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We thank the anonymous referee for the new round of review of the revised manuscript. Please see the main points that

the reviewer is concerned about. Below, the reviewer’s comments and suggestions are incorporated in italics and addressed

hereafter, and the authors’ responses are coloured in blue. Unless otherwise stated, line numbers in this document refer to the

manuscript after the second-round review (before the updates following in this response letter).

Referee 25

Specific comments

1. Acknowledging the issues that are fundamental to the xgboost based approach, i.e., variable independence and potential

artificial correlation is a good first step. But it does not address the important point.

Thank you for your feedback, we believe the manuscript has improved with the inclusion of a separate section discussing

the method and data limitations.10

2. It remains unphysical. First of all, SHAP value is already kind of a sensitivity of the target value to the dependent

variable. That is, SHAP value of CF is equivalent to dCF/dNd. Second of all, the SHAP value for Nd and its dependence

on Nd figure the authors showed in the response. even if we forget the first point, are qualitatively different from the

figure from the reference. Their shape is similar, which is true. However, the SHAP value turns to strongly negative

values, which would be interpreted as CF decreases with Nd at these Nd values. That is unphysical either. I could name15

other physically inconsistencies if the authors show more details like this. The overaching point remains that we do not

have reason to believe such boosted tree models would necessarily give us physical insights. I’d have not issues with

authors publishing it as a statistical analysis, but if physical interpretations are involved the authors need to demonstrate

them with care first.

We thank the reviewer for his/her comments. However, the assertions made by the reviewer concerning SHAP values20

are incorrect or inaccurate. The use of our method aligns with the design of SHAP values, a similar way of sensitivity

estimation was also applied in a Nature Communications paper (Li et al., 2022). To clear up the confusion, our response

therefore addresses each point made by the reviewer separately in the following:
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(a) It remains unphysical. First of all, SHAP value is already kind of a sensitivity of the target value to the dependent

variable. That is, SHAP value of CF is equivalent to dCF/dNd.25

Short answer: The interpretation of SHAP values as sensitivity and them being comparable to dCF/dNd is in-

correct. A better analogy would be that SHAP values are comparable to dCF/dNd ×Ndj , where j denotes the

Nd value for a specific data instance xj . Other studies (e.g., Li et al., 2022) have employed the same sensitivity

estimation strategy as we have done in our paper.

Longer answer: SHAP values quantify feature contributions for data instances (feature values), they are not a30

sensitivity estimate (see e.g. the paper from the developer (Lundberg et al., 2020) or this textbook on explainable

machine learning (Molnar, 2022)). Regarding the specific mention of SHAP values for Nd (we assume the reviewer

was referring to Nd because there are no “SHAP values of CF”), it should be noted that they are neither equivalent

nor directly comparable to dCF/dNd. SHAP values do not directly quantify the rate of change of the target value

with respect to changes in the dependent variables. Instead, as we already explained in the manuscript (in lines35

175–181), and our response to the first review by R2, SHAP values represent the contribution of each feature to

the CF prediction (compared to a base value) for individual data instances (i.e. local contribution). In fact, SHAP

values are more comparable to dCF/dNd ×Ndj , where j denotes the Nd value for a specific data instance xj .

Mathematically, SHAP values are derived from Equation (1), wherein, for a given non-zero subset S of feature

values, the prediction is assumed to be equal to the expected value of the function conditioned on S (fx (S) =40

E [f (x) |xS ]) (Lundberg and Lee, 2017; Lundberg et al., 2018).

ϕi =
∑

S⊆N\{i}

|S|! (M − |S| − 1)!

M !
[fx(S ∪{i}− fx (S)] (1)

Equation (1) combines the traditional equation for Shapley values with conditional expectations. N is the set of all

features, i denotes the i-th feature, M is the number of input features and f is the ML model function.

Because SHAP values do not provide a sensitivity estimate, we quantify the sensitivity by fitting a linear regression45

to the feature values and their respective SHAP values. This method has been used before, e.g. by Li et al. (2022)

in their Nature Communications paper. In this study, the authors estimate the sensitivity of leaf area index (LAI)

to sub– or near–surface soil moisture (SMsurf) as the slope of the regression between feature values of SMsurf

anomalies and their SHAP values (Fig. 1 of this letter). The authors further argue that this approach facilitates the

robustness of the sensitivity estimation compared to traditional statistical methods because it “combines the advan-50

tages of bootstrap aggregating and non-distribution-assumption by random forest modeling, as well as advantages

of global interpretations being consistent with the local explanations in the SHAP algorithm (Li et al., 2022, page

7, section on overall sensitivity).” Our study also benefits from similar advantages and enhanced robustness. We

have referenced this study and included relevant discussion in Sect. 2.3.2 of the manuscript at line 212.

(b) Second of all, the SHAP value for Nd and its dependence on Nd figure the authors showed in the response. even if55

we forget the first point, are qualitatively different from the figure from the reference. Their shape is similar, which
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Figure 1. Figure adapted from the supplementary information of (Li et al., 2022), showing the sensitivity of leaf area index (LAI) to sub– or

near–surface soil moisture (SMsurf) as the slope of the Theil-Sen linear regression between SHAP values and feature values.

is true. However, the SHAP value turns to strongly negative values, which would be interpreted as CF decreases

with Nd at these Nd values.

Short answer: Again, the interpretation of the SHAP values by R2 is not correct, and thus only the acknowledge-

ment of the similarities between our results and the findings by Yuan et al. (2023) remains.60

Longer answer: It is incorrect to interpret negative SHAP values for Nd at low Nd values as CF decreases with Nd

(i.e. negative sensitivity). As we already explained in Sect. 2.3.1 of the manuscript in lines 177–180, as well as in

our first response to the first review of R2, SHAP values indicate that the specific feature value increases/decreases

the prediction compared to the “base value” (average of all predictions). SHAP values therefore quantify the extent

to which each feature contributes to a prediction deviating from the model’s average prediction/baseline. Fig. 2 from65

Lundberg et al. (2018) shows an example plot of how the sum of the baseline value and all feature contributions

(positive and negative SHAP values) is equal to the individual model prediction. These feature contributions depend

on the feature value. In the example E [f (x)] is the base value (the prediction if we did not know any information on

the input features), and f (x) is the current model output. This plot illustrates how positive SHAP values (red) push

the model prediction higher and negative SHAP values (blue) push the model prediction lower. This also indicates70

an important internal consistency of SHAP:
∑M

i=0ϕi = f (x), where i= 0 denotes what would be predicted in the

absence of any feature information (base value).

Figure 3 (which we have already shown in our first response to R2) shows the simplest case of SHAP values when

they are applied to a linear model. The slopes of linear regressions fitted to the original data and the SHAP values

are equal. The only difference is between the y-axes of E [f (x)], as the base value is subtracted in the case of the75

SHAP values. This reaffirms the validity of using the linear regression slope of feature values and SHAP values

for sensitivity estimation, but also clearly shows how R2 misinterprets the negative SHAP values at low Nd as a

negative sensitivity. In the case of a positive linear sensitivity low feature values (in Fig. 3 MedInc) will lead to
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Figure 2. Illustration of how SHAP values explain the output of a function f as a sum of the effects ϕi of each feature being introduced into

a conditional expectation (Lundberg et al., 2018).

Figure 3. Example figures showing the application a linear regression (left) and its SHAP values (right) - the only difference in this case

is the subtraction of the base value (horizontal dashed line of E [f (x)] in the left panel). Figures are from the SHAP documentation page,

section “An introduction to explainable AI with Shapley values" on: https://shap.readthedocs.io/en/latest/overviews.html, last accessed 03

March 2024.

a below-average prediction of y (left panel), which in the case of SHAP values is a negative value (right panel).

Therefore, negative SHAP values “decrease” the prediction with respect to the base value (i.e. at very low Nd80

values a below-average CF is expected). In our study, the correct interpretation of local/individual SHAP values

is provided in lines 177-179: “Positive (negative) SHAP values indicate that the specific feature value increases

(decreases) the prediction compared to this base value.”, and for the example of the global interpretation of Nd

SHAP values in Fig. 1a) is given in line 201: "...increased Nd values lead to an increase in the predicted CLF, while

the rate of the increase (dSHAP/dNd) drops with Nd as shown by the orange line." This is physically expected85

and agrees well with the cited literature.

In summary, SHAP values are not a sensitivity measure. Sensitivity should be interpreted from a global per-

spective, whereas SHAP values should be initially interpreted from a local viewpoint, and then aggregated

and summarized by a global sensitivity (here the slopes of the linear regressions, as also done in e.g. Li et al.

(2022)), or global feature importance (the mean of absolute local SHAP values e.g. Fig. 3 of the manuscript).90
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This is well summarized in the explainable machine learning textbook by Molnar (2022): “The global inter-

pretation methods include feature importance, feature dependence, interactions, clustering and summary

plots. With SHAP, global interpretations are consistent with the local explanations, since the Shapley values

are the “atomic unit” of the global interpretations (section 9.6.10).”

(c) That is unphysical either. I could name other physically inconsistencies if the authors show more details like this.95

The overaching point remains that we do not have reason to believe such boosted tree models would necessarily

give us physical insights. I’d have not issues with authors publishing it as a statistical analysis, but if physical

interpretations are involved the authors need to demonstrate them with care first.

The concerns raised regarding unphysical Nd–CF relationships or physically inconsistent ones are based on the

reviewer’s misinterpretation of SHAP values, but are shown to be physically consistent and in agreement with the100

literature. We certainly agree with the reviewer that the interpretation regarding physical processes should always

be done with care, (no matter if using a linear regression, a neural network or boosted trees) which we have done

by:

i. In the abstract, now explicitly stating that the results are based on a statistical/data-driven method and men-

tioning that limitations are discussed in the main text.105

ii. Openly discussing the potentials and limitations of the method and the data (e.g. in Sect. 2.3.3).

iii. Directly stating in line 273 that the interpretation should be done with the limitations in mind.

iv. Careful wording when physical interpretations are made (e.g. "These marked positive Nd–CLF sensitivities

may be caused by high Nd delaying the transition from stratocumulus to cumulus clouds (Gryspeerdt et al.,

2016; Christensen et al., 2020)", line 332).110

v. We now additionally rephrase the manuscript including: add “seems to” before “indicates” at line 310.

Line 324: “leading to” to “which could lead to”.

Line 361 and 362: “suggests that” to “may be a hint that”; add “presumably” after “increase of CLF”.

Line 417: add “seem to” between “factors” and “have”.

vi. Directly following up such interpretations by detailing possible unphysical alternative explanations (e.g. “As115

Nd retrievals tend to negatively bias at lower CLF and positively bias at higher CLF, the Nd–CLF sensitivity

may be overestimated, and at the scales considered here, should be interpreted as an upper bound to the

physical Nd–CLF sensitivity.”, lines 337–339).

vii. Emphasizing again that the sensitivities and IAIs are subject to aforementioned limitations: “should be noted

that the quantification of the dependence of the Nd–CLF relationship on meteorological factors (EIS, SST120

discussed in this section) is also likely subject to the biases in the Nd–CLF sensitivity caused by the Nd retrieval

biases as a function of CLF. This would potentially contribute to the non-causal facets of the relationships and

interactive effects quantified by SHAP values.”, lines 441–444.

viii. We have also rephrased Sect. 3.3.2 to underscore the caution in making physical interpretations.
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ix. In the conclusion section, it has been mentioned that “The statistical sensitivities and interactive effects are125

interpreted with the guidance of hypothesised causal pathways and the state-of-the-art physical understanding

of the system.” (lines 451–453); we also mentioned incorporating causal setups for SHAP would be a promis-

ing way to go (lines 476–478). Furthermore, we revised the conclusion part to exercise caution and to serve as

a reminder to readers.

3. This proves my point. The transformation basically doesn’t make sense. Nearly all figures and results in this paper are130

about gross statistics and map distributions. When the underlying statistics are not consistent, it has to be corrected

IMHO.

The use of standardized regression coefficients is a standard and common practice when aiming for comparability of

sensitivity estimates among predictors. It is described and recommended as the standard procedure to eliminate the

effect of units and place the predictors on the same scale in this paper: “A review of techniques for parameter sensitivity135

analysis of environmental models” (Hamby, 1994). As it is a general strategy to compare sensitivities across predictors,

there are plenty of environmental studies that employ this strategy. We realize that the reviewer probably takes an issue

with the resulting maps (standard deviations are not the same everywhere), rather than with the technique itself. We have

revised the content introducing the standardization in lines 132–138 and have included a more direct discussion about

the trade-off between comparability between predictors, vs. comparability in space into the manuscript. One should note140

though, that even in this context (maps of sensitivities) this is still a standard method. Examples can be found e.g. in this

nature paper (Seddon et al., 2016), which quantifies and shows maps of standardized sensitivities for multiple predictors.

In the cloud community it is also commonly done when sensitivities are compared among predictors, and in similar

settings (papers showing standardized sensitivity maps). Here is an incomplete list of references that have opted for this

strategy:145

– (Scott et al., 2020): Journal of Climate paper that quantifies standardized low-cloud sensitivities for a range of

cloud-controlling factors, please see Fig. 4 of this letter for examplary sensitivity maps (note the unit of the color

bar).

– (Myers et al., 2021): Nature Climate Change paper that uses the standardized low-cloud sensitivities from Scott

et al. (2020).150

– (Ceppi and Nowack, 2021): PNAS paper that quantifies standardized cloud sensitivities for a range of cloud-

controlling factors, as shown by Fig. 5 of this letter for examplary sensitivity maps.

– (Andersen et al., 2023): ACP paper that quantifies standardized sensitivities of cloud radiative effects to a range of

cloud-controlling factors including aerosols.

– (Grise and Kelleher, 2021): Journal of Climate paper that quantifies standardized sensitivities of cloud radiative155

effects in the midlatitudes for a range of cloud-controlling factors, Fig. 6 of this letter for examplary sensitivity

maps.
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Figure 4. Figure taken from Scott et al. (2020) showing standardized low-cloud sensitivities to different cloud-controlling factors.

– (Wilson Kemsley et al., 2024): EGUsphere manuscript that quantifies standardized high-cloud sensitivities for a

range of cloud-controlling factors.

We do not share the opinion of the reviewer that this method “does not make sense”, and the published literature in the160

cloud community (but also more broadly in environmental sciences) supports this assessment. As we believe the added

value of the comparability between the sensitivities of the different predictors is of interest to the readership of ACP,

and outweighs the discussed downside of marginally reduced comparability in space (as shown by the supplementary

material), we would like to keep the figures in the manuscript to show standardized sensitivities with the non-standardized

sensitivities in the supplement (as done in Grise and Kelleher (2021)).165

Minor modifications independent of the reviewer comments

Abstract, line 20: “ACIs” to “the CLF adjustment”.

Line 20: “-” between “CLF” and “sensitivities” has been removed.
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Figure 5. Figure from Ceppi and Nowack (2021) showing shortwave cloud-radiative sensitivities to standardized surface temperature and

EIS.

Figure 6. Figure from Grise and Kelleher (2021) showing sensitivities of low and high cloud fraction to four different standardized cloud-

controlling factors.
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