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Abstract. As wildfires intensify and fire seasons lengthen across the western U.S., the development of models that can predict 

smoke plume concentrations and track wildfire-induced air pollution exposures has become critical. Wildfire smoke plume height 

is a key indicator of the vertical placement of plume mass emitted from wildfire-related aerosol sources in climate and air quality 

models. With advancements in Earth observation (EO) satellites, spaceborne products for aerosol layer height or plume injection 15 

height have recently emerged with increased global-scale spatiotemporal resolution. However, to evaluate column radiative effects 

and refine satellite algorithms, vertical profiles of regionally representative aerosol properties from wildfires need to be measured 

directly. In this study, we conducted the first comprehensive evaluation of four passive satellite remote sensing techniques 

specifically designed to retrieve plume height. We compared these satellite products with the airborne Wyoming Cloud Lidar 

(WCL) measurements during the 2018 Biomass Burning Flux Measurements of Trace Gases and Aerosols (BB-FLUX) field 20 

campaign in the western U.S. Two definitions, namely “plume top” and “extinction-weighted mean plume height”, were used to 

derive representative heights of wildfire smoke plumes, based on the WCL-derived vertical aerosol extinction coefficient profiles. 

Using these two definitions, we performed a comparative analysis of multisource satellite-derived plume height products for 

wildfire smoke. We provided a discussion on which satellite product is most appropriate for determining plume height 

characteristics near a fire-event location or estimating downwind plume rise equivalent height, under various aerosol loadings. Our 25 

findings highlight the importance of understanding the sensitivity of different passive remote sensing techniques on space-based 

wildfire smoke plume height observations, in order to resolve ambiguity surrounding the concept of “effective smoke plume 

height”. As additional aerosol-observing satellites are planned in the coming years, our results will inform future remote sensing 

missions and EO satellite algorithm development. This bridges the gap between satellite observations and plume rise modeling to 

further investigate the vertical distribution of wildfire smoke aerosols. 30 

1 Introduction 

Characterizing the vertical extent of wildfire smoke aerosols near active fire hotspots, also known as plume injection height (PIH) 

or smoke aerosol layer height (ALH), is a critical task in simulating the long-range transport of wildfire smoke. From a physical 

perspective, the initial PIH at a fire can be described as the height where the relatively stable vertical atmospheric layer is located, 

causing the smoke plume to accumulate, and where the updrafts generated by the buoyancy above the fire terminate (Kahn et al., 35 

2007; Labonne et al., 2007; Paugam et al., 2015). PIH is commonly viewed as the vertical height to which a buoyant plume core 

can lift the polluted airmass before the smoke plume begin to bend over horizontally (Raffuse et al., 2012). Often plume heights 
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near or downwind of active fire areas are treated as equivalent to PIH values. Wildfire smoke plumes move horizontally in single 

layers through the atmosphere, but some may become stratified into multiple, discrete layers (Mardi et al., 2018; Deng et al., 

2022b). However, it is impossible to distinguish aerosol layering at multiple heights without vertically resolved smoke aerosol 40 

profiles. Consequently, a single height value is often applied and obtained from physics-based numerical models or passive remote 

sensing retrievals. Regardless of whether the vertical structure of wildfire smoke aerosols is homogenous or heterogenous, a 

columnar plume height retrieved from satellites is considered a representative ALH. This study focuses on the smoke-specific 

plumes from wildfires in the western United States (WUS); therefore, we will use smoke plume height (SPH) to denote this. 

Wildfire SPH observed from space has advanced in spatiotemporal resolution since the 2000s (Kahn et al., 2007; Ichoku et al., 45 

2012; Lyapustin et al., 2019; Kahn, 2020). Passive satellite sensors are used to map global wildfire SPH distribution, spanning a 

range of recently developed techniques and retrieval algorithms. It is important to note that each method to obtain satellite SPH 

retrievals utilizes a distinct remote sensing technique, resulting in inconsistent definitions of SPH. To shed light on their differences, 

a brief overview of these methods is provided to demonstrate why they yield differing plume height interpretations. 

The photogrammetric stereo capability of the Multi-Angle Imaging SpectroRadiometer (MISR) aboard the National Aeronautics 50 

and Space Administration (NASA) Earth Observing System’s Terra spacecraft (Diner et al., 1998), combined with the MISR 

Interactive Explorer (MINX) tool (Nelson et al., 2008, 2013), provides “wind-corrected” SPH values of elevated smoke aerosols. 

This approach takes into account feature displacements caused by the plume movement and the stereo parallax shift among 

different camera views. Another approach to retrieve SPH takes advantage of the altitude dependence of absorption spectroscopic 

characteristics of molecular oxygen (O2) in the A band at 759–771 nm or the B band at 686–695 nm or the O2–O2 spectral band at 55 

477 nm. This approach has been successfully applied to a number of passive satellite-supported instruments, including but not 

limited to POLDER/PARASOL (the POLarization and Directionality of the Earth’s Reflectance mounted on the Polarization and 

Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar platform, Dubuisson et al., 2009), 

MERIS/ENVISAT (the MEdium Resolution Imaging Spectrometer installed on the Environmental Satellite, Duforêt et al., 2007; 

Dubuisson et al., 2009), SCIAMACHY/ENVISAT (the SCanning Imaging Absorption SpectroMeter for Atmospheric 60 

CHartographY on board the Environmental Satellite, Corradini and Cervino, 2006; Sanghavi et al., 2012), GOME-2/MetOp (the 

Global Ozone Monitoring Experiment–2 flying on the Meteorological Operational series of satellites, Sanders et al., 2015; Nanda 

et al., 2018a; Michailidis et al., 2021), OMI/Aura (the Ozone Monitoring Instrument aboard the Aura spacecraft, Chimot et al., 

2017, 2018), EPIC/DSCOVER (the Earth Polychromatic Imaging Camera loaded on the Deep Space Climate Observatory, Xu et 

al., 2019; Lu et al., 2021) and TROPOMI/S-5 P (the TROPOspheric Monitoring Instrument carried on the Copernicus Sentinel-5 65 

Precursor mission, Griffin et al., 2020; Nanda et al., 2020; Chen et al., 2021). Other approaches utilize the ultraviolet (UV; 340–

380 nm) or thermal infrared (TIR; 11 µm) bands, which are sensitive to the vertical distribution of absorbing aerosols (e.g., smoke 

and mineral dust) or absorptions by various gases released from fire (together with smoke aerosols), respectively. Using bands 

included in wide-swath passive sensors means that these approaches can provide SPH globally. Based on the sensitivity of 

backward UV radiance to the  height of absorbing aerosols (e.g., dust and smoke) in a Rayleigh scattering atmosphere (Hsu et al., 70 

1996; Torres et al., 1998; Hsu et al., 1999), previous studies proposed an algorithm called the Aerosol Single-scattering albedo and 

Height Estimation (ASHE) that jointly retrieves ALH and single scattering albedo (SSA) using UV-aerosol index (UVAI), aerosol 

optical depth (AOD), and spaceborne lidar backscatter profile from multi-sensor measurements (Jeong and Hsu, 2008; Lee et al., 

2015, 2016). In a subsequent study, Lee et al. (2020) revised the ASHE algorithm to function without the lidar backscatter profile.  

Lyapustin et al. (2019) and Cheeseman et al. (2020) introduced the brightness temperature contrast approach that uses the Moderate 75 

Resolution Imaging Spectroradiometer (MODIS) TIR band (11 μm) for smoke plume identification and characterization. Using 
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this technique, daily SPH values are retrieved on a global sinusoidal grid as part of the Multi-Angle Implementation of Atmospheric 

Corrections (MAIAC) atmospheric product MCD19A2.  

Passive satellites excel by delivering widespread coverage on a regular basis, all while incurring minimal recurring costs and posing 

no risks to observers. Yet, dense smoke plumes, cloud cover, or scan gaps between adjoining orbits of sun-synchronous polar 80 

satellites can result in unsuccessful retrievals (Lyapustin et al., 2008). As a complement to these passive retrievals, active 

spaceborne lidars like CALIOP/CALIPSO (the Cloud-Aerosol Lidar with Orthogonal Polarization aboard the Cloud-Aerosol Lidar 

and Infrared Pathfinder Satellite Observation satellite, Winker et al., 2009) and CATS/ISS (the Cloud-Aerosol Transport System 

installed on the International Space Station, McGill et al., 2015) offer high-resolution vertical profiles of aerosol optical signals. 

While these spaceborne lidars enhance the detection of thin smoke layers, they are bound by a narrow, pencil-like swath providing 85 

limited spatial coverage, see Figure 9 in Loría‐Salazar et al. (2021). Another limitation of remote sensing instruments on polar-

orbiting satellites is that they do not resolve the diurnal variation of wildfire activity.  

Endeavors to investigate fire behavior and their associated air quality (AQ) impacts have predominantly relied on the use of field 

data and satellite-based retrievals. Passive and active remote sensing techniques are complementary because of their different 

observational methods. The deliberate collocation of them provides synergistic insights into missing pieces of fire information that 90 

may not be attainable by either type of technique in isolation (Liu et al., 2019a; Sicard et al., 2019). Unfortunately, in the 

Intermountain West region of the U.S., there remains a lack of detailed vertical profiles of aerosol optical properties, despite recent 

field experiments such as Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ), Western wildfire 

Experiment for Cloud chemistry, Aerosol absorption and Nitrogen (WE-CAN), Biomass Burning Flux Measurements of Trace 

Gases and Aerosols (BB-FLUX), and Fire and Smoke Model Evaluation Experiment (FASMEE). Furthermore, to date, there is no 95 

universally accepted methodology for directly deriving SPH from aerosol extinction or backscatter vertical profiles due to the 

ambiguous use and definition of the term “effective SPH” (Xu et al., 2017). This poses a challenge particularly when one wants to 

compare columnar SPH values from passive remote sensors with retrieved three-dimensional (3D) distribution of smoke aerosol 

vertical structure from active remote sensors.  

The primary objective of this study is to address the central research question: which SPH definition corresponds to the most 100 

physically relevant plume height for a specific satellite SPH retrieval algorithm? We introduce two SPH definitions using vertical 

profiles of smoke aerosol from airborne lidar data. We then quantify the sensitivity of four passive remote sensing techniques to 

columnar SPH observations with respect to these two definitions, accounting for the effects of local meteorology, distance from 

the active fire source, and smoke aerosol loading. Meanwhile, we explore an optimal collocation strategy to compare satellite 

retrievals with lidar measurements, considering instrument discrepancies in observing SPH experimentally. To the best of our 105 

knowledge, we present the first comprehensive assessment of multiple satellite-derived SPH products compared with aircraft lidar 

data. It is important to note here that there were no coincident satellite-based lidar overpasses for our field campaign data; therefore, 

they are not included in our results. This omission underscores the difficulties in directly comparing spaceborne lidar products with 

data from aircraft campaigns. The results of our study clarify the meaning of “effective SPH” in the remote sensing and modeling 

communities, filling a critical gap in uniform plume height comparisons. Our findings also meet the urgent need for a suite of 110 

remotely sensed datasets to evaluate the performance of present and future dynamic smoke plume models and smoke modeling 

frameworks, or to provide inputs to these models that improve the SPH characterization required to model the downwind pollutant 

transport. 
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2 Measures of wildfire SPH 

2.1 Satellite-based wildfire SPH 115 

The following four space-based wildfire SPH retrievals will be discussed in our study: (1) MODIS aerosol product using the 

MAIAC algorithm (MODIS/MAIAC); (2) MISR-based global SPH database that can be accessed via the MISR Enhanced Research 

and Lookup Interface (MISR/MERLIN); (3) VIIRS aerosol product using the ASHE algorithm (VIIRS/ASHE); (4) TROPOMI-

based ALH product (TROPOMI/ALH). Table 1 features further information about these passively remote-sensed SPH products. 

Table 1: Summary of multisource satellite-derived plume height products. 120 

Data Set/Version Availability Resolution Instrument/Satellite  Retrieval 
Method References 

MAIAC-derived 
injection height 

products/collection 6.1 

February 1, 2000 to 
present 

horizontal: 1 km  
1km 

MODIS/Terra or 
Aqua 

Brightness 
temperature 

contrast 

Lyapustin et al. 
(2019) 

temporal: 16-day 
repeating cycle; 
one-to-two-day 
global coverage 

MERLIN interface for 
MISR plume height 
project /version 2 

2008–2011 as well as 
the summers (June, 

July, August) of 2017 
and 2018 

horizontal: 1.1 km 
 1.1 km 

MISR/Terra Multi-angle 
imaging 

Kahn et al. 
(2007) 

temporal:16-day 
repeating cycle; 9-

day global 
coverage 

ASHE-derived ALH 
products/research August of 2013–2018 

horizontal: 6 km  
6 km 

VIIRS/SNPPa Ultraviolet 
radiometry 

Lee et al. 
(2020) 

temporal:16-day 
repeating cycle; 

daily global 
coverage 

TROPOMI level-2 
ALH/version 1 

April 30, 2018 to July 
1, 2021 

horizontal: 3.5 km 
 7 km (across x 
along track) from 
April 30, 2018 to 

August 6, 2019; 3.5 
km  5.5 km since 

August 6, 2019 
TROPOMI/S-5 P Oxygen 

absorption 
Sanders et al. 

(2012) 

temporal:16-day 
repeating cycle; 
near-daily global 

coverage 
a Data from VIIRS sensors on other satellite platforms were unavailable for this study. 

2.1.1 MODIS/MAIAC 

MODIS sensors are located on the Terra (morning sensor, 10:30 AM local solar time) and Aqua (afternoon sensor, 1:30 PM local 

solar time) satellite platforms and operate in the TIR spectrum to detect active fires (Salomonson et al., 2002). This twin-MODIS 

design covers most regions near the equator with at least four observations per day. The number of observations increases as one 125 

approaches the poles due to overlapping orbits. The MAIAC algorithm uses MODIS data to obtain near-fire-source aerosol 

injection height, known as the MCD19A2 dataset with high resolution (1 km).  
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By assuming a fixed lapse rate, the MAIAC PIH algorithm utilizes negative thermal contrast at 11 μm between smoke and sufficient 

neighboring smoke-free pixels and converts the colder brightness temperature into SPH estimates (Lyapustin et al., 2019; 

Cheeseman et al., 2020). The valid range for the MAIAC-based SPH is up to 10 km. However, the SPH calculation struggles with 130 

large smoke areas and small fires emitting low levels of absorbing gases, meaning it requires a high enough plume opacity (AOD 

at 470 nm ≥ 0.8) to obtain a useful signal. When compared to other SPH datasets such as MISR and CALIOP, MAIAC tends to 

significantly underestimate the height of smoke plumes, particularly for transporting dilute smoke downwind of the fire (Lyapustin 

et al., 2019). In spite of these limitations, the MAIAC algorithm provides valuable information within approximately 75–150 km 

of the identified thermal hotspots, i.e., fire (Loría‐Salazar et al., 2021). 135 

2.1.2 MISR/MERLIN 

With its nine fixed push-broom cameras, MISR aboard NASA’s Terra satellite captures images from nine different angles and four 

spectral bands, allowing for studies of wildfire and aerosol distributions using stereoscopic techniques, unaffected by bright 

surfaces (Moroney et al., 2002; Muller et al., 2002). The wealth of data collected by the MISR instrument over two decades offers 

valuable insights into the global climatology of fire in the environment, across geographic regions, biomes, and seasons (Val Martin 140 

et al., 2018; Gonzalez-Alonso et al., 2019). The publicly available database built using manually postprocessed MISR products 

has been used to evaluate plume rise models (e.g., Ke et al., 2021) and other satellite-derived datasets (e.g., Lyapustin et al., 2019; 

Griffin et al., 2020). Recently, an interactive visualization tool called MERLIN was developed to facilitate the exploration and 

accessibility of over 70,000 records of global wildfire plume height retrievals (Boone et al., 2018; Nastan et al., 2022).  

MISR’s global SPH mapping, with a 250–500 m vertical resolution, complements aerosol height curtains obtained from spaceborne 145 

lidar systems (Kahn et al., 2007, 2008; Val Martin et al., 2018). However, Tosca et al. (2011) found that stereo-derived SPH from 

MISR was significantly lower than the top altitude observed by CALIOP for the 2006 Indonesian fires. Nevertheless, important 

lessons can be drawn from the underestimated SPH values in the MISR product as follows: (1) the overpass time of MISR in the 

morning precedes the daytime peak in fire activity, typically in late afternoons when temperatures are highest and relative humidity 

is lowest; (2) very few coincident overpasses exist over fires during a short time of interest due to the narrow MISR swath, which 150 

allows global coverage only approximately once per week. Additionally, the revisit period of MISR for a specific geographical 

spot varies from 2 to 9 days, depending on the latitude (Kahn et al., 2007); (3) MISR automated stereoscopic image’s dependence 

on optically distinct plume-like features for accurate height estimation can introduce bias, mainly when dealing with thin smoke 

or smoke downwind of the active fire source with less defined boundaries (Nelson et al., 2013). However,  blue-band data at 1.1 

km horizontal cell size is considered a better choice for capturing the higher injection heights associated with fine smoke aerosols 155 

than the corresponding red-band retrievals at the spatial resolution of 275 m (Nelson et al., 2013). In this study, we extracted blue-

band, wind-corrected heights with “good” quality flags downloaded from MERLIN. This preference is due to the blue band’s 

(446.4 ± 41.9 nm) sensitivity to thinner aerosol layers, enabling the detection of aerosol features at higher altitudes.  

2.1.3 VIIRS/ASHE 

The launch of operational VIIRS sensors has been planned for the Joint Polar Satellite System (JPSS) series since 2011, in 160 

anticipation of the post-MODIS era (Cao et al., 2013a, 2013b; Goldberg et al., 2013; Wolfe et al., 2013; Wang and Cao, 2019). 

VIIRS currently flies on three polar-orbiting satellites: Suomi National Polar-orbiting Partnership (SNPP), National Oceanic and 

Atmospheric Administration-20 (NOAA-20) and NOAA-21 satellites. This study uses data from SNPP VIIRS. The VIIRS 

instrument has a wide swath of 3,040 km and can observe the entire Earth twice a day — once during the day and once during the 



6 
 

night. There are some overlaps between consecutive swarths, which means that mid-latitudes will experience up to 4 looks per day 165 

(Wolfe et al. 2013). Even though the SNPP VIIRS data has enhanced radiometric measurement quality, a broad spectral range, and 

a fine spatial resolution (Csiszar et al., 2014; Schroeder et al., 2014), the limited temporal information may curtail its efficacy for 

delineating fire perimeters and assessing fire spread, especially during short fire durations (Cardil et al., 2019). 

The research version of the ASHE algorithm (transition to operational processing is underway at the time of writing) provides the 

plume height of UV-absorbing aerosols like smoke and dust over broad areas, including both near-source and transported plumes 170 

(Loría-Salazar et al., 2021). Initially, it leveraged AOD and Ångström Extinction Exponent (AEE) from the MODIS or VIIRS 

aerosol product in its retrieval process, as well as ALH along the CALIOP track as a constraint (Jeong and Hsu, 2008; Lee et al., 

2015). By assuming spatially invariant SSA retrieved along the CALIOP track over a MODIS/VIIRS granule, the height retrieval 

can be extended beyond the narrow CALIOP track, thereby improving spatiotemporal coverage. This study makes use of a release 

candidate of ASHE, that does not use the CALIOP constraints and leverages the synergy between VIIRS and Ozone Mapping and 175 

Profiler Suite - Nadir Mapper (OMPS-NM) for UV measurements (Lee et al., 2020). To further improve its performance, a 

systematic optimization of the smoke optical models used in the algorithm was carried out by iteratively comparing the retrieved 

ALH and SSA with those from CALIOP and ground-based measurements offline until satisfactory similarity was found between 

the results (e.g., Jeong et al., 2022). Its application is limited to UV-absorbing aerosols with moderate to thick optical depths (AOD 

at 550 nm > 0.5–1.0), rendering it ineffective for aerosols with lower optical depths. Preliminary evaluation suggested that the 180 

ASHE-retrieved SPH had an uncertainty of 1–1.2km (or 30–40% for SPH of 3 km) for heavy aerosol loading cases (AOD > 1) 

(Lee et al., 2016, 2020). The uncertainty is dependent on errors in retrieved AOD, assumed aerosol optical model, and surface 

reflectance, and generally decreases with increasing AOD. It should be noted that OMPS-NM abroad SNPP has a relatively coarse 

spatial resolution of ~50 × 50 km2 near nadir (~200 × 100 km2 near the edge of the across-track scan), indicating that it has 

limitations for small-scale (subpixel) smoke plumes. Although there are multiple VIIRS instruments, the ASHE product is currently 185 

only available for SNPP VIIRS. It is anticipated that this retrieval algorithm will be implemented for other VIIRS instruments in 

the future. 

2.1.4 TROPOMI/ALH 

The TROPOMI instrument is the single payload on board of the European Space Agency (ESA) S-5 P satellite mission, planned 

for 2017–2024. TROPOMI is a spectrometer that monitors key atmospheric constituents and aerosol/cloud properties by observing 190 

reflected sunlight across the spectral bands in the UV, the visible (270–500 nm), the near-TIR (675–775 nm), and the shortwave 

TIR (2305–2385 nm). Compared to its predecessors (OMI and SCIAMACHY), TROPOMI provides high spatially resolved 

information and is capable of daily global coverage and near real-time data, which enables regular monitoring and rapid assessment 

of changes in the Earth’s atmosphere (Veefkind et al., 2012).  

By analyzing the spectral signature of light that is absorbed by O2 in the A band in the near-TIR wavelength range between 759 195 

and 770 nm, the TROPOMI ALH algorithm estimates the height of aerosol plumes in the atmosphere (Sanders et al., 2012; Nanda 

et al., 2019). It has shown to be effective in retrieving high plumes up to 8 km in height above ground level (AGL), with reduced 

uncertainties for thicker and lower plumes between 1 and 4.5 km in height AGL (Griffin et al., 2020), as well as for dark surfaces 

(Nanda et al., 2018b). However, it was found to be biased low compared with other SPH datasets such as MISR and CALIOP, 

most likely due to its tendency to return an intermediate plume height when multiple aerosol layers are present (Griffin et al., 2020; 200 

Nanda et al., 2020). In addition, Nanda et al. (2020) pointed out that cloud contamination would have an impact on the 

TROPOMI/ALH product since it is unable to distinguish between cloud and aerosol signals from the measured radiances. In this 
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study, we only used data having a quality assurance value larger than 0.5 to filter mostly cloudy scenes or retrievals with 

geolocation errors. 

2.2 Airborne lidar measurements 205 

The 2018 BB-FLUX field campaign deployed the upward-pointing Wyoming Cloud Lidar (WCL) on the University of Wyoming 

King Air (UWKA) research aircraft that sampled smoke plumes from more than 20 wildfires during 35 flights over the WUS. The 

airborne WCL measurements of attenuated backscattering coefficient and lidar depolarization ratio were calibrated on a per-flight 

basis. The vertical aerosol extinction profiles (units: km-1) were retrieved with Fernald’s method assuming a constant lidar ratio of 

60 and evaluated with in situ measurements (see Deng et al., 2022a for details). Table 2 lists nine wildfire cases, including locations, 210 

start and containment dates, and acres burned (Historic Perimeters Combined 2000–2018 GeoMAC, 2023). It also summarizes 

eleven flight missions from August 2018, selected for the number of collocated pairs between valid lidar transects and satellite 

overpasses, with the flight trajectories illustrated in Fig. 1. The chosen flights are limited to smoke plumes that could be attributed 

to a specific wildfire. Other flights during the campaign were excluded from this study because they target prescribed fires, small 

wildfires, clouds, and aged smoke plumes. Small fires were not included, in part, because of the expected large uncertainties in 215 

satellite retrievals of the relatively low SPH values (ranging from hundreds of meters for prescribed fires to thousands of meters 

for small fires). Large errors for smoke aerosol layers within the boundary arise from a mismatch between the coarse spatial 

resolution of satellite pixels and the fine-scale smoke plume variability inherent in wildfire activity (Geddes and Boesch, 2015). 

We re-gridded valid WCL two-dimensional (2D) transects at a vertical resolution of 3 m and an along-track horizontal resolution 

of about 1.1 km to calculate SPH and columnar AOD throughout the atmosphere. Compared to satellite observations, the re-gridded 220 

WCL measurements have a much smaller field of view in the cross-track direction, therefore the WCL can show much finer spatial 

variations in smoke. Moreover, it should be noted that the WCL can be fully attenuated in dense smoke and unable to detect the 

actual SPH, and the aircraft might fly above the plume bottom, so the upward-looking WCL only samples partial AOD of the 

aerosol vertical profile, which fundamentally differs from the AOD derived from satellite retrievals.  

Table 2: Summary of nine wildfire cases with its general information and the corresponding eleven flight missions from August 2018. A 225 
flight name is denoted by its date ‘+ a’ because the flight occurred in the morning; otherwise, it is denoted by its date ‘+ b’ if it occurred 
in the afternoon. 

Wildfire 
Name 

Active Fire 
Location 
(Latitude, 
Longitude) 

Start Date 
Approximate 
Containment 

Date 

Approximate 
Burned Area 

(acres) 

Flight 
Date 

(UTC) 

Flight 
Name 

Aircraft 
Sampling 

Distance from 
Active Fire 
Source (km) 

Nth 
Day 

After 
Fire 
Start 
Date 

Sharps Fire, 
ID 

43.467°N, 
114.145°W Jul 29, 2018 Aug 12, 2018 64, 812 

2018/08/03 0803a 18.88 6 

2018/08/04 0804b 46.50 7 

Rabbit Foot 
Fire, ID 

44.856°N, 
114.307°W Aug 2, 2018 Sep 19, 2018 36, 031 

2018/08/08 0808b 21.86 7 

2018/08/12 0812a 32.80 11 

Watson 
Creek Fire, 

OR 

42.653°N, 
120.818°W 

Aug 15, 
2018 Sep 9, 2018 59, 067 2018/08/19 0819a, 

0819b a: 5.26/b: 22.61 5 
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2018/08/24 0824a 41.75 10 

2018/08/25 0825a 13.17 11 

Sheep Creek 
Fire, NV 

40.773°N, 
116.842°W 

Aug 18, 
2018 Aug 23, 2018 59, 789 2018/08/20 0820a, 

0820b a: 1.70/b: 1.48 3 

South 
Sugarloaf 
Fire, NV 

41.812°N, 
116.324°W 

Aug 17, 
2018 Sep 3, 2018 233, 608 2018/08/23 0823a 51.44 7 

 

 
Figure 1: Color-coded eleven UWKA flight trajectories during the 2018 August BB-FLUX project, each of which is associated with one 230 
of nine wildfire cases denoted by fire icons. 

3 Methods 

3.1 Definitions of wildfire SPH estimates 

The extinction coefficient is a key parameter for the fundamental radiative transfer calculations of wildfire smoke aerosols from 

the surface to the top of the atmosphere (TOA) (e.g., Ansmann et al., 2018; Solomon et al., 2022) and can yield a linear relation to 235 

the particle mass (or volume) concentration (e.g., Mamouri and Ansmann, 2016; Toth et al., 2019; Ansmann et al., 2021). In 

previous studies, the aerosol extinction coefficient is one of the most frequently observed and reported aerosol optical properties 

to characterize the vertical structure of the atmosphere and develop a height retrieval algorithm (Gordon, 1997; Dubovik et al., 

2011; Sanghavi et al., 2012; Hollstein and Fischer, 2014; Ding et al., 2016; Wu et al., 2016; Xu et al., 2017). Lidar-based active 

remote sensing technology provides an attenuated backscatter signal intensity that is processed by designating an extinction-to-240 

backscatter ratio to produce vertical profiles of the aerosol extinction coefficient (Liu et al., 2015; Rosati et al., 2016; Baars et al., 
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2021).  

Two definitions have been proposed and widely used to derive a representative height of wildfire smoke plumes based on the 

vertical distribution of aerosol extinction coefficient at a given spectral wavelength from active lidar measurements. The concept 

of “effective SPH” can be defined either through smoke aerosol layer boundaries or by considering the complete vertical profile 245 

(Fig. 2). One method identifies the topmost height of the plumes according to the geometric boundary of the aerosol layers. Another 

approach adopts the average height of the aerosol layers, weighted by the extinction (or backscatter) coefficient that reflects the 

radiative properties of wildfire smoke particles. In this section, we will present a detailed explanation of these two definitions and 

apply them to the WCL-measured vertical profiles of aerosol extinction coefficient. The height hereinafter is computed in 

kilometers AGL. 250 

 

Figure 2: Schematic of two standard SPH definitions, SPHtop and SPHext, proposed in our study. 

3.1.1 Plume top (SPHtop) 

This definition is built on the wavelet covariance transform (WCT) approach given by Gamage and Hagelberg (1993), which is an 

automatic algorithmic process to extract geometrical features of interest. Since it can detect the aerosol layer locations of subtle 255 

but coherent transitions according to their strength and sign, the WCT analysis has been applied to detect realistic high-resolution 

atmospheric structures at a variety of vertical spatial scales, such as a well-mixed convective boundary layer top (e.g., Brooks, 

2003; Baars et al., 2008) and the edges of lofted aerosol layers (e.g., Davis et al., 2000; Siomos et al., 2017). Here we focus on the 

derivation for the height of the wildfire smoke plume top, referred to as SPHtop. 

The WCT method is expressed as 260 

( , ) = ( )ℎ
−

 ,                                                                                                                                     (1) 

with a step function, the so-called Haar wavelet ℎ , ( ), which can be defined as  
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In Eq. (1), ( ) is the lidar signal of interest as a function of height AGL,  (is the aerosol extinction profile ( ) at 355 nm), and 

 and  are the upper and lower limits of the profile. For any arbitrary element of the Haar basis ℎ , ( ) as shown in Eq. (2),  265 

is the dilation parameter in relation to the spatial spectrum of the function, and  is the translation parameter indicating the location 

at which the function is centered, respectively.  

The local match or similarity between the Haar wavelet ℎ , ( ) and the lidar extinction signal ( ) is measured in the covariance 

transform ( , ), which can be interpreted as a pattern search for a sudden jump. Accordingly, the position of the local maxima 

(i.e., positive peaks) in the return WCT signal approximately marks the layer top; likewise, the position of the local minima (i.e., 270 

negative peaks) of the covariance transform ( , ) roughly coincides with the layer bottom. Identification of strong variations 

in the vertical gradient of the aerosol extinction profile ( ) is useful for locating the boundaries between aerosol layers. Inspired 

by Michailidis et al. (2021, 2023), we define SPHtop as the last positive peak in the corresponding WCT profile from the surface to 

the upper atmosphere if some physical constraints are satisfied. The optimum value for  affects the number of sufficiently thick 

aerosol layers that can be retrieved successfully. We therefore limited the minimum acceptable wavelet dilation  to be equal to 275 

54 times the vertical resolution of the aerosol extinction profile ( ) at 355 nm, i.e.,  = 162 m in this study. To filter noise in the 

return WCT signal, a minimum threshold value is set to 0.05. The values of SPHtop are extracted using this approach for both 

single-layer and multi-layer aerosol structure smoke plumes, as illustrated in Figs. S1 and S2, respectively. 

3.1.2 Extinction-weighted mean plume height (SPHext) 

Given an aerosol extinction coefficient profile ( ) with  lidar vertical levels, this definition weighs each height AGL interval  280 

(in our case =3 m) for the -th level with the height-dependent extinction coefficient ( ) as described in Koffi et al. (2012), 

and then calculates the weighted mean height (i.e., SPHext) as follows: 

=
∑ ( ) ∙

∑ ( ) .                                                                                                                                                           (3) 

The method (Eq. (3)) has been widely applied in previous literature and considered ideal for comparisons with the ALH retrieval 

from passive satellite sensors (Chimot et al., 2018; Kylling et al., 2018; Liu et al., 2019b; Nanda et al., 2020), since it offers a 285 

simple and useful means to represent the aerosol vertical distribution as a single height value. For example, in some cases where a 

single and homogenous (i.e., same particle size and optical properties) aerosol layer is found in the atmosphere, SPHext indicates 

the aerosol layer center of mass. However, when it comes to a vertical structure with multilayer aerosols, SPHext may be at a vertical 

level with minimal smoke aerosol loading because smoke plumes are spread out at multiple heights.  

3.2 Lidar–satellite collocation method 290 

When comparing satellite products with observations, a method to collocate the two datasets is required. Even at close range and 

within short periods, the vertical extent of wildfire smoke plumes can vary substantially. This variation is influenced by factors 

such as specific vegetation types and fuel structures, terrain characteristics, or ambient meteorological conditions, during 

atmospheric transport processes which are more favorable to aerosol aging mechanisms and plume rise behaviors than others 
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(Paugam et al., 2016; Junghenn Noyes et al., 2022). Passive satellite remote sensing of wildfire SPH indirectly measures columnar 295 

quantities at a relatively coarse spatial resolution, representing the spatial average of a highly variable pixel area of fire activity 

and smoke plume behavior. In contrast, active airborne lidar collects instantaneous vertical segments of smoke aerosols only along 

its flight path, which in turn lacks large-scale spatial representation. Along with the spatial misalignment of collocated pairs, the 

disparity in sampling time between airplanes and satellites for the same cluster of wildfire plumes, on the order of minutes to days, 

presents another inherent challenge and thus yields few perfectly matched pairs. Hence, to make comparisons between space- and 300 

aircraft-based observing platforms, determining the time interval and distance for collocation pairs of satellite retrievals and lidar 

measurements requires careful consideration (Junghenn Noyes et al., 2020).  

We developed and tested two methods to collocate our aircraft observations with four satellite products (Fig. 3). We expect the 

collocation method to impact the results because of the spatial heterogeneity of smoke plumes and the range of horizontal resolution 

for the four satellite products, from 1 km to 6 km. Another factor is that multiple satellite pixels can coexist in proximity to a single 305 

lidar point when satellite orbits and flight legs intersect. When considering these factors, using a single satellite pixel versus an 

average of pixels in a specific area to collocate satellite products with aircraft observations provides different results for the 

comparison. Testing the two methods ensures that our comparisons are fair and consistent across the different satellite products. 

One, the “spatial averaging method”, uses an average of the surrounding satellite pixels of a lidar point, and the other, the “matched 

pair method”, employs a nearest neighbor search to create a matched lidar–satellite pair.  310 

 

Figure 3: Conceptual diagram of two collocation methods used in our study to pair aircraft observations and passive satellite retrievals. 
Our collocation criteria are a search radius of 6 km and a sampling time window of 12 minutes. 

The spatial averaging method calculates an average value of the satellite retrievals within an area of a fixed search radius around 

the lidar measurement. For MODIS/MAIAC and MISR/MERLIN, since they have finer spatial resolution (Table 1), this 315 

predisposes them to have multiple collocations inside a circular area of a given search radius centered on the lidar point. The values 

are smoothed because an average value of all satellite retrievals in this circular area for a given sampling time is used for comparison, 

which is a common practice in the remote sensing field (e.g., Virtanen et al., 2018). Considering that there are fewer collocated 



12 
 

satellite retrievals for the coarse resolution products, such as VIIRS/ASHE and TROPOMI/ALH, within the search area we apply 

our second collocation method, i.e., the matched pair method. This method is more sensitive to the location of a single satellite 320 

pixel coinciding with each point-like airborne lidar measurement. The closest satellite pixel to the nearby lidar point within the 

given sampling distance and time window is chosen for each match. While using two methods provides the most reliable approach 

to compare across multiple satellite products, there are still uncertainties associated with satellite-observation comparisons. The 

main uncertainty sources of collocation mismatch are (1) misalignment between the satellite pixel size and the lidar observation 

point; (2) wind-driven advection (e.g., a high fire-induced horizontal wind can reach the maximum value of 10 m s-1 (Liu et al., 325 

2019c), which can displace fire-related smoke aerosols 3.6 km in 6 minutes); (3) intrinsic positioning and navigation errors. For 

both methods, we assume that horizontal changes in wildfire smoke plume spread area are negligible during short time intervals. 

It is important to note that each satellite product maintains its native resolution rather than being resampled to a uniform grid for 

all products. A different collocation method for each satellite product might be used to showcase its spatial characteristics (e.g., to 

highlight the improvement of finer spatial resolution products). 330 

Both collocation methods require spatiotemporal averaging windows to be selected. A single granule of the VIIRS/ASHE product 

has the largest pixel size (6 km × 6 km) with the longest orbit segment scanning period (~ 6 minutes) of all the satellite-derived 

SPH products in Table 1. To ensure that adequate collocation pairs are available within one half hour due to rapid wildfire smoke 

plume activity, we utilized a sampling time window of 12 minutes that corresponds to twice the maximum time span of an orbital 

swath (one scene). To investigate the effects of search radius size for the two collocation methods, we used 20 sampling distances 335 

ranging from 1 km to 20 km. Assuming a worst-case windy environment of 30 m s-1, wildfire smoke aerosol layers could migrate 

~20 km during the maximum allowed time-interval of 12 minutes. Local SPH spatial variability over scales up to ~20 km can 

introduce uncertainty in SPH comparisons. In Fig. S3, the standard deviation (STD) of the multi-sensor satellite SPH retrievals 

around a lidar point (denoted by ) is calculated to assess the representativeness of the search radius. With increasing distances, 

all STD curves for the satellite-retrieved SPH display asymptotic behavior. These values can be interpreted as an upper limit of the 340 

SPH errors owing to our method of collocation. It is important to optimize the inclusion criteria for the lidar-satellite comparison. 

For example, a low number of nearby satellite pixel counts shows higher spatial sampling uncertainty, and a low number of one-

to-one collocation pairs indicates weaker statistics in calculating the STD. Using the mean STD ( ) from all collocations, the 

average number of nearby satellite pixels within a search radius per collocation, and the total number of one-to-one collocation 

pairs, the best search radius is thus set to 6 km. The collocated satellite SPH value is assumed to be representative across the  6 km 345 

radius circle centered around the WCL data point, with an average STD-calculated uncertainty ( ) of ~220 m for MODIS-

Terra/MAIAC, ~173 m for MAIAC-Aqua/MAIAC, ~258 m for MISR/MERLIN, ~300 m for VIIRS/ASHE, and ~152 m for 

TROPOMI/ALH.  

3.3 Reconstructed lidar vertical cross-sections 

When the UWKA flew close-to-perpendicular to the mean wind direction, the consecutive UWKA transects sampled the smoke 350 

plumes at different heights over the same latitude or longitude range of the flight trajectory. The UWKA operates at a cruise speed 

of approximately 90 m s-1, enabling it to capture data from different altitudes and angles. The WCL system uses laser beams to 

measure the optical properties of the plume, and is limited in its ability to penetrate and sample optically thick smoke. Therefore, 

the WCL at each flight leg can only provide a partial vertical segment of the smoke plume cross-section, particularly from the 

lowest flight altitude (i.e., upward scanning lidar). 355 

We reconstructed the vertical structure of wildfire smoke plumes using consecutive WCL transects from different flight legs. This 
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post-processing approach, using pseudo-vertical profiles of the aerosol extinction coefficient, provides useful lidar-determined 

SPH reference data for comparison with satellite SPH products. The reconstruction process involves several key steps following 

Deng et al. (2022b): 

I. Applying extinction coefficient threshold: Cloud-screened WCL transects are collected from eleven flight tracks 360 

with valid collocation pairs. To separate densely localized fresh smoke from the aged background smoke, an extinction 

coefficient threshold of 0.1 km-1 is applied. This step helps remove background noise and signal attenuation in the WCL 

data and ensures a clear distinction between different smoke components.  

II. Manual identification of flight legs sampling the same fire smoke plumes: We examine flight track maps and 

locate areas where multiple flight legs intersected with a smoke plume from the same fire source. 365 

III. Interpolating discontinuous flight segments to a complete vertical cross-section: To display the vertical cross-

section of the smoke plume more smoothly and aid further analysis and interpretation, scattered lidar points with 2D 

vertical structure information from multiple flight legs are interpolated to form a continuous line. The interpolation 

process relies on the fact that the change in latitude or longitude of the flight tracks is monotonic.  

4 Results and discussion 370 

4.1 Evaluation of satellite-derived SPH using airborne lidar SPH 

The comparison of satellite-based SPH with two distinctive SPH definitions using WCL data poses the following question: What 

other factors influence the SPH comparison? To address this question, we considered two factors, distance from the fire and aerosol 

loading. Specifically, we defined four categories, “near-fire-event region (distance from the fire source < 20 km)” or “downwind 

region (distance from the fire source > 20 km)”, and “AOD < 1”  or “AOD ≥ 1” . We then investigated the relationship between 375 

these factors and the SPH comparison for each satellite dataset (Fig. 4). 

For MODIS-Terra/MAIAC, SPHext is a better comparison than SPHtop for a majority of retrievals not only for the near-fire-event 

region but also for the downwind region, and the use of SPHext is not sensitive to significant variability in aerosol loading. 

Furthermore, the MAIAC PIH algorithm underestimates SPH with increasing AOD in the downwind region. Instead, for MODIS-

Aqua/MAIAC, the retrievals have a high degree of bias compared to lidar-derived SPH, with only a few points falling within the 380 

region between the 1:1 and 1:2 lines. The MODIS-Aqua/MAIAC retrievals exhibit more consistency with the definition of SPHext 

near the fire source under high-AOD conditions (when AOD ≥ 1). The MISR/MERLIN product has a good agreement between 

the retrievals and SPHtop for the areas in the fire vicinity and downwind, with outliers arising for thin plumes (for lower AOD < 

0.8), potentially due to the unclear boundaries of the smoke plume near the fire source. This is because the MISR-based automated 

stereoscopic image requires distinct plume-like features to provide the complete vertical profile of the smoke plume. The 385 

VIIRS/ASHE product compares better with SPHtop than SPHext. Another interesting finding is that irrespective of AOD values, the 

ASHE algorithm tends to overestimate SPH for the near-fire-event region, while underestimating SPH for the downwind region. 

Similarly, the TROPOMI/ALH product has lower SPH values for the downwind region but higher SPH values when close to the 

fire, regardless of AOD conditions. The SPHtop proves useful to evaluate the TROPOMI/ALH data within the near-fire-event region, 

whereas the use of SPHext is more appropriate for the downwind region if the outliers were removed. 390 

This qualitative analysis sheds light on the factors influencing the comparison between satellite-derived SPH and lidar-determined 

SPH definitions. These findings can aid in the interpretation of SPH products from multiple satellite datasets. Additionally, the 
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physical interpretation of the potential biases in the satellite SPH algorithms can help design future field campaigns that provide 

data sets for evaluation and algorithm development. While the qualitative analysis is useful to understand the physical processes 

impacting the results, we also provided a quantitative evaluation of the satellite SPH products using the metrics described in 395 

Appendix A (results shown plots in Fig. 4). 

 
Figure 4: Scatterplots of satellite SPH retrievals from MODIS-Terra/MAIAC, MODIS-Aqua/MAIAC, MISR/MERLIN, VIIRS/ASHE, 
and TROPOMI/ALH versus WCL-determined SPH using two different definitions: SPHtop (left, blue) and SPHext (right, red). Results 
are for the total collocated lidar–satellite pairs using reconstructed WCL vertical cross-sections during August 2018. Dotted lines denote 400 
the ratios of 2:1, 1:1, and 1:2 for reference. The shaded areas show the estimated density of the collocated pairs. Points closer to the fire 
(within 20 km) are shown as left-pointing triangles, while those farther away, in the downwind area, are shown as right-pointing triangles. 
The triangle size denotes the corresponding AOD value. Note that the subpanel axes scales for each satellite product are different. 
Evaluation metrics used to assess the performance of satellite products are MB (km) – mean bias; MAE (km) – mean absolute error; 
RMSE (km) – root mean square error; R2 (unitless) – coefficient of determination; and r (unitless) – Pearson correlation coefficient (* 405 
signifies a p value < 0.05, ** indicates a p value < 0.01).  
The evaluation metrics are calculated by Eqs. (A1) to (A5), where MB (km) = 0, MAE (km) = 0, RMSE (km) = 0, and r (unitless) 

=1 indicate perfect agreement. The SPH values used for metrics are the averages of all successful collocations found in 

reconstructed lidar vertical cross-sections. Additional statistics for the lidar–satellite comparisons are summarized in Appendix B. 

It should be noted that the collocation method used for comparison is not the same across all of satellite products, where MODIS-410 



15 
 

Terra/MAIAC, MODIS-Aqua/MAIAC, and MISR/MERLIN uses the spatial averaging method, and VIIRS/ASHE and 

TROPOMI/ALH uses the matched pair method. Results for both collocation methods for all satellite products are provided in 

Tables S1 and S2. The statistical comparisons of four SPH products derived from passive satellite remote sensing against WCL-

determined SPH further elaborates on the strengths and limitations of these distinct observational methods. Next, we present an 

in-depth assessment of the performance of each product based on the quantitative evaluation. 415 

The MAIAC PIH algorithm has low confidence (i.e., large negative R2 from –8.009 to –3.995 and high RMSE from 0.822 to 2.393) 

in SPH retrievals compared to the WCL SPH measurements using two definitions, especially in the afternoon. One reason might 

be that the MAIAC algorithm cannot achieve strong negative thermal contrast, that is, the smoke pixel (white) is not enough 

“colder” than the background (dark) in the afternoon when the fire activity is most active. Moreover, assuming an average lapse 

rate over mountainous terrains instead of more accurate atmospheric temperature profiles from reanalysis data can introduce more 420 

uncertainties in SPH estimates. A more significant difference between the MODIS/MAIAC SPH product and the definition of 

SPHtop is found compared to the definition of SPHext, indicating the limitation of high enough total AOD to ensure sufficient 

gaseous absorption constrains its ability to detect SPHtop. Therefore, using the definition of SPHext to evaluate the MODIS/MAIAC 

product is recommended.  

The MISR/MERLIN plume height fluctuates from 0.625 km to 3.029 km, and the corresponding SPHtop determined from lidar 425 

profiles varies from 1.254 km to 2.982 km. The mean, STD, and quartiles of the collocated MISR/MERLIN SPH have relatively 

small biases compared to SPHtop. The MISR/MERLIN product outperforms the other three datasets for capturing SPHtop as seen 

from the lowest values of MB, MAE, and RMSE. It also has a moderate positive relationship (r = 0.551) with the changes in SPHtop. 

This is anticipated as contrasting features are visible inside plumes and between smoke aerosols and the terrain surface through 

multiple, angular views, allowing the MISR stereo technique to capture the evolution of wildfire smoke plumes. 430 

Lee et al. (2015) highlighted that the VIIRS/ASHE product performs well over mountainous areas due to the surface elevation 

consideration during the retrieval process. Although the mean values and general distribution of both satellite retrievals and lidar 

observations are fairly close, the VIIRS/ASHE data has a wider spread of values (larger STD), a slight tendency to underestimate 

SPHtop by nearly 116 m, and lower plume height extremes (maximum and minimum plume heights). A fraction within 1.5 km of 

14% for VIIRS/ASHE SPH leads to some outliers, which are reflected in higher MAE and RMSE. These large outlier errors could 435 

be attributed to difficulties for passive sensors in measuring the presence of multi-layered aerosols (see Figs. 7b and S6d), and a 

potentially high AOD bias over bright surfaces. However, the negative correlation (r = –0.22) between the VIIRS/ASHE data and 

the WCL-determined SPH suggests significant discrepancies in their spatial resolution when collocating.  

Using the definition of SPHext, the TROPOMI/ALH product slightly overestimates SPH by approximately 158 m, but maintains 

overall reasonable performance as indicated by the MAE and RMSE values, and a weak positive correlation (r = 0.241) with lidar 440 

observations. However, this evaluation could be influenced by a limited number of collocations. Choosing the appropriate SPH 

definition to interpret the TROPOMI ALH algorithm depends on a case-by-case basis as shown in the reconstructed lidar curtains 

(Sect. 4.3). When multi-layered structures are detected in the sample cases (Fig. 7b), the SPH from the TROPOMI ALH algorithm 

is regarded as the average computation of aerosol optical properties, resulting in a poor comparison with the lidar SPH. On the 

other hand, the TROPOMI ALH algorithm shows encouraging potential for characterizing SPHtop in homogenous well-developed 445 

smoke layers (Figs. S4f and S4i). Multilayered aerosols, inaccurate aerosol type detection, and biased UVAI retrievals over bright 

areas with complex terrain are all potential causes of retrieval uncertainties in the TROPOMI/ALH product. 
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Overall, the discrepancies between passive satellite retrievals and lidar measurements in observing SPH primarily stem from their 

different approaches to characterize smoke aerosol. Passive satellites typically operate under the assumption of a singular aerosol 

layer within the atmospheric column, a simplification that often fails to account for the presence of multiple layers that are actively 450 

captured by lidars. This divergence creates a challenge in aligning satellite-derived SPH data with lidar observations due to the 

uncertainty in correlating equivalent layers. Further investigation of the smoke plume physics and vertical aerosol distributions are 

provided in the following sections using the WCL vertical profiles, including comparisons with passive satellite SPH products. 

4.2 Leveraging airborne lidar measurements to characterize plume behavior and SPH 

Through the use of airborne lidar measurements, our study seeks to understand how well a passive satellite remote sensing 455 

technique can retrieve SPH. The lidar profiles allow for multiple aerosol layers to be sampled, unlike the conventional passive 

satellite aerosol height retrieval algorithm which presumes the presence of a single, homogeneously distributed aerosol layer 

throughout the entire atmosphere. Despite different measurement concepts when it comes to multiple layers of plumes, to ensure 

comparability between passive retrievals and active observations of smoke plume behavior for ease of calculation, we emphasize 

the significance of an effective height parameter. The two different SPH definitions (Sect. 3.1) used to determine this parameter 460 

give an indication of the height of the wildfire smoke aerosol distribution as a single number.  

 
Figure 5: Ratios of single-layered and multi-layered aerosol structures in the 0.5 km wide bins using two different WCL-determined 
SPH definitions: (a) SPHtop and (b) SPHext. Lines indicate probability mass function (PMF). Note that the WCL plume height data are 
equally binned by setting the bin-width parameter to 0.5 km, and the bins are spread out in the range from 0.5 km to 5.5 km for SPHtop 465 
and in the range from 0.5 km to 4.5 km for SPHext.  

In Fig. 5, the height distributions of wildfire smoke plumes during BB-FLUX in August 2018 are shown using two definitions of 

lidar-derived SPH. Caution should be taken when identifying key criteria used to define SPH prior to evaluating the satellite 

retrievals. This is because SPHtop (Fig. 5a) has a vertical extent spanning from 0.5 km to 5.5 km, with the most common height 

being approximately 2.25 km. While SPHext (Fig. 5b) exhibits a vertical range from 0.5 km to 4.5 km, with its peak observed at 470 

roughly 1.2 km. For SPH values less than 3.5 km, the occurrence of smoke plumes identified within one single layer is significantly 

higher than that of multi-layered smoke plumes (> 60% for each height bin), suggesting that the columnar SPH values obtained 

from satellite retrievals can be compared with those measured via upward-facing lidar profiles, as smoke plumes produced by 

wildfire typically exhibit a single aerosol layer structure. This finding holds particularly true for wildfires of decreased fire intensity 

under suppression operations (i.e., some flight dates approach the corresponding fire containment date listed in Table 2).  475 

It should be noted that the upward-sampled WCL can only provide a partial vertical segment and not a fully resolved cross-section 

of the smoke plumes from the lowest flight height due to the restricted lidar laser penetration in optically thick smoke plumes. For 
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instance, when probing the plume centerline, there is complete attenuation of the lidar beam, resulting in a loss of data samples. 

However, the WCL can successfully delineate the atmosphere on each pass in the less dense portions of smoke plumes. Therefore, 

the vertical structure of individual smoke plumes reconstructed from airborne WCL measurements yields the vertical profiles of 480 

the mean aerosol extinction coefficient, reflecting the average conditions of smoke plumes over multileg UWKA sampling periods 

(see more details in Sects. 3.3 and 4.3). In terms of lidar-derived SPH biases identified in our study, we observe three main scenarios: 

(1) underestimation of SPHtop (i.e., optically thick plumes limiting vertical extent); (2) overestimation of SPHext (i.e., the upward-

pointing lidar not sampling below aircraft); (3) underestimation of both SPHtop and SPHext in situations where the lidar faces both 

dense smoke above and cannot measure below the aircraft.  485 

4.3 Reconstructed lidar curtain and lidar–satellite comparison 

It is necessary to implement post-processing procedures to conduct a comparative analysis between lidar observations and satellite 

retrievals. Here we present detailed reconstructed lidar vertical cross-sections of aerosol extinction coefficient along with 

collocated satellite SPH on August 19, 2018, for the morning (0819a, Fig. 6) and afternoon (0819b, Fig. 7) flights. Similar plots 

are included in Figs. S4 and S5 for each flight. Figs. 6a and 7a demonstrate that the smoke plume coverage of the MISR/MERLIN 490 

product aligns well with the manually identified plume area and reveals high-resolution SPH retrievals. In contrast, the 

MODIS/MAIAC product with the highest spatial resolution displays lower SPH values in general over biomass-burning regions. 

Meanwhile, both the VIIRS/ASHE product and the TROPOMI/ALH product indicate that higher SPH values are generally shifted 

towards the downwind region. 

The vertical distributions of wildfire smoke aerosols (Figs. 6b and 7b) are useful to visualize the smoke plume structure and 495 

provide more information about the physical processes influencing aerosol layering in the atmosphere. A visual comparison of the 

SPH values from the four satellite products against the WCL is presented in Figs. 6b and 7b. In Fig. 6b, even when faced with 

intricate aerosol structures, the MISR/MERLIN data is capable of reaching SPHtop, except for thin plumes with comparably low 

AOD values. The MODIS-Terra/MAIAC SPH is similar to SPHext, although it is unable to distinguish the top of multiple aerosol 

layers and consequently produces exceptionally low SPH values. Since the reconstructed aerosol vertical cross-section for Fig. 7b 500 

is located in the downwind region, there is an increase in SPHtop and SPHext as the distance from the fire increases. We recommend 

caution when using the MODIS-Aqua/MAIAC product for estimating downwind SPH, as its effectiveness in such scenarios is not 

always optimal (also refer to Figs. S4b and S4c for more details). This limitation in the MAIAC PIH algorithm has also been 

reported in previous studies (Lyapustin et al., 2019; Loría‐Salazar et al., 2021). Regarding heterogeneous aerosol vertical profiles, 

the spatial agreement between the collocated VIIRS/ASHE SPH values and the two SPH definitions is poor, despite achieving, on 505 

average, a good numerical agreement with SPHtop. This is partly due to the coarse spatial resolution of OMPS UVAI data used in 

the algorithm (~50 km at nadir; ~100 km near the scan edge) not being able to represent finer-scale features. The TROPOMI/ALH 

data is consistent with the SPHext values, given the observed overestimation of SPHext attributable to the elevated flight height. The 

potential explanation for this phenomenon is that in cases where there may be several layers of smoke aerosols, the retrieved SPH 

would be the average height of the plume much lower than the height of the optically thick aerosol layer (Michailidis et al., 2023). 510 

According to these results and specific fires studied, the MODIS/MAIAC product struggles with most heterogeneous aerosol 

structures even in close proximity to active fire sources. Even though the MISR/MERLIN product aims to capture the top boundary 

of the smoke plume, it can be highly biased in thin plume height estimates with low AOD, or for a more complex aerosol structure 

with multiple aerosol layers. The challenges observed for the VIIRS/ASHE retrievals are: (1) poor correlation with general trends 

in lidar measurements; (2) it may not accurately represent complex atmospheric conditions with multiple aerosol layers. Out of the 515 



18 
 

four satellite SPH datasets we investigated, TROPOMI/ALH has the least variance in the retrieved SPH across spatial areas. This 

is not ideal for practical use since real-world wildfire and smoke plume activity varies significantly in space and time. However, 

elevated smoke layers with a high aerosol loading, over dark surfaces at not very high altitudes are favorable for the TROPOMI 

ALH algorithm to retrieve vertically localized aerosol layers in the free troposphere. 

 520 

Figure 6: Cont. 
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Figure 6: (a) The nearest satellite pixels of MODIS-Terra/MAIAC and MISR/MERLIN to the corresponding airborne lidar points along 
the 20180819a flight track during the reconstructed time period from 17:12 to 19:12 UTC highlighted in green. Wind barbs are plotted 
along the trajectory with each short barb representing 5 knots and each long barb representing 10 knots. The star symbol indicates the 525 
center location of the Watson Creek fire taken from the incident report system (Inci-Web). Note that the NASA WorldView MODIS 
Terra true-color (i.e., corrected reflectance) images are shown alongside the satellite-retrieved SPH maps with the user-drawn smoke 
plume polygons (denoted as the dashed white region). (b) Composite latitude–height cross-sections of the reconstructed WCL vertical 
aerosol extinction coefficient at 355 nm, overlaid with WCL-determined SPHtop and SPHext and the collocated satellite-retrieved mean 
SPH with error bars, for the Watson Creek fire in the morning on August 19, 2018 with the corresponding AOD. 530 



20 
 

 

Figure 7: Cont. 
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Figure 7: (a) Same as Figure 6a, but for the nearest satellite pixels of MODIS-Aqua/MAIAC, VIIRS/ASHE and TROPOMI/ALH to the 
corresponding airborne lidar points along the 20180819b flight track during the reconstructed time period from 20:43 to 23:18 UTC 535 
highlighted in green. Note that the NASA WorldView true-color images (both MODIS Aqua and VIIRS are used) at the corresponding 
moment are shown alongside the satellite-retrieved SPH maps with the user-drawn smoke plume polygons (denoted as the dashed white 
region). (b) Same as Figure 6b, but for the Watson Creek fire in the afternoon on August 19, 2018. 

4.4 SPH Application 

Knowing SPH has additional benefits beyond atmospheric modeling, here we illustrate how SPH can be used to improve our 540 

understanding of surface air pollution concentrations and smoke plume dynamics resulting from fire–atmosphere interactions. By 

using both definitions of SPH, SPHtop and SPHext, additional insights related to plume dynamics can be assessed. How smoke 

aerosols are vertically distributed throughout the atmosphere plays a dominant role in estimating surface particulate matter (PM) 

models from satellite AOD products. High-elevation smoke aerosol layers above the planetary boundary layer height (PBLH) lead 

to high column AOD while not elevating the near-surface PM levels. Generally, aerosol concentrations are low in the higher, 545 

relatively stable atmospheric layers above the planetary boundary layer (PBL). However, large wildfires can have vigorous buoyant 

plume cores that lift the smoke plume into the free troposphere (FT) or even the stratosphere (Fromm et al., 2019) contributing to 

elevated aerosol concentrations above the PBLH. Based on burned area in Table 2, the fires in our study meet the definition of a 

megafire (10,000–100,000 ha) suggested by Linley et al. (2022), but it should be noted that fire size alone cannot characterize the 

fire intensity or activity and the resulting smoke plume behavior (Tedim et al., 2018). The ratio of effective SPH to PBLH 550 

(SPH:PBLH) is an indicator of the AOD and surface PM concentration relationship (Cheeseman et al., 2020). We incorporated the 

modeled PBLH from the Weather Research and Forecasting Model (WRF) as shown in Fig. 8, so we can better understand local 

meteorology and its impact on wildfire SPH. The WRF model for our use has a domain extending over the WUS with a 4 km 

spatial resolution, nudged with observations from weather stations as well as balloon soundings. PBLH were recalculated from the 

WRF simulations using the vertical potential temperature gradient method or the Richardson number method (de Arruda Moreira 555 

et al., 2020). The locations and elevations of each balloon sounding station are in Table S3, and details of the WRF model 

configuration are in Table S4. Results of the WRF model evaluation are in Fig. S6.  

In Fig. 8, there is no clear single pattern for the vertical spread of the smoke plume due to the fire–atmosphere coupling and 
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boundary-layer turbulence (Sun et al., 2009; Deng et al., 2022b). The difference between SPHtop and SPHext is often greater within 

a single plume than the differences across different plumes. Based on the wildfire information in Table 2, we can qualitatively 560 

discuss the differences between SPHtop:PBLH and SPHext:PBLH for each wildfire in terms of their start dates, approximate 

containment dates, and approximate acres burned. SPH:PBLH characterizes a joint interaction between buoyant plume cores and 

boundary layer mixing (e.g., entrainment and wind shear). It also depends on other important factors such as the fire size, distance 

from the fire source, and the fire spread. In some cases, high SPHtop:PBLH (> 1) but low SPHext:PBLH (< 1) occur concurrently, 

as shown in Fig. 8. This means that a higher columnar AOD does not necessarily give rise to the majority of the smoke plume 565 

concentrations being above the PBL. For instance, the Watson Creek Fire that started on August 15, 2018, had two flight missions, 

0819a and 0819b, and their aviation operation dates were close to the fire start date, compared to 0824a and 0825a flights. The 

challenging terrain with dense fuel on the ground facilitated rapid fire spread, and the fire was not contained. Therefore, we can 

expect that the intense fire behavior would generate a higher amount of smoke plumes injected into the FT, where both 

SPHtop:PBLH and SPHext:PBLH are larger than 1. Five days later, as the fire activity reduced and containment of the fire increased 570 

to 15%, there was likely more smoldering and thus lower plume heights. SPHext reaches a similar level to the PBLH, although 

SPHtop:PBLH remains relatively high. When comparing the morning and afternoon SPH patterns, the morning SPH relationships 

are less complex and potentially easier to model. Where turbulence, convection, and fire-atmosphere interactions contribute to 

more chaotic plume and PBL dynamics in the afternoon, and the growth rate of the fire exceeds the growth rate of the PBL. The 

Sheep Creek Fire is an exception due to a timely and consistent fire response making rare SPH behavior in the afternoon possible, 575 

where smoke plumes were contained within the PBL. Additionally, a significant portion of the lidar vertical cross-section is missing 

for the 0823a flight during the South Sugarloaf Fire, as depicted in Fig. S4g. In spite of the fire size indicating a megafire (Linley 

et al., 2022), the absence of the extinction coefficient data as well as in situ sampling in the downwind region (Table 2) leads to 

low estimates of SPHtop and SPHext.  

 580 

Figure 8: Box plots comparing the 30 min average modeled PBLH (grey) with the WCL-determined SPH using two different definitions 
(SPHtop, blue; SPHext, red) for the morning (shaded by green) and afternoon (shaded by yellow) flight missions. Each panel represents a 
single wildfire case. Upper and lower whiskers represent the 95th and 5th percentiles, respectively, while the box spans from the 25th 
percentile to the 75th percentile. The line inside the box represents the median (the 50th percentile), and the triangle indicates the mean 
of the range of height values. Note that the range of WCL SPH measurements for both morning (0820a) and afternoon (0820b) flight 585 
missions on August 20, 2018, is limited because only a small fraction of flight tracks is considered valid transects for reconstruction. 

5 Summary and conclusions 

The notion of SPH can be visualized as the vertical displacement from the ground to the upper atmosphere, marking the extent to 

which smoke plumes ascend. This parameter is vital for simulating the initial stage of plume production and predicting the potential 

spread of smoke from wildfires (e.g., Walter et al., 2016; Tang et al., 2022). If smoke is emitted above the PBL, it tends to persist 590 

longer and travel farther. Smoke emitted within the PBL adversely impacts air quality and increases ground-level air pollution 
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concentrations. 

Current efforts to study wildfire SPH mainly rely on the use of active lidar data and passive satellite sensor retrievals. However, 

these instruments face inherent spatial and temporal limitations, such as their inability to swiftly adapt to changes in fire and smoke 

plume behavior. Nonetheless, fusing multi-satellite products to estimate SPH is still an evolving field. Transported smoke aerosols 595 

can form complex, multilayer structures, but this study has shown that a single, uniform aerosol layer is encountered more 

frequently than previously assumed. This means that a single value can be used to describe the height of the aerosol layer. With 

this more straightforward representation, scientists can more readily incorporate aerosol layer data into climate and AQ models, 

including our earlier discussion of an “effective SPH” concept. We used two SPH definitions for comparisons since the SPH 

criterion varies between plume rise retrieval algorithms, given their diverse representations of aerosol vertical allocation that may 600 

not sufficiently reflect the real wildfire-associated smoke aerosol layering. We also employed two different collocation methods 

to provide lidar-satellite collocated pairs. Collocation uncertainties can be caused by the discrepancy between the coarse spatial 

resolution of the satellite retrieval algorithm and the fine-scale variability of wildfire smoke plume activity detected by high-

resolution active lidar measurements. 

Results in this paper reaffirmed that uncertainties in multiple satellite-derived SPH products arise from different remote sensing 605 

techniques (Tosca et al., 2011; Flower and Kahn, 2017). The current state of satellite-based SPH products is impacted by significant 

errors, which we ascribe mostly to either complex, multiple aerosol layers or thin, transparent plumes. The user recommendations 

and main conclusions drawn from this study are:  

(1) The MAIAC PIH algorithm necessitates careful quality verification since its SPH retrievals are routinely lower than the lidar 

measurements, especially for MODIS/MAIAC-Aqua. We suggest selecting SPHext as a suitable height metric to evaluate the 610 

MODIS/MAIAC-Terra product under conditions when the distance from the fire source is < 20 km and for AOD at 355 nm > 1. 

(2) The MISR plume height climatology is promising to help locate wildfire-associated SPHtop and provide the best estimates over 

mountainous terrain. However, as WUS fires have become more frequent since the 2000s, the available MISR/MERLIN datasets 

are relatively minimal. Some challenges associated with using MISR/MERLIN include the limited timing of MISR overpasses 

(which only occur in the mid-late morning, local time), and the labor-intensive nature of operating the MINX software to digitize 615 

the smoke plumes. 

(3) Both the VIIRS/ASHE and the TROPOMI/ALH products show great potential for characterizing SPHtop in a single homogenous 

aerosol-rich layer. An overestimation of SPH in the near-fire-event region and an underestimation of SPH in the downwind region 

still prevail. We find that large retrieval errors occur in the studied cases, underscoring the need for a robust quality screening 

approach related to the UVAI parameterization.   620 

However, the performance evaluation of four satellite SPH products presented here indicates only a weak to moderate correlation 

between passive satellite retrievals and airborne lidar observations. Deploying both passive and active sensors in tandem can offer 

a synergistic approach, filling gaps in our understanding of fire and smoke plume behavior by utilizing the unique strengths of 

each method. The lack of synchronization between satellite overpass times and variations in fire activity and aerosol layering is 

responsible for more than half of the collocated mismatches. It is expected that future satellites, equipped with active or passive 625 

sensors, can increase the chances of capturing a large wildfire event at its peak increase, as exemplified by improved spatial and 

temporal coverage of the Advanced Baseline Imager (ABI) on the geostationary satellites. Notably, NASA’s forthcoming aerosol 
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investigations from space, such as AOS (Atmosphere Observing System), MAIA (Multi-Angle Imager for Aerosols), PACE 

(Plankton, Aerosol, Cloud, ocean Ecosystem), and TEMPO (Tropospheric Emissions: Monitoring of Pollution), are expected to 

play a pivotal role in this regard. By integrating data from multiple satellite systems as a potential solution to the synchronization 630 

issue, scientists can create a more comprehensive and improved picture of wildfire plume rise.  

This study provides a preliminary comparison reference for multiple satellite-based SPH applications. Our findings serve to 

connect smoke transport and AQ forecasting frameworks and future satellite missions that aim to quantify the vertical distribution 

of aerosols in the atmosphere, similar to the efforts of Raffuse et al. (2012), Solomos et al. (2015), Ke et al. (2021), and Kumar et 

al. (2022). We therefore encourage conversations between the communities involved in satellite remote sensing and atmospheric 635 

modeling to enhance the diversity of perspectives and foster a consensus on the measurement and comprehension of effective SPH 

with greater clarity.  

Appendix A. Evaluation metrics for collocated lidar–satellite SPH comparison 

We evaluate the performance of a satellite SPH product against lidar observations using the following statistics: mean bias (MB), 

mean absolute error (MAE), root mean square error (RMSE), coefficient of determination (R2) and Pearson correlation coefficient 640 

(r). The metrics are calculated for SPH using Eqs. (A1) to (A5): 

= − ,                                                                                                                                             (A1) 

=
∑ , − , ,                                                                                                                           (A2) 

=
∑ , − , ,                                                                                                                  (A3) 

= 1 −
∑ , − ,

∑ , −
,                                                                                                                     (A4) 645 

=
∑ , − , −

∑ , − ∑ , −
,                                                              (A5) 

, where ,  is the ith collocated lidar measurement, ,  is the ith collocated satellite retrieval,  is the 

arithmetic mean of the collocated lidar measurements,  is the arithmetic mean of the collocated satellite retrievals,  

is the number of collocated pairs. 

MB represents the average bias of a satellite SPH product but should be interpreted cautiously because positive and negative errors 650 

will cancel out. MAE measures the average over the sample absolute differences between lidar measurements and satellite retrievals 

where all individual differences have equal weight, without considering their direction. RMSE is the square root of the average of 

squared differences between lidar measurements and satellite retrievals. RMSE is more useful when large outlier errors are 

particularly undesirable. Unlike RMSE, MAE is an unambiguous measure of average error magnitude. R2 provides a statistical 

measure of how well a satellite SPH retrieval algorithm reflects the real-world conditions as measured by the more direct lidar 655 

technique. The closer R2 is to 1, the more reliable the satellite retrieval is in representing the actual SPH. A negative R2 happens 
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when the performance of the satellite SPH product is worse than the mean absolute deviation of the lidar observations. r is a 

measure of the strength of a linear association between two variables, indicating that the distribution of both lidar measurements 

and satellite retrievals for SPH has a similar trend in the change. The best performance that a satellite SPH product would have for 

these evaluation metrics is: MB (km) = 0, MAE (km) = 0, RMSE (km) = 0, R2 (unitless) = 1, and r (unitless) =1.    660 

Appendix B. Additional statistical evaluation of four satellite-derived SPH products against WCL-determined SPH 
observations. Note that the satellite SPH information is only shown in one column to be compared with two distinctive 
WCL-determined SPH definitions. STD – standard deviation; Q25 – lower quartile, 25% of the data lie below this value; 
Q50 – median, 50% of the data lie below this value; Q75 – upper quartile, 25% of the data lie above this value. 

 WCL-Determined SPH 
 SPHtop SPHext 

MODIS-Terra/MAIAC   
# Collocated Pairs (spatial average) 163 

  
Lidar Observations Mean ± 1 STD (km) 2.162 ± 0.542 1.382 ± 0.368 
Satellite Retrievals Mean ± 1 STD (km) 0.733 ± 0.447  

  
Lidar Observations Max/Min (km) 3.903/1.254 2.253/0.800 
Satellite Retrievals Max/Min (km) 2.114/0.015 

  

Lidar Observations Q25, Q50, Q75 (km) 1.776, 2.064, 2.508 1.131, 1.298, 1.581 
Satellite Retrievals Q25, Q50, Q75 (km) 0.438, 0.687, 0.903 

MODIS-Aqua/MAIAC   
# Collocated Pairs (spatial average) 114 

  
Lidar Observations Mean ± 1 STD (km) 2.686 ± 0.797 1.790 ± 0.644 
Satellite Retrievals Mean ± 1 STD (km) 0.425 ± 0.262  

  
Lidar Observations Max/Min (km) 4.215/1.374 3.422/0.800 
Satellite Retrievals Max/Min (km) 0.935/0.025 

  

Lidar Observations Q25, Q50, Q75 (km) 2.063, 2.627, 3.350 1.274, 1.728, 2.325 
Satellite Retrievals Q25, Q50, Q75 (km) 0.192, 0.379, 0.697 

MISR/MERLIN   
# Collocated Pairs (spatial average) 90 

  
Lidar Observations Mean ± 1 STD (km) 2.216 ± 0.506 1.498 ± 0.449 
Satellite Retrievals Mean ± 1 STD (km) 2.124 ± 0.625  

  
Lidar Observations Max/Min (km) 2.982/1.254 2.253/0.853 
Satellite Retrievals Max/Min (km) 3.029/0.625 

  

Lidar Observations Q25, Q50, Q75 (km) 1.791, 2.204, 2.648 1.129, 1.428, 1.969 
Satellite Retrievals Q25, Q50, Q75 (km) 1.658, 2.083, 2.801 

VIIRS/ASHE   
# Collocated Pairs (matched pair) 130 

  
Lidar Observations Mean ± 1 STD (km) 2.823 ± 0.999 1.895 ± 0.890 
Satellite Retrievals Mean ± 1 STD (km) 2.707 ± 1.165  

  
Lidar Observations Max/Min (km) 5.493/1.497 4.003/0.811 
Satellite Retrievals Max/Min (km) 4.930/0.231 
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Lidar Observations Q25, Q50, Q75 (km) 1.977, 2.904, 3.318 1.094, 1.629, 2.489 
Satellite Retrievals Q25, Q50, Q75 (km) 2.060, 2.683, 3.579 

TROPOMI/ALH   
# Collocated Pairs (matched pair) 127 

  
Lidar Observations Mean ± 1 STD (km) 2.677 ± 1.075 1.894 ± 0.936 
Satellite Retrievals Mean ± 1 STD (km) 2.052 ± 0.588  

  
Lidar Observations Max/Min (km) 5.493/1.374 4.003/0.734 
Satellite Retrievals Max/Min (km) 3.425/1.412 

  

Lidar Observations Q25, Q50, Q75 (km) 1.718, 2.337, 3.308 1.019, 1.542, 2.684 
Satellite Retrievals Q25, Q50, Q75 (km) 1.546, 1.802, 2.431 

Data availability. The MODIS/MAIAC MCD19A2 Version 6.1 data product can be found at https:// earthdata.nasa.gov, last 665 

access: 10 May 2023. The Atmospheric Sciences Data Center hosts a web-based interface for freely downloading the 

MISR/MERLIN plume files at https://l0dup05.larc.nasa.gov/merlin/merlin#, last access: 10 August 2022. The TROPOMI/ALH 

Level 2 data are publicly available to users via Copernicus Open Access Hub at https://scihub.copernicus.eu/, last access: 9 

February 2023. The VIIRS/ASHE data can be obtained from the VIIRS Deep Blue Aerosol Group (https://deepblue.gsfc.nasa.gov/, 

last access: 28 July 2022). The BB-FLUX WCL data can be obtained from the official UWKA project website 670 

(http://www.atmos.uwyo.edu/uwka/projects/index.shtml, last access: 31 October 2022). Balloon sounding data are available from 

Atmospheric Soundings Wyoming Weather Website (https://weather.uwyo.edu/upperair/sounding.html, last access: 22 May 

2023).  
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