the network-based approach
compared to other clustering techniques. Many of them address already the problem of
dimensionality by working on Eigen-vectors.

AUTHOR RESPONSE #9: In response #4, we explain some of the benefits of our clustering
approach. As shown in response #5, we have demonstrated that the network-approach
outperforms other clustering techniques. Specific to the comment regarding the use of
Eigen-vectors, we point out that although working with eigenvectors reduces the
dimensionality of the problem, often the reduced vector space is still high dimensional. In
our case, retaining 72% of the information - using the variance explained by the SVD
singular values matrix - from the dimensionality reduction, still leads to a 20 dimension
vector space. Although there is no universally accepted threshold for “high-dimensional”
data, we argue that 20 constitutes a high number of dimensions where distance calculations
are impacted.



Using a network approach allows one to choose the similarity metric and not to rely on
euclidean distance, a metric needed in most of the traditional unsupervised clustering
methods like k-means and hierarchical clustering. Thus we are able to use the cosine
similarity metric that is less affected by issues of high dimensionality and include
directionality information in the data. This is explained in the Method section 2.11, Result
section 3.6, and Discussion section 4.1.

The resulting clusters from our network approach are computed using the information from both
the transformed matrix and the principal components. As illustrated in response #4, we believe
that our workflow produces more interpretable results than the ones that would be obtained
using only the Eigenvectors obtained from a PCA. This is because the network approach allows
to separate traits or catchments into distinct clusters, produced using network connections
statistics validated by the disparity filter introduced in line 231 in the original manuscript.
Conversely the contributions of traits or catchments is generally distributed among multiple
elements of the transformed matrix and the principal components in the PCA, making it difficult
to produce clear categories or connect groups of traits to specific hydrological behaviors.

COMMENT #10 Figure 13: what is the unit of MA41?

AUTHOR RESPONSE #10: The streamflow index identified by the code MA41 refers to the
“mean annual flow divided by catchment area” and its dimensions currently are m3.s-1.km-2. We
acknowledge that this is an uncommon choice and have changed into the more commonly used
mm/day. Units for MA41 are explicitly indicated in Figure 14 axis and caption of the revised
manuscript.

Response to Reviewer 2 Comments:

COMMENT #11 - This article describes the application of a post-PCA clustering algorithm
for classification, in this case for catchments. There is no strong argument that the
technique is much better than other methods in this particular application, but the breadth,
quality and density of the GAGES-II dataset make it an attractive test bed.

The authors do not apply any effort in showing the improvement their technique makes over
others. For example, the justification for their network-based approach is a single paragraph
and three numbers. In a more structured analysis, the differences between PCA only, and
each of the three post-PCA clustering techniques, would be outlined and their differences
tabulated with relevant measures (with an equivalent of Figure 3 for each). There would
also be a baseline measure, the PCA or one clustering technique with a minimum number
of clusters, and some limited exploration of the number of clusters (or the two free
parameters mentioned).



AUTHOR RESPONSE #11: We acknowledge that the manuscript we submitted does not
provide sufficient evidence that our proposed method based on networks and cosine
similarity performs better than traditional unsupervised clustering algorithms. We thank the
reviewer for this suggestion. See response #5 where we performed a more comprehensive
analysis comparing the performance of our method against benchmark hierarchical clustering
and k-means approaches, as well as exploration of the free parameters.

COMMENT #12 - It is not remarkable (line 579) that a classification method using indices
and data from a database (of over 300 measures on over 9000 catchments) specifically
designed to described gauged catchments for evaluating streamflow would result in a
classification that was related to streamflow measures. It will be no surprise to hydrologists
that high rainfall, high elevation, forested catchments behave hydrologically differently to
flatter, lower rainfall, cropland areas, or that higher rainfall catchments with lots of urban
areas get more flooding. What the results might show however is the bidirectionality such
that starting from the stream flow indices we get catchment clusters, and that starting from
catchment traits we can get groups of catchments with distinct flow behavior.

AUTHOR RESPONSE #12: Thanks for this comment. Our original write up was intended to
highlight that the approach produces intuitive results that are immediately obvious to all
readers. Based on this comment, and those from reviewer #1, we have expanded the
analysis to include some additional hydrological insights that can be gained with this
methodology. In particular we expanded our discussion Section 4.2 and Section 4.5 (see
response #4 for changes made to the manuscript). We also removed the text referring to
our results as remarkable.

The issue of bidirectionality is interesting but beyond the scope of this paper. We are
working on building models to predict hydrological indices using trait clusters, and
understanding the traits of signature-based classification as part of multiple follow-on
studies.

COMMENT #13: What would also have been of interest is the places where the flow indices
and clusters do not match well. For example, if there are two areas that are low slope, low
elevation cropland that have distinctly different baseflow regime, one may be influenced by
groundwater discharge or a factor not yet captured, and this would be useful additional data
to know or require to be collected.

AUTHOR RESPONSE #13: Thanks for the suggestion and we agree that it is interesting to
investigate subsets of catchments within a cluster where the flow indices do not match well.
To investigate this aspect, we performed a new analysis that focuses on anomalies in the
hydrologic indices within catchment clusters. We have added the following text to the
discussion as a new Section 4.6 “Examining diversity of hydrologic behavior within
catchment clusters” in lines 639-689:



“We can also use our methodology to gain insights into the traits that may result in diversity
of hydrologic behavior within similar catchments. For this purpose we selected catchment
subsets that are considered outliers - i.e. where the index is either above the 90th percentile
or below the 10th percentile of all indices in the cluster, for each streamflow index and for
each cluster of catchments. We compare the z-scores of the traits associated with the
catchment subsets relative to the entire catchment cluster to evaluate whether there are
differences in traits that would explain the anomalous hydrological behavior. As an example,
we look at catchments within a cluster that have distinct baseflow regimes, based on a
baseflow index (ml17) in Olden and Poff (2003) that represents the 7-day minimum flows
divided by mean annual daily flows. The results for anomalous catchments have higher than
normal (>90th percentile) baseflow are shown in Fig. 15, where the size and color of the
bubbles are the relative z-scores of the trait categories.

We focus on a crop-dominated catchment cluster such as the one generally encompassing
the Ohio Valley region (cluster 2), displayed in the third row of the bubble plot. This cluster
is characterized by relatively low elevation, presence of croplands and fine soil as indicated
by the higher z-scores of these trait categories relative to the rest of the CONUS
catchments (Fig. 16a). Using our approach, we can identify the over and under expressed
traits of the catchments with anomalously high baseflows in cluster 2 that generally has low
elevation croplands. In Fig. 15, we find there is a positive association of high baseflows with
coarse soils (Z=0.98) and a negative one with fine soils (Z=-0.51), which is not surprising. In
addition, there is an association of high baseflows with the “Non-cropland” trait category
(third last column with green label, Z=0.85), which aggregates all non-agricultural land use
such as urban areas and forests. This indicates that within the context of a
cropland-dominated cluster, the catchments that have relatively lower areas of croplands
have higher baseflows. Interestingly, there is also a strong positive association of high
baseflows with shrubland (Z=1.12) and a moderate negative association with temperature
(Z=-0.65). One possible explanation for these results is that pumping groundwater for
agriculture decreases the groundwater input into streams resulting in lower baseflows. This
depletion of groundwater discharge into streams does not occur in shrublands or other
areas without croplands.

Another catchment cluster with a strong agricultural presence is cluster 14, generally
located in North and South Dakota, which are characterized by low temperatures,
herbaceous wetlands and croplands (Fig. 16b). Similar to cluster 2, there is a positive
association of anomalously high baseflows with coarse soils (Z=0.76) and non-croplands
(Z=1.10), and a negative association with fine soils (Z=-0.84). However, in comparison to
cluster 2, several other factors have a positive association with high baseflows including
precipitation/summer precipitation (Z=0.90, Z=1.04 respectively), the presence of lakes,
ponds and reservoirs (Z=1.19), herbaceous wetland areas (Z=0.76),
evergreen/mixed/deciduous forests (Z=0.58, Z=0.74, Z=0.88 respectively), and developed
areas (Z=0.66). There is also a negative association with overland flows (Z=-0.82). This



reveals that, in catchment cluster 14, anomalously high baseflows are more likely in the
presence of surface water bodies such as lakes and wetlands that have the potential for
increased surface-groundwater exchange. High baseflows also occur in forested areas of
these agricultural catchments, potentially indicating that the partitioning of precipitation is
weighted towards infiltration and recharge over evapotranspiration in these catchments.

Overall, averaged z-scores for all catchments in the CONUS (shown in the last row of Fig.
15) indicates there is a moderate positive association of anomalously high base flows with
the presence of lakes, ponds and reservoirs (11th column in light blue, Z=0.29), and with
coarse soils and groundwater trait categories (18th column in gray, Z=0.40). Conversely,
there is a negative link to fine soils (13th column in green, Z=-0.25). This indicates the
potential for surface-groundwater exchange in regions where water bodies are present, and
not surprisingly the importance of soil texture in mediating baseflow through infiltration and
recharge.”

Figure 15. Bubble plot showing the z-scores of catchments where the baseflow is above the 90th percentile relative to
the entire catchment cluster. The baseflow index is computed as the seven-day minimum flow divided by mean
annual daily flows (averaged across all years). Bubble size is proportional to the absolute value of the z-score. Colors
separate positive from negative values as indicated by the colorbar. Catchment clusters are displayed on the vertical
axis using an identifier consistent with the one used in the original paper, a name describing their main
characteristics, their approximate geographical area (if applicable), and the number of anomalous catchments above



the 90th percentile shown in parenthesis in parenthesis. Only clusters with an anomalous set of catchments larger
than 10 are included. Traits categories are displayed on the horizontal axis and are sorted in descending order,
according to their size in terms of number of nodes in the traits network, and colored consistently with the trait
clusters in said network. The last row of each plot refers to the average value of the trait z-scores of the clusters
displayed in the plot and provides an idea of how much a trait category is over or under expressed across different
clusters with different characteristics.

Figure 16. (a) Bar chart of traits z-scores of for the catchment cluster 2, characterized by croplands and fine soils.
The catchments in this cluster are generally located in the Ohio Valley region. (b) Bar chart of traits z-scores of for the
catchment cluster 14 , characterized by low temperatures, croplands and wetlands. The catchments in this cluster are
generally located in North and South Dakota.

COMMENT #14: The citing of references within the text is inconsistent and non-standard,
while many of the listed references do not use capital letters where appropriate in journal
names or proceedings.

AUTHOR RESPONSE #14: Thanks for pointing that out. We have corrected the references.
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