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 25 

Abstract 26 

 Terrestrial carbon (C) sequestration is limited by nitrogen (N), an empirically established 27 

constraint that could intensify under CO2 fertilisation and future global change. The terrestrial C 28 

sink is estimated to currently sequester approximately a third of annual anthropogenic CO2 29 

emissions based on an ensemble of terrestrial biosphere models, which have been evaluated in 30 

their ability to reproduce observations of the C, water, and energy cycles. However, their ability 31 

to reproduce observations of N cycling and thus the regulation of terrestrial C sequestration by N 32 

has been largely unexplored. Here, we evaluate an ensemble of terrestrial biosphere models with 33 

coupled C-N cycling and their performance at simulating N cycling, outlining a framework for 34 

evaluating N cycling that can be applied across terrestrial biosphere models. We find that models 35 
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exhibit significant variability across N pools and fluxes, simulating different magnitudes and 36 

trends over the historical period, despite their ability to generally reproduce the historical 37 

terrestrial C sink. Furthermore, there are no significant correlations between model performance 38 

in simulating N cycling and model performance in simulating C cycling, nor are there significant 39 

differences in model performance between models with different representations of fundamental 40 

N cycling processes. This suggests that the underlying N processes that regulate terrestrial C 41 

sequestration operate differently across models and appear to be disconnected from C cycling. 42 

Models tend to overestimate tropical biological N fixation, vegetation C:N ratio, and soil C:N 43 

ratio but underestimate temperate biological N fixation relative to observations. However, there 44 

is significant uncertainty associated with measurements of N cycling processes given their 45 

scarcity (especially relative to those of C cycling processes) and their high spatiotemporal 46 

variability. Overall, our results suggest that terrestrial biosphere models that represent coupled C-47 

N cycling could be overestimating C storage per unit N, which could lead to biases in projections 48 

of the future terrestrial C sink under CO2 fertilisation and future global change (let alone those 49 

without a representation of N cycling). More extensive observations of N cycling processes and 50 

comparisons against experimental manipulations are crucial to evaluate N cycling and its impact 51 

on C cycling as well as guide its development in terrestrial biosphere models. 52 

 53 

Plain Language Summary 54 

Nitrogen (N) is an essential limiting nutrient to terrestrial carbon (C) sequestration. We 55 

evaluate N cycling in an ensemble of terrestrial biosphere models. We find that variability in N 56 

processes across models is large. Models tended to overestimate C storage per unit N in 57 

vegetation and soil, which could have consequences for projecting the future terrestrial C sink. 58 

However, N cycling measurements are highly uncertain, and more are necessary to guide the 59 

development of N cycling in models. 60 

 61 

1 Introduction 62 

The terrestrial biosphere is estimated to currently sequester approximately a third of 63 

anthropogenic CO2 emissions by the Global Carbon Project (GCP) (Friedlingstein et al., 2022). 64 

The GCP annually reports an estimate of the global carbon (C) budget which includes an 65 

estimate of the atmosphere-land CO2 flux based on simulations of an ensemble of terrestrial 66 

biosphere models – the trends in the land carbon cycle project (TRENDY) ensemble. In recent 67 

years, the majority of the models within the TRENDY ensemble have incorporated a 68 

representation of coupled C and nitrogen (N) cycling given the empirically established 69 

importance of N limitation of vegetation growth (Elser et al., 2007; LeBauer and Treseder, 2008; 70 

Wright et al., 2018): whereas only 4 out of 9 models represented coupled C-N cycling in the 71 

2013 GCP, 11 out of 16 models represented coupled C-N cycling in the 2022 GCP (Figure 1). 72 

Capturing N constraints on C cycling is critical for realistically simulating the terrestrial C sink, 73 

which arises from the combined effects of concurrently acting global change drivers that are each 74 

modulated by N: CO2 fertilisation is limited by N (Terrer et al., 2019; Wang et al., 2020a), 75 

intensifying N deposition increases N supply (O’Sullivan et al., 2019; Wang et al., 2017), rising 76 
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temperature and varying precipitation modulate decomposition and soil N availability (Liu et al., 77 

2017), and land use change and associated N fertilisation regimes determine N supply to crops.  78 
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Figure 1: Number of terrestrial biosphere models contributing to the Global Carbon Project (the 79 

TRENDY ensemble) with and without coupled C-N cycling. 80 

  81 



5 

 

The TRENDY ensemble has been extensively evaluated against observations of the C, 82 

water, and energy cycles (Collier et al., 2018; Friedlingstein et al., 2022; Seiler et al., 2022). 83 

Within the GCP itself, the primary simulated C pools, C fluxes, and water fluxes are evaluated 84 

using a skill score system developed by the International Land Model Benchmarking Project 85 

(ILAMB) that quantifies model performance by comparing model simulations to observations 86 

(Collier et al., 2018; Friedlingstein et al., 2022). ILAMB scores encompass the mean and 87 

variability of a given variable (pool or flux) over monthly to decadal temporal scales and over 88 

grid cell to global spatial scales. However, N cycling has not been explicitly evaluated despite its 89 

importance in regulating C cycling. This is in part due to the relatively recent incorporation of N 90 

cycling in terrestrial biosphere models (Figure 1) (Fisher and Koven, 2020; Hungate et al., 2003) 91 

but also due to the paucity of global observation-based datasets of N cycling: N exists in many 92 

forms and is lost from terrestrial ecosystems via numerous pathways (emissions of NH3, N2O, 93 

NOx and N2 as well as NO3
- and NH4

+ leaching), N processes are generally not measured in situ 94 

in networks such as FLUXNET, and remote sensing methodologies for measuring N processes 95 

are still in their infancy. Additionally, N processes exhibit extremely high spatial and temporal 96 

variabilities and are thus challenging to measure. As such, N cycling has commonly been 97 

evaluated by comparing simulated N pools and fluxes to global totals based on a small number of 98 

observations that have been scaled up or averaged to yield a value with wide confidence intervals 99 

(Davies-Barnard et al., 2020). 100 

N cycling is implicitly evaluated by comparing terrestrial biosphere models without N 101 

cycling to those with coupled C-N cycling in reproducing observations of the C, water, and 102 

energy cycles in the absence of N cycle observations. Results suggest that there are only minor 103 

differences between the performance of models with and without N cycling. There is no 104 

significant difference between the terrestrial C sink simulated by the TRENDY models with and 105 

without N cycling (Friedlingstein et al., 2022) nor between the terrestrial C sink simulated by the 106 

models participating in the Multi-scale synthesis and Terrestrial Model Intercomparison Project 107 

(MsTMIP) with and without N cycling (Huntzinger et al., 2017). Comparing the mean score 108 

across all C, water, and energy cycle variables between TRENDY models with and without N 109 

cycling yielded no significant difference (Seiler et al., 2022). However, TRENDY models 110 

without N cycling had significantly higher scores for net biome productivity than TRENDY 111 

models with N cycling (although all other variables were not significantly different between 112 

TRENDY models with and without N cycling, including vegetation C, soil C, net biome 113 

productivity, leaf area index, latent heat flux, and runoff, among others) (Seiler et al., 2022). 114 

Despite this seeming absence of a difference between models with and without coupled C-N 115 

cycling in simulating the current terrestrial C sink, it is imperative that N constraints on C 116 

cycling are properly represented by terrestrial biosphere models in order to realistically simulate 117 

the terrestrial C sink under future global change, which modifies the C-N balance through N 118 

limitation of CO2 fertilisation and intensifying N deposition among other effects of global 119 

change. As such, explicitly evaluating N cycling processes themselves is necessary to assess the 120 

ability of terrestrial biosphere models to capture the underlying mechanisms that determine 121 

terrestrial C sequestration and thus to realistically project the future terrestrial C sink under 122 

global change. 123 
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Here, we synthesise the N pools and fluxes simulated by 11 terrestrial biosphere models 124 

in the TRENDY ensemble that participated in the 2022 GCP. We evaluate their performance in 125 

reproducing observations of three key variables of the N cycle: biological N fixation, vegetation 126 

C:N ratio, and soil C:N ratio. These three variables are critical to C cycling because (1) 127 

biological N fixation is the dominant natural N supply to terrestrial ecosystems, influencing the 128 

degree of N limitation of plant growth and thus terrestrial C sequestration, and (2) vegetation and 129 

soil C:N ratios reflect assimilated C per unit N and thus terrestrial C storage.  130 

 131 

2 Methods 132 

2.1 Simulation Protocol 133 

For the 2022 GCP (version 11), the TRENDY ensemble consisted of 16 terrestrial 134 

biosphere models, 11 of which represent N cycling (CABLE-POP, CLM5.0, DLEM, ISAM, 135 

JSBACH, JULES-ES, LPJ-GUESS, LPX-Bern, OCNv2, ORCHIDEEv3, and SDGVM). 136 

Although SDGVM includes a representation of N cycling, its representation is simplistic and was 137 

therefore not included. Additionally, CLASSIC contributed to the 2022 GCP without coupled C-138 

N cycling; the S3 simulation from the TRENDY protocol was repeated by CLASSIC with 139 

coupled C-N cycling following the 2022 GCP protocol and was used here. Overall, we analysed 140 

eleven models with coupled C-N cycling (Table 1).  141 
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Table 1: Terrestrial biosphere models in the TRENDY-N ensemble and descriptions of their 142 

representations of N limitation of vegetation growth, biological N fixation, vegetation response 143 

to N limitation (i.e., strategies in which vegetation invests C to increase N supply in N-limited 144 

conditions), and N limitation of decomposition. 145 

 Reference N limitation of 

vegetation 

growth  

Biological N 

fixation 

Vegetation 

response to N 

limitation 

N limitation 

of 

decomposition 

CABLE-POP (Haverd et 

al., 2018) 

Vcmax = f(N) 

flexible C:N 

stoichiometry 

Time-

invariant 

Static N-invariant 

CLASSIC (Melton et 

al., 2020) 

Vcmax = f(N) 

flexible C:N 

stoichiometry 

f(N 

limitation of 

vegetation 

growth) 

Dynamic 

(biological N 

fixation) 

N-invariant 

CLM5.0 (Lawrence 

et al., 

2019) 

Vcmax = f(N) 

flexible C:N 

stoichiometry 

f(N 

limitation of 

vegetation 

growth) 

Dynamic 

(biological N 

fixation, 

mycorrhizae, 

retranslocation) 

f(soil N)  

DLEM (Tian et 

al., 2015) 

GPP = f(N) f(soil T, soil 

H2O, soil C, 

soil N) 

Dynamic  

(root 

allocation) 

f(soil N) 

ISAM (Shu et 

al., 2020) 

GPP = f(N) f(ET) Static f(soil N) 

JSBACH (Reick et 

al., 2021) 

NPP = f(N) f(NPP) Static f(soil N) 

JULES-ES (Wiltshire 

et al., 

2021) 

NPP = f(N) f(NPP) Static f(soil N) 

LPJ-GUESS (Smith et 

al., 2014) 

Vcmax = f(N) 

flexible C:N 

stoichiometry 

f(ET) Dynamic  

(root 

allocation) 

N-invariant 

LPX-Bern (Lienert 

and Joos, 

2018) 

NPP = f(N) Derived post 

hoc to 

simulate a 

closed N 

cycle 

Static N-invariant 

OCNv2 (Zaehle 

and 

Friend, 

2010) 

Vcmax = f(N) 

flexible C:N 

stoichiometry 

f(N 

limitation of 

vegetation 

growth) 

Dynamic  

(root 

allocation) 

f(soil N) 
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ORCHIDEEv3 (Vuichard 

et al., 

2019) 

Vcmax = f(N) 

flexible C:N 

stoichiometry 

Time-

invariant 

Static N-invariant 

  146 
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We analysed the S3 simulation from the TRENDY protocol which includes historical 147 

changes in atmospheric CO2, climate, N deposition, N fertilisation, and land use from 1851 to 148 

2021 (see Friedlingstein et al. (2022) for a full description of the simulation protocol). Briefly, 149 

models were forced with atmospheric CO2 from Dlugokencky and Tans (2022), the merged 150 

monthly Climate Research Unit (CRU) and 6-hourly Japanese 55-year Reanalysis (JRA-55) 151 

dataset or the monthly CRU dataset from Harris et al. (2020), N deposition from Hegglin et al. 152 

(2016) / Tian et al. (2022), N fertilisation from the global N2O Model Intercomparison Project 153 

(NMIP) (Tian et al., 2018), and land use from the LUH2-GCB2022 (Land-Use Harmonization 2) 154 

dataset (Chini et al., 2021; Hurtt et al., 2020; Klein Goldewijk et al., 2017a, b). We interpolated 155 

outputs from all models to a common resolution of 1° x 1° using bilinear interpolation. 156 

2.2 Terrestrial biosphere model descriptions 157 

The terrestrial biosphere models in the TRENDY ensemble employ a wide variety of 158 

assumptions and formulations of N cycling processes, reflecting knowledge gaps and divergent 159 

theories (Table 1). Here we describe four fundamental aspects of N cycling for each terrestrial 160 

biosphere model: N limitation of vegetation growth, biological N fixation, the response of 161 

vegetation to N limitation (i.e., strategies in which vegetation invests C to increase N supply in 162 

N-limited conditions), and N limitation of decomposition. These have been identified as 163 

important challenges for representing N cycling in terrestrial biosphere models (Meyerholt et al., 164 

2020; Peng et al., 2020; Stocker et al., 2016; Wieder et al., 2015a; Zaehle et al., 2015; Zaehle and 165 

Dalmonech, 2011). 166 

Terrestrial biosphere models differ in how N limitation of vegetation growth is 167 

represented (Thomas et al., 2015). Some TRENDY models represent flexible C:N stoichiometry 168 

and modelled maximum carboxylation rate of photosynthesis (Vcmax) decreases with decreasing 169 

leaf N (CABLE-POP, CLASSIC, CLM5.0, LPJ-GUESS, OCNv2, ORCHIDEEv3) following 170 

empirical evidence (Walker et al., 2014). Other TRENDY models represent time-invariant C:N 171 

stoichiometry and modelled GPP or NPP decreases with N limitation (DLEM, ISAM, JSBACH, 172 

JULES-ES, and LPX-Bern). Importantly, flexible vs. time-invariant C:N stoichiometry 173 

determines terrestrial C storage per unit N. 174 

Biological N fixation is the dominant natural N supply to terrestrial ecosystems (Vitousek 175 

et al., 2013). In terrestrial biosphere models, biological N fixation has generally been represented 176 

phenomenologically as a function of either net primary productivity (NPP) or evapotranspiration 177 

(ET) (Cleveland et al., 1999). More recently, representations of biological N fixation have been 178 

updated such that it is up-regulated in N-limited conditions following empirical evidence (Menge 179 

et al., 2015; Vitousek et al., 2013; Zheng et al., 2019). The majority of TRENDY models 180 

represent biological N fixation phenomenologically (ISAM, JSBACH, JULES-ES, and LPJ-181 

GUESS). Three TRENDY models (CLASSIC, CLM5.0, and OCNv2) represent biological N 182 

fixation mechanistically such that it increases with N limitation of vegetation and has an 183 

associated C cost per unit N fixed (Kou-Giesbrecht and Arora, 2022; Lawrence et al., 2019; 184 

Meyerholt et al., 2016; Shi et al., 2016; Fisher et al., 2010). These representations separate free-185 

living biological N fixation (via soil microbes, epiphytic microbes, lichens, bryophytes, etc. 186 

(Reed et al., 2011)) from symbiotic biological N fixation, which is regulated by N limitation of 187 
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vegetation. DLEM derives biological N fixation as a function of soil temperature, soil moisture, 188 

soil C, and soil N. LPX-Bern derives biological N fixation post hoc to simulate a closed N cycle, 189 

implicitly including rock N sources (Joos et al., 2020). Finally, CABLE-POP and ORCHIDEEv3 190 

represent biological N fixation as a specified time-invariant input over the historical period. 191 

Importantly, representing the regulation of biological N fixation by N limitation does not only 192 

determine biological N fixation itself but also modulates terrestrial C sequestration: it enables 193 

vegetation to increase N uptake in N-limited conditions, reduce N limitation, and thus sustain 194 

terrestrial C sequestration. Some TRENDY models (DLEM, LPJ-GUESS, and OCNv2) also 195 

represent increasing C allocation to roots with increasing N limitation (Smith et al., 2014; Zaehle 196 

and Friend, 2010) following empirical evidence (Poorter et al., 2012). This enables vegetation to 197 

increase root N uptake in N-limited conditions, reduce N limitation, and thus sustain terrestrial C 198 

sequestration. The response of vegetation to N limitation, which could also include increased C 199 

allocation to mycorrhizae (Phillips et al., 2013) (represented in CLM5.0) or increased 200 

retranslocation of N during tissue turnover (Du et al., 2020; Han et al., 2013; Kobe et al., 2005) 201 

(represented in CLM5.0) is important for determining terrestrial C sequestration. 202 

Decomposition rate is controlled by soil temperature, soil moisture, and N content in 203 

litter, where increasing litter C:N ratio decreases decomposition rate (Cotrufo et al., 2013). Some 204 

TRENDY models represent this reduction in decomposition rate with increasing litter C:N ratio 205 

(CLM5.0, DLEM, ISAM, JSBACH, JULES-ES, and OCNv2) following empirical evidence. 206 

2.3 Observation-based datasets 207 

We interpolated observation-based datasets to a common resolution of 1° x 1° using 208 

bilinear interpolation for comparison against model outputs. To compare model outputs against 209 

observation-based datasets we averaged model outputs over 1980–2021, which spans the period 210 

in which most measurements were made. 211 

2.3.1 Biological N fixation 212 

 A biological N fixation observation-based dataset was derived from Davies-Barnard and 213 

Friedlingstein (2020), a global meta-analysis of field measurements of natural biological N 214 

fixation (free-living and symbiotic) that scales biome-specific means onto the Collection 5 215 

MODIS Global Land Cover Type International Geosphere-Biosphere Programme (IGBP) 216 

product (Friedl et al., 2010). This dataset includes agricultural biological N fixation and assumes 217 

that crop biological N fixation rates are equivalent to those of grasses. 218 

The score of LPX-Bern in simulating biological N fixation is not analysed because it 219 

implicitly includes rock N sources and is thus not directly comparable to the observation-based 220 

dataset. 221 

2.3.2 Vegetation C:N ratio 222 

 A vegetation C:N ratio observation-based dataset was derived by scaling biome-specific 223 

means for vegetation C:N ratios from the TRY plant trait database (Kattge et al., 2020) onto the 224 

Collection 5 MODIS Global Land Cover Type IGBP product (Friedl et al., 2010) and combining 225 

it with the remote sensing leaf N content product from Moreno-Martínez et al. (2018). First, we 226 
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obtained N content per dry mass for leaves, root, and stem, as well as C content per dry mass for 227 

leaves, root, and stem from the TRY plant trait database. We selected entries that reported 228 

species. Second, we obtained plant functional type (PFT) for each species from the TRY plant 229 

trait database. We categorised each PFT into the IGBP land cover types (Table A1) and then 230 

used this to categorise each entry into the IGBP land cover types using species. We averaged 231 

across entries in each IGBP land cover type. Third, we divided mean tissue C content per tissue 232 

dry mass by mean tissue N content per tissue dry mass for each tissue and for each IGBP land 233 

cover type. Fourth, we weighed each tissue by its PFT-specific fraction of total biomass from 234 

Poorter et al. (2012) to obtain total vegetation C:N ratio for each IGBP land cover type. Fifth, we 235 

scaled total vegetation C:N ratio and leaf N content per dry mass for each IGBP land cover type 236 

to the Collection 5 MODIS Global Land Cover Type IGBP product. Sixth, we multiplied derived 237 

total vegetation C:N ratio relative to leaf N content per dry mass by the remote sensing leaf N 238 

content per dry mass product (Moreno-Martínez et al., 2018) to obtain a vegetation C:N ratio 239 

observation-based dataset. 240 

2.3.3 Soil C:N ratio 241 

A soil C:N ratio observation-based dataset was derived from soil C and soil N products 242 

from SoilGrids (Poggio et al., 2021), which provides globally gridded datasets of soil organic C 243 

and total soil N at a 250m x 250m resolution for six layers up to a depth of 200 cm. These 244 

estimates are derived using machine learning methods and soil observations from 240 000 245 

locations across the globe and over 400 environmental covariates. We summed soil C over all 246 

layers and soil N over all layers (using the bulk density and depth of each layer) then obtained 247 

the soil C:N ratio. 248 

2.3.4 C cycling variables 249 

In addition to evaluating N cycling variables, we also evaluated the primary C cycling 250 

variables: gross primary productivity (GPP), net biome productivity (NBP), vegetation C 251 

(CVEG), soil C (CSOIL), and leaf area index (LAI). These variables have been previously 252 

evaluated in detail for the terrestrial biosphere models in the TRENDY ensemble (GCP 2021) in 253 

Seiler et al. (2022). Seiler et al. (2022) gives further details on the observation-based datasets 254 

used to evaluate the primary C cycling variables. Briefly, we evaluated GPP against MODIS 255 

(Zhang et al., 2017), GOSIF (Li and Xiao, 2019), and FLUXCOM (Jung et al., 2020) products. 256 

We evaluated NBP against the CAMS (Agustí-Panareda et al., 2019), CarboScope (Rödenbeck 257 

et al., 2018), and CT2019 (Jacobson et al., 2020) products. We evaluated CVEG against the 258 

GEOCARBON (Avitabile et al., 2016; Santoro et al., 2015), Zhang and Liang (2020), and Huang 259 

et al. (2021) products. We evaluated LAI against AVHRR (Claverie et al., 2016), Copernicus 260 

(Verger et al., 2014), and MODIS (Myneni et al., 2002) products. We evaluated CSOIL against 261 

HWSD (Todd-Brown et al., 2013; Wieder, 2014) and SoilGrids (Hengl et al., 2017) products. 262 

These observation-based products are globally gridded. 263 

2.4 Model evaluation with the Automated Model Benchmarking R Package (AMBER) 264 

The Automated Model Benchmarking R (AMBER) package developed by Seiler et al. 265 

(2021) quantifies model performance in reproducing observation-based datasets using a skill 266 
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score system that is based on ILAMB (Collier et al., 2018). Five scores assess the simulated 267 

time-mean bias (Sbias), monthly centralised root-mean-square-error (Srmse), seasonality (Sphase), 268 

inter-annual variability (Siav), and spatial distribution (Sdist) in comparison to the observation-269 

based dataset. Scores are dimensionless and range from 0 to 1, where higher values indicate 270 

better model performance. The overall score for each variable (Soverall) is 271 

𝑆𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = mean(𝑆𝑏𝑖𝑎𝑠, 𝑆𝑟𝑚𝑠𝑒 , 𝑆𝑝ℎ𝑎𝑠𝑒 , 𝑆𝑖𝑎𝑣, 𝑆𝑑𝑖𝑠𝑡) 272 

We calculated the overall score for each C and N cycling variable. Because biological N fixation, 273 

vegetation C:N ratio, and soil C:N ratio datasets are representative of the present-day (as a single 274 

time point), Srmse, Sphase, and Siav are not defined and thus do not contribute to Soverall. This also 275 

holds for vegetation C and soil C. The calculation of each score is described in detail in Seiler et 276 

al. (2022).  277 

2.5 Statistics 278 

 We used a Mann-Kendall trend test to assess the existence of a statistically significant 279 

trend in the time series over the historical period for simulated C and N cycling variables (Hipel 280 

and McLeod, 1994). We conducted two analyses to compare model performance in simulating C 281 

cycling vs. N cycling. First, we calculated Spearman’s rank correlation coefficient to assess the 282 

existence of statistically significant correlations between overall scores, present-day global 283 

values, and Kendall’s tau. Second, we used a t-test or ANOVA (p-value < 0.05) to assess the 284 

existence of statistically significant differences between overall scores, present-day global 285 

values, and Kendall’s tau for models with different representations of N limitation of vegetation 286 

growth, biological N fixation, vegetation response to N limitation, and N limitation of 287 

decomposition (Table 1). 288 

 289 

3 Results 290 

3.1 Net biome productivity 291 

 Figure 2 shows NBP simulated by the TRENDY ensemble models with coupled C-N 292 

cycling (hereafter referred to as the TRENDY-N ensemble). NBP is the difference between the 293 

net natural atmosphere-land flux of CO2 and land use change CO2 emissions. Positive values of 294 

NBP indicate a terrestrial C sink whereas negative values of NBP indicate a terrestrial C source. 295 

All TRENDY-N ensemble models suggest a terrestrial C sink for the present-day, agreeing with 296 

the global C budget constraint from the 2022 Global C Budget with most models within two 297 

standard deviations of the mean (1.5 ± 0.6 Pg C for 2012–2021) (Figure 2a). The TRENDY-N 298 

ensemble agrees reasonably well with observations globally, agreeing somewhat better with 299 

CarboScope and CT2019 than with CAMS (Figure 2b). However, the latitudinal distributions of 300 

the observation-based datasets display weak agreement among themselves with opposing signs 301 

in multiple regions due to differences in the inversion models and atmospheric CO2 302 

measurements used in each dataset (Figure 2b). The largest differences occur at southern 303 

latitudes and at high northern latitudes and is in part due to the smaller land area at these 304 
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latitudes. The region showing the strongest agreement is mid to high northern latitudes, in which 305 

both the TRENDY-N ensemble and observations suggest a terrestrial C sink (Figure 2b).  306 
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Figure 2: Net biome productivity (NBP) simulated by the TRENDY-N ensemble. a. Global NBP 307 

from 1960 to 2021. The boxes indicate the global C budget constraint (difference between fossil 308 

fuel CO2 emissions and the growth rate of atmospheric CO2 and the uptake of CO2 by oceans; 309 

mean ± 2 standard deviation) from the 2022 Global C Budget (Friedlingstein et al., 2022). Thick 310 

lines indicate the moving average over 10 years and thin lines indicate the annual time series. b. 311 

Latitudinal distribution and global mean of NBP (averaged over 1980–2021) in comparison to 312 

three datasets (CAMS (Agustí-Panareda et al., 2019), CarboScope (Rödenbeck et al., 2018), and 313 

CT2019 (Jacobson et al., 2020)). The boxplot shows the median, interquartile range (box), and 314 

80% percentiles (whiskers) of the global mean of NBP. 315 

  316 



15 

 

3.2 Overview of N cycling 317 

Figure 3 shows a schematic of the N cycle alongside the primary N fluxes and C:N ratios 318 

of the primary pools simulated by the TRENDY-N ensemble for the present-day (averaged over 319 

1980–2021) as well as observation-based estimates for these variables that have previously been 320 

used for model evaluation (Davies-Barnard et al., 2020). Simulated biological N fixation ranged 321 

between 20 and 566 Tg N yr-1 (Table 2) in comparison to the observation-based estimate of 88 322 

Tg N yr-1 (52 – 130 Tg N yr-1). Simulated N2O emissions ranged between 0.9 and 11.0 Tg N yr-1 323 

(Table 2) in comparison to the observation-based estimate of 10.8 Tg N yr-1 (7.1 – 16.0 Tg N yr-324 
1) (Tian et al., 2020). Simulated N losses (which include emissions of NH3, N2O, NOx and N2 as 325 

well as NO3
- and NH4

+ leaching) ranged between 87 and 603 Tg N yr-1 (Table 2) in comparison 326 

to the observation-based estimate of 293 Tg N yr-1 (Fowler et al., 2013). The simulated 327 

vegetation C:N ratio ranged between 103 and 222 (Table 2) in comparison to the observation-328 

based estimate of 133 (Zechmeister-Boltenstern et al., 2015). The simulated combined litter-soil 329 

C:N ratio ranged between 10 and 64 (Table 2) in comparison to the observation-based estimate 330 

of 15 (Zechmeister-Boltenstern et al., 2015). Biological N fixation has the largest inter-model 331 

spread with a coefficient of variation of 1.06 (Table 2). Figure 4 shows the geographical 332 

distribution of the primary N pools and fluxes simulated by the TRENDY-N ensemble for the 333 

present-day (averaged over 1980–2021) and variation across models is shown in Figure A1.   334 



16 

 

Figure 3: The N cycle and the primary N pools and fluxes simulated by the TRENDY-N 335 

ensemble (averaged over 1980–2021). Horizontal black lines indicate observation-based 336 

estimates that have previously been used for model evaluation (biological N fixation from 337 

Davies-Barnard and Friedlingstein (2020), vegetation and combined litter-soil C:N ratios from 338 

Zechmeister-Boltenstern et al. (2015), N2O emissions from Tian et al. (2020), and N losses from 339 

Fowler et al. (2013)). The black box indicates the terrestrial biosphere. N enters the terrestrial 340 

biosphere via biological N fixation, N deposition, and N fertilisation (entering the organic soil N 341 

pool, the inorganic soil N pool (ammonium (NH4
+) or nitrate (NO3

-)), or the vegetation N pool). 342 

N is transferred from the inorganic soil N pool to the vegetation N pool via N uptake. N is 343 

transferred from the vegetation N pool to the litter N pool via N litterfall. N is transferred from 344 

the litter N pool to the organic soil N pool via decomposition. N is transferred from the organic 345 

soil N pool to the inorganic soil N pool via net N mineralisation. N exits the terrestrial biosphere 346 

via N loss (which includes N leaching from soils and N2O, NOx, NH3, and N2 emissions from 347 

both soils and land use change). Not all models provide output for each N pool or flux. Note that 348 

biological N fixation simulated by LPX-Bern implicitly includes rock N sources. 349 



17 

 

  350 



18 

 

Figure 4: Geographical distributions of a. vegetation N, b. litter N, c. soil N, d. biological N 351 

fixation, e. N uptake, f. net N mineralisation, g. N2O emissions, and h. N loss simulated by the 352 

TRENDY-N ensemble (averaged across models over 1980–2021). Variation across models is 353 

shown in Figure A1. 354 

  355 



19 

 

Table 2: Global N pools, N fluxes, and C:N ratios simulated by the TRENDY-N ensemble (mean 356 

and coefficient of variation across models over 1980–2021).  357 

 Coefficient of 

variation 

Global 

mean 

Global 

median 

Global 

minimum 

Global 

maximum 

Vegetation N  

(Tg N) 

0.41 2.94 2.94 1.50 5.58 

Litter N  

(Tg N) 

0.81 1.94 1.08 0.73 5.61 

Soil N  

(Tg N) 

0.67 101.43 81.21 32.10 277.41 

Biological N fixation 

(Tg N yr-1) 

1.06 139.63 101.83 19.92 565.53 

N uptake  

(Tg N yr-1) 

0.33 838.78 698.11 529.53 1304.87 

Net N mineralisation 

(Tg N yr-1) 

0.45 836.00 700.28 471.39 1661.53 

N2O emissions  

(Tg N yr-1) 

0.53 7.06 9.04 0.86 11.01 

N loss  

(Tg N yr-1) 

0.85 187.62 125.96 87.02 602.77 

Vegetation C:N ratio 0.28 159.28 154.50 102.84 222.22 

Soil C:N ratio 0.90 17.32 11.13 10.00 63.57 

  358 
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 Figure 5 shows the time series of the change from pre-industrial levels of the primary N 359 

pools and fluxes from 1850 to 2021 simulated by the TRENDY-N ensemble. Figure 6 shows the 360 

corresponding Kendall’s tau which identifies the existence of a statistically significant trend 361 

(Table A2). Over the historical period, some models suggest decreasing vegetation N (6/11 362 

models), whereas other models suggest increasing vegetation N (2/11 models) or no trend in 363 

vegetation N (3/11 models). Some models suggest decreasing soil N (7/11 models), whereas 364 

other models suggest increasing soil N (4/11 models). Some models suggest increasing 365 

biological N fixation (7/11 models), whereas other models suggest decreasing biological N 366 

fixation (2/11 models) or no trend in biological N fixation (2/11 models). All models suggest 367 

increasing N uptake (10/10 models). Most models suggest increasing net N mineralisation rate 368 

(9/10 models) or no trend in N mineralisation rate (1/10 models). All models suggest increasing 369 

N2O emissions (7/7 models) and increasing N loss (10/10 models).   370 
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Figure 5: Time series of the change from the pre-industrial level (averaged over 1850–1870) of a. 371 

vegetation N, b. litter N, c. soil N, d. biological N fixation, e. N uptake, f. net N mineralisation, 372 

g. N2O emissions, and h. N loss simulated by the TRENDY-N ensemble from 1850 to 2021. 373 

Figure A5 shows the time series for each N pool and N flux simulated by the TRENDY-N 374 

ensemble from 1850 to 2021. 375 

  376 
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Figure 6: Kendall’s tau from the Mann-Kendall test (p-value < 0.05) for each N pool and N flux 377 

time series simulated by the TRENDY-N ensemble from 1850 to 2021 (Table A2). A positive 378 

value (red) indicates an increasing trend and a negative value (blue) indicates a decreasing trend 379 

Gray indicates a statistically insignificant value and white indicates a missing value. 380 

  381 
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3.3 Evaluation of biological N fixation, vegetation C:N ratio, and soil C:N ratio 382 

In comparison to the observation-based dataset from Davies-Barnard and Friedlingstein 383 

(2020), the TRENDY-N ensemble reproduced global biological N fixation (101.8 Tg N yr-1 vs. 384 

88 Tg N yr-1; Figure 7a and Table 2) but overestimated low-latitude biological N fixation and 385 

underestimated high-latitude biological N fixation in the Northern hemisphere (Figure 7b). In 386 

comparison to the observation-based dataset from the TRY plant trait database, the TRENDY-N 387 

ensemble overestimated the global vegetation C:N ratio (154.5 vs. 102.8; Figure 7c and Table 2) 388 

and overestimated the vegetation C:N ratio across latitudes while capturing its latitudinal pattern 389 

(Figure 7d). In comparison to the observation-based dataset from SoilGrids, the TRENDY-N 390 

ensemble overestimated the global soil C:N ratio, simulating a relatively constant soil C:N ratio 391 

across latitudes (11.1 vs. 8.8; Figure 7e and Table 2). The TRENDY-N ensemble was thus 392 

unable to capture the latitudinal pattern of the soil C:N ratio (Figure 7f).  393 
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Figure 7: Latitudinal distributions and global means of biological N fixation, vegetation C:N 394 

ratio, and soil C:N ratio simulated by the TRENDY-N ensemble (averaged across models over 395 

1980–2021) in comparison to observations. ace. show the latitudinal distribution of the mean and 396 

boxplots show the global mean. bdf. show the latitudinal distribution of the bias. Latitudinal 397 

distributions show the mean (black line) and the 50%, 80%, and 100% percentiles across models. 398 

Boxplots show the median, interquartile range (box), and 80% percentiles (whiskers) across 399 

models. Observation-based datasets are from Davies-Barnard and Friedlingstein (2020) for 400 

biological N fixation, the TRY plant trait database for vegetation C:N ratio, and SoilGrids for 401 

soil C:N ratio. LPX-Bern simulations are not shown in ab. Latitudinal distributions and global 402 

means of individual models in the TRENDY-N ensemble are shown in Figure A6. 403 

  404 



25 

 

The overall score is a metric of model performance in reproducing an observation-based 405 

dataset. Overall scores for biological N fixation, vegetation C:N ratio, and soil C:N ratio (0.46, 406 

0.53, and 0.29 averaged across models, respectively) were lower than those for C cycling 407 

variables (0.58 averaged across all C cycling variables and across models) (Figure 8). The mean 408 

overall score for vegetation C:N ratio across models (0.53) was lower than the mean overall 409 

scores for vegetation C across models (which ranged from 0.61 to 0.69 depending on the 410 

observation-based dataset used to derive the score). Similarly, the mean overall score for soil 411 

C:N ratio across models (0.29) was lower than the mean overall scores for soil C across models 412 

(which ranged from 0.39 to 0.53 depending on the observation-based dataset used to derive the 413 

score).  414 
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Figure 8: Overall scores of the TRENDY-N ensemble in simulating C and N cycling variables: 415 

gross primary productivity (GPP), net biome productivity (NBP), vegetation C (CVEG), soil C 416 

(CSOIL), leaf area index (LAI), biological N fixation (FBNF), vegetation C:N ratio (CNVEG), 417 

and soil C:N ratio (CNSOIL). Abbreviations of the observation-based datasets are described in 418 

the Methods and in Seiler et al. (2022). 419 

  420 
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For N cycling variables, the overall score is composed of the time-mean bias score 421 

(which assesses the difference between the time-mean of model simulations and the time-mean 422 

of the observation-based dataset) and the spatial distribution score (which assesses the ability of 423 

the model to reproduce the spatial pattern of the observation-based dataset) (Collier et al., 2018; 424 

Seiler et al., 2022). For biological N fixation, the time-mean bias score averaged across models 425 

was 0.50 and the mean spatial distribution score across models was 0.41 (Table A3). For the 426 

vegetation C:N ratio, the time-mean bias averaged score across models was 0.46 and the mean 427 

spatial distribution score across models was 0.59 (Table A3). For the soil C:N ratio, the time-428 

mean bias score averaged across models was 0.39 and the mean spatial distribution score across 429 

models was 0.19 (Table A3).  430 

Note that, for C fluxes, the overall score is composed of not only the time-mean bias 431 

score and the spatial distribution score, but also the monthly centralised root-mean-square-error 432 

score (which assesses the ability of the model to reproduce the time series of the observation-433 

based dataset), the seasonality score (which assess the ability of the model to reproduce the 434 

seasonality of the observation-based dataset), and the inter-annual variability score (which 435 

assesses the ability of the model to reproduce the inter-annual variability of the observation-436 

based dataset) because observation-based datasets of C fluxes are available over time (whereas 437 

observation-based datasets of C pools and all N cycling variables are representative of the 438 

present-day (as a single time point)).  439 

3.4 Model performance for C cycling vs. N cycling 440 

 There were no statistically significant correlations between the overall score of NBP (as 441 

well as other primary C variables) and the overall scores of the primary N variables across the 442 

TRENDY-N ensemble (Figure A2). Furthermore, there were no statistically significant 443 

correlations between the present-day global value of NBP and the present-day global values of 444 

the primary N variables across the TRENDY-N ensemble (Figure A3). Finally, there were no 445 

statistically significant correlations between Kendall’s tau of NBP and Kendall’s tau of the 446 

primary N variables across the TRENDY-N ensemble (Figure A4).  447 

3.5 Model performance for different representations of N cycling processes 448 

There were no statistically significant differences in overall scores between models with 449 

different representations of N limitation of vegetation growth (decreasing Vcmax and flexible C:N 450 

stoichiometry vs. decreasing NPP), different representations of biological N fixation (function of 451 

N limitation of vegetation growth vs. function of NPP or ET vs. time-invariant), different 452 

representations of the response of vegetation to N limitation (dynamic vs. static), or different 453 

representations of N limitation of decomposition (function of soil N vs. N-invariant) (Table A4). 454 

However, models that represented decomposition as a function of soil N had a significantly 455 

higher NBP score (for CT2019) than models that represented decomposition as N-invariant. 456 

Similarly, there were no statistically significant differences between present-day global values or 457 

Kendall’s tau of primary C and N pools and fluxes between models with different representations 458 

of N limitation of vegetation growth, biological N fixation, vegetation response to N limitation, 459 
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and N limitation of decomposition (Table A5 and A6). This is likely in part due to the low 460 

number of models and the confounding influence of other process representations. 461 

 462 

4 Discussion 463 

4.1 Evaluation of N cycling in terrestrial biosphere models  464 

Despite the ability of all TRENDY-N models to simulate the historical terrestrial C sink 465 

in line with observations (Figure 2), there is substantial variation in simulated N cycling 466 

processes by the models. The magnitude of N pools and fluxes differ considerably between 467 

models (Figures 3 and A1). Additionally, the historical trajectories of these N pools and fluxes 468 

differ between models: some models simulate increasing vegetation N and soil N whereas others 469 

simulate decreasing vegetation N and soil N between 1850 and 2021 (Figures 5 and 6). These 470 

trajectories are the result of a host of interacting global change drivers (CO2 fertilisation, 471 

intensifying N deposition, rising temperature and varying precipitation, land use change and 472 

associated N fertilisation regimes) whose effects are challenging to disentangle without 473 

additional simulations. For example, while intensifying N deposition and N fertiliser use could 474 

drive increasing soil N and N uptake, land use change could increase N losses from both 475 

vegetation N and soil N. Most models suggest increasing biological N fixation between 1850 and 476 

2021. This occurs either as a result of increasing vegetation biomass or the up-regulation of 477 

biological N fixation due to N limitation imposed by CO2 fertilisation or a combination thereof, 478 

depending on the representation of biological N fixation in a given model (Table 1). This follows 479 

observations that suggest that biological N fixation is stimulated by CO2 fertilisation (Zheng et 480 

al., 2020; Liang et al., 2016), although its mechanism (i.e., up-regulated biological N fixation in 481 

N-limited conditions) may not be captured. Similarly, most models also suggest increasing N 482 

uptake between 1850 and 2021. This also occurs as a result of increasing vegetation biomass, 483 

increasing soil N from intensifying N deposition and N fertiliser use, or increasing biological N 484 

fixation, mycorrhizae and root allocation due to N limitation imposed by CO2 fertilisation, again 485 

dependent on the representation of the vegetation response to N limitation in a given model 486 

(Table 1). Most models suggest increasing net N mineralisation rate between 1850 and 2021 487 

likely due to rising temperature following observations (Liu et al., 2017). Most models suggest 488 

increasing N2O emissions (and N losses) between 1850 and 2021 likely due to rising temperature 489 

and intensifying N deposition and N fertiliser use following observations (Tian et al., 2020). 490 

We focused on three key N cycling processes for evaluation: biological N fixation, 491 

vegetation C:N ratio, and soil C:N ratio. These three key N cycling processes have important 492 

implications for projecting the future terrestrial C sink. Biological N fixation is the dominant 493 

natural N supply to terrestrial ecosystems and allows vegetation to increase N uptake in N-494 

limited conditions, reduce N limitation, and thus sustain terrestrial C sequestration, such as in 495 

response to N limitation imposed by CO2 fertilisation (Zheng et al., 2020; Liang et al., 2016). 496 

Vegetation and soil C:N ratios reflect assimilated C per unit N and thus terrestrial C 497 

sequestration. They can potentially vary, such as in response to high photosynthesis rates relative 498 

to N uptake rates driven by CO2 fertilisation (Elser et al., 2010). Overall scores of N cycling 499 
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variables, which quantify model performance in reproducing an observation-based dataset, are 500 

lower than overall scores of corresponding C cycling variables, suggesting that models could be 501 

less capable of capturing N cycling processes than C cycling processes (Figure 8). However, this 502 

could also be due to the significant uncertainty associated with measurements of N cycling 503 

processes as discussed below.  504 

The TRENDY-N ensemble reproduced global observation-based biological N fixation 505 

but tended to overestimate low-latitude biological N fixation and underestimate high-latitude 506 

biological N fixation (Figure 7ab). This is likely because most models represented biological N 507 

fixation phenomenologically as a function of a measure of vegetation activity (either NPP or 508 

ET). Since there is higher vegetation activity at low latitudes than at high latitudes these models 509 

thus represent higher biological N fixation at low latitudes than at high latitudes. However, 510 

because biological N fixation is down-regulated in non-N-limited conditions, it is often down-511 

regulated at low latitudes, which are generally not (or at least less) N-limited (Barron et al., 512 

2011; Batterman et al., 2013; Sullivan et al., 2014). While CLASSIC, CLM5.0, and OCNv2 can 513 

represent the down-regulation of biological N fixation in non-N-limited conditions, they still 514 

simulate high low-latitude biological N fixation. This suggests that the strength of regulation of 515 

biological N fixation could be insufficient and/or that there could be unaccounted N sources at 516 

low latitudes. For example, rock N weathering could be a significant N source to terrestrial 517 

ecosystems. Some estimates have suggested that rock N weathering could be as high as 11 – 18 518 

Tg N yr-1 globally (Houlton et al., 2018) but is not explicitly represented in the TRENDY-N 519 

ensemble (with the exception of LPX-Bern which calculates all external N sources post hoc to 520 

simulate a closed N cycle thereby implicitly including rock N sources). The discrepancy between 521 

modelled and observed biological N fixation could also be due to uncertainty in the observation-522 

based dataset given the difficulties associated with measuring biological N fixation (Soper et al., 523 

2021). Ecological theory (Hedin et al., 2009) has suggested that natural biological N fixation 524 

should be higher at low latitudes given large N losses, in contrast to the observation-based 525 

dataset from Davies-Barnard and Friedlingstein (2020). Furthermore, the observation-based 526 

dataset from Davies-Barnard and Friedlingstein (2020) did not explicitly account for agricultural 527 

biological N fixation but rather assumed that crop biological N fixation rates are equivalent to 528 

those of grasses although they are likely to be much greater (Peoples et al., 2021; Herridge et al., 529 

2022). 530 

The TRENDY-N ensemble overestimated global observation-based vegetation C:N ratio 531 

but reproduced its latitudinal pattern (as also indicated by its higher spatial distribution score) 532 

(Figure 7cd). This is because most models represent different plant functional types (e.g., 533 

evergreen needleleaf trees, deciduous broadleaf trees, evergreen broadleaf trees, etc.) with 534 

different tissue C:N ratios (which can either be flexible within a constrained range or time-535 

invariant). These plant functional types are geographically distributed according to similar land 536 

cover products. The TRENDY-N ensemble overestimated global observation-based soil C:N 537 

ratio and failed to reproduce its latitudinal pattern (as also indicated by its lower spatial 538 

distribution score) (Figure 7ef). In particular, models failed to reproduce the peak at the equator 539 

and the peak at approximately -30°S, corresponding to tropical forests and deserts respectively. 540 

This is because most models represent a constant soil C:N ratio (both temporally and spatially) 541 
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and are thus unable to capture the spatial variability in the soil C:N ratio. Improving the 542 

representation of soil N is an important future direction for terrestrial biosphere model 543 

development given the essential feedbacks between soil N and soil C. 544 

4.2 Disconnect between C and N cycling in terrestrial biosphere models 545 

 The importance of N limitation of terrestrial C sequestration is empirically established. 546 

(Elser et al., 2007; LeBauer and Treseder, 2008; Wright et al., 2018). It has already influenced 547 

the historical terrestrial C sink (Wang et al., 2020a) and it is expected to be especially important 548 

under future CO2 fertilisation and global change (Terrer et al., 2019). While all TRENDY-N 549 

models simulate the historical terrestrial C sink in line with observations (and are no different 550 

from TRENDY models without a representation N cycling (Seiler et al., 2022)), our results 551 

suggest a disconnect between C and N cycling in these models. First, the models exhibit a wide 552 

spread across simulated N pools and fluxes. Second, there are no significant correlations between 553 

model performance in simulating N cycling and model performance in simulating C cycling. 554 

Third, there are no statistically significant differences between models with different 555 

representations of fundamental N cycling processes (N limitation of vegetation growth, 556 

biological N fixation, the response of vegetation to N limitation, and N limitation of 557 

decomposition).  558 

Overall, our results suggest that the underlying N cycling processes that regulate 559 

terrestrial C sequestration operate differently across models and may not be fully captured given 560 

that models are calibrated to C cycling. The spread across models suggests that approaches to 561 

represent N cycling processes vary among models and that there is no clear consensus yet on 562 

what the best approaches are. Studies have explored the validity of different representations of N 563 

cycling processes within a single model, suggesting that alternative representations of a 564 

biological N fixation, ecosystem C:N stoichiometry, and ecosystem N losses lead to substantial 565 

differences in simulated C cycling (Kou-Giesbrecht and Arora, 2022; Meyerholt et al., 2020; 566 

Peng et al., 2020; Wieder et al., 2015a). This disconnect between C and N cycling will become 567 

particularly consequential for projecting the terrestrial C sink under future global change, which 568 

is likely to modify the C-N balance through N limitation of CO2 fertilisation and intensifying N 569 

deposition among other effects of global change. 570 

4.3 Future directions 571 

Evaluating N cycling in terrestrial biosphere models is severely restricted by the lack of 572 

available observations of N cycling. N cycling processes are notoriously difficult to measure, 573 

such as biological N fixation (Soper et al., 2021) and gaseous N losses (Barton et al., 2015). In 574 

the past, N cycling has been commonly evaluated by comparison to estimates of global N pools 575 

and fluxes derived from a small number of observations that have been scaled up or averaged to 576 

yield a value with wide confidence intervals (Davies-Barnard et al., 2020). Not only are these 577 

global totals highly uncertain, but they also do not allow for the analysis of spatial patterns. Here, 578 

we present an improved framework to evaluate three key N cycling processes – biological N 579 

fixation, vegetation C:N ratio, and soil C:N ratio – in terrestrial biosphere models. However, 580 

these globally-gridded observation-based datasets are also uncertain, given uncertainty in the 581 
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estimates of tissue C:N ratios for different plant functional types and tissue fraction of total 582 

biomass (especially those of roots and wood which had a lower number of measurements in 583 

comparison to that of leaves), as well as in the measurements and models used to derive soil N 584 

(Batjes et al., 2020). More observations of these N cycling processes are necessary to reduce 585 

uncertainty. Temporally explicit measurements are important for assessing intra-annual and 586 

inter-annual variability. Leveraging advances in remote sensing (Knyazikhin et al., 2013; 587 

Townsend et al., 2013; Cawse-Nicholson et al., 2021) as well as incorporating N cycling process 588 

measurements into research networks such as FLUXNET (Vicca et al., 2018) is essential. 589 

Multiple observation-based datasets from different sources and derived via different 590 

methodologies of a given N cycling process are necessary to evaluate observational uncertainty 591 

(Seiler et al., 2021). Global observations of other important N cycling processes (such as N 592 

mineralisation and N losses) are necessary to fully evaluate N cycling in terrestrial biosphere 593 

models. Additionally, hindcast simulations of the transition from the Last Glacial Maximum to 594 

the preindustrial period can be used in combination with proxy-based reconstructions of past 595 

N2O emissions (Fischer et al., 2019) as well as C stocks (Jeltsch-Thömmes et al., 2019) for 596 

model evaluation and can serve as a constraint for terrestrial biosphere models (Joos et al., 2020). 597 

Modelled experimental manipulations (such as CO2 fertilisation or N fertilisation 598 

experiments) are imperative to evaluate model formulations of the underlying mechanisms of C-599 

N cycling interactions (Medlyn et al., 2015; Wieder et al., 2019; Zaehle et al., 2014). Derived  600 

nutrient limitation products (Fisher et al., 2012) can also be applied to evaluate present-day 601 

nutrient cycling when phosphorus (P) is accounted for (Braghiere et al., 2022). Evaluating the 602 

ability of models to simulate present-day N cycling processes, as we did here, is only one method 603 

of assessing their ability to simulate N limitation of terrestrial C sequestration. A robust test of 604 

the simulated response to CO2 fertilisation and N fertilisation across models would be ideal for 605 

evaluating the ability of models to represent the regulation of C cycling by N cycling under 606 

global change and thus their ability to realistically simulate the future terrestrial C sink. 607 

While some of the models in the TRENDY-N ensemble have the capability of 608 

representing coupled C, N, and P cycling (Goll et al., 2012; Nakhavali et al., 2022; Sun et al., 609 

2021; Wang et al., 2010, 2020b; Yang et al., 2014), P cycling was not active in the model 610 

simulations in the GCP 2022. P limitation could be important for limiting terrestrial C 611 

sequestration, especially in low-latitude forests (Elser et al., 2007; Terrer et al., 2019; Wieder et 612 

al., 2015b). As more models incorporate coupled C-N-P cycling (Reed et al., 2015; Braghiere et 613 

al., 2022), observation-based datasets of P will also be necessary for model evaluation. 614 

 615 

5 Conclusions 616 

Because the TRENDY-N ensemble overestimated both vegetation and soil C:N ratios, it 617 

is possible that models could overestimate assimilated C per unit N and thus future terrestrial C 618 

sequestration under CO2 fertilisation. Alongside discrepancies in biological N fixation, this could 619 

lead to biases in projections of the future terrestrial C sink by the TRENDY-N ensemble. Not to 620 

mention there are several other terrestrial biosphere models in the TRENDY ensemble that do 621 
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not represent coupled C-N cycling. While the models are capable of reproducing the current 622 

terrestrial C sink, the spread across the models in simulating N cycling suggests that C-N 623 

interactions operate differently across models and may not be fully captured given that models 624 

are calibrated to C cycling. However, these C-N interactions are critical for projecting the 625 

terrestrial C sink under global change in the future.   626 
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Appendix A 646 

 647 

Table A1: IGBP land cover type, corresponding TRY plant trait database PFT, tissue C:N ratios 648 

(from the TRY plant trait database (Kattge et al., 2020)), tissue fractions (Poorter et al., 2012), 649 

and calculated total C:N ratio. 650 

IGBP land 

cover type 

TRY plant trait 

database PFT 

Leaf 

C:N 

Leaf 

fraction 

Root 

C:N 

Root 

fraction 

Stem 

C:N 

Stem 

fraction 

Total 

C:N 

0 bare -        

1 Evergreen 

needleleaf 

forest 

Boreal evergreen 

needleleaf 

Temperate evergreen 

needleleaf 

Evergreen needleleaf 

Tree evergreen 

needleleaf 

Evergreen 

gymnosperm 

40.5 0.04 43.1 0.21 236.0 0.75 187.7 

2 Evergreen 

broadleaf 

forest 

Boreal evergreen 

broadleaf 

Temperate evergreen 

broadleaf 

Tropical evergreen 

broadleaf 

Evergreen broadleaf 

Tree evergreen 

broadleaf 

Evergreen angiosperm 

31.3 0.02 35.1 0.16 180.7 0.82 154.4 

3 Deciduous 

needleleaf 

forest 

       187.7a 

4 Deciduous 

broadleaf 

forest 

Boreal deciduous 

broadleaf 

Temperate deciduous 

broadleaf 

Tropical deciduous 

broadleaf 

Deciduous broadleaf 

Tree deciduous 

broadleaf 

Deciduous 

angiosperm 

21.6 0.03 37.4 0.21 72.3 0.76 63.5 

5 Mixed 

forest 

       135.2b 

6 Closed 

shrubland 

Evergreen shrub 

Shrub evergreen 

broadleaf 

36.1 0.09 38.2 0.42 

 

234.2 

 

0.49 

 

134.1 

 

7 Open 

shrubland 

8 Woody 

savannas 

9 Savannas 

10 

Grasslands 

Grass C3 

Grass C4 
19.1 0.17 29.3 0.56 27.2 0.27 27.0 

11 

Permanent 

wetlands 

       27.0c 
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12 

Croplands 

Crop C3 10.5 0.17 29.3c 0.56c 27.2c 0.27c 25.5 

13 Urban 

and built-up 

-         

14 Cropland 

/ natural 

vegetation 

mosaic 

       25.5d 

15 Snow 

and ice 

-        

16 Barren or 

sparsely 

vegetated 

-        

a Value from evergreen needleleaf forest. 651 
b Average of evergreen needleleaf forest, evergreen broadleaf forest, and deciduous broadleaf forest. 652 
c Value from grasslands. 653 
d Value from croplands.  654 
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Table A2: Kendall’s tau from the Mann-Kendall test (p-value < 0.05) for each N pool and N flux 655 

time series simulated by the TRENDY-N ensemble from 1850 to 2021. NS indicates that 656 

Kendall’s tau is not significant. NA indicates that the variable was not reported by the model. 657 
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Vegetation N 0.58 NS -0.97 -0.51 NS 0.83 NS -0.25 -0.75 -0.67 -0.51 

Litter N 0.88 0.15 0.65 -0.7 -0.87 0.92 0.86 -0.35 0.44 -0.69 NS 

Soil N 1 -0.8 -0.47 -0.97 -0.91 0.99 -0.67 -0.68 1 1 -0.3 

Biological N 

fixation 

NS 0.95 0.84 -0.33 -0.11 0.89 0.79 0.62 0.92 0.45 NS 

N uptake 0.89 0.64 0.81 0.78 NA 0.81 0.85 0.54 0.82 0.85 0.71 

Net N 

mineralisation 

0.91 0.33 0.73 0.87 NA 0.85 0.76 NS 0.86 0.82 0.31 

N2O emissions NA 0.92 0.7 0.87 NA 0.95 NA NA 0.7 0.42 0.69 

N loss NA 0.94 0.67 0.94 0.73 0.59 0.63 0.94 0.81 0.42 0.65 
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Table A3: Time-mean bias score (Sbias), spatial distribution score (Sdist), and overall score 659 

(Soverall) of the TRENDY-N ensemble in simulating biological N fixation, vegetation C:N ratio, 660 

and soil C:N ratio.  661 

 Biological N fixation Vegetation C:N ratio Soil C:N ratio 

 Sbias Sdist Soverall Sbias Sdist Soverall Sbias Sdist Soverall 

CABLE-POP 0.46 0.08 0.27 0.36 0.50 0.43 0.2 0.34 0.27 

CLASSIC 0.46 0.40 0.43 0.47 0.52 0.49 0.43 0.22 0.33 

CLM5.0 0.55 0.56 0.56 0.56 0.68 0.62 0.45 0.16 0.31 

DLEM 0.46 0.29 0.38 0.50 0.50 0.50 0.48 0.01 0.24 

ISAM 0.47 0.24 0.36 0.45 0.70 0.57 0.05 0.28 0.16 

JSBACH 0.48 0.44 0.46 0.53 0.37 0.45 0.38 0.11 0.25 

JULES-ES 0.47 0.43 0.45 0.40 0.62 0.51 0.51 0 0.25 

LPJ-GUESS 0.51 0.45 0.48 0.41 0.63 0.52 0.49 0.01 0.25 

LPX-Bern NA NA NA 0.51 0.64 0.58 0.33 0.4 0.37 

OCNv2 0.56 0.62 0.59 0.54 0.71 0.62 0.47 0.26 0.37 

ORCHIDEEv3 0.60 0.63 0.61 0.35 0.63 0.49 0.48 0.31 0.39 

Mean 0.50 0.41 0.46 0.46 0.59 0.53 0.39 0.19 0.29 
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Table A4: Overall scores of biological N fixation, vegetation C:N ratio, soil C:N ratio, and NBP 663 

averaged across TRENDY-N ensemble models with different representations of key N cycling 664 

processes (N limitation of vegetation growth, biological N fixation, vegetation response to N 665 

limitation, and N limitation of decomposition, see Table 1). p-values are from t-tests and 666 

ANOVAs assessing differences between these representations of key N cycling processes. 667 
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N limitation of 

vegetation growth 

Vcmax / flexible C:N 

stoichiometry 

0.49 0.53 0.32 0.57 0.54 0.58 

NPP 0.41 0.52 0.26 0.56 0.52 0.58 

p-value 0.21 0.88 0.15 0.59 0.44 0.90 

Biological N fixation f(N limitation of 

vegetation growth) 

0.44 0.46 0.33 0.57 0.54 0.57 

f(NPP) or f(ET) 0.44 0.51 0.23 0.57 0.54 0.60 

Time-invariant 0.53 0.58 0.33 0.57 0.55 0.59 

p-value 0.59 0.15 0.06 0.92 0.91 0.28 

Vegetation response to 

N limitation 

Dynamic 0.49 0.55 0.30 0.57 0.55 0.59 

Static 0.43 0.51 0.28 0.56 0.53 0.58 

p-value 0.44 0.25 0.71 0.48 0.30 0.67 

N limitation of 

decomposition 

f(soil N) 0.47 0.55 0.26 0.57 0.54 0.60 

N-invariant 0.45 0.50 0.32 0.56 0.52 0.56 

p-value 0.86 0.26 0.16 0.26 0.44 0.02 
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Table A5: Present-day global values of biological N fixation, vegetation C:N ratio, and soil C:N 669 

ratio averaged across TRENDY-N ensemble models with different representations of key N 670 

cycling processes (N limitation of vegetation growth, biological N fixation, vegetation response 671 

to N limitation, and N limitation of decomposition, see Table 1). p-values are from t-tests and 672 

ANOVAs assessing differences between these representations of key N cycling processes. 673 

  Biological N 

fixation 

Vegetation C:N 

ratio 

Soil C:N ratio 

N limitation of 

vegetation 

growth 

Vcmax / flexible C:N 

stoichiometry 

106.78 161.8 12.75 

NPP 

 

179.06 156.26 22.79 

p-value 0.51 0.85 0.39 

Biological N 

fixation 

f(N limitation of 

vegetation growth) 

123.14 201.68 15.71 

f(NPP) or f(ET) 66.37 177.37 24.31 

Time-invariant 118.95 123.89 11.64 

p-value 0.27 0.15 0.68 

Vegetation 

response to N 

limitation 

Dynamic 99.25 143.32 11.22 

Static 173.29 172.58 22.4 

p-value 0.41 0.29 0.24 

N limitation of 

decomposition 

f(soil N) 88.21 153.36 20.04 

N-invariant 201.34 166.38 14.04 

p-value 0.3 0.66 0.53 

  674 
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Table A6: Kendall’s tau from the Mann-Kendall test (p-value < 0.05) for biological N fixation, 675 

vegetation C:N ratio, and soil C:N ratio averaged across TRENDY-N ensemble models with 676 

different representations of key N cycling processes (N limitation of vegetation growth, 677 

biological N fixation, vegetation response to N limitation, and N limitation of decomposition, see 678 

Table 1). p-values are from t-tests and ANOVAs assessing differences between these 679 

representations of key N cycling processes. 680 

  Biological N 

fixation 

Vegetation C:N 

ratio 

Soil C:N ratio 

N limitation of 

vegetation 

growth 

Vcmax / flexible C:N 

stoichiometry 

0.48 -0.01 -0.04 

NPP 

 

0.43 -0.74 0 

p-value 0.89 0.06 0.94 

Biological N 

fixation 

f(N limitation of 

vegetation growth) 

0 -0.31 0.02 

f(NPP) or f(ET) 0.55 -0.6 0.14 

Time-invariant 0.74 0.39 -0.03 

p-value 0.15 0.15 0.97 

Vegetation 

response to N 

limitation 

Dynamic 0.5 -0.08 0.01 

Static 0.41 -0.56 -0.04 

p-value 0.77 0.3 0.93 

N limitation of 

decomposition 

f(soil N) 0.42 -0.42 0.31 

N-invariant 0.5 -0.25 -0.42 

p-value 0.8 0.7 0.14 

  681 
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Figure A1: Geographical distributions of variation in a. vegetation N, b. litter N, c. soil N, d. 682 

biological N fixation, e. N uptake, f. net N mineralisation, g. N2O emissions, and h. N loss 683 

simulated by the TRENDY-N ensemble (across models over 1980–2021).  684 

 685 
  686 
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Figure A2: Correlations between overall scores of primary C and N pools and fluxes across 687 

TRENDY-N ensemble models: gross primary productivity (GPP), net biome productivity (NBP), 688 

vegetation C (CVEG), soil C (CSOIL), leaf area index (LAI), biological N fixation (FBNF), 689 

vegetation C:N ratio (CNVEG), and soil C:N ratio (CNSOIL). Abbreviations of the observation-690 

based datasets are described in the Methods and in (Seiler et al., 2022). Spearman’s rank 691 

correlation coefficient is shown for statistically significant correlations (p-value < 0.05). 692 

  693 
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Figure A3: Correlations between present-day global values (averaged over 1980–2021) of 694 

primary C and N pools and fluxes across TRENDY-N ensemble models: vegetation C (CVEG), 695 

litter C (CLITTER), soil C (CSOIL) ), net biome productivity (NBP), gross primary productivity 696 

(GPP), autotrophic respiration (RA), heterotrophic respiration (RH), leaf area index (LAI), 697 

vegetation N (NVEG), litter N (NLITTER), soil N (NSOIL), biological N fixation (FBNF), N 698 

uptake (NUP), net N mineralisation (NETNMIN), N2O emissions (N2O), N loss (NLOSS), 699 

vegetation C:N ratio (CNVEG), and soil C:N ratio (CNSOIL). Spearman’s rank correlation 700 

coefficient is shown for statistically significant correlations (p-value < 0.05). 701 

  702 



44 

 

Figure A4: Correlations between Kendall’s tau of primary C and N pools and fluxes across 703 

TRENDY-N ensemble models: vegetation C (CVEG), litter C (CLITTER), soil C (CSOIL), net 704 

biome productivity (NBP), gross primary productivity (GPP), autotrophic respiration (RA), 705 

heterotrophic respiration (RH), leaf area index (LAI), vegetation N (NVEG), litter N 706 

(NLITTER), soil N (NSOIL), biological N fixation (FBNF), N uptake (NUP), net N 707 

mineralisation (NETNMIN), N2O emissions (N2O), N loss (NLOSS), vegetation C:N ratio 708 

(CNVEG), and soil C:N ratio (CNSOIL). Spearman’s rank correlation coefficient is shown for 709 

statistically significant correlations (p-value < 0.05). 710 

  711 
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Figure A5: Time series of a. vegetation N, b. litter N, c. soil N, d. biological N fixation, e. N 712 

uptake, f. net N mineralisation, g. N2O emissions, and h. N loss simulated by the TRENDY-N 713 

ensemble from 1850 to 2021.  714 

 715 

  716 
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Figure A6: Latitudinal distributions and global means of ab. biological N fixation, cd. vegetation 717 

C:N ratio, and ef. soil C:N ratio simulated by the TRENDY-N ensemble (averaged across models 718 

over 1980–2021) in comparison to observation-based datasets from (Davies-Barnard and 719 

Friedlingstein, 2020) for biological N fixation, the TRY plant trait database for vegetation C:N 720 

ratio, and SoilGrids for soil C:N ratio. Boxplots show the median, interquartile range (box), and 721 

80% percentiles (whiskers) of the global mean. 722 
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