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 25 

Abstract 26 

 Terrestrial carbon (C) sequestration is limited by nitrogen (N), a constraint that could 27 

intensify under CO2 fertilisation and future global change. The terrestrial C sink is estimated to 28 

currently sequester approximately a third of annual anthropogenic CO2 emissions based on an 29 

ensemble of terrestrial biosphere models, which have been evaluated in their ability to reproduce 30 

observations of the C, water, and energy cycles. However, their ability to reproduce observations 31 

of N cycling and thus the regulation of terrestrial C sequestration by N has been largely 32 

unexplored. Here, we evaluate an ensemble of terrestrial biosphere models with coupled C-N 33 

cycling and their performance at simulating N cycling, outlining a framework for evaluating N 34 

cycling that can be applied across terrestrial biosphere models. We find that models exhibit 35 
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significant variability across N pools and fluxes, simulating different magnitudes and trends over 36 

the historical period, despite their ability to generally reproduce the historical terrestrial C sink. 37 

This suggests that the underlying N processes that regulate terrestrial C sequestration operate 38 

differently across models and may not be fully captured. Furthermore, models tended to 39 

overestimate tropical biological N fixation, vegetation C:N ratio, and soil C:N ratio but 40 

underestimate temperate biological N fixation relative to observations. However, there is 41 

significant uncertainty associated with measurements of N cycling processes given their scarcity 42 

(especially relative to those of C cycling processes) and their high spatiotemporal variability. 43 

Overall, our results suggest that terrestrial biosphere models that represent coupled C-N cycling 44 

(let alone those without a representation of N cycling) could be overestimating C storage per unit 45 

N, which could lead to biases in projections of the future terrestrial C sink under CO2 fertilisation 46 

and future global change. More extensive observations of N cycling processes are crucial to 47 

evaluate N cycling and its impact on C cycling as well as guide its development in terrestrial 48 

biosphere models. 49 

 50 

Plain Language Summary 51 

Nitrogen (N) is an essential limiting nutrient to terrestrial carbon (C) sequestration. We 52 

evaluate N cycling in an ensemble of terrestrial biosphere models. We find that they simulate 53 

significant variability in N processes. Models tended to overestimate C storage per unit N in 54 

vegetation and soil, which could have consequences for projecting the future terrestrial C sink. 55 

However, N cycling measurements are highly uncertain and more are necessary to guide the 56 

development of N cycling in models. 57 

 58 

1 Introduction 59 

The terrestrial biosphere is estimated to currently sequester approximately a third of 60 

anthropogenic CO2 emissions by the Global Carbon Project (GCP) (Friedlingstein et al., 2022). 61 

The GCP annually reports an estimate of the global carbon (C) budget which includes an 62 

estimate of the atmosphere-land CO2 flux, i.e., the terrestrial C sink, based on simulations of an 63 

ensemble of terrestrial biosphere models – the trends in the land carbon cycle project (TRENDY) 64 

ensemble. In recent years, the majority of the models within the TRENDY ensemble have 65 

incorporated a representation of coupled C and nitrogen (N) cycling given the empirically 66 

established importance of N limitation of vegetation growth (Elser et al., 2007; Fernández-67 

Martínez et al., 2014; LeBauer and Treseder, 2008; Wright et al., 2018): whereas only four out of 68 

nine models represented coupled C-N cycling in the 2013 GCP, 11 out of 16 models represented 69 

coupled C-N cycling in the 2022 GCP (Figure 1). Capturing N constraints on C cycling is critical 70 

for realistically simulating the terrestrial C sink, which arises from the combined effects of 71 

concurrently acting global change drivers that are each modulated by N: CO2 fertilisation is 72 

limited by N (Terrer et al., 2019; Wang et al., 2020a), intensifying N deposition increases N 73 

supply (O’Sullivan et al., 2019; Wang et al., 2017), rising temperature and varying precipitation 74 

modulate decomposition and soil N availability (Liu et al., 2017), and land use change and 75 

associated N fertilisation regimes determine N supply to crops.  76 
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Figure 1: Inclusion of coupled C-N cycling in the terrestrial biosphere models contributing to the 77 

Global Carbon Project, i.e., the TRENDY ensemble. 78 

  79 
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The TRENDY ensemble has been extensively evaluated against observations of the C, 80 

water, and energy cycles (Collier et al., 2018; Friedlingstein et al., 2022; Seiler et al., 2022). 81 

Within the GCP itself, the primary simulated C pools, C fluxes, and water fluxes are evaluated 82 

using a skill score system developed by the International Land Model Benchmarking Project 83 

(ILAMB) that quantifies model performance by comparing model simulations to observations 84 

(Collier et al., 2018; Friedlingstein et al., 2022). ILAMB scores encompass the mean and 85 

variability of a given pool or flux over monthly to decadal temporal scales and over grid cell to 86 

global spatial scales. However, N cycling has not been explicitly evaluated despite its importance 87 

in regulating C cycling. This is in part due to the relatively recent incorporation of N cycling in 88 

terrestrial biosphere models (Figure 1) (Fisher and Koven, 2020; Hungate et al., 2003) but also 89 

due to the paucity of global observation-based datasets of N cycling: N exists in many forms and 90 

is lost from terrestrial ecosystems via numerous pathways (emissions of NH3, N2O, NOx and N2 91 

as well as NO3
- and NH4

+ leaching), N processes are generally not measured in situ in networks 92 

such as FLUXNET, and remote sensing methodologies for measuring N processes are still in 93 

their infancy. Additionally, N processes exhibit extremely high spatial and temporal variabilities 94 

and are thus challenging to measure. As such, N cycling has commonly been evaluated by 95 

comparing simulated N pools and fluxes to global totals based on a small number of observations 96 

that have been scaled up or averaged to yield a value with wide confidence intervals (Davies-97 

Barnard et al., 2020). 98 

N cycling is implicitly evaluated by comparing terrestrial biosphere models without N 99 

cycling to those with coupled C-N cycling in reproducing observations of the C, water, and 100 

energy cycles in the absence of N cycle observations. Results suggest that there are only minor 101 

differences between the performance of models with and without N cycling. There is no 102 

significant difference between the terrestrial C sink simulated by the TRENDY models with and 103 

without N cycling (Friedlingstein et al., 2022) nor between the terrestrial C sink simulated by the 104 

models participating in the Multi-scale synthesis and Terrestrial Model Intercomparison Project 105 

(MsTMIP) with and without N cycling (Huntzinger et al., 2017). Comparing the mean score 106 

across all C, water, and energy cycle variables between TRENDY models with and without N 107 

cycling yielded no significant difference (Seiler et al., 2022). However, TRENDY models 108 

without N cycling had significantly higher scores for net biome productivity than TRENDY 109 

models with N cycling (although all other variables were not significantly different between 110 

TRENDY models with and without N cycling, including vegetation C, soil C, net biome 111 

productivity, leaf area index, latent heat flux, and runoff, among others) (Seiler et al., 2022). 112 

Despite this seeming absence of a difference between models with and without coupled C-N 113 

cycling in simulating the current terrestrial C sink, it is imperative that N constraints on C 114 

cycling are properly represented by terrestrial biosphere models in order to realistically simulate 115 

the terrestrial C sink under future global change, which modifies the C/N balance through N 116 

limitation of CO2 fertilisation and intensifying N deposition among other effects of global 117 

change. As such, explicitly evaluating N cycling processes themselves is necessary to assess the 118 

ability of terrestrial biosphere models to capture the underlying mechanisms that determine 119 

terrestrial C sequestration and thus to realistically project the future terrestrial C sink under 120 

global change. 121 
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Here, we synthesise the N pools and fluxes simulated by 11 terrestrial biosphere models 122 

in the TRENDY ensemble that participated in the 2022 GCP. We evaluate their performance in 123 

reproducing observations of three key variables of the N cycle: biological N fixation, vegetation 124 

C:N ratio, and soil C:N ratio. These three variables are critical to C cycling because (1) 125 

biological N fixation is the dominant natural N supply to terrestrial ecosystems, influencing the 126 

degree of N limitation of plant growth and thus terrestrial C sequestration, and (2) vegetation and 127 

soil C:N ratios reflect assimilated C per unit N and thus terrestrial C storage.  128 

 129 

2 Methods 130 

2.1 Simulation Protocol 131 

For the 2022 GCP (version 11), the TRENDY ensemble consisted of 16 terrestrial 132 

biosphere models, 11 of which represent N cycling (CABLE-POP, CLM5.0, DLEM, ISAM, 133 

JSBACH, JULES-ES, LPJ-GUESS, LPX-Bern, OCNv2, ORCHIDEEv3, and SDGVM). 134 

Although SDGVM includes a representation of N cycling, its representation is simplistic and was 135 

therefore not included. Additionally, CLASSIC contributed to the 2022 GCP without coupled C-136 

N cycling; the S3 simulation was repeated by CLASSIC with coupled C-N cycling following the 137 

2022 GCP protocol and was used here. Overall, we analysed eleven models with coupled C-N 138 

cycling (Table 1).  139 
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Table 1: Terrestrial biosphere models in the TRENDY-N ensemble and descriptions of their 140 

representations of N limitation of vegetation growth, biological N fixation, vegetation response 141 

to N limitation (i.e., strategies in which vegetation invests C to increase N supply in N-limited 142 

conditions), and N limitation of decomposition. 143 

 Reference N limitation of 

vegetation 

growth  

Biological N 

fixation 

Vegetation 

response to N 

limitation 

N limitation 

of 

decomposition 

CABLE-POP (Haverd et 

al., 2018) 

Vcmax  

flexible C:N 

stoichiometry 

Time-

invariant 

Static N-invariant 

CLASSIC (Melton et 

al., 2020) 

Vcmax  

flexible C:N 

stoichiometry 

f(N 

limitation of 

vegetation 

growth) 

Dynamic 

(biological N 

fixation) 

N-invariant 

CLM5.0 (Lawrence 

et al., 

2019) 

Vcmax  

flexible C:N 

stoichiometry 

f(N 

limitation of 

vegetation 

growth) 

Dynamic 

(biological N 

fixation, 

mycorrhizae, 

retranslocation) 

f(soil N)  

DLEM (Tian et 

al., 2015) 

GPP f(soil T, soil 

H2O, soil C, 

soil N) 

Dynamic  

(root 

allocation) 

f(soil N) 

ISAM (Shu et 

al., 2020) 

GPP f(ET) Static f(soil N) 

JSBACH (Reick et 

al., 2021) 

NPP f(NPP) Static f(soil N) 

JULES-ES (Wiltshire 

et al., 

2021) 

NPP f(NPP) Static f(soil N) 

LPJ-GUESS (Smith et 

al., 2014) 

Vcmax 

flexible C:N 

stoichiometry 

f(ET) Dynamic  

(root 

allocation) 

N-invariant 

LPX-Bern (Lienert 

and Joos, 

2018) 

NPP Derived post 

hoc to 

simulate a 

closed N 

cycle 

Static N-invariant 

OCNv2 (Zaehle 

and 

Friend, 

2010) 

Vcmax 

flexible C:N 

stoichiometry 

f(N 

limitation of 

vegetation 

growth) 

Dynamic  

(root 

allocation) 

f(soil N) 
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ORCHIDEEv3 (Vuichard 

et al., 

2019) 

Vcmax 

flexible C:N 

stoichiometry 

Time-

invariant 

Static N-invariant 

  144 
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We analysed the S3 simulation which includes historical changes in atmospheric CO2, 145 

climate, N deposition, N fertilisation, and land use from 1851 to 2021 (see Friedlingstein et al. 146 

(2022) for a full description of the simulation protocol). Briefly, models were forced with 147 

atmospheric CO2 from Dlugokencky and Tans (2022), the merged monthly Climate Research 148 

Unit (CRU) and 6-hourly Japanese 55-year Reanalysis (JRA-55) dataset or the monthly CRU 149 

dataset Harris et al. (2020), N deposition from Hegglin et al. (2016) / Tian et al. (2022), N 150 

fertilisation from the global N2O Model Intercomparison Project (NMIP) (Tian et al., 2018), and 151 

land use from the LUH2-GCB2022 (Land-Use Harmonization 2) dataset (Chini et al., 2021; 152 

Hurtt et al., 2020; Klein Goldewijk et al., 2017a, b). We interpolated outputs from all models to a 153 

common resolution of 1° x 1° using bilinear interpolation. 154 

2.2 Terrestrial biosphere model descriptions 155 

The terrestrial biosphere models in the TRENDY ensemble employ a wide variety of 156 

assumptions and formulations of N cycling processes, reflecting knowledge gaps and divergent 157 

theories (Table 1). Here we describe four fundamental aspects of N cycling for each terrestrial 158 

biosphere model: N limitation of vegetation growth, biological N fixation, the response of 159 

vegetation to N limitation (i.e., strategies in which vegetation invests C to increase N supply in 160 

N-limited conditions), and N limitation of decomposition. These have been identified as 161 

important challenges for representing N cycling in terrestrial biosphere models (Meyerholt et al., 162 

2020; Peng et al., 2020; Stocker et al., 2016; Wieder et al., 2015a; Zaehle et al., 2015; Zaehle and 163 

Dalmonech, 2011). 164 

Terrestrial biosphere models differ in how N limitation of vegetation growth is 165 

represented (Thomas et al., 2015). Some TRENDY models represent flexible C:N stoichiometry 166 

and modelled maximum carboxylation rate of photosynthesis (Vcmax) decreases with decreasing 167 

leaf N (CABLE-POP, CLASSIC, CLM5.0, LPJ-GUESS, OCNv2, ORCHIDEEv3) following 168 

empirical evidence (Walker et al., 2014). Other TRENDY models represent time-invariant C:N 169 

stoichiometry and modelled GPP or NPP decreases with N limitation (DLEM, ISAM, JSBACH, 170 

JULES-ES, and LPX-Bern). Importantly, flexible vs. time-invariant C:N stoichiometry 171 

determines terrestrial C storage per unit N. 172 

Biological N fixation is the dominant natural N supply to terrestrial ecosystems (Vitousek 173 

et al., 2013). In terrestrial biosphere models, biological N fixation has generally been represented 174 

phenomenologically as a function of either net primary productivity (NPP) or evapotranspiration 175 

(ET) (Cleveland et al., 1999). More recently, representations of biological N fixation have been 176 

updated such that it is up-regulated in N-limited conditions following empirical evidence (Menge 177 

et al., 2015; Vitousek et al., 2013; Zheng et al., 2019). The majority of TRENDY models 178 

represent biological N fixation phenomenologically (ISAM, JSBACH, JULES-ES, and LPJ-179 

GUESS). Three TRENDY models (CLASSIC, CLM5.0, and OCNv2) represent biological N 180 

fixation mechanistically such that it increases with N limitation of vegetation (Kou-Giesbrecht 181 

and Arora, 2022; Lawrence et al., 2019; Meyerholt et al., 2016). These representations separate 182 

free-living biological N fixation (via soil microbes, epiphytic microbes, lichens, bryophytes, etc. 183 

(Reed et al., 2011)) from symbiotic biological N fixation, which is regulated by N limitation of 184 

vegetation. DLEM derives biological N fixation as a function of soil temperature, soil moisture, 185 
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soil C, and soil N. LPX-Bern derives biological N fixation post hoc to simulate a closed N cycle, 186 

implicitly including rock N sources (Joos et al., 2020). Finally, CABLE-POP and ORCHIDEEv3 187 

represent biological N fixation as a specified time-invariant input over the historical period. 188 

Importantly, representing the regulation of biological N fixation by N limitation does not only 189 

determine biological N fixation itself but also modulates terrestrial C sequestration: it enables 190 

vegetation to increase N uptake in N-limited conditions, reduce N limitation, and thus sustain 191 

terrestrial C sequestration. Some TRENDY models (DLEM, LPJ-GUESS, and OCNv2) also 192 

represent increasing C allocation to roots with increasing N limitation (Smith et al., 2014; Zaehle 193 

and Friend, 2010) following empirical evidence (Poorter et al., 2012). This enables vegetation to 194 

increase root N uptake in N-limited conditions, reduce N limitation, and thus sustain terrestrial C 195 

sequestration. The response of vegetation to N limitation, which could also include increased C 196 

allocation to mycorrhizae (Phillips et al., 2013) (represented in CLM5.0) or increased 197 

retranslocation of N during tissue turnover (Du et al., 2020; Han et al., 2013; Kobe et al., 2005) 198 

(represented in CLM5.0) is important for determining terrestrial C sequestration. 199 

Decomposition rate is controlled by soil temperature, soil moisture, and N content in 200 

litter, where increasing litter C:N ratio decreases decomposition rate (Cotrufo et al., 2013). Some 201 

TRENDY models represent this reduction in decomposition rate with increasing litter C:N ratio 202 

(CLM5.0, DLEM, ISAM, JSBACH, JULES-ES, and OCNv2) following empirical evidence. 203 

2.3 Observation-based datasets 204 

We interpolated observation-based datasets to a common resolution of 1° x 1° using 205 

bilinear interpolation for comparison against model outputs. To compare model outputs against 206 

observation-based datasets we averaged model outputs over 1980–2021, which spans the period 207 

in which most measurements were made. 208 

2.3.1 Biological N fixation 209 

 A biological N fixation observation-based dataset was derived from Davies-Barnard and 210 

Friedlingstein (2020), a global meta-analysis of field measurements of natural biological N 211 

fixation (free-living and symbiotic) that scales biome-specific means onto the Collection 5 212 

MODIS Global Land Cover Type International Geosphere-Biosphere Programme (IGBP) 213 

product (Friedl et al., 2010). To account for agricultural biological N fixation, we assumed that 214 

N-fixing crops account for 15.7% of global cropland area (U.S. Department of Agriculture, 215 

2022) and their biological N fixation rate as 11.5 g N m-2 yr-1 (Herridge et al., 2008). We 216 

assumed that N-fixing crops are distributed evenly across all cropland. We amended the dataset 217 

from Davies-Barnard and Friedlingstein (2020) to include agricultural biological N fixation 218 

(DBF-USDA). 219 

The score of LPX-Bern in simulating biological N fixation is not analysed because it 220 

implicitly includes rock N sources and is thus not directly comparable to the observation-based 221 

dataset. 222 

2.3.2 Vegetation C:N ratio 223 
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 A vegetation C:N ratio observation-based dataset was derived by scaling biome-specific 224 

means from the TRY plant trait database (Kattge et al., 2020) onto the Collection 5 MODIS 225 

Global Land Cover Type IGBP product (Friedl et al., 2010). First, we obtained N content per dry 226 

mass for leaves, root, and stem, as well as C content per dry mass for leaves, root, and stem from 227 

the TRY plant trait database. We selected entries that reported species. Second, we obtained 228 

plant functional type (PFT) for each species from the TRY plant trait database. We categorised 229 

each PFT into the IGBP land cover types (Table A1) and then used this to categorise each entry 230 

into the IGBP land cover types. We averaged across entries in each IGBP land cover type. Third, 231 

we divided mean tissue C content per tissue dry mass by mean tissue N content per tissue dry 232 

mass for each tissue and for each IGBP land cover type. Fourth, we weighed each tissue by its 233 

PFT-specific fraction of total biomass from Poorter et al. (2012) to obtain total vegetation C:N 234 

ratio for each IGBP land cover type. Lastly, we scaled total vegetation C:N ratio for each IGBP 235 

land cover type to the Collection 5 MODIS Global Land Cover Type IGBP product.  236 

2.3.3 Soil C:N ratio 237 

A soil C:N ratio observation-based dataset was derived from soil C and soil N products 238 

from SoilGrids (Poggio et al., 2021), which provides globally gridded datasets of soil organic C 239 

and total soil N at a 250m x 250m resolution for six layers up to a depth of 200 cm. These 240 

estimates are derived using machine learning methods and soil observations from 240 000 241 

locations across the globe and over 400 environmental covariates. We summed soil C over all 242 

layers and soil N over all layers (using the bulk density and depth of each layer) then obtained 243 

the soil C:N ratio. 244 

2.3.4 C cycling variables 245 

In addition to evaluating N cycling variables, we also evaluated the primary C cycling 246 

variables: gross primary productivity (GPP), net biome productivity (NBP), vegetation C 247 

(CVEG), soil C (CSOIL), and leaf area index (LAI). These variables have been previously 248 

evaluated in detail for the terrestrial biosphere models in the TRENDY ensemble (GCP 2021) in 249 

Seiler et al. (2022). Seiler et al. (2022) gives further details on the observation-based datasets 250 

used to evaluate the primary C cycling variables. Briefly, we evaluated GPP against MODIS 251 

(Zhang et al., 2017), GOSIF (Li and Xiao, 2019), and FLUXCOM (Jung et al., 2020) products. 252 

We evaluated NBP against the CAMS (Agustí-Panareda et al., 2019), CarboScope (Rödenbeck 253 

et al., 2018), and CT2019 (Jacobson et al., 2020) products. We evaluated CVEG against the 254 

GEOCARBON (Avitabile et al., 2016; Santoro et al., 2015), Zhang and Liang (2020), and Huang 255 

et al. (2021) products. We evaluated LAI against AVHRR (Claverie et al., 2016), Copernicus 256 

(Verger et al., 2014), and MODIS (Myneni et al., 2002) products. We evaluated CSOIL against 257 

HWSD (Todd-Brown et al., 2013; Wieder, 2014) and SoilGrids (Hengl et al., 2017) products. 258 

These observation-based products are globally gridded. 259 

2.4 Model evaluation with the Automated Model Benchmarking R Package (AMBER) 260 

The Automated Model Benchmarking R (AMBER) package developed by Seiler et al. 261 

(2021) quantifies model performance in reproducing observation-based datasets using a skill 262 

score system that is based on ILAMB (Collier et al., 2018). Five scores assess the simulated 263 
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time-mean bias (Sbias), monthly centralised root-mean-square-error (Srmse), seasonality (Sphase), 264 

inter-annual variability (Siav), and spatial distribution (Sdist) in comparison to the observation-265 

based dataset. Scores are dimensionless and range from 0 to 1, where higher values indicate 266 

better model performance. The overall score for each variable (Soverall) is 267 

𝑆𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = mean(𝑆𝑏𝑖𝑎𝑠, 𝑆𝑟𝑚𝑠𝑒 , 𝑆𝑝ℎ𝑎𝑠𝑒 , 𝑆𝑖𝑎𝑣, 𝑆𝑑𝑖𝑠𝑡) 268 

We calculated the overall score for each C and N cycling variable. Because biological N fixation, 269 

vegetation C:N ratio, and soil C:N ratio datasets are representative of the present-day (as a single 270 

time point), Srmse, Sphase, and Siav are not defined and thus do not contribute to Soverall. This also 271 

holds for vegetation C and soil C. The calculation of each score is described in detail in Seiler et 272 

al. (2022).  273 

2.5 Statistics 274 

 We used a Mann-Kendall trend test to assess the existence of a statistically significant 275 

trend in the time series over the historical period for simulated C and N cycling variables (Hipel 276 

and McLeod, 1994). We calculated Spearman’s rank correlation coefficient to assess the 277 

existence of statistically significant correlations between overall scores, present-day global 278 

values, and Kendall’s tau. We used a t-test or ANOVA (p-value < 0.05) to assess the existence of 279 

statistically significant differences between overall scores, present-day global values, and 280 

Kendall’s tau for models with different representations of N limitation of vegetation growth, 281 

biological N fixation, vegetation response to N limitation, and N limitation of decomposition 282 

(Table 1). 283 

 284 

3 Results 285 

3.1 Net biome productivity 286 

 Figure 2 shows NBP simulated by the TRENDY ensemble models with coupled C-N 287 

cycling (hereafter referred to as the TRENDY-N ensemble). NBP is the difference between the 288 

net natural atmosphere-land flux of CO2 and land use change CO2 emissions. Positive values of 289 

NBP indicate a terrestrial C sink whereas negative values of NBP indicate a terrestrial C source. 290 

All TRENDY-N ensemble models suggest a terrestrial C sink for the present-day, agreeing with 291 

the global C budget constraint from the 2022 Global C Budget with most models within two 292 

standard deviations of the mean (1.5 ± 0.6 Pg C for 2012–2021) (Figure 2a). The TRENDY-N 293 

ensemble agrees reasonably well with observations globally, agreeing somewhat better with 294 

CarboScope and CT2019 than with CAMS (Figure 2b). However, the latitudinal distributions of 295 

the observation-based datasets display weak agreement among themselves, with opposing signs 296 

in multiple regions, especially at southern latitudes and at high northern latitudes (Figure 2b). 297 

This is in part due to the smaller land area at these latitudes. The region showing the strongest 298 

agreement is mid to high northern latitudes, in which both the TRENDY-N ensemble and 299 

observations suggest a terrestrial C sink (Figure 2b).  300 
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Figure 2: Net biome productivity (NBP) simulated by the TRENDY-N ensemble. a. Global NBP 301 

from 1960 to 2021. The boxes indicate the global C budget constraint (difference between fossil 302 

fuel CO2 emissions and the growth rate of atmospheric CO2 and the uptake of CO2 by oceans; 303 

mean ± 2 standard deviation) from the 2022 Global C Budget (Friedlingstein et al., 2022). Thick 304 

lines indicate the moving average over 10 years and thin lines indicate the annual time series. b. 305 

Latitudinal distribution and global mean of NBP (averaged over 1980–2021) in comparison to 306 

three datasets (CAMS (Agustí-Panareda et al., 2019), CarboScope (Rödenbeck et al., 2018), and 307 

CT2019 (Jacobson et al., 2020)). The boxplot shows the median, interquartile range (box), and 308 

80% percentiles (whiskers) of the global mean of NBP. 309 

  310 
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3.2 Overview of N cycling 311 

Figure 3 shows a schematic of the N cycle alongside the primary N fluxes and C:N ratios 312 

of the primary pools simulated by the TRENDY-N ensemble for the present-day (averaged over 313 

1980–2021) as well as observation-based estimates for these variables that have previously been 314 

used for model evaluation (Davies-Barnard et al., 2020). Simulated biological N fixation ranged 315 

between 20 and 566 Tg N yr-1 (Table 2) in comparison to the observation-based estimate of 148 316 

Tg N yr-1, which includes both natural biological N fixation (88 Tg N yr-1 (52 – 130 Tg N yr-1) 317 

(Davies-Barnard and Friedlingstein, 2020)) and agricultural biological N fixation (50 – 70 Tg N 318 

yr-1 (Herridge et al., 2008)). Simulated N2O emissions ranged between 0.9 and 11.0 Tg N yr-1 319 

(Table 2) in comparison to the observation-based estimate of 10.8 Tg N yr-1 (7.1 – 16.0 Tg N yr-320 
1) (Tian et al., 2020). Simulated N losses (which include emissions of NH3, N2O, NOx and N2 as 321 

well as NO3
- and NH4

+ leaching) ranged between 87 and 603 Tg N yr-1 (Table 2) in comparison 322 

to the observation-based estimate of 293 Tg N yr-1 (Fowler et al., 2013). The simulated 323 

vegetation C:N ratio ranged between 103 and 222 (Table 2) in comparison to the observation-324 

based estimate of 133 (Zechmeister-Boltenstern et al., 2015). The simulated combined litter-soil 325 

C:N ratio ranged between 10 and 64 (Table 2) in comparison to the observation-based estimate 326 

of 15 (Zechmeister-Boltenstern et al., 2015). Biological N fixation has the largest inter-model 327 

spread with a coefficient of variation of 1.06 (Table 2). Figure 4 shows the geographical 328 

distribution of the primary N pools and fluxes simulated by the TRENDY-N ensemble for the 329 

present-day (averaged over 1980–2021).   330 
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Figure 3: The N cycle and the primary N pools and fluxes simulated by the TRENDY-N 331 

ensemble (averaged over 1980–2021). Horizontal black lines indicate observation-based 332 

estimates that have previously been used for model evaluation (biological N fixation from 333 

Davies-Barnard and Friedlingstein (2020) and Herridge et al. (2008), vegetation and combined 334 

litter-soil C:N ratios from Zechmeister-Boltenstern et al. (2015), N2O emissions from Tian et al. 335 

(2020), and N losses from Fowler et al. (2013)). The black box indicates the terrestrial biosphere. 336 

N enters the terrestrial biosphere via biological N fixation, N deposition, and N fertilisation 337 

(entering the organic soil N pool, the inorganic soil N pool (ammonium (NH4
+) or nitrate (NO3

-338 

)), or the vegetation N pool). N is transferred from the inorganic soil N pool to the vegetation N 339 

pool via N uptake. N is transferred from the vegetation N pool to the litter N pool via N litterfall. 340 

N is transferred from the litter N pool to the organic soil N pool via decomposition. N is 341 

transferred from the organic soil N pool to the inorganic soil N pool via net N mineralisation. N 342 

exits the terrestrial biosphere via N loss (which includes N leaching from soils and N2O, NOx, 343 

NH3, and N2 emissions from both soils and land use change). Not all models provide output for 344 

each N pool or flux. Note that biological N fixation simulated by LPX-Bern implicitly includes 345 

rock N sources. 346 
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Figure 4: Geographical distributions of a. vegetation N, b. litter N, c. soil N, d. biological N 348 

fixation, e. N uptake, f. net N mineralisation, g. N2O emissions, and h. N loss simulated by the 349 

TRENDY-N ensemble (averaged across models over 1980–2021). 350 

  351 
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Table 2: Global mean and coefficient of variation of each N pool and flux simulated by the 352 

TRENDY-N ensemble (across models over 1980–2021).  353 

 Coefficient of 

variation 

Global 

mean 

Global 

median 

Global 

minimum 

Global 

maximum 

Vegetation N  

(Tg N) 

0.41 2.94 2.94 1.50 5.58 

Litter N  

(Tg N) 

0.81 1.94 1.08 0.73 5.61 

Soil N  

(Tg N) 

0.67 101.43 81.21 32.10 277.41 

Biological N fixation 

(Tg N yr-1) 

1.06 139.63 101.83 19.92 565.53 

N uptake  

(Tg N yr-1) 

0.33 838.78 698.11 529.53 1304.87 

Net N mineralisation 

(Tg N yr-1) 

0.45 836.00 700.28 471.39 1661.53 

N2O emissions  

(Tg N yr-1) 

0.53 7.06 9.04 0.86 11.01 

N loss  

(Tg N yr-1) 

0.85 187.62 125.96 87.02 602.77 

Vegetation C:N ratio 0.28 159.28 154.50 102.84 222.22 

Soil C:N ratio 0.90 17.32 11.13 10.00 63.57 

  354 
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 Figure 5 shows the time series of the change from pre-industrial levels of the primary N 355 

pools and fluxes from 1850 to 2021 simulated by the TRENDY-N ensemble. Figure 6 shows the 356 

corresponding Kendall’s tau which identifies the existence of a statistically significant trend 357 

(Table A2). Some models suggest decreasing vegetation N (6/11 models), whereas other models 358 

suggest increasing vegetation N (2/11 models) or no trend in vegetation N (3/11 models). Some 359 

models suggest decreasing soil N (7/11 models), whereas other models suggest increasing soil N 360 

(4/11 models). Some models suggest increasing biological N fixation (7/11 models), whereas 361 

other models suggest decreasing biological N fixation (2/11 models) or no trend in biological N 362 

fixation (2/11 models). All models suggest increasing N uptake (10/10 models). Most models 363 

suggest increasing net N mineralisation rate (9/10 models) or no trend in N mineralisation rate 364 

(1/10 models). All models suggest increasing N2O emissions (7/7 models) and increasing N loss 365 

(10/10 models).   366 
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Figure 5: Time series of the change from the pre-industrial level (averaged over 1850–1870) of a. 367 

vegetation N, b. litter N, c. soil N, d. biological N fixation, e. N uptake, f. net N mineralisation, 368 

g. N2O emissions, and h. N loss simulated by the TRENDY-N ensemble from 1850 to 2021. 369 

Figure A4 shows the time series for each N pool and N flux simulated by the TRENDY-N 370 

ensemble from 1850 to 2021. 371 

  372 
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Figure 6: Kendall’s tau from the Mann-Kendall test (p-value < 0.05) for each N pool and N flux 373 

time series simulated by the TRENDY-N ensemble from 1850 to 2021 (Table A2). A positive 374 

value (red) indicates an increasing trend and a negative value (blue) indicates a decreasing trend 375 

Gray indicates a statistically insignificant value and white indicates a missing value. 376 

  377 
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3.3 Evaluation of biological N fixation, vegetation C:N ratio, and soil C:N ratio 378 

In comparison to the observation-based dataset from Davies-Barnard and Friedlingstein 379 

(2020) and the U.S. Department of Agriculture (USDA), the TRENDY-N ensemble reproduced 380 

global biological N fixation (101.8 Tg N yr-1 vs. 108.0 Tg N yr-1; Figure 7a and Table 2) but 381 

overestimated low-latitude biological N fixation and underestimated high-latitude biological N 382 

fixation in the Northern hemisphere (Figure 7b). In comparison to the observation-based dataset 383 

from the TRY plant trait database, the TRENDY-N ensemble overestimated the global 384 

vegetation C:N ratio (154.5 vs. 90.5; Figure 7c and Table 2) and overestimated the vegetation 385 

C:N ratio across latitudes while capturing its latitudinal pattern (Figure 7d). In comparison to the 386 

observation-based dataset from SoilGrids, the TRENDY-N ensemble overestimated the global 387 

soil C:N ratio, simulating a relatively constant soil C:N ratio across latitudes (11.1 vs. 8.8; Figure 388 

7e and Table 2). The TRENDY-N ensemble was thus unable to capture the latitudinal pattern of 389 

the soil C:N ratio (Figure 7f).  390 
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Figure 7: Latitudinal distributions and global means of biological N fixation, vegetation C:N 391 

ratio, and soil C:N ratio simulated by the TRENDY-N ensemble (averaged across models over 392 

1980–2021) in comparison to observations. ace. show the latitudinal distribution of the mean and 393 

boxplots show the global mean. bdf. show the latitudinal distribution of the bias. Latitudinal 394 

distributions show the mean (black line) and the 50%, 80%, and 100% percentiles across models. 395 

Boxplots show the median, interquartile range (box), and 80% percentiles (whiskers) across 396 

models. Observation-based datasets are from Davies-Barnard and Friedlingstein (2020) and the 397 

U.S. Department of Agriculture (USDA) for biological N fixation, the TRY plant trait database 398 

for vegetation C:N ratio, and SoilGrids for soil C:N ratio. LPX-Bern simulations are not shown 399 

in ab. Latitudinal distributions and global means of individual models in the TRENDY-N 400 

ensemble are shown in Figure A5. 401 

   402 
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The overall score is a metric of model performance in reproducing an observation-based 403 

dataset. Overall scores for biological N fixation, vegetation C:N ratio, and soil C:N ratio (0.46, 404 

0.52, and 0.29 averaged across models, respectively) were lower than those for C cycling 405 

variables (0.58 averaged across all C cycling variables and across models) (Figure 8). The mean 406 

overall score for vegetation C:N ratio across models (0.52) was lower than the mean overall 407 

scores for vegetation C across models (which ranged from 0.61 to 0.69 depending on the 408 

observation-based dataset used to derive the score). Similarly, the mean overall score for soil 409 

C:N ratio across models (0.20) was lower than the mean overall scores for soil C across models 410 

(which ranged from 0.39 to 0.53 depending on the observation-based dataset used to derive the 411 

score). Overall scores varied between 0.27 and 0.61 for biological N fixation, between 0.33 and 412 

0.68 for vegetation C:N ratio, and between 0.16 and 0.39 for soil C:N ratio.  413 
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Figure 8: Overall scores of the TRENDY-N ensemble in simulating C and N cycling variables: 414 

gross primary productivity (GPP), net biome productivity (NBP), vegetation C (CVEG), soil C 415 

(CSOIL), leaf area index (LAI), biological N fixation (FBNF), vegetation C:N ratio (CNVEG), 416 

and soil C:N ratio (CNSOIL). Abbreviations of the observation-based datasets are described in 417 

the Methods and in Seiler et al. (2022). 418 

   419 
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For N cycling variables, the overall score is composed of the time-mean bias score 420 

(which assesses the difference between the time-mean of model simulations and the time-mean 421 

of the observation-based dataset) and the spatial distribution score (which assesses the ability of 422 

the model to reproduce the spatial pattern of the observation-based dataset) (Collier et al., 2018; 423 

Seiler et al., 2022). For biological N fixation, the time-mean bias score averaged across models 424 

was 0.50 and the mean spatial distribution score across models was 0.41 (Table A3). For the 425 

vegetation C:N ratio, the time-mean bias averaged score across models was 0.47 and the mean 426 

spatial distribution score across models was 0.58 (Table A3). For the soil C:N ratio, the time-427 

mean bias score averaged across models was 0.39 and the mean spatial distribution score across 428 

models was 0.19 (Table A3).  429 

Note that, for C fluxes, the overall score is composed of not only the time-mean bias 430 

score and the spatial distribution score, but also the monthly centralised root-mean-square-error 431 

score (which assesses the ability of the model to reproduce the time series of the observation-432 

based dataset), the seasonality score (which assess the ability of the model to reproduce the 433 

seasonality of the observation-based dataset), and the inter-annual variability score (which 434 

assesses the ability of the model to reproduce the inter-annual variability of the observation-435 

based dataset) because observation-based datasets of C fluxes are available over time (whereas 436 

observation-based datasets of C pools and all N cycling variables are representative of the 437 

present-day (as a single time point)).  438 

3.4 Representation of N cycling processes 439 

There were no statistically significant differences in overall scores between models with 440 

different representations of N limitation of vegetation growth (decreasing Vcmax and flexible C:N 441 

stoichiometry vs. decreasing NPP), different representations of biological N fixation (function of 442 

N limitation of vegetation growth vs. function of NPP or ET vs. time-invariant), different 443 

representations of the response of vegetation to N limitation (dynamic vs. static), or different 444 

representations of N limitation of decomposition (function of soil N vs. N-invariant) (Table A4). 445 

However, models that represented decomposition as a function of soil N had a significantly 446 

higher NBP score (corresponding to CT2019) than models that represented decomposition as N-447 

invariant. Similarly, there were no statistically significant differences between present-day global 448 

values or Kendall’s tau of primary C and N pools and fluxes between models with different 449 

representations of N limitation of vegetation growth, biological N fixation, vegetation response 450 

to N limitation, and N limitation of decomposition (Table A5 and A6). Figure A1 shows 451 

correlations between present-day global values of the primary C and N pools and fluxes across 452 

the TRENDY-N ensemble. Figure A2 shows correlations between Kendall’s tau of the primary C 453 

and N pools and fluxes across the TRENDY-N ensemble. Figure A3 shows correlations between 454 

overall scores of the primary C and N pools and fluxes across the TRENDY-N ensemble. 455 

 456 

4 Discussion 457 

Despite the pivotal importance of N in constraining terrestrial C cycling and ultimately 458 

the terrestrial C sink, there is substantial variation in simulated N cycling processes by the 459 
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terrestrial biosphere models in the TRENDY-N ensemble. The magnitude of N pools and fluxes 460 

differ considerably between models, between 19.9 and 565.5 Tg N yr-1 for biological N fixation 461 

(CV = 1.1), between 1.5 and 5.6 Tg N for vegetation N (CV = 0.4), between 32.1 and 277.4 Tg 462 

N for soil N (CV = 0.7), and between 87.0 and 602.8 Tg N yr-1 for N loss (CV = 0.9). The spread 463 

across the TRENDY-N ensemble suggests that approaches to represent N cycling processes vary 464 

among terrestrial biosphere models and that there is no clear consensus yet on what the best 465 

approaches are, supporting the use of an ensemble approach to capture the uncertainties in our 466 

understanding of the N cycle, similarly to the C cycle (Tebaldi and Knutti, 2007). 467 

Additionally, the historical trajectories of the N pools and fluxes differ between models: 468 

some models simulate increasing vegetation N and soil N whereas others simulate decreasing 469 

vegetation N and soil N between 1850 and 2021. These are the result of a host of interacting 470 

global change drivers (CO2 fertilisation, intensifying N deposition, rising temperature and 471 

varying precipitation, land use change and associated N fertilisation regimes) whose effects are 472 

challenging to disentangle without additional simulations. For example, while intensifying N 473 

deposition and N fertiliser use could drive increasing soil N and N uptake, land use change could 474 

increase N losses from both vegetation N and soil N. Despite these large differences across 475 

models in the historical trajectories of vegetation N and soil N, all models simulate the historical 476 

terrestrial C sink in line with observations. This suggests that the underlying N cycling processes 477 

that regulate terrestrial C sequestration operate differently across models and may not be fully 478 

captured. Modelled experimental manipulations (such as CO2 fertilisation or N fertilisation 479 

experiments) are imperative to evaluate model formulations of the underlying mechanisms of C-480 

N cycling interactions given that it is these processes that dictate the response of terrestrial C 481 

sequestration to global change (Medlyn et al., 2015; Wieder et al., 2019; Zaehle et al., 2014).  482 

Most models suggest increasing biological N fixation between 1850 and 2021. This 483 

occurs either as a result of increasing vegetation biomass or the up-regulation of biological N 484 

fixation due to N limitation imposed by CO2 fertilisation or a combination thereof, depending on 485 

the representation of biological N fixation in a given model (Table 1). This follows observations 486 

that suggest that biological N fixation is stimulated by CO2 fertilisation (Zheng et al., 2020), 487 

although its mechanism (i.e., up-regulated biological N fixation in N-limited conditions) may not 488 

be captured. Similarly, most models also suggest increasing N uptake between 1850 and 2021. 489 

This also occurs as a result of increasing vegetation biomass, increasing soil N from intensifying 490 

N deposition and N fertiliser use, or increasing biological N fixation, mycorrhizae and root 491 

allocation due to N limitation imposed by CO2 fertilisation, again dependent on the 492 

representation of the vegetation response to N limitation in a given model (Table 1). Most 493 

models suggest increasing net N mineralisation rate between 1850 and 2021 likely due to rising 494 

temperature following observations (Liu et al., 2017). Most models suggest increasing N2O 495 

emissions (and N losses) between 1850 and 2021 likely due to rising temperature and 496 

intensifying N deposition and N fertiliser use following observations (Tian et al., 2020). 497 

We focused on three key N cycling processes for evaluation: biological N fixation, 498 

vegetation C:N ratio, and soil C:N ratio. These three key N cycling processes have important 499 

implications for projecting the future terrestrial C sink. Biological N fixation is the dominant 500 
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natural N supply to terrestrial ecosystems and allows vegetation to increase N uptake in N-501 

limited conditions, reduce N limitation, and thus sustain terrestrial C sequestration, such as in 502 

response to N limitation imposed by CO2 fertilisation (Zheng et al., 2020). Vegetation and soil 503 

C:N ratios reflect assimilated C per unit N and thus terrestrial C sequestration. They can 504 

potentially vary, such as in response to high photosynthesis rates relative to N uptake rates driven 505 

by CO2 fertilisation (Elser et al., 2010). Overall scores of N cycling variables, which quantify 506 

model performance in reproducing an observation-based dataset, are lower than overall scores of 507 

corresponding C cycling variables, suggesting that models could be less capable of capturing N 508 

cycling processes than C cycling processes. However, this could also be due to the significant 509 

uncertainty associated with measurements of N cycling processes as discussed below. Besides 510 

models that represent N limitation of decomposition yielding a higher overall NBP score, there 511 

were no statistically significant differences between models with different representations of N 512 

limitation of vegetation growth, biological N fixation, the response of vegetation to N limitation, 513 

and N limitation of decomposition for the overall score, present-day global value, or Kendall’s 514 

tau. This is likely due to the low number of models in the TRENDY-N ensemble and the 515 

confounding influence of other process representations. Studies have explored the validity of 516 

different representations of N cycling processes within a single model, suggesting that alternative 517 

representations of a biological N fixation, ecosystem C:N stoichiometry, and ecosystem N losses 518 

lead to substantial differences in simulated C cycling (Kou-Giesbrecht and Arora, 2022; 519 

Meyerholt et al., 2020; Peng et al., 2020; Wieder et al., 2015a). 520 

The TRENDY-N ensemble reproduced global observation-based biological N fixation 521 

but tended to overestimate low-latitude biological N fixation and underestimate high-latitude 522 

biological N fixation. This is likely because most models represented biological N fixation 523 

phenomenologically as a function of a measure of vegetation activity (either NPP or ET). Since 524 

there is higher vegetation activity at low latitudes than at high latitudes these models thus 525 

represent higher biological N fixation at low latitudes than at high latitudes. However, because 526 

biological N fixation is down-regulated in non-N-limited conditions, it is often down-regulated at 527 

low latitudes, which are generally not (or at least less) N-limited (Barron et al., 2011; Batterman 528 

et al., 2013; Sullivan et al., 2014). While CLASSIC, CLM5.0, and OCNv2 can represent the 529 

down-regulation of biological N fixation in non-N-limited conditions, they still simulate high 530 

low-latitude biological N fixation. This suggests that the strength of regulation of biological N 531 

fixation could be insufficient and/or that there could be unaccounted N sources at low latitudes. 532 

For example, rock N weathering could be a significant N source to terrestrial ecosystems. Some 533 

estimates have suggested that rock N weathering could be as high as 11 – 18 Tg N yr-1 globally 534 

(Houlton et al., 2018) but is not explicitly represented in the TRENDY-N ensemble (with the 535 

exception of LPX-Bern which calculates all external N sources post hoc to simulate a closed N 536 

cycle thereby implicitly including rock N sources). The discrepancy between modelled and 537 

observed biological N fixation could also be due to uncertainty in the observation-based dataset 538 

given the difficulties associated with measuring biological N fixation (Soper et al., 2021). 539 

Ecological theory (Hedin et al., 2009) has suggested that natural biological N fixation should be 540 

higher at low latitudes given large N losses, in contrast to the observation-based dataset from 541 

Davies-Barnard and Friedlingstein (2020). Observational uncertainty is discussed further below. 542 
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The TRENDY-N ensemble overestimated global observation-based vegetation C:N ratio 543 

but reproduced its latitudinal pattern (as also indicated by its higher spatial distribution score). 544 

This is because most models represent different plant functional types (e.g., evergreen needleleaf 545 

trees, deciduous broadleaf trees, evergreen broadleaf trees, etc.) with different tissue C:N ratios 546 

(which can either be flexible within a constrained range or time-invariant). These plant 547 

functional types are geographically distributed according to similar land cover products. The 548 

TRENDY-N ensemble overestimated global observation-based soil C:N ratio and failed to 549 

reproduce its latitudinal pattern (as also indicated by its lower spatial distribution score). In 550 

particular, models failed to reproduce the peak at the equator and the peak at approximately -551 

30°S, corresponding to tropical forests and deserts respectively. This is because most models 552 

represent a constant soil C:N ratio (both temporally and spatially) and are thus unable to capture 553 

the spatial variability in the soil C:N ratio. Improving the representation of soil N is an important 554 

future direction for terrestrial biosphere model development given the essential feedbacks 555 

between soil N and soil C. 556 

Evaluating N cycling in terrestrial biosphere models is severely restricted by the lack of 557 

available observations of N cycling. N cycling processes are notoriously difficult to measure, 558 

such as biological N fixation (Soper et al., 2021) and gaseous N losses (Barton et al., 2015). In 559 

the past, N cycling has been commonly evaluated by comparison to estimates of global N pools 560 

and fluxes derived from a small number of observations that have been scaled up or averaged to 561 

yield a value with wide confidence intervals (Davies-Barnard et al., 2020). Not only are these 562 

global totals highly uncertain, but they also do not allow for the analysis of spatial patterns. Here, 563 

we present an improved framework to evaluate three key N cycling processes – biological N 564 

fixation, vegetation C:N ratio, and soil C:N ratio – in terrestrial biosphere models. However, 565 

these globally-gridded observation-based datasets are also uncertain, given uncertainty in the 566 

estimates of tissue C:N ratios for different plant functional types and tissue fraction of total 567 

biomass (especially those of roots and wood which had a lower number of measurements in 568 

comparison to that of leaves), as well as in the measurements and models used to derive soil N 569 

(Batjes et al., 2020). Importantly, more observations of additional N cycling processes are 570 

necessary to fully evaluate N cycling in terrestrial biosphere models. Multiple observation-based 571 

datasets from different sources of a given N cycling process are necessary to evaluate 572 

observational uncertainty (Seiler et al., 2021). Observation-based datasets of N cycling processes 573 

at intra-annual and inter-annual time scales are necessary to assess temporal patterns. 574 

Paleoclimatic observations could also be utilised for evaluation (Joos et al., 2020). Leveraging 575 

advances in remote sensing (Knyazikhin et al., 2013; Townsend et al., 2013) as well as 576 

incorporating N cycling process measurements into research networks such as FLUXNET (Vicca 577 

et al., 2018) is essential.  578 

While some of the models in the TRENDY-N ensemble have the capability of 579 

representing coupled C, N, and phosphorus (P) cycling (Goll et al., 2012; Nakhavali et al., 2022; 580 

Sun et al., 2021; Wang et al., 2010, 2020b; Yang et al., 2014), P cycling was not active in the 581 

model simulations in the GCP 2022. P limitation could be important for limiting terrestrial C 582 

sequestration, especially in low-latitude forests (Elser et al., 2007; Terrer et al., 2019; Wieder et 583 
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al., 2015b). As more models incorporate coupled C-N-P cycling (Reed et al., 2015), observation-584 

based datasets of P will also be necessary for model evaluation.  585 

 586 

5 Conclusions 587 

Because the TRENDY-N ensemble overestimated both vegetation and soil C:N ratios, it 588 

is possible that models could overestimate assimilated C per unit N and thus future terrestrial C 589 

sequestration under CO2 fertilisation. Alongside discrepancies in biological N fixation, this could 590 

lead to biases in projections of the future terrestrial C sink by the TRENDY-N ensemble (not to 591 

mention the other terrestrial biosphere models in the TRENDY ensemble that do not represent 592 

coupled C-N cycling). While terrestrial biosphere models are capable of reproducing the current 593 

terrestrial C sink, the results presented here suggest that underlying mechanisms of C-N cycling 594 

interactions operate differently across models and may not be fully captured. These interactions 595 

are critical for projections of the future terrestrial C sink as the C/N balance is expected to shift 596 

in the future under interacting global change drivers.  597 
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Appendix A 618 

 619 

Table A1: IGBP land cover type, corresponding TRY plant trait database PFT, tissue C:N ratios 620 

(from the TRY plant trait database (Kattge et al., 2020)), tissue fractions (Poorter et al., 2012), 621 

and calculated total C:N ratio. 622 

IGBP land 

cover type 

TRY plant trait 

database PFT 

Leaf 

C:N 

Leaf 

fraction 

Root 

C:N 

Root 

fraction 

Stem 

C:N 

Stem 

fraction 

Total 

C:N 

0 bare -        

1 Evergreen 

needleleaf 

forest 

Tree evergreen 

needleleaf 

Temperate evergreen 

needleleaf 

Boreal evergreen 

needleleaf 

Gymnosperm evergreen 

needleleaf tree  

Temperate conifer 

Boreal conifer 

Evergreen gymnosperm 

40.1 0.04 51.9 0.21 305.4 0.75 241.5 

2 Evergreen 

broadleaf 

forest 

Tree evergreen 

broadleaf 

Temperate evergreen 

broadleaf 

Tropical evergreen 

broadleaf 

Boreal evergreen 

broadleaf 

Angiosperm evergreen 

broadleaf tree 

Gymnosperm evergreen 

broadleaf tree 

Temperate evergreen 

Rainforest 

Evergreen angiosperm 

26.8 0.02 26.4 0.16 139.3 0.82 119.0 

3 Deciduous 

needleleaf 

forest 

Tree deciduous 

needleleaf 

Boreal deciduous 

needleleaf 

Gymnosperm deciduous 

needleaf tree 

Deciduous gymnosperm 

      241.5a 

4 Deciduous 

broadleaf 

forest 

Tree deciduous 

broadleaf 

Temperate deciduous 

broadleaf 

Tropical deciduous 

broadleaf 

Boreal deciduous 

broadleaf 

Angiosperm deciduous 

broadleaf tree 

Gymnosperm deciduous 

broadleaf tree 

Temperate deciduous 

Deciduous angiosperm 

21.5 0.03 39.6 0.21 102.1 0.76 86.6 

5 Mixed 

forest 

       149. 

0b 
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6 Closed 

shrubland 

Shrub evergreen 

broadleaf 

Evergreen shrub 

Deciduous shrub 

Shrub 

Angiosperm evergreen 

broadleaf shrub 

Angiosperm deciduous 

broadleaf shrub 

Gymnosperm evergreen 

broadleaf shrub 

Desert shrub 

Savanna evergreen 

Savanna deciduous 

34.5 0.09 24.9 0.47 216.7 0.49 121.0 

7 Open 

shrubland 

34.5 0.09 24.9 0.47 216.7 0.49 121.0 

8 Woody 

savannas 

34.5 0.09 24.9 0.36 216.7 0.57 134.5 

9 Savannas 34.5 0.09 24.9 0.36 216.7 0.57 134.5 

10 

Grasslands 

Grass C3 

Grass C4  

Temperate herbaceous 

Tropical herbaceous 

Herbaceous C3 

Herbaceous C4 

Angiosperm herbaceous 

C3 

Angiosperm herbaceous 

C4 

18.6 0.17 30.9 0.77 29.3 0.27 34.9 

11 

Permanent 

wetlands 

       34.9c 

12 

Croplands 

Crop C3 11.7 0.17 30.9c 0.77 29.3c 0.27 28.9 

13 Urban 

and built-up 

-         

14 Cropland 

/ natural 

vegetation 

mosaic 

       28.9d 

15 Snow and 

ice 

-        

16 Barren or 

sparsely 

vegetated 

-        

a Value from evergreen needleleaf forest. 623 
b Average of evergreen needleleaf forest, evergreen broadleaf forest, and deciduous broadleaf forest. 624 
c Value from grasslands. 625 
d Value from croplands. 626 
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Table A2: Kendall’s tau from the Mann-Kendall test (p-value < 0.05) for each N pool and N flux 628 

time series simulated by the TRENDY-N ensemble from 1850 to 2021. NS indicates that 629 

Kendall’s tau is not significant. NA indicates that the variable was not reported by the model. 630 
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Vegetation N 0.58 NS -0.97 -0.51 NS 0.83 NS -0.25 -0.75 -0.67 -0.51 

Litter N 0.88 0.15 0.65 -0.7 -0.87 0.92 0.86 -0.35 0.44 -0.69 NS 

Soil N 1 -0.8 -0.47 -0.97 -0.91 0.99 -0.67 -0.68 1 1 -0.3 

Biological N 

fixation 

NS 0.95 0.84 -0.33 -0.11 0.89 0.79 0.62 0.92 0.45 NS 

N uptake 0.89 0.64 0.81 0.78 NA 0.81 0.85 0.54 0.82 0.85 0.71 

Net N 

mineralisation 

0.91 0.33 0.73 0.87 NA 0.85 0.76 NS 0.86 0.82 0.31 

N2O emissions NA 0.92 0.7 0.87 NA 0.95 NA NA 0.7 0.42 0.69 

N loss NA 0.94 0.67 0.94 0.73 0.59 0.63 0.94 0.81 0.42 0.65 
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Table A3: Time-mean bias score (Sbias), spatial distribution score (Sdist), and overall score 632 

(Soverall) of the TRENDY-N ensemble in simulating biological N fixation, vegetation C:N ratio, 633 

and soil C:N ratio.  634 

 Biological N fixation Vegetation C:N ratio Soil C:N ratio 

 Sbias Sdist Soverall Sbias Sdist Soverall Sbias Sdist Soverall 

CABLE-POP 0.46 0.08 0.27 0.34 0.33 0.33 0.2 0.34 0.27 

CLASSIC 0.46 0.4 0.43 0.45 0.59 0.52 0.43 0.22 0.33 

CLM5.0 0.55 0.56 0.56 0.57 0.46 0.51 0.45 0.16 0.31 

DLEM 0.46 0.29 0.38 0.47 0.75 0.61 0.48 0.01 0.24 

ISAM 0.47 0.24 0.36 0.49 0.57 0.53 0.05 0.28 0.16 

JSBACH 0.48 0.44 0.46 0.63 0.74 0.68 0.38 0.11 0.25 

JULES-ES 0.47 0.43 0.45 0.4 0.49 0.44 0.51 0 0.25 

LPJ-GUESS 0.51 0.45 0.48 0.45 0.52 0.48 0.49 0.01 0.25 

LPX-Bern NA NA NA 0.54 0.76 0.65 0.33 0.4 0.37 

OCNv2 0.56 0.62 0.59 0.56 0.76 0.66 0.47 0.26 0.37 

ORCHIDEEv3 0.6 0.63 0.61 0.27 0.41 0.34 0.48 0.31 0.39 
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Table A4: Overall scores of biological N fixation, vegetation C:N ratio, soil C:N ratio, and NBP 636 

of TRENDY-N ensemble models with different representations of key N cycling processes (N 637 

limitation of vegetation growth, biological N fixation, vegetation response to N limitation, and N 638 

limitation of decomposition, see Table 1).  639 

  

B
N

F
-

D
B

F
U

S
D

A
 

C
N

V
E

G
-T

R
Y

 

C
N

S
O

IL
-

S
o
il

G
ri

d
s 

N
B

P
-C

A
M

S
 

N
B

P
-

C
ar

b
o
sc

o
p
e 

N
B

P
-C

T
2
0
1
9
 

N limitation of 

vegetation growth 

Vcmax / flexible C:N 

stoichiometry 

0.49 0.47 0.32 0.57 0.54 0.58 

NPP 

 

0.41 0.58 0.26 0.56 0.52 0.58 

p-value 0.21 0.14 0.15 0.59 0.44 0.9 

Biological N fixation f(N limitation of 

vegetation growth) 

0.44 0.34 0.33 0.57 0.54 0.57 

f(NPP) or f(ET) 0.44 0.53 0.23 0.57 0.54 0.6 

Time-invariant 0.53 0.56 0.33 0.57 0.55 0.59 

p-value 0.59 0.07 0.06 0.92 0.91 0.28 

Vegetation response to 

N limitation 

Dynamic 0.49 0.56 0.3 0.57 0.55 0.59 

Static 0.43 0.5 0.28 0.56 0.53 0.58 

p-value 0.44 0.41 0.71 0.48 0.3 0.67 

N limitation of 

decomposition 

f(soil N) 0.47 0.57 0.26 0.57 0.54 0.6 

N-invariant 0.45 0.46 0.32 0.56 0.52 0.56 

p-value 0.86 0.17 0.16 0.26 0.44 0.02 
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Table A5: Present-day global values of biological N fixation, vegetation C:N ratio, and soil C:N 641 

ratio simulated by TRENDY-N ensemble models with different representations of key N cycling 642 

processes (N limitation of vegetation growth, biological N fixation, vegetation response to N 643 

limitation, and N limitation of decomposition, see Table 1).  644 

  Biological N 

fixation 

Vegetation C:N 

ratio 

Soil C:N ratio 

N limitation of 

vegetation 

growth 

Vcmax / flexible C:N 

stoichiometry 

106.78 161.8 12.75 

NPP 

 

179.06 156.26 22.79 

p-value 0.51 0.85 0.39 

Biological N 

fixation 

f(N limitation of 

vegetation growth) 

123.14 201.68 15.71 

f(NPP) or f(ET) 66.37 177.37 24.31 

Time-invariant 118.95 123.89 11.64 

p-value 0.27 0.15 0.68 

Vegetation 

response to N 

limitation 

Dynamic 99.25 143.32 11.22 

Static 173.29 172.58 22.4 

p-value 0.41 0.29 0.24 

N limitation of 

decomposition 

f(soil N) 88.21 153.36 20.04 

N-invariant 201.34 166.38 14.04 

p-value 0.3 0.66 0.53 
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Table A6: Kendall’s tau from the Mann-Kendall test (p-value < 0.05) for biological N fixation, 646 

vegetation C:N ratio, and soil C:N ratio simulated by TRENDY-N ensemble models with 647 

different representations of key N cycling processes (N limitation of vegetation growth, 648 

biological N fixation, vegetation response to N limitation, and N limitation of decomposition, see 649 

Table 1).  650 

  Biological N 

fixation 

Vegetation C:N 

ratio 

Soil C:N ratio 

N limitation of 

vegetation 

growth 

Vcmax / flexible C:N 

stoichiometry 

0.48 -0.01 -0.04 

NPP 

 

0.43 -0.74 0 

p-value 0.89 0.06 0.94 

Biological N 

fixation 

f(N limitation of 

vegetation growth) 

0 -0.31 0.02 

f(NPP) or f(ET) 0.55 -0.6 0.14 

Time-invariant 0.74 0.39 -0.03 

p-value 0.15 0.15 0.97 

Vegetation 

response to N 

limitation 

Dynamic 0.5 -0.08 0.01 

Static 0.41 -0.56 -0.04 

p-value 0.77 0.3 0.93 

N limitation of 

decomposition 

f(soil N) 0.42 -0.42 0.31 

N-invariant 0.5 -0.25 -0.42 

p-value 0.8 0.7 0.14 
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Figure A1: Correlations between present-day global values (averaged over 1980–2021) of 652 

primary C and N pools and fluxes across TRENDY-N ensemble models: vegetation C (CVEG), 653 

litter C (CLITTER), soil C (CSOIL) ), net biome productivity (NBP), gross primary productivity 654 

(GPP), autotrophic respiration (RA), heterotrophic respiration (RH), leaf area index (LAI), 655 

vegetation N (NVEG), litter N (NLITTER), soil N (NSOIL), biological N fixation (FBNF), N 656 

uptake (NUP), net N mineralisation (NETNMIN), N2O emissions (N2O), N loss (NLOSS), 657 

vegetation C:N ratio (CNVEG), and soil C:N ratio (CNSOIL). Spearman’s rank correlation 658 

coefficient is shown for statistically significant correlations (p-value < 0.05). 659 
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Figure A2: Correlations between Kendall’s tau of primary C and N pools and fluxes across 661 

TRENDY-N ensemble models: vegetation C (CVEG), litter C (CLITTER), soil C (CSOIL), net 662 

biome productivity (NBP), gross primary productivity (GPP), autotrophic respiration (RA), 663 

heterotrophic respiration (RH), leaf area index (LAI), vegetation N (NVEG), litter N 664 

(NLITTER), soil N (NSOIL), biological N fixation (FBNF), N uptake (NUP), net N 665 

mineralisation (NETNMIN), N2O emissions (N2O), N loss (NLOSS), vegetation C:N ratio 666 

(CNVEG), and soil C:N ratio (CNSOIL). Spearman’s rank correlation coefficient is shown for 667 

statistically significant correlations (p-value < 0.05). 668 
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Figure A3: Correlations between overall scores of primary C and N pools and fluxes across 670 

TRENDY-N ensemble models: gross primary productivity (GPP), net biome productivity (NBP), 671 

vegetation C (CVEG), soil C (CSOIL), leaf area index (LAI), biological N fixation (FBNF), 672 

vegetation C:N ratio (CNVEG), and soil C:N ratio (CNSOIL). Abbreviations of the observation-673 

based datasets are described in the Methods and in (Seiler et al., 2022). Spearman’s rank 674 

correlation coefficient is shown for statistically significant correlations (p-value < 0.05). 675 
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Figure A4: Time series of a. vegetation N, b. litter N, c. soil N, d. biological N fixation, e. N 677 

uptake, f. net N mineralisation, g. N2O emissions, and h. N loss simulated by the TRENDY-N 678 

ensemble from 1850 to 2021.  679 

 680 

  681 

https://doi.org/10.5194/egusphere-2023-167
Preprint. Discussion started: 6 February 2023
c© Author(s) 2023. CC BY 4.0 License.



42 

 

Figure A5: Latitudinal distributions and global means of ab. biological N fixation, cd. vegetation 682 

C:N ratio, and ef. soil C:N ratio simulated by the TRENDY-N ensemble (averaged across models 683 

over 1980–2021) in comparison to observation-based datasets from (Davies-Barnard and 684 

Friedlingstein, 2020) for biological N fixation, the TRY plant trait database for vegetation C:N 685 

ratio, and SoilGrids for soil C:N ratio. Boxplots show the median, interquartile range (box), and 686 

80% percentiles (whiskers) of the global mean. 687 
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