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Abstract. Aerosol-cloud interactions (ACI) have a pronounced influence on the Earth’s radiation budget but continue to pose

one of the most substantial uncertainties in the climate system. Marine boundary-layer clouds (MBLCs) are particularly impor-

tant since they cover a large portion of the Earth’s surface. One of the biggest challenges in quantifying ACI from observations

lies in isolating adjustments of cloud fraction (CLF) to aerosol perturbations from the covariability and influence of the local

meteorological conditions. In this study, this isolation is attempted using nine years (2011–2019) of near-global daily satellite5

cloud products in combination with reanalysis data of meteorological parameters. With cloud-droplet number concentration

(Nd) as a proxy for aerosol, MBLC CLF is predicted by region-specific gradient boosting machine learning models. By means

of SHapley Additive exPlanation (SHAP) regression values, CLF sensitivity to Nd and meteorological factors as well as mete-

orological influences on the Nd–CLF sensitivity are quantified. The regional ML models are able to capture on average 45 %

of the CLF variability. Global patterns of CLF sensitivity show that CLF is positively associated with Nd, in particular in10

the stratocumulus-to-cumulus transition regions and in the southern hemispheric midlatitudes. CLF sensitivity to estimated

inversion strength (EIS) is ubiquitously positive and strongest in tropical and subtropical regions topped by stratocumulus and

within the midlatitudes. Globally, increased sea-surface temperature (SST) reduces CLF, particularly in stratocumulus regions.

The spatial patterns of CLF sensitivity to horizontal wind components in the free troposphere point to the impact of synoptic-

scale weather systems and vertical wind shear on MBLCs. The Nd–CLF relationship is found to depend more on the selected15

thermodynamical variables than dynamical variables, and in particular on EIS and SST. In the midlatitudes, a stronger inversion

is found to amplify the Nd–CLF relationship, while this is not observed in the stratocumulus regions. In the stratocumulus-to-

cumulus transition regions, the Nd–CLF sensitivity is found to be amplified by higher SSTs, potentially pointing to Nd more

frequently delaying this transition in these conditions. The expected climatic changes of EIS and SST may thus influence future

forcings from ACIs. The near-global ML framework introduced in this study produces a better quantification of the response20

of MBLC CLF to aerosols taking into account the covariations with meteorology.
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1 Introduction

The emission of aerosols into the atmosphere affects the Earth’s climate, in particular by masking part of the warming ef-

fect from greenhouse gases by reflecting solar radiation and changing cloud properties. Aerosol-cloud interactions (ACI) can25

strongly influence the Earth’s energy distribution and thus also contribute a substantial uncertainty to past and future climate

projections. The effective radiative forcing due to ACI (ERFaci) is assessed as –1.0 Wm−2 with an uncertainty range of –1.7 to

–0.3 Wm−2 (Forster et al., 2021), albeit decades of effort and headway have been made in understanding the complex system

of aerosols, clouds and their environmental controls. The correct representation of ACI in Earth system models (ESMs) remains

a tremendous challenge because of the lack of accurate global quantification of the cloud-related fine-scale processes, and the30

lack of larger-scale constraints from the existing measurement systems at the ESM spatiotemporal resolution (Fan et al., 2016;

Seinfeld et al., 2016; Sato et al., 2018).

Marine boundary layer clouds (MBLCs) cover over 23 % of the global ocean surface (Wood, 2012). Due to relatively small

temperature differences between MBLC top and the sea surface, they only weakly impact outgoing longwave radiation but

greatly reflect incoming shortwave radiation, leading to a strong net cooling effect (Hartmann et al., 1992). MBLCs play35

a critical role in the Earth’s radiative balance (Zheng et al., 2021) and, in this regard, are the most important cloud type

(Chen et al., 2014). Furthermore, MBLCs are especially susceptible to aerosol perturbations due to their relatively low optical

depths (Turner, 2007; Leahy et al., 2012) and their formation in environments typically characterized by lower anthropogenic

aerosol loading than continental clouds (Platnick and Twomey, 1994). Therefore, a deeper understanding of the aerosol-MBLC

interactions is crucial to reduce the uncertainties in climate predictions. Atmospheric aerosols are critical for the formation40

of clouds as cloud condensation nuclei (CCN). Increases in aerosols are associated with increases in cloud droplet number

concentration (Nd). As the cloud water is distributed among more droplets, cloud droplet effective radius (re) shrinks at

constant liquid water content, resulting in an enhancement of cloud brightness and a negative instantaneous radiative forcing

(Twomey, 1977). The likelihood of collision and coalescence subsequently decreases due to smaller drop sizes, hampering

rainfall formation, which can prolong cloud lifetime and thus increase cloud fraction (CLF) (Albrecht, 1989). However, the45

aerosol–CLF relationship is complex, and the sign of the CLF adjustment can also be the opposite. This has been found in

particular for non-precipitating clouds, stemming from enhanced entrainment mixing with ambient air over the clouds owing

to shorter evaporation timescales (Wang et al., 2003; Jiang et al., 2006; Small et al., 2009) or reduced sedimentation (Ackerman

et al., 2004; Bretherton et al., 2007) because of smaller droplet sizes.

From the perspective of observations at satellite scales, though there are studies suggesting a negative relationship between50

aerosols and CLF (Dey et al., 2011; Small et al., 2011), it has been documented by multiple studies that the overall CLF

increases in response to increasing aerosols (e.g. Kaufman and Koren, 2006; Yuan et al., 2011; Gryspeerdt et al., 2016; Chris-

tensen et al., 2017; Andersen et al., 2017; Fuchs et al., 2018; Rosenfeld et al., 2019; Christensen et al., 2020). Likewise, studies

based on ESMs reported substantial negative ERFaci due to liquid water path (LWP) and CLF adjustments (e.g. Zelinka et al.,

2014). In spite of the attribution of such adjustments in ESMs primarily to LWP adjustments (Ghan et al., 2016), a global55

satellite-based study by Bender et al. (2019) suggested that LWP adjustments are overestimated in ESMs, and that aerosol im-
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pact on CLF dominates the negative aerosol forcing. This is supported by observational evidence presented by Toll et al. (2019)

who also reported an overestimation of LWP adjustment in climate models, and by Chen et al. (2022) who recently highlighted

the role of CLF increases due to aerosols from a large volcano eruption as the main cause of the associated forcing. Some

large-eddy simulations have however suggested a negative response of CLF of trade wind cumulus to aerosol perturbations60

(Xue and Feingold, 2006; Seifert et al., 2015). While most studies, both from observational and model points of view, are in

agreement that generally CLF increases with increasing aerosols due to a prolonged lifetime (Douglas and L’Ecuyer, 2022), the

magnitude of the response of CLF to aerosols and its corresponding adjustments are still highly uncertain. For satellite-based

analyses, one of the most challenging aspects in the quantification of CLF adjustment is isolating the influence of the aerosol

loading on cloud properties from confounding covariations with meteorological parameters (Andersen et al., 2016; Gryspeerdt65

et al., 2019; Bellouin et al., 2020), paired with aerosol retrieval issues related to aerosol swelling and 3D radiative effects in

the vicinity of clouds (Loeb and Schuster, 2008; Schwarz et al., 2017). Recent observational studies have utilized different

methods to tackle this issue. A first approach is to stratify the data by meteorological factors and therefore accounting for

local meteorology in the relationships (e.g. Su et al., 2010; Chen et al., 2014; Andersen and Cermak, 2015). Secondly, using

Nd as a mediating variable was proposed by Gryspeerdt et al. (2016) to analyze the causal pathway between aerosol optical70

depth and CLF. Another approach is to use a sampling strategy that applies a cloud–aerosol pairing algorithm (Christensen

et al., 2017). However, these methods do not account for aerosol retrieval issues, meteorological influencing factors and con-

founders at once, which is essential to constrain the CLF adjustment. Recently, several studies have successfully used machine

learning (ML) to account for non-linearities and meteorological factors to quantify ACI (Andersen et al., 2017; Fuchs et al.,

2018; Dadashazar et al., 2021; Zipfel et al., 2022). ML regression algorithms allow to predict CLF (predictand) on the basis75

of aerosol and meteorological factors at the same time and treat the aerosol-cloud-meteorology system as a whole. In addition,

ML models can represent non-linear interactive systems, which can be analyzed in sensitivity analyses with explainable ML

techniques. Explainable ML refers to the techniques explaining the predictions of a trained ML model by explicitly quantify-

ing the relationships, which helps improve the understandability, transparency and trustworthiness of the ML models (Beucler

et al., 2020).80

In this study, we set up region-specific ML models at a global scale using satellite and reanalysis data sets to predict CLF

to analyze Nd-induced changes in MBLCs. The goal of the explainable ML framework is to quantify the global sensitivity

patterns of CLF to Nd and meteorological factors. In addition, we aim to estimate the magnitude of the dependence of Nd–

CLF sensitivity on the meteorological factors using SHapley Additive exPlanation (SHAP) interaction values, providing a new

and insightful pathway to more profound knowledge of the physical processes relevant to the CLF adjustment and hence to a85

global constraint on aerosol-induced CLF changes accounting for meteorological covariations. The hypothesis of this study is

that the response of cloud fraction of MBLCs to aerosol perturbations is positive, but buffered, i.e. reduced or amplified, by

ambient meteorology and both the sensitivities and the interactions with meteorological factors have distinct regional patterns.

3



2 Data and methods

2.1 Data sets90

This work combines nine years (2011-2019) of satellite retrievals from Moderate Resolution Imaging Spectroradiometer

(MODIS) and reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) from 60◦N to

60◦S. In this study, MBLCs are defined as single-layer warm cloud fields with cloud top temperatures higher than 268 K. To

achieve this, the information on CLF (product: Cloud_Retrieval_Fraction_1L_Liquid), re (product: Cloud_Effective_Radius

_1L_Liquid_Mean), Cloud optical depth (τc; product: Cloud_Optical_Thickness_1L_Liquid_Mean), cloud top temperature95

(CTT; product: Cloud_Top_Temperature_Mean) and satellite viewing geometry are obtained from MODIS level-3 collection-

6.1 atmosphere daily products on the Terra platform (MOD08_D3), which are gridded into 1◦× 1◦globally from level-2

atmospheric products. CLF serves as the predictand in this study. The computation of Nd relies on τc and re, with filtering

criteria based on CTT, solar zenith viewing angle and satellite zenith angle, as elaborated in the following.

The equation used to calculate the MODIS Nd is from Quaas et al. (2006), which depends on the retrievals of re and τc, so100

do the uncertainties on the errors propagated from re and τc:

Nd = ατ0.5c r−2.5
e (1)

where α= 1.37×10−5 m−0.5 is a constant related to adiabatic growth rate. The uncertainties in Nd retrievals are exhaustively

evaluated by (Grosvenor et al., 2018), which suggests that the uncertainties in averaged Nd over 1◦× 1◦grid box (spatial res-

olution of the MODIS products used in this study) decrease by over 50 % compared to pixel-level uncertainties. This retrieval105

approach relies on the assumed adiabaticity in global marine warm clouds where liquid water content and re increase mono-

tonically and Nd distributes as constant vertically. Departure from the adiabatic assumption (e.g. due to entrainment) would

result in Nd retrieval biases (Merk et al., 2016; Bennartz and Rausch, 2017). The uncertainty related to the estimation of Nd

from MODIS also depends on liquid CLF. Nd is less biased in the regions of larger CLF where clouds are more homogeneous,

while in the regions with lower CLF Nd retrievals are sparser and less reliable (Grosvenor et al., 2018; Zhu et al., 2018). In110

such heterogeneous cloud fields, subpixel effects in the retrieval of re can negatively bias the retrieved Nd values (Zhang and

Platnick, 2011; Zhang et al., 2012; Grosvenor et al., 2018). Such retrieval biases could cause a bias in the Nd–CLF relationship

as well.

Following the screening criteria for more reliable Nd demarcated by Gryspeerdt et al. (2022), only clouds restricted to

single-layer in liquid phase with CTT higher than 268 K are considered. As suggested by Quaas et al. (2006), samples with re115

< 4 µm and τc < 4 are excluded to cope with the high re retrieval uncertainties at low τc. In addition, solar and sensor viewing

zenith angles respectively greater than 65◦and 55◦are removed to avoid the large biases in re and τc retrievals (as in Grosvenor

et al., 2018). The pixels selected according to the above sampling strategies generate more reliable Nd estimates.

Atmospheric and oceanic variables are taken from the fifth generation ECMWF atmospheric reanalysis of the global climate

(ERA5) at an hourly frequency (Table 1) (Hersbach et al., 2020). The ERA5 data sets are harmonized to fit the level-3 MODIS120

data by first being resampled to 1◦× 1◦from their default 0.25◦× 0.25◦spatial resolution using bilinear interpolation, and they
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are subsequently collocated to Terra MODIS by extracting hourly data to align with the UTC overpass times of the Terra

satellite for each grid cell, yielding a spatiotemporally matched MODIS-ERA5 combined data set for training the ML models.

For Nd retrievals, only samples within 1–99 percentiles are retained to exclude potential unrealistic outliers from re and τc

retrievals (Zipfel et al., 2022). Furthermore, the explanation of ML models in this study relies on using linear regressions125

to capture the distribution of individual prediction instances, and the extreme values may excessively magnify or reduce the

sensitivity or interactive effects quantified by SHAP (shown in Fig. 1 and discussed in Sect. 2.3.2). The threshold of 1–99

percentiles for each predictor is thus adopted to remove the values at the very tails of the specific distribution and to improve

the robustness of the estimated sensitivities. To define the sensitivities of CLF and the interactive effects of meteorological

factors, the natural logarithm of Nd is taken. Estimated inversion strength (EIS) is calculated based on the formulation from130

Wood and Bretherton (2006) and in this study, it is dependent only on atmospheric temperatures at 700 hPa and at the level of

1000 hPa. All input data for each XGB model (i.e. for each 5◦× 5◦window) are standardized for comparability of the estimates

of the sensitivity and the interactive effect with meteorology (Sect. 2.3.2).

Table 1. Summary of the predictors from ERA5 reanalysis.

Predictor Name Abbreviation Units

Instantaneous pressure level parameters (at 700 hPa, 850 hPa)

Relative humidity RH700, RH850 %

Specific humidity SH700, SH850 kgkg−1

Temperature t700, t850 K

Vertical velocity ω700, ω850 Pas−1

Eastward wind component u700, u850 ms−1

Northward wind component v700, v850 ms−1

Surface and single level parameters (instantaneous or mean rates/fluxes)

Eastward and northward wind component at 10 m u10, v10 ms−1

Boundary-layer height BLH m

Convective available potential energy CAPE Jkg−1

Sea surface temperature SST K

Total column water vapour TCWV kgm−2

Mean large-scale precipitation fraction PF Proportion

Mean surface sensible/latent heat flux SHF/LHF Wm−2

Calculated

Estimated inversion strength EIS K
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2.2 Machine learning model setup

Extreme Gradient Boosting (XGB) is a distributed tree boosting algorithm aiming to provide a scalable, portable and flexible135

library under the Gradient Boosting framework (Chen and Guestrin, 2016). The state-of-the-art XGB can be implemented

efficiently in Python and has been recently used to study clouds and ACI (Andersen et al., 2022; Douglas and L’Ecuyer, 2022).

As an extension of previous gradient boosting methods, XGB has incorporated regularization techniques which help prevent

overfitting and improve model generalization. Besides, the subsampling on training subsets and column (feature) subsampling

techniques can shorten the running time and also avert overfitting and hence elevate model performance (Chen and Guestrin,140

2016). Relevant regularization and subsampling hyperparameters are tuned using Bayesian Optimization to determine the best

combination, see Table 2 for the search space.

Table 2. Overview of the hyperparameters tuned for regional Extreme Gradient Boosting models using Bayesian Optimization.

Hyperparameter name Search Space

learning_rate 0.01–0.5

max_depth 3–10

min_child_weight 1–10

subsample 0.5–1

colsample_bytree 0.5–1

gamma 0–10

alpha 0–10

lambda 0–10

Data from 2011 to 2016 are used for training and data from 2017 to 2019 for testing (independent train/test split about

67 %/33 %). As the data set is chronologically split, we ensure that the models are not trained on neighbouring data points,

which would not be fully independent due to the high autocorrelation of the model inputs. The data at a 1◦× 1◦spatial resolution145

are aggregated in 5◦× 5◦geographical windows, where an individual, independent XGB model is trained and tested for each

“window”. Hereby a region-specific ML framework is established to potentially capture regionally-specific relationships and

characteristics and thus the regional patterns of CLF adjustment. The coarser 5◦× 5◦spatial resolution of the modelling grid

increases the sample size by a factor of ≈25 which is helpful to establish robust sensitivity estimates. In addition, at the

spatial resolution of 1◦× 1◦summarized in 5◦× 5◦degree windows, the spatial scale is adequate for ACI sensitivity estimation150

(Grandey and Stier, 2010). To ensure a sufficient data amount for training and testing the XGB models, only the geographical

windows with over 6000 available data points are retained. Consequently, 34 out of 1190 oceanic windows have been excluded.

These windows located between 47.5◦W–122.5◦E and 52.5◦S–57.5◦S in the Southern Ocean (Fig. 2) contain fewer than 6000

valid samples due to the screening for Nd retrievals. For each model, the hyperparameters are tuned by implementing Bayesian

optimization, which uses a Gaussian process prior distribution over hyperparameters to initialize a probabilistic model for155
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the objective function to be optimized. After the initialization, the probabilistic model is updated iteratively and Bayesian

optimization suggests the optimal combination of hyperparameters to try for the next iteration according to the previous one

and samples gathered from the search space (Table 2) (Snoek et al., 2012). Each iteration is evaluated by 5-fold cross-validation

using root mean square error (RMSE) as score. The number of boosting rounds (the number of trees) for each XGB model is

then determined by the early stopping technique to further avoid overfitting i.e. the training of the model will stop early once it160

is monitored that the score of cross-validation does not improve within 20 iteration rounds.

2.3 Explaining the machine learning models

2.3.1 SHapley Additive exPlanation (SHAP) values

SHAP values were proposed by Lundberg and Lee (2017) on the basis of cooperative game theory to explain the outputs of ML

models. It provides a novel and model-agnostic way to measure the relative contributions of Nd (as a surrogate for aerosols)165

and meteorological factors to CLF changes. The SHAP approach has been implemented with XGB in Python and it has been

reported that outputs from XGB models with various number of trees can be well explained by the SHAP framework in different

subject areas (e.g. Padarian et al., 2020; Lundberg et al., 2018, 2020; Kim et al., 2021; Li et al., 2022). The contribution of

a predictor value for a specific “local” prediction is calculated as the difference between the predictions of the model in the

presence and absence of this specific predictor for all possible predictor value combinations, and hence it is possible to gain170

insights into how a certain model outcome is achieved besides global feature importance.

The base value in the context of SHAP values is typically computed as the average of all predictions by ML models over

the entire training data points. Positive (negative) SHAP values indicate that the specific feature value increases (decreases)

the prediction compared to this base value. In other words, the base value serves as the reference point against which the

contributions of individual features are measured. SHAP values for all features will always sum up to the difference between175

the base value and the final model prediction so that SHAP values are additive and internally consistent. Furthermore, the

quantification of the influence of meteorology on the Nd–CLF relationship can be analysed using SHAP interaction values,

which are an extension of SHAP values. They measure the difference between the SHAP values for a feature when another

(secondary) feature is included versus when it is not included, offering a potential tool for insights into feature interactions

captured by the tree ensembles. SHAP values have been applied to study atmospheric aerosols in the context of air pollution180

Stirnberg et al. (2021), and have been used by Zipfel et al. (2022) to explore satellite-observed Nd-LWP relationship in MBLCs

in the Southeast Atlantic, finding that meteorological variables have considerable influences on the Nd-LWP relationship using

SHAP interactive values. Moreover, the use of SHAP interaction values in these studies allows for a more profound and in-

depth comprehension of the underlying processes with respect to local meteorology. SHAP values provide insights into the

behaviour of the XGB models, and as all statistical/ML models, they may not necessarily reflect real-world physical causality.185

Nevertheless, this state-of-the-art technique allows us to account for meteorological covariations when deriving sensitivities

and to appraise to what extent the meteorological predictors interact with and influence the Nd–CLF relationship beyond

traditional global-level feature attributions.
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2.3.2 Quantification of sensitivities and interactive effects

Figure. 1 is an exemplary graph for a regional XGB model at a specific 5◦× 5◦window (27.5◦S–32.5◦S, 122.5◦W–127.5◦W).190

SHAP values and SHAP interaction values are used to explain this XGB model and to quantify and isolate the CLF sensitivity

to Nd and the interactive effects of meteorological factors (here sea-surface temperature (SST)). Each dot in Fig. 1 represents

an individual data instance (i.e. a single observation at a specific grid cell and time step) and shows how individual Nd values

impact the CLF prediction. Figure 1 (a) illustrates that increased Nd values lead to an increase in the predicted CLF. The CLF

sensitivity to Nd is estimated as the slope of the linear regression between SHAP values and ln Nd (0.098 CLF σ−1). Note195

that all the input data have been standardized and thus sensitivities are expressed with the unit of cloud fraction change per

standard deviation (CLF σ−1). The vertical dispersion around the Nd–CLF relationship captured by the SHAP dependence

plot is due to the dependence of the Nd contribution to the predicted CLF on meteorological factors (e.g. SST) in the model,

which is captured by SHAP interaction values, as displayed in Fig. 1 (b). The colouring of the data points by SST illustrates

how interactions with SST split up the Nd–CLF relationship, with low SST values amplifying the Nd contribution and vice200

versa. To quantify this interaction effect, the meteorological data are then divided into a group of above-average feature values

and a group of below-average feature values. A linear regression is fit to the Nd values and the SHAP interaction values in

each group. An interaction index (IAI) is derived from these regression fits and defined as the slope for the high-value group

(> mean) minus the slope for the low-value group (< mean):

IAI = βx,high −βx,low (2)205

where β is the slope of the linear regression between SHAP interaction values and ln Nd values, and the subscripts denote

the high-value group and the low-value group for a specific meteorological variable x (SST in the example), respectively.

At the exemplary geographical window, the influence of SST on Nd–CLF sensitivity is quantified by IAI = -0.029 CLF σ−1

(Fig. 1 (b)). Similar to sensitivities, the unit of IAIs is also CLF σ−1. Therefore, for a positive sensitivity such as the Nd–

CLF sensitivity shown in Fig. 1 (a), a negative IAI value means that the Nd–CLF sensitivity is larger with low feature values,210

as shown in Fig. 1 (b) (the positive relationship is weakened by high SST values). On the contrary, a positive IAI value is

corresponding to a larger positive sensitivity with high feature values.

3 Results and discussion

3.1 Model performance

The skills of the region-specific XGB models in predicting CLF are evaluated by the coefficient of determination (R2) on the215

unseen hold-out test data. The global weighted mean R2 is 0.45 (about 45 % on weighted average and up to 73.57 % of the

variability in CLF prediction is explained) and a standard deviation of 0.10. While this means that on average, about half of

the variability in CLF cannot be explained by the machine learning models, this is expected as previous studies have shown

that the performance of statistical models decreases when going from monthly to daily data (Andersen et al., 2017; Fuchs
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Figure 1. SHAP dependence plots of cloud droplet number concentration (Nd) in the region from 27.5◦S to 32.5◦S and from 122.5◦W to

127.5◦W. (a) SHAP values showing ln Nd–CLF relationship with the corresponding sensitivity defined as the slope of linear regression. (b)

SHAP interaction values coloured by sea surface temperature (SST) showing the dependence of ln Nd–CLF relationship on the interactive

effects of SST. The interaction values are further divided into two groups by the mean feature value of SST. Linear regressions are performed

respectively for the high-value group and low-value group and the Interaction Index (IAI) is defined as the slope for the high-value group

subtracting the slope for the low-value group. The horizontal dashed line is a demarcation between negative and positive SHAP (interaction)

values.

et al., 2018; Dadashazar et al., 2021), and the performance is on par with that reported by Dadashazar et al. (2021), who used220

machine learning models to predict Nd with daily reanalysis data. The models in tropical regions in the Indian Ocean and the

Western Pacific relatively poorly explain the variability in CLF, while XGB models perform well in the stratocumulus regions

in the subtropics near the continents, and in the midlatitudes, particularly the southern hemispheric midlatitudes. The high skill

of predicting CLF in the southern hemispheric midlatitudes is in contrast to a recent study where this region has been found

to be particularly difficult to model statistically with monthly data (Andersen et al., 2023). In this region, the day-to-day CLF225

variability is high due to the large influence of synoptic-scale weather systems, and hence data at the daily resolution is more

adequate to represent the CLF variability in these regions.

3.2 CLF sensitivity: global perspectives and regional characteristics

3.2.1 Global overview of CLF sensitivities

Figure 3 summarises the means and distributions of the near-global sensitivities of CLF to all predictors. The sensitivities230

are estimated as described in Sect. 2.3.2. The sequence is sorted by descending mean values of the absolute sensitivities (i.e.

by feature importance) of the predictor variables. A strong and consistently positive Nd–CLF sensitivity is found. The fact

that CLF is most sensitive to Nd is to be expected, as cloud observations from the same sensor are more directly related

than a reanalysis product, so that their overall magnitude should not be compared (Zipfel et al., 2022). The entrainment of
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Figure 2. R2 score of regional Extreme Gradient Boosting models predicting cloud fraction of marine boundary layer clouds in the indepen-

dent test data set (2017–2019).

relatively dry air from the free troposphere into the MBL will be impeded by a stronger inversion (i.e. higher EIS), resulting in235

a shallower, better-mixed and more humid MBL conducive to stratocumulus clouds (Bretherton and Wyant, 1997; Wood and

Hartmann, 2006; Qu et al., 2015a; Myers et al., 2021). The salient positive sensitivity to EIS is in accordance with the links

found in previous studies (e.g. Klein and Hartmann, 1993; Qu et al., 2015b; Andersen et al., 2017) suggesting that EIS is a

crucial controlling factor for low-marine cloud cover. Note that in some studies the strength of the inversion over the boundary

layer is measured by lower tropospheric stability, which can be regarded as a similar metric outperformed by EIS (Wood and240

Bretherton, 2006). Precipitation fraction is the fraction of the original ERA5 grid box covered by large-scale precipitation.

The strong positive CLF sensitivity to precipitation fraction is likely caused by the ML model learning that precipitation can

be viewed as a proxy for cloudiness, rather than being an indicator of the physical processes via which precipitation exerts

controls on the macrophysics of MBLCs. Humidity shows positive CLF sensitivities greater at 850 hPa, where cloud tops

are often located (Gryspeerdt and Stier, 2012), than at 700 hPa which is typically in the free troposphere above the MBLCs245

(Myers and Norris, 2013). Likewise, the atmospheric temperature at 850 hPa (t850) presents stronger CLF sensitivity than the

temperature at 700 hPa (t700). Nonetheless, in the case of winds the 700 hPa pressure level is more relevant than that at 850

hPa. A relatively pronounced negative sensitivity to the eastward wind component at 700 hPa (u700) indicates that clouds are

depleted due to more westerlies at this level. CLF exhibits negative sensitivities to vertical pressure velocities both at 850 and

700 hPa, showing that large-scale ascending motion is connected to increases in MBLCs (Myers and Norris, 2013; Bretherton250

et al., 2013; Blossey et al., 2013). In general, the global averages of CLF sensitivity in terms of dynamical predictors (i.e. 3-D

winds at surface and pressure levels) vary in sign and are less strong. A marked negative sensitivity of CLF to SST is found,

which is in agreement to many prior studies (e.g. Qu et al., 2015b; Scott et al., 2020), where increases in SST have been found

to lead to low cloud breakup and dissipation due to a number of processes as described in e.g. Scott et al. (2020). One of these

is that the associated enhancement of mean surface latent heat flux (LHF) deepens MBL and facilitates buoyancy and thus the255

entrainment of dry free-tropospheric air (Rieck et al., 2012; Andersen et al., 2022). However, CLF is much less sensitive to
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Figure 3. The distribution of the sensitivities of cloud fraction to all predictors as depicted in Table 1. Boxes represent the interquartile range

which is extended by whiskers up to 1.5 interquartile ranges, with outliers shown as the points outside the range. The solid line and white

dot in each box show the median and mean values of the sensitivities, respectively. Predictors are sorted by the mean values of absolute

sensitivity values. The dashed line across the figure differentiates positive and negative sensitivity values.

LHF than to SST, which may indicate that this mechanism is less important at the spatial and time scales considered in this

study. CLF exhibits a considerable negative sensitivity to mean surface sensible heat flux (SHF), which quantifies an increase in

CLF with increasing SHF (upward SHF are negative). While increased SHF can promote the transition from decks of stratus or

stratocumulus clouds (high CLF) to more convective clouds (low CLF) due to the deepening of the boundary layer (Fan et al.,260

2016) potentially leading to a positive SHF–CLF relationship, increased SHF is associated to situations of cold air advection

where turbulent surface fluxes are enhanced, leading to marked increases in CLF (Miyamoto et al., 2018; Zelinka et al., 2018;

Grise and Kelleher, 2021)

3.2.2 Spatial patterns of the CLF sensitivity to Nd

The sensitivity of MBLC fraction associated with the aerosol proxy Nd are ubiquitously positive, in accordance with the global265

correlations or sensitivities found in (e.g. Gryspeerdt et al., 2016; Andersen et al., 2017). This is presumably due to the lifetime

effect, but could also partially result from Nd retrieval biases discussed in Sect. 2.1. The global weighted mean value of the Nd–

CLF sensitivity is 0.074 CLF σ−1 with a standard deviation of 0.036 CLF σ−1. CLF is particularly sensitive to Nd in the regions

of frequent stratocumulus to cumulus transition off the western continental coasts. These marked positive Nd–CLF sensitivities

may be caused by high Nd delaying the transition from stratocumulus to cumulus clouds (Gryspeerdt et al., 2016; Christensen270

et al., 2020). The Nd–CLF sensitivity is also pronounced in the southern hemispheric midlatitudes, where stratiform clouds
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Figure 4. Sensitivity of marine boundary layer cloud fraction to ln Nd.

dominate. The Nd–CLF sensitivity is weak and close to 0 in the tropics, in particular in the deep convective warm pool region.

These spatial patterns of Nd–CLF sensitivity resemble those found by Gryspeerdt et al. (2016), in particular the ones where

they mediated the AOD–CLF relationship by Nd, but are more pronounced in the southern hemispheric midlatitudes. This

difference in estimated sensitivity seems noteworthy and should thus be investigated in future work. As Nd retrievals tend to275

negatively bias at lower CLF and positively bias at higher CLF, the Nd–CLF sensitivity may be overestimated, and at the scales

considered here, should be interpreted as an upper bound to the physical Nd–CLF sensitivity.

3.2.3 Spatial patterns of the CLF sensitivity to thermodynamical drivers

There has been a strong consensus that EIS and SST are the two important determinants of cloud fraction of marine boundary

clouds and their corresponding radiative effects across different geographical regions and on varying time scales (e.g. Brether-280

ton, 2015; Myers and Norris, 2015; McCoy et al., 2017; Wall et al., 2017). Stronger inversions capping MBL (i.e. higher EIS)

will hamper the entrainment of aloft dry air from the troposphere and thus lead to a shallower MBL and more moisture trapped

within MBL, promoting the development and maintenance of low-level clouds (Andersen et al., 2017). The regional EIS–CLF

sensitivity patterns (Fig. 5(a)) show that marine low cloud fraction increases ubiquitously in response to stronger EIS, in par-

ticular in the tropical and subtropical stratocumulus-capped regions and within the midlatitudes. The sensitivity pattern is in285

good agreement with that found by Scott et al. (2020) and ?, related studies at different time scales (Grise and Medeiros, 2016;

Kelleher and Grise, 2019; de Szoeke et al., 2016).

MBLC cover reduces globally in response to increased SST, particularly pronounced in the stratocumulus regions over east-

ern oceanic basins (Fig. 5(b)), consistent well with (Scott et al., 2020). SST can favour MBLC dissipation through increasing

surface latent heat fluxes and deepening MBL, facilitating dry entrainment and eventually desiccating the MBL and clouds290

(Rieck et al., 2012; Qu et al., 2015b). Yet as stated in Sect. 3.2.1, the weak CLF sensitivity to LHF in relation to the strong

sensitivity to SST may imply that the other process makes more substantial contributions, namely that the higher moisture gra-

dient between the troposphere and MBL arising from the increased SST makes the entrained air more efficient in evaporating
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Figure 5. Sensitivity of marine boundary layer cloud fraction to the estimated inversion strength (EIS), sea surface temperature (SST),

sensible heat flux (SHF) and relative humidity at 850 hPa (RH850). Note that the range of colourbars of SHF and RH850 (-0.075–0.075) are

narrower than EIS and SST (-0.15–0.15).

cloud water (van der Dussen et al., 2015; Qu et al., 2015b). This process has been shown to be the driving mechanism for the

observed reduction in marine low cloud cover near the coast of Baja California (Andersen et al., 2022).295

Figure. 5 (c) shows that low marine cloud fraction increases with negative (upward) SHF most markedly in the stratocumulus

regions. CLF can increase in response to increased surface fluxes in situations of cold advection (Zelinka et al., 2018). Over

the South Indian Ocean, a marked SHF–CLF sensitivity is also found. Here, enhancements of SHF due to the subtropical anti-

cyclone and midlatitude storm-track activity have been found to increase CLF (Miyamoto et al., 2018). The results suggest that

the increase of CLF due to increased SHF (e.g. due to cold advection) outweighs the influence of SHF on CLF by controlling300

the transition from marine stratocumulus to open-cellular marine clouds (Kazil et al., 2014; Fan et al., 2016) in the core stra-

tocumulus regions. Consequently, the SHF–CLF sensitivity is less pronounced in regions of frequent closed- to open-cell and

cumulus transitions. Relative humidity at 850 hPa (RH850) is positively related to marine low liquid cloud fraction across the

globe. The positive sensitivity is particularly strong in the trade cumulus regions where the 850 hPa level is representative of

the boundary layer. In the coastal stratocumulus regions, clouds are frequently below this level (Adebiyi and Zuidema, 2016),305

so that clouds are not as sensitive to variability in RH at that level.

3.2.4 Spatial patterns of the CLF sensitivity to dynamical drivers

Large-scale circulations and dynamical conditions play an essential role in controlling cloud fraction and the indirect effects of

aerosols (Su et al., 2010; Small et al., 2011). The large-scale dynamics are represented by the horizontal and vertical winds at
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700 hPa and 850 hPa, which display clear and distinct regional patterns of CLF sensitivity (Fig. 6). It can also be seen that at the310

considered scales and pressure levels, horizontal wind vectors have stronger CLF sensitivities than large-scale vertical motion.

There is a coherent pattern of negative CLF sensitivity to the zonal wind at 700 hPa in the stratocumulus-dominated regions

(also apparent at 850 hPa), and the southern hemispheric midlatitudes, indicating a decrease in MBLCs with westerly anomalies

at this pressure level. Recently, a study using monthly data has also found a similar sensitivity pattern of stratocumulus clouds

to zonal wind at 700 hPa, finding that the reduced CLF is related to increased vertical wind shear (as the boundary layer flow315

is easterly), leading to increased turbulence and dry-air entrainment (?). Using monthly data, ? did not find a similar CLF

sensitivity to zonal winds in the southern hemispheric midlatitudes, though. As the CLF sensitivity to u700 in the southern

hemispheric midlatitudes is only apparent using daily data and only at 700 hPa, it seems likely that it is related to synoptic

variability that drives day-to-day variability in MBLCs in this region (Kelleher and Grise, 2019). Positive CLF sensitivities to

u700 (higher CLF with westerly anomalies) and to a lesser degree u850 are found off the eastern Asian and North-American320

continents. CLF increases due to cold-air outbreaks in NW Atlantic and NW Pacific may be the reason for these positive

sensitivities. Cold-air outbreaks occur during winter as cold continental air moves over warmer SSTs, increasing moisture and

heat fluxes into the MBL so that the formation of MBLCs is favoured (Young et al., 2002). This leads to wintertime maxima in

CLF in these regions (Yuan and Oreopoulos, 2013).

The sensitivity of CLF to the meridional winds at 700 hPa exhibits two bands straddling the subtropical regions between325

about 15 ◦and 35 ◦in both hemispheres but opposite in sign (positive in the Northern Hemisphere and negative in the Southern

Hemisphere), illustrating that in these regions the poleward winds are associated with an increase in low cloud fraction. The

bands are still apparent at 850 hPa, while the negative band in the Southern Hemisphere extends northward to tropical areas.

These hemispheric sensitivity bands to the v wind component at 700 hPa closely resemble those found in ?, with their analysis

suggesting that the poleward winds on the eastern side of midlatitude cyclones may be related to warm and moist advection,330

increasing CLF. However, they also find a strong correlation of these free-tropospheric poleward winds with large-scale as-

cending air motion making the assertion of causality difficult. Poleward winds are also found to decrease CLF over the southern

hemispheric midlatitudes.

CLF is negatively connected to the vertical pressure velocity both at 700 hPa and 850 hPa (ω700 and ω850) over the entire

Earth, indicating that ascending large-scale air motion enhances the cover of MBLCs globally. It is shown in the bottom of335

Fig. 6 column (a) that the CLF sensitivity to ω700 is larger in the midlatitude ocean basins, whereas the CLF sensitivity to ω850

is larger in the subtropical oceans where subsidence is climatologically prevalent (Myers and Norris, 2015, 2016; Scott et al.,

2020). This seems indicative of CLF being most sensitive to large-scale ascending motion at the typical altitude of the clouds.

It is interesting to note that between 30◦N and 30◦S, no marked CLF sensitivity to ω700 is found, contrasting the finding of

enhanced subsidence at this level reducing MBLCs by Myers and Norris (2013). This effect is likely better described in the340

ω850 data which is more related to the altitude of the cloud top.
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Figure 6. Sensitivity of cloud fraction to u, v wind component vectors and vertical velocities at 700 hPa (column (a)) and 850 hPa (column

(b)). Note that the range of the colourbar is in general smaller (-0.04–0.04) than in Fig. 5.

3.3 Dependence of Nd–CLF relationship on meteorology

3.3.1 Global overview of the Interaction Indices

In this section, we use the IAI as defined in Sect. 2.3.2 to quantitatively show how the response of MBLC fraction attributed to

the aerosol proxy Nd varies with the meteorological factors. As discussed in Sect. 2.3.2, since the sensitivity related to Nd is345

positive across the globe (Fig. 5 (d)), a positive IAI can be interpreted as an amplification of the Nd–CLF sensitivity with high

(above-average) feature values of a meteorological variable, whereas a negative IAI signifies an amplification of the sensitivity

at low feature values.

In Fig. 7, analogous to Fig. 3, the features along the x-axis are arranged in descending order based on their averaged

absolute IAIs i.e. by the strength of the impact of each meteorological feature on the Nd–CLF sensitivity. Similar to the feature350

importance summarized by Fig. 3, EIS, SST, RH850 and SHF have relatively large strength of interaction effect and thus can

be regarded as critical controlling factors not only for marine low cloud cover but also for their response to changes in Nd (and
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Figure 7. Similar to Fig. 3 but for the interaction effect of Nd with all environmental parameters, quantified by the Interaction Index (CLF

σ−1).

in extension aerosols). Compared to the CLF-sensitivities, the IAIs associated with atmospheric temperatures at 700 and 850

hPa have greater strengths. Furthermore, it can also be seen that the vertical and horizontal winds at the surface and different

pressure levels are ranked generally lower. In general, the thermodynamical factors have a stronger influence on the Nd–CLF355

sensitivity than the dynamical factors.

3.3.2 Spatial patterns of the Interaction Indices

Coherent and distinct spatial distributions of the impact of selected meteorological parameters on the Nd–CLF relationship

can be observed. Hereafter we show the regional characteristics of the interaction effects of EIS and SST which are the two

most important meteorological factors for CLF in MBLCs and have the greatest absolute strengths of IAI. EIS exerts the360

most noticeable positive IAIs over the midlatitude oceanic areas (Figure. 8 (a)), reflecting that stronger temperature inversions

capping the MBL over these regions will amplify the positive Nd–CLF relationship. The results suggest that in these regions,

through hampering the entrainment of drier air from the free troposphere, the stronger inversion and more stable conditions

are capable of trapping more moisture within a shallower MBL and could thus weaken the evaporation-entrainment feedback,

ultimately favouring a more positive Nd–CLF relationship (Chen et al., 2014; Christensen et al., 2020). It is interesting to365

note that these interactions are not apparent in the stratocumulus regions where EIS is a strong control of CLF, and in the

stratocumulus-to-cumulus transition regions, where Christensen et al. (2020) found the aerosol effect on this transition to be

confined to stable atmospheric conditions. This may suggest that the suggested entrainment effect is dependent on the EIS, and

stronger at slightly lower EIS values typically found in the midlatitudes (Scott et al., 2020). The observed impact of EIS on
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Figure 8. Patterns of the Interaction Index showing the dependence of the Nd–CLF relationship on estimated inversion strength (EIS) (a)

and sea surface temperature (SST) (b).

the Nd–CLF relationship found in the midlatitudes also has implications within the context of climate change. While in the370

subtropics, global climate models predict an increase in EIS with a warming climate, in the midlatitudes EIS is predicted to

decrease (Myers et al., 2021), potentially decreasing the sensitivity of CLF to Nd there.

Fig. 8 (b) shows that higher SSTs are found to amplify the positive Nd–CLF relationship (positive IAI) in the regions of

frequent stratocumulus-to-cumulus transition (Cesana and Del Genio, 2021). Here, higher SSTs tend to lead to the transition

from stratocumulus clouds to shallow convective clouds (Cesana et al., 2019), however, this transition has been found to be375

delayed when aerosol is increased (Goren et al., 2019; Christensen et al., 2020). The positive IAIs in these transition regions

may thus point to increased control of Nd on CLF at higher SST values, as these are the situations where transitions typically

occur and when increased Nd can act to delay this transition. In these regions, higher SSTs in the future may thus increase the

sensitivity of MBLC CLF to aerosols. It should be noted that the quantification of the dependence of the Nd–CLF relationship

on meteorological factors (EIS, SST discussed in this section) is also likely subject to the biases in the Nd–CLF sensitivity380

caused by the Nd retrieval biases as a function of CLF. This would potentially contribute to the non-causal facets of the

relationships and interactive effects quantified by SHAP values.

4 Conclusions

In this study, nine years (2011-2019) of daily satellite and reanalysis data have been analyzed to better understand the effect

of Nd on CLF in MBLC, and its dependence on meteorological factors. We have established a near-global machine learn-385

ing framework to predict the cloud fraction of marine boundary clouds using regionally-specific XGB regression models. The

explainable machine learning technique of SHAP regression values has been used to explain the regional XGB models, to quan-

tify the CLF sensitivity to all cloud controlling factors with a specific focus on Nd, moreover, to quantify the meteorological

influence on the Nd–CLF relationship at a global scale. The main findings of this study are stated as follows:

1. Marine boundary layer cloud fraction is the most sensitive to Nd (surrogate for aerosols) in the regions of stratocumulus390

to cumulus transition, which may arise from the high Nd delaying this transition. The Nd–CLF sensitivity in the southern

hemispheric midlatitudes is higher than in previous studies, which should be investigated in future work. The ubiquitous
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positive sensitivity reveals that aerosol has a considerable impact on MBL cloudiness, even though a positive retrieval

bias of Nd at high CLF on the estimated Nd–CLF sensitivity is likely to lead to an overestimation.

2. Consistent with the literature, EIS and SST are two important determinants for marine low clouds by regulating surface395

fluxes and dry-air entrainment processes. In addition, strong negative CLF sensitivity and spatial patterns for SHF are

also found, suggesting that the effect of cold air advection may surpass the SHF enhancement of closed- to open-cell and

cumulus transitions. Dynamic drivers (meridional and zonal winds) indicate that midlatitude synoptic-scale disturbances

and vertical wind shear make considerable contributions to marine low cloud amounts.

3. In general, thermodynamical parameters exert a more important influence on the Nd–CLF relationship than dynamical400

parameters. EIS, RH850, SST, temperatures at 700 and 850 hPa have the strongest effect on the Nd–CLF sensitivity.

In the midlatitudes, higher EIS is found to amplify the positive Nd–CLF sensitivity which may be related to a re-

duced entrainment feedback in these conditions. Whereas higher SST is found to amplify the Nd–CLF sensitivity in

stratocumulus-to-cumulus transition regions potentially because the transition induced by higher SSTs may be delayed

by increased Nd. These findings have implications for possible future changes in the sensitivity of CLF to aerosols.405

4. For the dynamical and thermodynamical factors shown here, both CLF sensitivities and the interactive effects (depen-

dence of Nd–CLF relationship on meteorology) exhibit distinct regional patterns. These coherent spatial patterns indicate

that the proposed explainable machine learning framework is not only capable of skillfully predicting CLF for marine

low clouds but also captures regional characteristics of the relation between CLF and Nd, and meteorological influences

in a physically meaningful way.410

In the future, the observation-based sensitivities and interactive effects quantified by the ML framework here will be compared

to those in ESMs, which have the potential to evaluate ESM parameterizations related to ACI and even help gain insights into

how the models could be tuned in this respect.
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