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Major comment

COMMENT #1: The authors introduce a novel method to cluster catchments that is based
on traits. The dataset is impressive and the network-based classification is, to my
understanding, a relevant and innovative approach in this case. Methods and results are
well presented.

AUTHOR RESPONSE #1 - We thank the reviewer for the positive comments. The reviewer
brings up important concerns, and we have provided detailed responses below for each
concern that was raised. If invited to resubmit, we would make changes that address these
comments, and believe that it would significantly improve the paper.

COMMENT #2 - My main concern with such unsupervised classification is how we can use
it for practical hydrological studies.

AUTHOR RESPONSE #2: We agree with the comments from both reviewers that we could
do more to demonstrate the utility of our methodology for hydrological applications. In
addition to responding to comments from reviewer 1 below, we note that we have done
additional analysis to show how we can gain hydrological insights from our approach in our
response to comments from reviewer 2.

COMMENT #3: From the introduction and discussion, it appears one aim of clustering is
application to ungauged basins. In this sense, the results of the paper are discouraging,
because the clustering technique does not succeed in relating ‘traits’ clusters to hydrological
behaviors, except for some specific hydrological traits. This part is essential, in my opinion,
for switching from a mere clustering exercise to something which could actually be useful in
hydrological practice. I do not know how the method can be tuned to improve the overlap
between the geographical and hydrological clusters, but my wish is that the authors tackle
this issue in the paper. I realize that this implies a significant change in the paper.

AUTHOR RESPONSE #3: As pointed out,one of the applications of our methodology is for
predictions in unmonitored basins (PUBs). We had originally demonstrated that our
approach to trait-based clustering (which the reviewer refers to as geographical clustering)
results in statistically distinct hydrological behavior (based on signatures) relative to other
catchments within the CONUS. We assume the reviewer thinks the results are



discouraging, based on the boxplots shown in Figure 13 in the original manuscript, where it
appears as though some of the distributions overlap for the two indices shown. However,
we would like to point out that our current approach does result in distinguishing the
streamflow behavior for most of the indices, indicating that there already is significant
overlap between the trait-based clustering and the hydrological groupings. To demonstrate
this overlap, we conducted two additional statistical tests that further indicate that the
hydrological indices are mostly distinct between the catchment clusters.

The first is a nonparametric 1-sample Kolmogorov-Smirnov Test that compares a sample
distribution to a reference one for each hydrological index. This expands on the
Kruskall-Wallis test that we presented in the manuscript, but allows us to determine the
number of clusters that are statistically distinct from the entire catchment dataset. Here
each sample is constituted by the indices of one cluster and the reference distribution is
based on all the catchments within the CONUS. The null hypothesis is that samples are
drawn from the reference distribution when using 0.05 as threshold for the p-value. We find
that on average 83% of the clusters reject the null hypothesis, meaning that the distribution
of their streamflow indices is distinct most of the time from the overall distribution at the
continental scale.

The second is a 2-sample Kolmogorov-Smirnov test comparing the distributions of indices
for pairs of catchment clusters, which allows us to determine how different the clusters are
from each other. Here each sample pair is constituted by the distribution of indices for the
clusters being compared. Similar to the one-sample test, the null hypothesis is that samples
are drawn from the same distribution when using 0.05 as threshold for the p-value. On
average 79% of all the tests reject the hypothesis that the aggregated indices from the two
clusters are drawn from the same distribution confirming that the trait-based classification
generally results in distinct streamflow index distributions.

The results of all the statistical tests are summarized in Table RC-1 below for all 34
streamflow indices. These results show that the trait-based clustering approach results in
distinct signature classification (i.e. the hydrological clustering), and that our methodology is
a valid tool to partition catchments and investigate PUBs.



Table 1:Table showing the results from statistical tests comparing the distributions of streamflow indices of
catchment clusters resulting from our network-based methodology. The first two columns list the
streamflow indices used in this study as alphanumeric codes with brief descriptions as in Olden and Poff
(2003). The last 3 columns show the result of the Kruskall-Wallis test indicating that not all the samples
have the same distribution, 1-sample and 2-sample Kolmogorov-Smirnov tests. The indices are sorted
according to the 2-sample Kolmogorov-Smirnov Test in descending order.

Specifically regarding the statements “the clustering technique does not succeed in relating
‘traits’ clusters to hydrological behaviors, except for some specific hydrological traits. This
part is essential, in my opinion, for switching from a mere clustering exercise to something



which could actually be useful in hydrological practice.” , we note that since the dataset of
traits is large, and encompasses a broad set of categories (climate, geology, land use,
human activities etc.), it is expected that not all traits (or trait clusters) are going to be
related to hydrologic behavior. The question about which traits are most relevant for a
particular hydrologic function of interest, such as streamflows, is still largely unresolved. In
general, prior large sample studies such as (Eng et al., 2017) and (Addor et al., 2018) have
not had much success in using traits to predict hydrologic signatures with statistical or
classical machine learning approaches. Tackling the issue of relating trait clusters to
hydrologic behavior is a different study that is out of scope for this paper. This is the subject
of multiple follow-on studies and papers that we are working on, which require building
models to show the relationships between the trait clusters and hydrologic signatures.
Please see our response #4 below where we elaborate more on the practical uses for our
approach.

COMMENT #4: In the case the authors stick to unsupervised clustering, I guess that the
paper might be of interest, but in my opinion, the authors should:

● introduce in more details the practical implications of such clustering, and

AUTHOR RESPONSE #4: In this paper, we focus on using the clustering for the first few
steps of the typical workflows used in PUB studies, which is (1) to classify catchments into
groups for regionalization, and (2) to select a subset of traits from a large predictor space,
which is a common challenge in many large sample studies. For the former, we choose to
classify catchments using traits, since geospatial datasets are now available with a lot of
trait information that allows us to do catchment classification at large spatial scales including
for unmonitored catchments. For the latter, we find that we can condense a very large
dataset of >274 traits into 25 trait categories with the network approach, due to the
redundancy in the traits.

Thus our paired catchment-trait networks approach not only classifies catchments into
clusters, but enables the reduction of a large dataset of traits into an interpretable set of trait
categories by eliminating their redundancy. This provides the ability to identify distinct trait
categories that are over- or under-expressed in catchment clusters to streamflow behaviors.
The parallel analysis of cluster and traits data as networks is an important characteristic that
distinguishes our method from other typical unsupervised clustering workflows.

In Figure 1 below, we illustrate how our approach helps with reducing the trait redundancy.
In Fig 1, the spearman correlation coefficients (⍴) between streamflow indices on the
vertical axis and catchment traits on the horizontal axis are shown, which account for non
linearities in the data. Traits are sorted and colored according to the cluster they belong to in
the traits network. In general, we find that traits belonging to the same cluster - i.e. traits
categories as per our definition - have similar correlations with the streamflow indices, as
indicated by the contiguous areas with similar colors for each row. In Figure 2, we show the



spearman correlation coefficients between the streamflow indices and catchment traits
aggregated as a median on the trait categories generated in our method. Comparing
Figures 1 & 2, we see that the relationships between hydrological signatures and several of
the redundant traits are effectively similar, and hence our trait categories are sufficient to
determine the relationship between traits and signatures.

Figure 1. Heatmap showing spearman correlation coefficients between streamflow indices and the traits
used in the study. The intensity of the colors show the degree of correlation or anticorrelation as indicated
in the color bar. Traits on the horizontal axis are ordered and colored according to the traits categories
they belong to. Gray boxes indicate correlations that are below the significance level of p<0.05. The



primary purpose of this plot is to provide a visual representation of the redundancy in the correlations
between the traits within the same category and streamflow indices.

Figure 2. Heatmap showing spearman correlation coefficients between streamflow indices and the traits
categories generated in the study. The intensity of the colors show the degree of correlation or
anticorrelation as indicated in the color bar. Gray boxes indicate correlations that are below the
significance level of p<0.05.

Elaborating further on the examples described in our paper in Section 4.5, we can already
see from this reduced set of trait categories in Figure 2, that across all 9067 catchments,
mean annual runoff (ma41) is not just positively correlated with traits related to precipitation,
but also with the presence of mixed forests (⍴=0.45) and to a lesser degree evergreen



forests (⍴=0.25). The ma41 index is also negatively correlated with the pastures and
grasslands trait category (⍴=-.40). This highlights the general role of vegetation in
mediating flows, and is somewhat counterintuitive given that in the absence of
management, forested catchments with higher evapotranspiration would be expected to
have lower flows compared to grasslands. As shown in Fig 13 of our paper, the catchments
where there tends to be higher mean annual runoff is cluster 7, which is in the Pacific
Northwest basin.

The fh6 index indicating the mean number of moderate floods per year (>3 times median
flows) is not just positively correlated with precipitation traits, but also with traits related to
developed areas (⍴=0.40), croplands (⍴=0.32) and temperature (⍴=0.43). The FH6 index is
inversely correlated with elevation (⍴=-0.45), presence of shrublands (⍴=-0.38), evergreen
forests (⍴=-0.28), coarse soils & groundwater (⍴=-0.35). These relationships are consistent
across other flood indices. For example, the FH7 index showing the propensity for heavy
floods (7 times median flows) similarly has a moderate positive correlation with temperature
(⍴=0.44) and overland flow (⍴=0.38), and a moderate negative correlation with elevation
(⍴=-0.39) and coarse soils/groundwater (⍴=-0.43). This indicates how flooding is affected
by the complex relationships between land use, vegetation, soil infiltration capacity and
base flows.

Hence we argue that the trait categories generated using our method are interpretable in a
manner that is harder to do with a dimensionality reduction approach using Eigen vectors,
where the contributions of traits can be distributed across many principal components. For
additional applications of our unsupervised clustering approach, we refer the reviewer to our
response #3 to reviewer 2 comments. Here we conducted additional analysis to identify
relationships between hydrologic signatures and the catchment clusters, as well as the
predominant traits of the catchments in those clusters. This analysis has produced new
insights that on its own can be used to generate hypotheses about processes that influence
hydrological behavior.

COMMENT #5:

● compare the obtained classification with a benchmark clustering approach.

AUTHOR RESPONSE #5: We acknowledge that the manuscript we submitted does not
provide sufficient evidence that our proposed method based on networks and cosine
similarity performs better than traditional unsupervised clustering algorithms. We thank the
reviewer for this suggestion and in response performed a more comprehensive analysis
comparing the performance of our method against benchmark hierarchical clustering and
k-means approaches.

We reiterate that because of the lack of benchmark datasets, it is not straightforward to
evaluate the performance of unsupervised methodologies because of the lack of classified



target variables. In the absence of a benchmark dataset, we identified two metrics to
evaluate the performance of the different methods.

The first metric, which we refer to as the “cluster similarly metric” has been already
introduced in the paper (lines 459-472) and reflects the similarity in traits of the catchment
clusters. Clusters can be represented by vectors using the average trait z-scores
aggregated among the catchments belonging to each cluster. In this way each catchment
cluster can be compared with others by calculating the pairwise cosine similarity. For each
catchment cluster, the highest value of the similarity is used as a conservative measure of
inter cluster similarity, for the purpose of assessing how far apart the clusters are from each
other. The median of all the highest similarities represent how distinct the clusters produced
by each algorithm are. A good algorithm should produce distinct clusters, so we aim to
minimize this metric.

The second metric that we now added to the analysis is the silhouette score (Rousseeuw,
1987), which measures how similar each element (i.e., a catchment) is to the cluster it
belongs to with respect to the other clusters. The values of this metric range between -1 and
1, with higher values denoting that an element is well placed in its cluster compared to other
clusters. The silhouette values are averaged for all the items in the dataset. A good
clustering algorithm would produce higher values of the silhouette score.

We use these two metrics to compare our clustering approach based on networks and
cosine similarity against the hierarchical clustering (in its common implementation using the
ward criterion) and the k-means clustering algorithm. Additionally, we also compare our
method against a version where the pairwise similarity between nodes is computed using
the euclidean distance instead of the cosine distance. This is done to show the difference
produced by the metric choice while keeping the rest of the workflow unmodified. Finally, to
show the robustness of our approach, we extended the comparison by exploring the
landscape of the two free parameters in our workflow, namely the number of reduced
dimensions after the PCA (k) and the cluster granularity. This last quantity is governed by
different parameters according to the clustering method used. Three different values of k
are investigated; k=6 corresponding to 50% of retained information after PCA, k=20 (our
choice in the study) corresponding to 72% of retained information, and k=90 corresponding
to 95% of retained information. For each value of k we generated clusters with the different
methods so that the number of clusters covering 95% of the dataset ranges between 20 and
120.

The results of this investigation are shown in Fig. 3, which displays the cluster similarity
metric, and Fig. 4, showing the silhouette score. According to these two metrics the
performance of our network based clustering (red and green points) is considerably superior
to both k-means (yellow points) and hierarchical clustering (blue points) across the different
values of k and cluster granularity. This is evident from the consistently low values of the
median cluster similarity and higher values of silhouette scores. Also, the network
generated using the cosine distance as a similarity metric (red points) performs better than
its counterpart that uses the euclidean distance (green points). This confirms that the cosine



similarity should be preferred as a metric distance in our investigation, where the
dimensionality of the problem can be high and the directionality of the data carries valuable
information.

If invited to resubmit, we would include this additional analysis as part of the “Methods”,
“Results” and “Discussion” sections.



Figure 3. Median cluster similarity values for different clustering methods and similarity measures used in the network
analysis. The number of reduced dimensions after PCA is equal to (a) 6, (b) 20 (used in the paper) and (c) 90
corresponding to 50%, 72% and 95% of retained information respectively. The vertical black dashed line in (b) refers
to the cluster granularity used in the paper. The colored dashed lines are shown for visualization of trends. Lower
values of the median cluster similarity metric correspond to better clustering performance.



Figure 4. Silhouette scores for different clustering methods and similarity measures used in the network analysis. The
number of reduced dimensions after PCA is equal to (a) 6, (b) 20 (used in the paper) and (c) 90 corresponding to
50%, 72% and 95% of retained information respectively. The vertical black dashed line in (b) refers to the cluster
granularity used in the paper. The colored dashed lines are shown for visualization of trends. Higher values of the
silhouette scores correspond to better clustering performance.



Minor comments

COMMENT #6: l.5: please clarify the term “subject to degradation”

AUTHOR RESPONSE #6: The term “degradation” is often used in computational literature
dealing with metrics in high dimensions and refers to the property of a distance metric to
perform worse as the number of dimensions grows. This concept of “degradation” is related
to the “curse of dimensionality”. It can be understood by recognizing that, counter to our
intuition, what applies in three dimensions does not necessarily hold in higher dimensions.
For example, in high dimensions, most of the mass of the points distributed according to a
well behaved Gaussian distribution does not lie around the mean but becomes increasingly
distant from it. Most of the mass migrates toward the surface of the domain leaving the bulk
of the inner space empty. One of the consequences of this increased sparsity in high
dimensional space is that the ratio of the distances of the nearest and farthest neighbors to
a given point is almost 1, namely the points become uniformly distant from each other
(Beyer et al., 1999).

We apologize for the lack of clarity and can explain the term when it occurs in the
manuscript.

COMMENT #7: l.43, l.48 and in many other places: problems with in-line referencing.

AUTHOR RESPONSE #7: Thanks for pointing that out. We will correct the references if invited
to submit a revised manuscript.

COMMENT #8: Section 2.3: I understand that traits values are standardized, but are their
distributions normal? I guess no and I wonder how this may affect PCA and low dimensional
vectors extracted from PCA.

AUTHOR RESPONSE #8: The referee's intuition about the non-normality behavior of the
traits distribution is correct. The Shapiro-Wilk test, which checks if the data is drawn from a
normal distribution, reveals that none of the traits are normally distributed when testing with
a p-value of 0.05. However, the PCA method does not require normality in the input data.
Instead, it is the presence of outliers that is detrimental to the PCA because it can unfairly
promote dimensionality reduction toward directions associated with variables with outliers.
We verified that only 8.1% of the traits lies outside their “inner fence”, a common threshold
for outliers, defined as the range between Q1 - 1.5 * IQR and Q3 + 1.5 * IQR for each trait,
where Q1 and Q3 are the first and third quartiles respectively, and IQR = Q3 - Q1 is the
interquartile range. Although this amount is not negligible, and given that there is not an
universal threshold to consider a dataset compromised by outliers, we believe that the use
of PCA is a reasonable choice.



COMMENT #9: l.473-475: Please clarify the added values of the network-based approach
compared to other clustering techniques. Many of them address already the problem of
dimensionality by working on Eigen-vectors.

AUTHOR RESPONSE #9: In response #4, we explain some of the benefits of our clustering
approach. As shown in response #5, we have demonstrated that the network-approach
outperforms other clustering techniques. Specific to the comment regarding the use of
Eigen-vectors, we point out that although working with eigenvectors reduces the
dimensionality of the problem, often the reduced vector space is still high dimensional. In
our case, retaining 72% of the information - using the variance explained by the SVD
singular values matrix - from the dimensionality reduction, still leads to a 20 dimension
vector space. Although there is no universally accepted threshold for “high-dimensional”
data, we argue that 20 constitutes a high number of dimensions where distance calculations
are impacted.

Using a network approach allows one to choose the similarity metric and not to rely on
euclidean distance, a metric needed in most of the traditional unsupervised clustering
methods like k-means and hierarchical clustering. Thus we are able to use the cosine
similarity metric that is less affected by issues of high dimensionality and include
directionality information in the data.

The resulting clusters from our network approach are computed using the information from
both the transformed matrix and the principal components. As illustrated in response #4,
we believe that our workflow produces more interpretable results than the ones that would
be obtained using only the Eigenvectors obtained from a PCA. This is because the network
approach allows to separate traits or catchments into distinct clusters, produced using
network connections statistics validated by the disparity filter introduced in line 231 in the
original manuscript. Conversely the contributions of traits or catchments is generally
distributed among multiple elements of the transformed matrix and the principal
components in the PCA, making it difficult to produce clear categories or connect groups of
traits to specific hydrological behaviors.

COMMENT #10 Figure 13: what is the unit of MA41?

AUTHOR RESPONSE #10: The streamflow index identified by the code MA41 refers to the
“mean annual flow divided by catchment area” and its dimensions are m3.s-1.km-2. We will
include units when we refer to the indices if asked to revise the manuscript.
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