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Abstract. As wildfires intensify and fire seasons lengthen across the western U.S., the development of applicable models that can 

predict the density of smoke plumes concentrations and track wildfire-induced air pollution exposures has become critical. Wildfire 

smoke plume height is a key indicator of the vertical placement of plume mass emitted from wildfire-related aerosol sources in 

climate and air quality models. With advancements in Earth observation (EO) satellites, spaceborne products for aerosol layer 15 

height or plume injection height have recently emerged with increased global-scale spatiotemporal resolution. However, to evaluate 

column radiative effects and refine satellite algorithms, vertical profiles of regionally representative aerosol dataproperties from 

wildfire emissions need to be measured directly in the field. In this study, we conducted the first comprehensive evaluation of four 

passive satellite remote sensing techniques specifically designed to retrieve plume height distribution for wildfire smoke. We 

compared these satellite products with the airborne Wyoming Cloud Lidar (WCL) measurements during the 2018 Biomass Burning 20 

Flux Measurements of Trace Gases and Aerosols (BB-FLUX) field campaign in the western U.S. Two definitions, namely “plume 

top” and “extinction-weighted mean plume height”, are were used to derive representative heights of wildfire smoke plumes, based 

on the WCL-derivedretrieved vertical aerosol extinction coefficient profiles. Using these two definitions, wWe also performed a 

comparative analysis of multisource satellite-derived plume height products for wildfire smoke using these two definitions. Weith 

the aim to provided a discussion on which satellite product is most appropriate , for under various aerosol loadings and in 25 

determining plume height characteristics near a fire-event location or estimating downwind plume rise equivalent height, under 

various aerosol loadings. Our findings highlight the importance of understanding the sensitivity of different passive remote sensing 

techniques onto space-based wildfire smoke plume height observations, in order to resolve ambiguity surrounding the concept of 

“effective smoke plume height”. As additional aerosol-observing satellites are plannedexpected to be launched in the coming years, 

our results will inform future remote sensing missions and EO satellite algorithm developmentdata selection. This will help bridges 30 

the gap between satellite observations and plume rise modeling to further investigate the vertical distribution of wildfire smoke 

aerosols. 

1 Introduction 

Characterizing the vertical extent of wildfire smoke aerosols near active fire hotspots, also known as plume injection height (PIH) 

or smoke aerosol layer height (ALH), is a critical task in simulating the long-range transport of wildfire smoke. From a physical 35 

perspective, the initial PIH at a fire-event location can be described as the height where the relatively stable vertical atmospheric 

layer is located, causing the smoke plumes to accumulate, and where the updrafts generated by the plume buoyancy above the fire 
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source to terminate due to turbulence and mixing (Kahn et al., 2007; Labonne et al., 2007; Paugam et al., 2015). Simply put, PIH 

is commonly viewed as the vertical height to which a buoyant plume core can lift the polluted airmass before the smoke plumes 

begin to bend over horizontally (Raffuse et al., 2012). Often Practically, plume heights near or downwind of active fire areas are 40 

treated as meant to be equivalent to PIH values. WIt has been observed that most wildfire smoke plumes move horizontally in 

single layers through the atmosphere, but some may become stratified into discrete, multiple, discrete layers (Mardi et al., 2018; 

Deng et al., 2022b). However, it is impossible to distinguish aerosol layering at multiple heights without vertically resolved smoke 

aerosol profiles. Consequently, a single height value is often applied and can be obtained from physics-based numerical models or 

passive remote sensing observations retrievals. Regardless of whether the vertical structure of wildfire smoke aerosols is 45 

homogenous or heterogenous, a columnar plume height retrieved from satellites is considered a representative ALH. This study 

focuses on the smoke-specific plumes from wildfires in the western United States (WUS); therefore, we will use smoke plume 

height (SPH) hereinafter to denote this. 

Wildfire SPH data observed from space has witnessed a significant advancedment in spatiotemporal resolution since the 2000s 

(Kahn et al., 2007; Ichoku et al., 2012; Lyapustin et al., 2019; Kahn, 2020). Passive satellite sensors are most widely used to map 50 

global wildfire SPH distribution, spanning a substantial range of recently developed techniques and retrieval algorithms. It is 

important to note that each method to obtain satellite SPH retrievals utilizes a distinct remote sensing technique, resulting in 

inconsistent definitions of SPH. To shed light on their differences, a brief overview of these methods is provided to demonstrate 

why they yield differing plume height interpretations. 

The photogrammetric stereo capability of the Multi-Angle Imaging SpectroRadiometer (MISR) aboard the National Aeronautics 55 

and Space Administration (NASA) Earth Observing System’s Terra spacecraft (Diner et al., 1998), combined with the MISR 

Interactive Explorer (MINX) tool (Nelson et al., 2008, 2013), provides makes it a practical solution to determine “wind-corrected” 

SPH values of elevated smoke aerosols. This approach takes into account feature displacements caused by the plume movementreal 

motion of plume elements and the stereo parallax shift among different camera views. Another accepted mainstream approach to 

retrieve SPH information takes advantage of the altitude dependence of absorption spectroscopic characteristics of molecular 60 

oxygen (O2) in the A band at 759–771 nm  or the B band at 686–695 nm or the O2–O2 spectral band at 477  nm., which This 

approach has been successfully applied to a number of passive satellite-supported instruments, including but not limited to 

POLDER/PARASOL (the POLarization and Directionality of the Earth’s Reflectance mounted on the Polarization and Anisotropy 

of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar platform, Dubuisson et al., 2009), 

MERIS/ENVISAT (the MEdium Resolution Imaging Spectrometer installed on the Environmental Satellite, Duforêt et al., 2007; 65 

Dubuisson et al., 2009), SCIAMACHY/ENVISAT (the SCanning Imaging Absorption SpectroMeter for Atmospheric 

CHartographY on board the Environmental Satellite, Corradini and Cervino, 2006; Sanghavi et al., 2012), GOME-2/MetOp (the 

Global Ozone Monitoring Experiment–2 flying on the Meteorological Operational series of satellites, Sanders et al., 2015; Nanda 

et al., 2018a; Michailidis et al., 2021), OMI/Aura (the Ozone Monitoring Instrument aboard the Aura spacecraft, Chimot et al., 

2017, 2018), EPIC/DSCOVER (the Earth Polychromatic Imaging Camera loaded on the Deep Space Climate Observatory, Xu et 70 

al., 2019; Lu et al., 2021) and TROPOMI/S-5 P (the TROPOspheric Monitoring Instrument carried on the Copernicus Sentinel-5 

Precursor mission, Griffin et al., 2020; Nanda et al., 2020; Chen et al., 2021). Other approaches utilize Two more spectral 

channelsthe ultraviolet (UV; 340–380 nm) or thermal infrared (TIR; 11 µm) bands, which are sensitive to the vertical distribution 

and optical properties of highly absorbing non-spherical irregular of absorbing smoke aerosols particles, namely ultraviolet (UV) 

and infrared (IR) or thermal bands (e.g., smoke and mineral dust) or absorptions by various gases released from fire (together with 75 

smoke aerosols), respectively. Using bands included in wide-swath passive sensors means that these approaches can provide These 
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bands could also be used to pinpoint SPH on a globally scale. Based on the sensitivity of backward near-UV or UV radiance to the 

presence of rising  height of absorbing aerosol plumes (e.g., dust and smoke) in a Rayleigh scattering atmosphere (Hsu et al., 1996; 

Torres et al., 1998; Hsu et al., 1999), previous studies proposed an algorithm called the Aerosol Single-scattering albedo and Height 

Estimation (ASHE) that jointly retrieves ALH and single scattering albedo (SSA) using UV-aerosol index (UVAI), aerosol optical 80 

depth (AOD), and spaceborne lidar backscatter profile from multi-sensor measurements (Jeong and Hsu, 2008; Lee et al., 2015, 

2016). In a subsequent study, Lee et al. (2020) revised the ASHE algorithm to function without the lidar backscatter profile. Later, 

Lee et al., 2020 revised the ASHE algorithm to make it work without the requirement for the lidar backscatter profile in operational 

environments, of which the SPH product is used in this study. More recently, Lyapustin et al., (2019) and Cheeseman et al., (2020) 

introduced the brightness temperature contrast approach that usesin the Moderate Resolution Imaging Spectroradiometer (MODIS) 85 

thermal TIR band (11 -μm) for smoke plume identification and characterization. Using this technique, daily SPH values are 

retrieved records on a global sinusoidal grid have been issued as part of the Multi-Angle Implementation of Atmospheric 

Corrections (MAIAC) atmospheric product MCD19A2.  

When it comes to remotely sensed SPH retrievals, pPassive satellites excel by delivering widespread coverage on a regular basis, 

all while incurring minimal recurring costs and posing no risks to observers. Yet, dense smoke plumes, cloud cover, or scan gaps 90 

between adjoining orbits of sun-synchronous polar satellites can result in unsuccessful retrievals fire detections (Lyapustin et al., 

2008). As a complement to these passive retrievals, active spaceborne lidars like CALIOP/CALIPSO (the Cloud-Aerosol Lidar 

with Orthogonal Polarization aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation satellite, Winker et al., 

2009) and CATS/ISS (the Cloud-Aerosol Transport System installed on the International Space Station, McGill et al., 2015) offer 

high-resolution vertical profiles of aerosol optical signals. While these spaceborne lidars and enhance the detection of thin smoke 95 

layers, though they are bound by a narrow, pencil-like swath (Kahn et al., 2008) providing limited spatial coverage, see Figure 9 

in Loría‐Salazar et al. (2021). Another limitation ofBesides, these remote sensing instruments on polar-orbiting satellites is that 

they do not resolve the diurnal variation of wildfire activity, unlike traditional in situ monitoring.  

Endeavors to investigate fire behavior and their associated air quality (AQ) impacts have predominantly relied on the use of field 

data and satellite-based retrievals. Hence, pPassive and active remote sensing techniques are complementary because of their 100 

different observational methods. The deliberate collocation of them provides synergistic insights into missing pieces of fire 

information that may not be attainable by either type of technique in isolation (Liu et al., 2019a; Sicard et al., 2019). Unfortunately, 

in the Intermountain West region of the U.S., there remains a lack of detailed vertical profiles of aerosol optical properties, despite 

recent field experiments such as Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ), Western 

wildfire Experiment for Cloud chemistry, Aerosol absorption and Nitrogen (WE-CAN), Biomass Burning Flux Measurements of 105 

Trace Gases and Aerosols (BB-FLUX), and Fire and Smoke Model Evaluation Experiment (FASMEE). Furthermore, to date, there 

is no universally accepted methodology for directly deriving wildfire SPH from aerosol extinction or backscatter vertical profiles 

due to the ambiguous use and definition of the term “effective SPH” (Xu et al., 2017). This poses a challenge particularly when 

one wants to compare columnar SPH values from passive remote sensors with actively retrieved three-dimensional (3D) 

distribution of smoke aerosol vertical structure from active remote sensors.  110 

The primary objective of this study is to address the central research question: of which SPH definition corresponds to the most 

physically relevant plume height for can effectively interpret a specific satellite SPH retrieval algorithm. ? We introduce two SPH 

definitions built uponusing vertical profiles of smoke aerosol from airborne lidar data. We then quantify the sensitivity of four 

passive remote sensing techniques to columnar wildfire SPH observations with respect to these two definitions, accounting for the 
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effects of local meteorology, distance from the active fire source, and smoke aerosol loading. Meanwhile, we explore an optimal 115 

collocation strategy to compare satellite retrievals with lidar measurements, considering instrument discrepancies in observing 

SPH experimentally. To the best of our knowledge, we present the first comprehensive assessment of multiple satellite-derived 

wildfire SPH products compared with aircraft lidar data. It is important to note here that there were no coincident satellite-based 

lidar overpasses for our field campaign data; therefore, they are not included in our results. This omission underscores the 

difficulties in directly comparing spaceborne lidar products with data from aircraft campaigns. The results of our study clarify the 120 

meaning of “effective SPH” in the remote sensing and modeling communities, filling a critical gap in uniform plume height 

comparisons. Our findings also meet the urgent need for a suite of remotely sensed datasets to evaluate the performance of present 

and future dynamic smoke plume dynamic models and smoke modeling frameworks, or to provide inputs to these models that 

improve the SPH characterization required to model the downwind pollutant transport. 

2 MDirect measures of wildfire SPH 125 

2.1 Satellite-based wildfire SPH 

The following four space-based wildfire SPH retrievals that are quality-controlled will be discussed in our study: (1) new MODIS 

aerosol products using the MAIAC algorithm (MODIS/MAIAC); (2) a MISR-based global SPH database that can be accessed via 

the MISR Enhanced Research and Lookup Interface (MISR/MERLIN); (3) new VIIRS aerosol products using the ASHE algorithm 

(VIIRS/ASHE); (4) TROPOMI-based ALH products (TROPOMI/ALH). Table 1 features further information about these 130 

passively remote-sensed SPH datasetsproducts. 

Table 1: Summary of multisource satellite-derived plume height products. 

Data Set/Version Availability Resolution Instrument/Satellite  Retrieval 
Method References 

MAIAC-derived 
injection height 

products/collection 6.1 

February 1, 2000 to 
present 

horizontal: 1 km  
1km 

MODIS/Terra or 
Aqua 

Brightness 
temperature 

contrast 

Lyapustin et al. 
(2019) 

temporal: 16-day 
repeating cycle; 
one-to-two-day 
global coverage 

MERLIN interface for 
MISR plume height 
project /version 2 

2008–2011 as well as 
the summers (June, 

July, August) of 2017 
and 2018 

horizontal: 1.1 km 
 1.1 km 

MISR/Terra Multi-angle 
imaging 

Kahn et al. 
(2007) 

temporal:16-day 
repeating cycle; 9-

day global 
coverage 

ASHE-derived ALH 
products/research August of 2013–2018 

horizontal: 6 km  
6 km 

VIIRS/SNPPa Ultraviolet 
radiometry 

Lee et al. 
(2020) 

temporal:16-day 
repeating cycle; 

daily global 
coverage 

TROPOMI level-2 
ALH/version 1 

April 30, 2018 to July 
1, 2021 

horizontal: 3.5 km 
 7 km (across x 
along track) from 
April 30, 2018 to 

August 6, 2019; 3.5 
km  5.5 km since 

August 6, 2019 

TROPOMI/S-5 P Oxygen 
absorption 

Sanders et al. 
(2012) 
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temporal:16-day 
repeating cycle; 
near-daily global 

coverage 
a Data from VIIRS sensors on other satellite platforms were unavailable for this study. 

Instrument 
Geographic 
Coverage/ 

Satellite Orbit 
Satellite/Agency Data Set/Version Time Period Resolution 

MODIS  
global/sun-

synchronous 
polar 

Terra, 
Aqua/NASA  

MAIAC-derived 
injection height 

products/collection 6.1 

February 1, 2000 to 
present 

horizontal: 1 km  1km 

temporal: 16-day 
repeating cycle; one-to-
two-day global coverage 

MISR 
global/sun-

synchronous 
polar 

Terra/NASA 
MERLIN interface for 

MISR plume height 
project /version 2 

2008–2011 as well as 
the summers (June, July, 

August) of 2017 and 
2018 

horizontal: 1.1 km  1.1 
km 

temporal:16-day 
repeating cycle; 9-day 

global coverage 

VIIRS 
global/sun-

synchronous 
polar 

Suomi 
NPP/NASA, 

NOAA 

ASHE-derived ALH 
products/research August of 2013–2018 

horizontal: 6 km  6 km 

temporal:16-day 
repeating cycle; daily 

global coverage 

TROPOMI 
global/sun-

synchronous 
polar 

S-5 P/ESA, the 
Netherlands Space 

Office, the 
European 

Commission 

TROPOMI level-2 
ALH/version 1 

April 30, 2018 to July 1, 
2021 

horizontal: 3.5 km  7 
km (across x along 

track) from April 30, 
2018 to August 6, 2019; 
3.5 km  5.5 km since 

August 6, 2019 
temporal:16-day 

repeating cycle; near-
daily global coverage 

2.1.1 MODIS/MAIAC 

MODIS sensors are, located on the Terra (morning sensor, 10:30 AM local solar time) and Aqua (afternoon sensor, 1:30 PM local 135 

solar time) satellite platforms and operated in the thermal-TIR spectrum, have the unique ability to detect active fires (Salomonson 

et al., 2002). This twin-MODIS design covers most regions on near the equator with at least four observations per day. The number 

of observations increases as one approaches the poles due to overlapping orbits. The MAIAC algorithm uses MODIS data to obtain 

near-fire-source aerosol injection heightAtmospheric properties data created on the MODIS aerosol data using the MAIAC 

algorithm, known as the MCD19A2 dataset with high resolution (1 km), offers information on near-fire-source aerosol injection 140 

height.  

By assuming a fixed lapse rate, the MAIAC PIH algorithm utilizes negative thermal contrast at 11 μm between smoke and sufficient 

neighboring smoke-free pixels and converts the colder brightness temperature into SPH estimateions (Lyapustin et al., 2019; 

Cheeseman et al., 2020). The valid range allowed for the MAIAC-based SPH is up to 10 km. However, the SPH calculation 

struggles with large smoke areas and small fires emitting low levels of absorbing gases, meaning it requires a high enough plume 145 

opacity (AOD at 470 nm ≥ 0.8) to obtain a useful signal. WAdditionally, when compared to other SPH datasets such as MISR and 

CALIOP, the MAIAC method tends to significantly underestimate the height of smoke plumes, particularly for transporting dilute 

smoke downwind of the fire (Lyapustin et al., 2019)over time and distance from the source of burning. In spite of these limitations, 
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the MAIAC algorithm provides valuable data information within approximately 75–150 km of the identified thermal hotspots, i.e., 

fire for optimal retrieval quality (Loría‐Salazar et al., 2021). 150 

2.1.2 MISR/MERLIN 

With its nine fixed push-broom cameras, MISR aboard NASA’s Terra satellite captures images with high precision from nine 

different angles and four spectral bands, allowing for studies of wildfire and aerosol distributions using stereoscopic techniques, 

unaffected by bright surfaces (Moroney et al., 2002; Muller et al., 2002). The wealth of data collected by the MISR instrument 

over two decades offers valuable insights into the global climatology of fire in the environment, categorized by variousacross 155 

geographic regions, biomes, and seasons (Val Martin et al., 2018; Gonzalez-Alonso et al., 2019). This The publicly available 

database built using manually postprocessed MISR products has been used to validate evaluate plume rise in models (e.g., Ke et 

al., 2021) and other satellite-derived datasets (e.g., Lyapustin et al., 2019; Griffin et al., 2020). Recently, an novel interactive 

visualization tool called MERLIN has beenwas developed to cover applications of the outdated MISR Plume Height Project and 

facilitate the exploration and accessibility of over 70,000 records of global wildfire plume data height retrievals (Boone et al., 2018; 160 

Nastan et al., 2022).  

MISR’s global SPH mapping, with a 250–500 m vertical resolution, complements aerosol height curtains obtained from spaceborne 

lidar systems (Kahn et al., 2007, 2008; Val Martin et al., 2018). However, Tosca et al. (2011) found that stereo-derived SPH from 

MISR was significantly lower than the top altitude observed by CALIOP for the 2006 Indonesian fires. Nevertheless, important 

lessons can be drawn from the underestimated SPH values in the MISR product as follows: (1) the overpass time of MISR in the 165 

morning precedes the daytime peak in fire activity, typically in late afternoons when temperatures are highest and relative humidity 

is lowest; (2) very few coincident overpasses exist over fires during a short time of interest due to the narrow MISR swath, which 

allows global coverage only approximately once per week. Additionally, the revisit period of MISR for a specific geographical 

spot varies from 2 to 9 days, depending on the latitude (Kahn et al., 2007); (3) MISR automated stereoscopic image’s dependence 

on optically distinct plume-like features for accurate height estimation can introduce bias, mainly when dealing with thin smoke 170 

or smoke downwind of the active fire source with less defined boundaries (Nelson et al., 2013). However, The blue-band data at 

1.1 km horizontal cell size is considered a better choice for capturing the higher injection heights associated with fine smoke 

aerosols than the corresponding red-band retrievals at the spatial resolution of 275 m (Nelson et al., 2013). In this study, we 

extracted blue-band, wind-corrected heights with “good” quality flags downloaded from MERLIN. This preference is due to the 

blue band’s (446.4 ± 41.9 nm) sensitivity to thinner aerosol layers, enabling the detection of aerosol features at higher altitudes.  175 

2.1.3 VIIRS/ASHE 

The launch of  subsequent operational VIIRS sensors has been planned for the Joint Polar Satellite System (JPSS) series since 

2011, in anticipation of the post-MODIS era (Cao et al., 2013a, 2013b; Goldberg et al., 2013; Wolfe et al., 2013; Wang and Cao, 

2019). VIIRS currently flies on three polar-orbiting satellites: Suomi National Polar-orbiting Partnership (SNPP), National Oceanic 

and Atmospheric Administration-20 (NOAA-20) and NOAA-21 satellites. This study uses data from SNPP VIIRS. The VIIRS 180 

instrument has a wide swath of 3,040 km and can observe the entire Earth twice a day — once during the day and once during the 

night. There are some overlaps between consecutive swarths, which means that Owing to a large image swath of 3,040 km and a 

12-h global coverage revisiting cycle, mid-latitudes will experience up to 4 looks per day (Wolfe et al. 2013). Even though the 

SNPP VIIRS data has enhanced radiometric measurement quality, a broad spectral range, and a fine spatial resolution (Csiszar et 

al., 2014; Schroeder et al., 2014), the limited temporal information12-h overpass time lag  may curtail its efficacy for delineating 185 
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fire perimeters and assessing fire spread, especially during short fire durations (Cardil et al., 2019). 

The research version of the ASHE algorithm (transition to operational processing is underway at the time of writing) provides the 

plume height of UV-absorbing aerosols like smoke and dust over broad areas, including both near-source and transported plumes 

(Loría-Salazar et al., 2021). Initially, it leveraged AOD and Ångström Extinction Exponent (AEE) from the MODIS or VIIRS 

aerosol product in its retrieval process, as well as ALH along the CALIOP track as a constraint (Jeong and Hsu, 2008; Lee et al., 190 

2015). By assuming spatially invariant SSA retrieved along the CALIOP track over a MODIS/VIIRS granule, it has shown the 

ability to extend the height retrieval can be extended beyond the narrow CALIOP track, thereby improving spatiotemporal coverage. 

This study makes use of a release candidate of ASHE, that which can retrieve ALH bypassing the need for does not use the CALIOP 

measurementsconstraints, benefiting from theand leverages the synergy between VIIRS and Ozone Mapping and Profiler Suite - 

Nadir Mapper (OMPS-NM) for UV measurements (Lee et al., 2020). To further improve its performance, a systematic optimization 195 

of the smoke optical models used in the algorithm was carried out by iteratively comparing the retrieved ALH and SSA with those 

from CALIOP and ground-based measurements offline until satisfactory similarity was found between the results (e.g., Jeong et 

al., 2022). One simplification made by the algorithm is to assume a single aerosol layer, which may not accurately reflect complex 

atmospheric conditions characterized by multiple aerosol layers. Also, iIts application is limited to UV-absorbing aerosols with 

moderate to thick optical depths (AOD at 550 nm > 0.5–1.0), rendering it ineffective for aerosols with lower optical depths. 200 

Preliminary evaluation suggested that the ASHE-retrieved SPH had an uncertainty of 1–1.2km (or 30–40% for SPH of 3 km) for 

heavy aerosol loading cases (AOD > 1) (Lee et al., 2016, 2020). The uncertainty is dependent on errors in retrieved AOD, assumed 

aerosol optical model, and surface reflectance, and generally decreases with increasing AOD. It should be noted that OMPS-NM 

abroad SNPP has a relatively coarse spatial resolution of ~50 × 50 km2 near nadir (~200 × 100 km2 near the edge of the across-

track scan), indicating that it has limitations for small-scale (subpixel) smoke plumes. Although there are multiple VIIRS 205 

instruments, the ASHE product is currently only available for SNPP VIIRS. It is anticipated that this retrieval algorithm will be 

implemented for other VIIRS instruments in the future. 

2.1.4 TROPOMI/ALH 

The TROPOMI instrument is the single payload on board of the European Space Agency (ESA) S-5 P satellite mission, running 

in the planned timeframe for 2017–-2024. TROPOMI is a spectrometer that monitors key atmospheric constituents and 210 

aerosol/cloud properties by observing reflected sunlight across the spectral bands in the UV, the visible (270–500 nm), the near-

TIR (675–775 nm), and the shortwave TIR (2305–2385 nm). Compared to its predecessors (OMI and SCIAMACHY), TROPOMI 

provides high spatially resolved information and is capable of daily global coverage and near real-time data, which enables regular 

monitoring and rapid assessment of changes in the Earth’s atmosphere (Veefkind et al., 2012).  

By analyzing the spectral signature of light that is absorbed by O2 in the A band in the near-TIR wavelength range between 759 215 

and 770 nm, the TROPOMI ALH algorithm estimates the height of aerosol plumes in the atmosphere (Sanders et al., 2012; Nanda 

et al., 2019). It has shown to be effective in retrieving high plumes up to 8 km in height above ground level (AGL), with reduced 

uncertainties for thicker and lower plumes between 1 and 4.5 km in height AGL (Griffin et al., 2020), as well as for dark surfaces 

(Nanda et al., 2018b). However, it has beenwas found to be biased low in contrast tocompared with other SPH datasets such as 

MISR and CALIOP, most likely due to its tendency to return an intermediate plume height when multiple aerosol layers are present 220 

(Griffin et al., 2020; Nanda et al., 2020). In addition, Nanda et al. (, 2020) pointed out that cloud contamination would have an 

impact on the TROPOMI/ALH product since it is unable to distinguish between cloud and aerosol signals from the measured 

radiances. In this study, we only used data having a quality assurance value larger than 0.5 to filter mostly cloudy scenes or 
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retrievalsobservations  with geolocation errors. 

2.2 Airborne lidar measurements 225 

The 2018 BB-FLUX field campaign deployed the upward-pointing Wyoming Cloud Lidar (WCL) on the University of Wyoming 

King Air (UWKA) research aircraft that sampled smoke plumes from more than 20 wildfires during 35 flights over the WUS. The 

airborne WCL measurements of attenuated backscattering coefficient and lidar depolarization ratio were calibrated on a per-flight 

basis. The vertical aerosol extinction profiles (units: km-1) were retrieved with Fernald’s method assuming a constant lidar ratio of 

60 and evaluated with in situ measurements (see Deng et al., 2022a for details). Table 2 lists the nine wildfire cases during August 230 

2018 used in this paper, including locations, start and containment dates, and acres burned (Historic Perimeters Combined 2000–

2018 GeoMAC, 2023). It also summarizes eleven flight missions from August 2018, selected for the number of collocated pairs 

between valid lidar transects and satellite overpasses, with the flight trajectories illustrated in and  Fig. 1 depicts the matching 

eleven flight trajectories. The chosen flights are limited to passes of smoke plumes that could be attributed to a specific wildfire. 

Other flights during the campaign are were excluded from this study because they target prescribed fires, small wildfires, clouds, 235 

and the air mass containing the aged smoke plumes. Small fires were not included, in part, because of the expected large 

uncertainties in satellite retrievals of the relatively low SPH values (ranging from hundreds of meters for prescribed fires to 

thousands of meters for small fires). Large errors for smoke aerosol layers within the boundary arise from a mismatch between the 

coarse spatial resolution of satellite pixels and the fine-scale smoke plume variability inherent in wildfire activity (Geddes and 

Boesch, 2015). 240 

We then re-gridded valid WCL two-dimensional (2D) transects at a vertical resolution of 3 m and an along-track horizontal 

resolution of about 1.1 km to calculate SPH and columnar AOD throughout the atmosphere. Compared to satellite observations, 

the re-gridded WCL measurements have a much smaller field of view in the cross-track direction, therefore the WCL can show 

much finer spatial variations in smoke. Moreover, it should be noted that the WCL can be fully attenuated in dense smoke and 

unable to detect the actual SPH, and the aircraft might fly above the plume bottom height, so the upward-looking WCL only 245 

samples partial AOD of the aerosol vertical profiles, which fundamentally differs from the AOD that derived from satellite 

retrievalsdata.  

Table 2: Summary of nine wildfire cases with its general information and the corresponding eleven flight missions during from August 
2018 that were selected based on the number of collocated pairs between valid lidar transects and satellite overpasses. The A flight name 
because of the wildfire case occurred in the morning is denoted by its date ‘+ a’ because the flight occurred in the morning;, otherwise,  250 
it is denoted by its date ‘+ b’ if it occurred in the afternoon. 

Wildfire 
Name 

Active Fire 
Location 
(Latitude, 
Longitude) 

Start Date 
Approximate 
Containment 

Date 

Approximate 
Burned Area 

(acres) 

Flight 
Date 

(UTC) 

Flight 
Name 

Aircraft 
Sampling 

Distance from 
Active Fire 
Source (km) 

Nth 
Day 

After 
Fire 
Start 
Date 

Sharps Fire, 
ID 

43.467°N, 
114.145°W Jul 29, 2018 Aug 12, 2018 64, 812 

2018/08/03 0803a 18.88 6 

2018/08/04 0804b 46.50 7 

Rabbit Foot 
Fire, ID 

44.856°N, 
114.307°W Aug 2, 2018 Sep 19, 2018 36, 031 2018/08/08 0808b 21.86 7 
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2018/08/12 0812a 32.80 11 

Watson 
Creek Fire, 

OR 

42.653°N, 
120.818°W 

Aug 15, 
2018 Sep 9, 2018 59, 067 

2018/08/19 0819a, 
0819b a: 5.26/b: 22.61 5 

2018/08/24 0824a 41.75 10 

2018/08/25 0825a 13.17 11 

Sheep Creek 
Fire, NV 

40.773°N, 
116.842°W 

Aug 18, 
2018 Aug 23, 2018 59, 789 2018/08/20 0820a, 

0820b a: 1.70/b: 1.48 3 

South 
Sugarloaf 
Fire, NV 

41.812°N, 
116.324°W 

Aug 17, 
2018 Sep 3, 2018 233, 608 2018/08/23 0823a 51.44 7 

 

Flight Date 
(UTC) Flight Name Wildfire Name 

Active Fire 
Location 
(Latitude, 
Longitude) 

Aircraft Sampling 
Distance from Active Fire 

Source (km) 

Nth Day After Fire 
Start Date 

2018/08/03 20180803a Sharps Fire, ID 43.467°N, 
114.145°W 18.88 6 

2018/08/04 20180804b Sharps Fire, ID 43.467°N, 
114.145°W 46.50 7 

2018/08/08 20180808b Rabbit Foot Fire, ID 44.856°N, 
114.307°W 21.86 7 

2018/08/12 20180812a Rabbit Foot Fire, ID 44.856°N, 
114.307°W 32.80 11 

2018/08/19 20180819a, 
20180819b Watson Creek Fire, OR 42.653°N, 

120.818°W a: 5.26/b: 22.61 5 

2018/08/20 20180820a, 
20180820b Sheep Creek Fire, NV 40.773°N, 

116.842°W a: 1.70/b: 1.48 3 

2018/08/23 20180823a South Sugarloaf Fire, 
NV 

41.812°N, 
116.324°W 51.44 7 

2018/08/24 20180824a Watson Creek Fire, OR 42.653°N, 
120.818°W 41.75 10 

2018/08/25 20180825a Watson Creek Fire, OR 42.653°N, 
120.818°W 13.17 11 
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Figure 1: Color-coded eleven UWKA flight trajectories during the 2018 August BB-FLUX project, each of which was is associated with 
one of nine wildfire cases denoted by fire icons. 255 

3 Methods 

3.1 Definitions of wildfire SPH estimates 

The extinction coefficient is a key parameter for the fundamental radiative transfer calculations of wildfire smoke aerosols from 

the surface to the top of the atmosphere (TOA) (e.g., Ansmann et al., 2018; Solomon et al., 2022) and can yield a linear relation to 

the particle mass (or volume) concentration (e.g., Mamouri and Ansmann, 2016; Toth et al., 2019; Ansmann et al., 2021). In 260 

previous studies, the aerosol extinction coefficient is It has been recognized as one of the most frequently observed and reported 

aerosol optical properties to characterize the atmospheric vertical structure of the atmosphere and establish develop a height 

retrieval algorithm in previous studies (Gordon, 1997; Dubovik et al., 2011; Sanghavi et al., 2012; Hollstein and Fischer, 2014; 

Ding et al., 2016; Wu et al., 2016; Xu et al., 2017). Lidar-based active remote sensing technology usually deliversprovides an 

attenuated backscatter signal intensity that is then processed by designating an extinction-to-backscatter ratio to produce vertical 265 

profilesing of the aerosol extinction coefficient by designating an extinction-to-backscatter ratio (Liu et al., 2015; Rosati et al., 

2016; Baars et al., 2021).  

Two definitions have been proposed and widely used to derive a representative height of wildfire smoke plumes based on the 

vertical distribution of aerosol extinction coefficient at a given spectral wavelength from active lidar measurements. The concept 

of “effective SPH” can be defined either through smoke aerosol layer boundaries or by considering the complete vertical profile 270 

(Fig. 2). One method identifies the topmost height of the plumes according to the geometric boundary of the aerosol layers. Another 

approach is deduced fromadopts the average height of the aerosol layers,  weighted by the extinction (or backscatter) coefficient 

that , indicatingreflects the radiative properties of wildfire smoke particles. In this section, we will present a detailed explanation 

of these two definitions and apply them to the full vertical profiles of WCL-measured vertical profiles of aerosol extinction 
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coefficient within the troposphere. The height hereinafter is computed in kilometers AGL. 275 

 

Figure 2: Schematic of two standard SPH definitions, SPHtop and SPHext, proposed in our study. 

3.1.1 Plume top (SPHtopSPHtop) 

This definition is built on the wavelet covariance transform (WCT) approach given by Gamage and Hagelberg (1993), which is an 

automatic algorithmic process to extract geometrical features of interest. Since it can detect the aerosol layer locations of subtle 280 

but coherent transitions according to their strength and sign, the WCT analysis has been applied to detect realistic high-resolution 

atmospheric structures at a variety of vertical spatial scales, such as a well-mixed convective boundary layer top (e.g., Brooks, 

2003; Baars et al., 2008) and the edges of lofted aerosol layers (e.g., Davis et al., 2000; Siomos et al., 2017). Here we only focus 

on the derivation of for the top height of the of wildfire smoke plume tops for wildfire, referred to as SPHtopSPHtop. 

The WCT method is expressed as 285 

௙ܹ(ܽ, ܾ) = ܽିଵ න ℎ(ݖ)݂ ൬
ݖ − ܾ

ܽ
൰ ݖ݀ 

௭೟

௭್

,                                                                                                                                     (1) 

with a step function, the so-called Haar wavelet ℎ௔,௕(ݖ), which can be defined as  

ℎ ൬
ݖ − ܾ

ܽ
൰ =

⎩
⎪
⎨

⎪
⎧+1: ܾ −

ܽ
2

≤ ݖ ≤ ܾ

−1: ܾ ≤ ݖ ≤ ܾ +
ܽ
2

.݁ݎℎ݁ݓ݁ݏ݈݁      :0    

                                                                                                                                              (2) 

In Eq. (1), ݂(ݖ) is the lidar signal of interest as a function of height AGL, ݖ (is in our case the aerosol extinction profile (ݖ)ߚ at 

355 nm), and ݖ௧ and ݖ௕ are the upper and lower limits of the profile. For any arbitrary element of the Haar basis ℎ௔,௕(ݖ) as shown 290 

in Eq. (2), ܽ is the dilation parameter in relation to the spatial spectrum of the function, and ܾ is the translation parameter indicating 

the location at which the function is centered, respectively.  

The local match or similarity between the Haar wavelet ℎ௔,௕(ݖ) and the lidar extinction signal (ݖ)ߚ is measured in the covariance 
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transform ௙ܹ(ܽ, ܾ), which can be interpreted as a pattern search for a sudden jump. Accordingly, the position of the local maxima 

(i.e., positive peaks) in the return WCT signal approximately marks the layer top; likewise, the position of the local minima (i.e., 295 

negative peaks) of the covariance transform ௙ܹ(ܽ, ܾ) roughly coincides with the layer bottom. ITo put it in another way, the 

identification of strong variations in the vertical gradient of the aerosol extinction profile (ݖ)ߚ is useful to for locatinge the 

boundaries between aerosol layers. Inspired by Michailidis et al. (2021, 2023), we report the correct location ofdefine SPHtopSPHtop 

by adoptingas the last positive peak in the corresponding WCT profile from the surface to the upper atmosphere if some physical-

related constraints are satisfied. The optimum value for ܽ affects the number of sufficiently thick aerosol layers that can be retrieved 300 

successfully. We therefore limited the minimum acceptable wavelet dilation ܽ to be equal to 54 times the vertical resolution of the 

aerosol extinction profile (ݖ)ߚ at 355 nm, i.e., ܽ = 162 m used in this study. To filter noise in the return WCT signal, a minimum 

threshold value is set to 0.05. The values of SPHtopSPHtop are clearly extracted using this approach for both for a single-layered 

and multi-layered aerosol structure smoke plumes,  as illustrated in Figs. S1 and S2, respectively. 

3.1.2 Extinction-weighted mean plume height (SPHextSPHext) 305 

Given an aerosol extinction coefficient profile (ݖ)ߚ with ݊ lidar vertical levels, this definition weighs each height AGL interval ݖ୧ 

(in our case ݖ୧=3 m) for the ݅-th level with the height-dependent extinction coefficient ߚ(ݖ௜) as described in Koffi et al. (2012), 

and then calculates the weighted mean height (i.e., SPHextSPHext) as follows: 

௘௫௧ܪܲܵ =
∑ (௜ݖ)ߚ ∙ ௜ݖ

௡
௜ୀଵ
∑ ௡(௜ݖ)ߚ

௜ୀଵ
.                                                                                                                                                           (3) 

The above derivationmethod (Eq. (3)) has been widely applied in previous literature and considered ideal for comparisons with 310 

the ALH retrieval from passive satellite sensors (Chimot et al., 2018; Kylling et al., 2018; Liu et al., 2019b; Nanda et al., 2020), 

since it offers a simple and useful means to represent the aerosol vertical distribution as a single height value. For example, in some 

cases where a single and homogenous (i.e., same particle size and optical properties) aerosol layer is found in the atmosphere, 

SPHextSPHext indicates gives an indication of the aerosol layer’s center of mass. However, when it comes to a complicated vertical 

structure of with multilayer aerosols, SPHextSPHext may be observed at a vertical level with minimal smoke aerosol loading because 315 

smoke plumes are present spread out at multiple heights.  

3.2 Lidar–-satellite collocation method 

When comparing satellite products with observations, a method to collocate the two datasets is required. Even at close range to the 

source and within a short amount of timeperiods, the vertical extent of wildfire smoke plumes can vary substantially. This variation 

is influenced by factors such as is because specific vegetation types and fuel structures, terrain characteristics, or ambient 320 

meteorological conditions,  during atmospheric transport processes  which are more favorable to aerosol aging mechanisms and 

plume rise behaviors than others (Paugam et al., 2016; Junghenn Noyes et al., 2022). Passive satellite remote sensing of wildfire 

SPH provides an indirectly measures of columnar quantities at a relatively coarse spatial resolution, representing the spatial average 

of a highly variable pixel area of fire activity and therefore smoke plume behavior. In contrast, aActive airborne lidar instead 

collects instantaneous vertical segments of smoke aerosols only along its flight path, which in turn lacks large-scale spatial 325 

representation. Along with the spatial misalignment of collocated pairs, This fact precludes any perfect match between aircraft 

observations and satellite retrievals. Tthe disparity in sampling time between airplanes and satellites for the same cluster of wildfire 

plumes, on the order of minutes to days, presents another inherent challenge and thus yields few perfectly matched pairs. Hence, 

tTo make proper comparisons between space- and aircraft-based observing platforms, much deliberation is required in determining 
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the time interval and the distance for collocation pairs of satellite retrievalsobservations and lidar measurements requires careful 330 

consideration (Junghenn Noyes et al., 2020).  

In our study, airborne lidar measurements are integrated to an along-track spatial resolution of about 1.1 km and thoroughly cloud-

screened. Broadly, wWe come updeveloped and tested with two methods to collocate our aircraft observations with four satellite 

products (Fig. 3). We expect the collocation method to impact the results because of the spatial heterogeneity of smoke plumes 

and the range of horizontal resolution for the four satellite products, from 1 km to 6 km. in connection with the spatial statistics of 335 

the satellite SPH data. Moreover, there’s a chance that Another factor is that multiple satellite pixels can coexist in proximity to a 

single lidar point when satellite orbits and flight legs intersect. When considering these factors, using a single satellite pixel versus 

an average of pixels in a specific area to collocate satellite products with aircraft observations provides different results for the 

comparison. Testing the two methods ensures that our comparisons are fair and consistent across the different satellite products. 

One,  the “spatial averaging method”, usesing an average of the surrounding satellite pixels of a lidar point, (hereinafter called the 340 

“spatial averaging method”) and another the other, the “matched pair method”, employsusing a nearest neighbor search to create 

a matched pair of lidar–-satellite observations pair(hereinafter called the “matched pair method”).  

 

Figure 3: Conceptual diagram of two collocation methods used in our study to pair aircraft observations and passive satellite retrievals. 
Our collocation criteria are a search radius of 6 km and a sampling time window of 12 minutes. 345 

The first collocation method, i.e., the spatial averaging method, calculates an averageed value of the satellite retrievals within an 

area of a fixed search radius around the lidar measurement. For MODIS/MAIAC and MISR/MERLIN, since they have the finest 

finer spatial resolution (described in Table 1), it this predisposes them to have multiple collocations inside a circular area of a 

given search radius centered on the lidar point. The nature of their noise isvalues are smoothed by takingbecause an the average 

value of all satellite retrievals in this circular area for a given sampling time is used for comparison, which is a common practice 350 

in the remote sensing field (e.g., Virtanen et al., 2018). Also, cConsidering that there are fewer collocated satellite retrievals of for 

the coarse resolution products within the search area, such as VIIRS/ASHE and TROPOMI/ALH, within the search area we apply 

our second collocation method, i.e., the matched pair method. This method is more sensitive to the location of a single satellite 
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pixel coinciding with each point-like airborne lidar measurement. The closest satellite pixel to the nearby lidar point within the 

given sampling distance and time window is chosen for each match.  While using two methods provides the most reliable approach 355 

to compare across multiple satellite products, there are still uncertainties associated with satellite-observation comparisons. The 

main uncertainty sources of collocation mismatch uncertainties are: (1) misalignment between the satellite pixel size and the lidar 

observation point; (2) wind-driven advection (e.g., a high fire-induced horizontal wind can reach the maximum value of 10 m s-1 

(Liu et al., 2019c), which can displace fire-related smoke aerosols 3.6 km in 6 minutes); (3) intrinsic positioning and navigation 

errors. For both methods, we first assume that horizontal changes in wildfire smoke plume spread area are negligible during short 360 

time intervals. It is important to note that each satellite product maintains its native resolution rather than being resampled to a 

uniform grid for all products. A different collocation method for each satellite product might be used to showcase its spatial 

characteristics (e.g., to highlight the improvement of finer spatial resolution products). 

Both collocation methods require spatiotemporal averaging windows to be selected. A single granule of theAmongst all the 

satellite-derived SPH products as discussed above, the  VIIRS/ASHE product has the largest pixel size (6 km × 6 km) across with 365 

the longest periodorbit segment scanning period (a nominal temporal duration of~ 6 minutes) of all the satellite-derived SPH 

products in Table 1. THence, to ensure that adequate collocation pairs are available within one half hour due to rapid in response 

to high-level wildfire smoke plume activity, we decide to useutilized a sampling time window of 12 minutes that corresponds to 

twice the maximum time span of an orbital swath (one scene) in the multi-sensor satellite data. To investigate the effects of the 

search radius size for the two collocation methods, we used 20 sampling distances ranging from 1 km to 20 km. for the radius of 370 

the circular region, by aAssuming a worst-case windy environment of 30 m s-1 ,which results in wildfire smoke aerosol layers 

could migrating migrate ~20 km during the maximum allowed time-interval between observations of 12 minutes in our coincidence 

criteria. Local SPH spatial variability over scales up to ~20 km can introduce uncertainty in SPH comparisons. In Fig. 

S3Accordingly, the standard deviation (STD) of the multi-sensor satellite SPH retrievals around a lidar point (denoted by ߪௌ௉ு) is 

calculated and plotted in Fig. S3 to assess the representativeness of  the search radiusnot only the point-like lidar observation for 375 

the search area covered by the satellite data using the spatially averaging method but also the closest satellite value within the 

selected spatial criteria using the matched pair method. With increasing distances, all STD curves for the satellite- retrieved SPH 

display asymptotic behavior. These values can be interpreted as an upper limit of the SPH errors owing to our method of collocation. 

It is important to optimize the inclusion criteria for the lidar-satellite comparison. For example, a low number of nearby satellite 

pixel counts shows higher spatial sampling uncertainty, and a low number of one-to-one collocation pairs indicates weaker statistics 380 

in calculating the STD. While calculatingUsing the mean STD (, ߪௌ௉ுതതതതതത) from all collocations,  the average number of nearby satellite 

pixels within a searching radius per collocation,  and the total number of one-to-one collocation pairs ,are also recorded and can 

be used as thresholds. tThe best search radius is thus set to 6 km. A The collocated satellite SPH value is assumed to can be taken 

to be generally representative across the of SPH values of all other observations within a 6 km radius circle centered around the 

WCL data point, with an average STD-calculated uncertainty (ߪௌ௉ுതതതതതത) of ~220 m for MODIS-Terra/MAIAC, ~173 m for MAIAC-385 

Aqua/MAIAC, ~258 m for MISR/MERLIN, ~300 m for VIIRS/ASHE, and ~152 m for TROPOMI/ALH.  

3.3 Reconstructed lidar vertical cross-sections 

During When the UWKA flew flight legsclose-to- perpendicular to the mean wind direction, the consecutive UWKA transects 

sampleds the fire smoke plumes along nearly the same flight track, albeit at different heights over the same latitude or longitude 

range of the flight trajectory. The UWKA operates at a cruise speed of approximately 90 m s-1, enabling it to capture data from 390 

different altitudes and angles. As mentioned earlier, Tthe WCL system uses laser beams to measure the optical properties of the 
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plume, but we recognize that WCLand is limited in its ability to penetrate and sample dense optically thick smoke. Therefore, the 

lidar WCL at each flight leg can only provide a partial vertical segment of the fire smoke plumes’ cross-section, particularly from 

the lowest flight altitude (i.e., upward scanning lidar). 

We reconstructed the vertical structure of wildfire smoke plumes using consecutive WCL transects from different flight legs. This 395 

post-processing approach, using pseudo-vertical profiles of the aerosol extinction coefficient presents a more comprehensive view 

of pseudo-vertical profiles of the aerosol extinction coefficient, and thus provides valuable useful reference lidar-determined SPH 

reference data for robust analysiscomparison with satellite SPH products. The reconstruction process involves several key steps 

following Deng et al. (2022b): 

I. Applying extinction coefficient threshold: Cloud-screened WCL transects are collected from eleven flight tracks 400 

with valid collocation pairs. To separate densely localized fresh smoke from the aged background smoke, an extinction 

coefficient threshold of 0.1 km-1 is applied. This step helps remove background noise and signal attenuation in the WCL 

data and ensures a clear distinction between different smoke components.  

II. Manual identification of flight legs sampling the same fire smoke plumes: Wwe examine select flight legs track 

maps and locate areas where multiple flight legs intersected with a smoke plume sampling from the same fire 405 

plumessource, by examining flight track maps and locating the areas where multiple flight legs intersected with the fire 

plumes. 

III. Interpolating discontinuous flight segments to a complete vertical cross-section: Tto display the vertical cross-

section of the smoke plume s more smoothly and to aid further analysis and interpretation, scattered lidar points with 

extra 2D vertical structure information from various multiple flight legs are interpolated to form a continuous line. The 410 

interpolation process relies on the fact that the change in latitude or longitude of the flight tracks is monotonic.  

4 Results and discussion 

4.31 Quantitative eEvaluation of satellite-derived SPH interpreted fromusing airborne lidar SPHdata 

The comparison of satellite-based SPH with two distinctive SPH definitions determined byusing WCL data poses the following 

question: wWhat other factors must be consideredinfluence the SPH comparison? To address this question, we specifically 415 

analyzeconsidered two factors, distance from the fire and aerosol loading. Specifically, we defined four categories, such as “near-

fire-event region (distance from the fire source < 20 km)” or “downwind region (distance from the fire source > 20 km)”, and “low 

AODAOD < 1” (AOD < 1) or “AOD ≥ 1high AOD” (AOD > 1). We then investigated the relationship between these factors and 

the SPH comparison for each satellite dataset (Fig. 64). 

For MODIS-Terra/MAIAC, SPHextSPHext is a better comparison than SPHtopcan effectively interpret for a majority of retrievals 420 

not only for the near-fire-event region but also for the downwind region, and allthe use of  SPHext areis not sensitive to significant 

variability in aerosol loading. Furthermore, the MAIAC PIH algorithm underestimates SPH with increasing AOD in the downwind 

region. Instead, for MODIS-Aqua/MAIAC, the retrievals are generally highly biasedhave a high degree of bias compared to lidar-

derived SPH, with only a few points falling within the region between the 1:1 and 1:2 lines. In other words, tThe MODIS-

Aqua/MAIAC dataretrievals exhibits relatively more consistency with the definition of SPHextSPHext near the fire source 425 

duringunder high-AOD conditions (when AOD ≥> 1). In terms ofThe MISR/MERLIN product , a fairhas a good agreement is 

observed between the retrievals and the definition of SPHtopSPHtop for the areas both in the fire vicinity of fire and far downwind 
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from the fire, with outliers potentially arising fromfor thin plumes (for small lower AOD < 0.8), potentially due to the having 

unclear boundaries of the smoke plume near the fire source. This is because the MISR-based automated stereoscopic image requires 

distinct plume-like features to provide the complete vertical profile of the smoke plume. The VIIRS/ASHE product 430 

matchescompares better with SPHtopSPHtop other than SPHextSPHext. Another interesting finding is that irrespective of AOD values, 

the ASHE algorithm tends to overestimate SPH for the near-fire-event region, while underestimating SPH for the downwind region. 

LikewiseSimilarly, the TROPOMI/ALH product displayshas lower SPH values far away from thefor the downwind region fire but 

higher SPH onesvalues when close to the fire, regardless of the chosen SPH definition and AOD conditions. The definition of 

SPHtopSPHtop proves useful to evaluate the TROPOMI/ALH data within the near-fire-event region if the large outliers were 435 

removed, whereas the use of SPHextSPHext is more appropriate for the downwind region if the outliers were removed. 

TOverall, this qualitative analysis sheds light on the factors influencing the comparison between satellite-derived SPH and lidar-

determined SPH definitions. These findings can aid in refining the comprehension and interpretation of SPH dataproducts collected 

from variousmultiple satellite datasets. Additionally, the physical interpretation of the potential biases in the satellite SPH 

algorithms can help design future field campaigns that provide data sets for evaluation and algorithm development. While the 440 

qualitative analysis is useful to understand the physical processes impacting the results, we also provided a quantitative evaluation 

of the satellite SPH products using the metrics described in Appendix A (results shown plots in Fig. 4). 
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Figure 64: Scatterplots of satellite SPH retrievals from MODIS-Terra/MAIAC, MODIS-Aqua/MAIAC, MISR/MERLIN, VIIRS/ASHE, 445 
and TROPOMI/ALH versus the WCL-determined SPH using two different definitions, i.e.,: SPHtopSPHtop (left, blue) and SPHextSPHext 
(right, red). Results are, for the total collocated lidar–satellite pairs between satellite retrievals and lidar observations from theusing 
reconstructed WCL vertical cross-sections induring August 2018. Dotted lines denote the ratios of 2:1, 1:1, and 1:2 for reference. The 
shaded areas show the estimated density estimates of the overall collocated pairs’ distribution. Points closer to the fire (occurrence, 
within 20 km), are shown as left-pointing triangles, while those farther away, in the downwind area, are shown as right-pointing triangles. 450 
EachThe triangle’s size can be used to infer its matchingdenotes the corresponding AOD value. Note that: the subpanel plot axes’ scales 
for each satellite product are different. Evaluation metrics used to assess the performance of satellite products are MB (km) – mean bias; 
MAE (km) – mean absolute error; RMSE (km) – root mean square error; R2 (unitless) – coefficient of determination; and r (unitless) – 
Pearson correlation coefficient (* signifies a p value < 0.05, ** indicates a p value < 0.01).  
Table 4 summarizes the statistical evaluation for collocated pairs for wildfire SPH between multiple satellite products and lidar 455 

measurements, where MB (km) = 0, MAE (km) = 0, RMSE (km) = 0, and r (unitless) =1 indicate perfect agreement. The set of 

evaluation metrics can beare calculated by Eqs. (A1) to (A45), where MB (km) = 0, MAE (km) = 0, RMSE (km) = 0, and r (unitless) 

=1 indicate perfect agreement. The resulting SPH values used to calculatefor evaluation metrics are the meansaverages of all 

successful collocations usingfound in reconstructed lidar vertical cross-sections. Additional statistics for the lidar–satellite 

comparisons are summarized in Appendix B. It should be noted that the collocation method used for comparison is not the same 460 

across all of satellite products, where MODIS-Terra/MAIAC, MODIS-Aqua/MAIAC, and MISR/MERLIN uses the spatial 

averaging method, and VIIRS/ASHE and TROPOMI/ALH uses the matched pair method. Results for both collocation methods 
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for all satellite products are provided in Tables S1 and S2. The statistical comparisons of four SPH products derived from passive 

satellite remote sensing against WCL-determined SPH further elaborates on the strengths and limitations of these distinct 

observational methods. Next, we present an in-depth assessment of the performance of each product based on the quantitative 465 

evaluation.It should be noted that Table 4 is the combination of Tables S3 and S4, using spatial averaging and matched pair 

methods for collocation relating to different satellite products. 

The MAIAC PIH algorithm has low confidence (i.e., large negative R2 from –8.009 to –3.995 and high RMSE from 0.822 to 2.393) 

in SPH retrievals compared to the WCL SPH measurements using two definitions, especially in the afternoon. One reason might 

be that the MAIAC algorithm cannot achieve strong negative thermal contrast, that is, the smoke pixel (white) is not enough 470 

“colder” than the background (dark) in the afternoon when the fire activity is most active. Moreover, assuming an average lapse 

rate over mountainous terrains instead of more accurate atmospheric temperature profiles from reanalysis data can introduce more 

inherent uncertainties in SPH estimates. A more significant difference between the MODIS/MAIAC SPH product and the 

definition of SPHtopSPHtop is found compared to the definition of SPHextSPHext, indicating the limitation of high enough total AOD 

to ensure sufficient gaseous absorption constrains its ability to detect SPHtopSPHtop. Therefore, usingapplying the definition of 475 

SPHextSPHext to evaluate the MODIS/MAIAC product would beis recommended.  

The MISR/MERLIN dataplume height fluctuates from 0.625 km to 3.029 km, and the corresponding SPHtopSPHtop determined 

byfrom lidar profiles varies from 1.254 km to 2.982 km. The mean, STD, and quartiles of the collocated MISR/MERLIN SPH data 

exhibithave relatively small biases compared to SPHtop. The MISR/MERLIN product outperforms the other three datasets for 

capturing SPHtopSPHtop as seen from the lowest values of MB, MAE, and RMSE. It also has a relatively moderate positive 480 

relationship (r = 0.551) with the spatial changes in wildfire SPHtopSPHtop. This is in line with what we anticipated as contrasting 

features are visible inside plumes and between smoke aerosols and the terrain surface through multiple, angular views, allowing 

the MISR stereo technique to capture the evolution of wildfire smoke plumes in the cases studied. 

Lee et al. (2015) highlighted that the VIIRS/ASHE product performs well over mountainous areas due to the surface elevation 

consideration during the retrieval process. Although the mean values and general distribution of both satellite retrievals and lidar 485 

observations are fairly close, the VIIRS/ASHE data has a wider spread of values (larger STD), a slight tendency to underestimate 

the SPHtopSPHtop by nearly 116 m, and lower plume height extremes (maximum and minimum plume heights). A fraction within 

1.5 km of 14% for VIIRS/ASHE SPH leads to some outliers, which are reflected in higher MAE and RMSE. These large outlier 

errors could be attributed to difficulties for passive sensors in measuring the presence of multi-layered aerosols (see Figs. 75b and 

S6d), and a potentialpotentially high AOD bias over bright surfaces. However, the negative spatial correlation (r = –-0.22) between 490 

the VIIRS/ASHE data and the WCL-determined SPH suggests significant discrepancies in their spatial resolution when collocating.  

OnUsing the definition of SPHextSPHext, the TROPOMI/ALH product slightly overestimates SPH by approximately 158 m, but 

maintains overall reasonable performance as indicated by the MAE and RMSE values, and a weak positive correlation (r = 0.241) 

with lidar observations. However, this evaluation could be influenced by a limited number of collocations. Choosing the 

appropriate SPH definition to interpret the TROPOMI ALH algorithm depends on a case- by- case basis as shown in the 495 

reconstructed lidar curtains (Sect. 4.23). ForWhen multi-layered structures are detected in the sample cases (Fig. 75b), the SPH 

output from the TROPOMI ALH algorithm is regarded as the average computation of aerosol optical properties, resulting in a poor 

comparison with the lidar SPH. On the other hand, the TROPOMI ALH algorithm shows encouraging potential for characterizing 

SPHtopSPHtop in homogenous well-developed smoke layers (Figs. S64f and S64i). When using the TROPOMI/ALH product, 
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mMultilayered aerosols, inaccurate aerosol type detection, and biased UVAI retrievals over bright areas with complex terrain are 500 

all potential causes of retrieval uncertainties in the TROPOMI/ALH product.can increase the biases in wildfire smoke profiling. 

Overall, the discrepancies between passive satellite retrievals and lidar measurements in observing SPH primarily stem from their 

different approaches to characterize smoke aerosol. Passive satellites typically operate under the assumption of a singular aerosol 

layer within the atmospheric column, a simplification that often fails to account for the presence of multiple layers that are actively 

captured by lidars. This divergence creates a challenge in aligning satellite-derived SPH data with lidar observations due to the 505 

uncertainty in correlating equivalent layers. Further investigation of the smoke plume physics and vertical aerosol distributions are 

provided in the following sections using the WCL vertical profiles, including comparisons with passive satellite SPH products. 

4.4 Qualitative evaluation of satellite-derived SPH and physical considerations 

4.1 2 Leveraging airborne lidar measurements to characterize plume behavior and SPH 

Through the use of airborne lidar measurements, our study seeks to understand Our study attempts to determine a reliable method 510 

for evaluating the effectiveness ofhow well a passive satellite remote sensing technique in can retrieving retrieve SPH data from 

wildfires using airborne lidar measurements. It is worth noting that theThe lidar profiles allow for multiple aerosol layers to be 

sampled. However, unlike the conventional passive satellite aerosol height retrieval algorithm assumes which presumes the 

presence of a single, homogeneously distributed aerosol layer throughout the entire atmosphere. Despite different measurement 

concepts when it comes to multiple layers of plumes, to ensure comparability between passive retrievals and active observations 515 

of wildfire smoke plume behavior and for ease of calculation, we emphasize the significance of an effective height parameter. The 

two different SPH definitions (Sect. 3.1) used to determine this parameter give an indication of the height of the wildfire smoke 

aerosol distribution as a single number.  
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 520 
Figure 25: (a) The rRatios of single-layered and multi-layered aerosol structures in the 0.5 km wide bins using two different WCL-
determined SPH definitions: (a) , i.e., SPHtopSPHtop (left, blue solid) and (b)versus SPHextSPHext (right, red dotted)., accompanied 
byLines indicate the probability mass function (PMF; thick line) and cumulative distribution function (CDF; thin line) curves. Note that 
the WCL plume height data are equally binned by setting the bin-width parameter to 0.5 km, and the bins are spread out in the range 
from 0.5 km to 5.5 km for SPHtopSPHtop and in the range from 0.5 km to 4.5 km for SPHextSPHext. (b) WCL-determined SPH definition 525 
comparisons for eleven BB-FLUX flight missions presented by box plots. Upper and lower whiskers represent the 95th and 5th percentiles, 
respectively, while the box spans from the 25th percentile to the 75th percentile. The line inside the box represents the median (the 50th 
percentile), and the triangle indicates the mean of the range of plume height values. 

In Fig. 2a5, the height distributions of wildfire smoke plumes are shown using two different SPH definitions during BB-FLUX in 

August 2018 are shown using two definitions of lidar-derived SPH. COne should be cautionus should be taken when in identifying 530 

key criteria used to define SPH prior to assessing evaluating the satellite retrievals. This is because SPHtopSPHtop (Fig. 5a) has a 

vertical extent spanning from 0.5 km to 5.5 km, with the most common height being approximately 2.25 km. On the other 

hand,While SPHextSPHext (Fig. 5b) exhibits a vertical range from 0.5 km to 4.5 km, with its peak observed at roughly 1.2 km. At 

For SPH values less than 3.5 km, the occurrence of smoke plumes identified within one single layer is significantly higher than 

that of multi-layered smoke plumes (> 60% for each height bin), suggesting that the columnar SPH values obtained from satellite 535 

retrievals can be compared with those measured via upward-facing lidar profiles, as smoke plumes produced by wildfire typically 

exhibit a single aerosol layer structure. This finding holds particularly true for wildfires of decreased fire intensity under 

suppression operations (i.e., the some flight dates approaches the corresponding fire contained containment date listed in Table 

32), as investigated in this study.  

In Fig. 2b, there is no clear single pattern for the vertical profile of the smoke plume due to the coupled interactions between the 540 

fire and atmosphere. Various characteristics, such as weather conditions and fuel types, can influence this relationship. Another 

critical factor is how far the airborne lidar is from the center of wildfire activity, which will be addressed in Sect. 4.4. The 

aforementioned results have implications for models and retrieval algorithms that presume a standard atmospheric vertical profile 

with a fixed temperature lapse rate and smoke concentrations. However,It should be noted that the upward-sampled WCL can only 

provide a partial vertical segment and not a fully resolved cross-section of the smoke plumes from the lowest flight height due to 545 

the restricted lidar laser penetration in optically thick smoke plumes. For instance, when probing the plume centerline, there is 

complete attenuation of the lidar beam, resulting in a loss of data samples. However, the WCL can successfully delineate the 

atmosphere on each pass in the less dense portions of smoke plumes. Therefore, the vertical structure of individual smoke plumes 

reconstructed from airborne WCL measurements yields the vertical profiles of the mean aerosol extinction coefficient, reflecting 

the average conditions of smoke plumes over multileg UWKA sampling periods (see more details in Sects. 3.3 and 4.3). In terms 550 

of lidar-derived SPH biases identified in our study, we observe three main scenarios: the results presented here(1) underestimation 

ofe the SPHtopSPHtop (i.e., optically thick plumes limiting vertical extent); (2) and overestimation ofe the SPHextSPHext (i.e., the 

upward-pointing lidar not sampling below aircraft); (3) underestimation of both SPHtop and SPHext in situations where the lidar 
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faces both dense smoke above and cannot measure below the aircraft. It should be noted that the range of WCL SPH measurements 

for both morning and afternoon flight missions on August 20, 2018, is limited because only a small fraction of flight tracks are 555 

considered valid transects for reconstruction.  

Table 3: Summary of nine wildfire cases with its general information with respect to start date, approximate contained date, and 
approximate acres burned, which were collected from the GeoMAC (Geospatial Multi-Agency Coordination Group) historic fire dataset 
(last access: 8 June 2023). 

Wildfire Name Start Date Approximate 
Containment Date 

Approximate Acres 
Burned 

Sharps Fire, ID Jul 29, 2018 Aug 12, 2018 64, 812 

Rabbit Foot Fire, ID Aug 2, 2018 Sep 19, 2018 36, 031 

Watson Creek Fire, OR Aug 15, 2018 Sep 9, 2018 59, 067 

Sheep Creek Fire, NV Aug 18, 2018 Aug 23, 2018 59, 789 

South Sugarloaf Fire, NV Aug 17, 2018 Sep 3, 2018 233, 608 

How smoke aerosols are vertically distributed throughout the atmosphere plays a dominant role in AOD-based surface particulate 560 

matter (PM) models. High-elevation smoke aerosol layers above the planetary boundary layer height (PBLH) lead to high column 

AOD while not elevating the near-surface PM levels. Generally, aerosol concentrations are low in the higher, relatively stable 

atmospheric layers above the planetary boundary layer (PBL). However, a large wildfire, usually defined as a fire area greater than 

1,000 acres burning in the WUS (Linley et al., 2022), tends to have vigorous buoyant plume cores that can lift the smoke plumes 

to the free troposphere (FT) and even the stratosphere under favorable atmospheric conditions. Therefore, the ratio of effective 565 

SPH to PBLH (SPH:PBLH) is a better indicator of the AOD and surface PM concentration relationship. Now if we incorporate the 

modeled PBLH from the Weather Research and Forecasting Model (WRF) as indicated in Fig. 3, we can better understand local 

meteorology and its impact on wildfire SPH. The WRF model for our use has an outer domain extending over the WUS. with a 4 

km spatial resolution, nudged with observations from weather stations as well as balloon soundings. PBLH is recalculated from 

the WRF simulations using the vertical potential temperature gradient method or the Richardson number method. The locations 570 

and elevations of each balloon sounding station are in Table S1, and details of the WRF model configuration are in Table S2. The 

results of the WRF model evaluation are in Fig. S4.  

Based on the specific wildfire information in Table 3, we can qualitatively discuss the differences between SPHtop:PBLH and 

SPHext:PBLH for each wildfire in terms of their start dates, approximate containment dates, and approximate acres burned. The 

ratio SPH:PBLH can explain a joint interaction between buoyant plume cores and complicated boundary layer mixing (e.g., 575 

entrainment and wind shear). It also depends on other important factors such as the fire size, distance from the fire source, and the 

fire spread. In some cases, high SPHtop:PBLH (> 1) but low SPHext:PBLH (< 1) occur concurrently, as shown in Fig. 3. This means 

that a higher columnar AOD does not necessarily give rise to the majority of the smoke plume concentrations being above the PBL. 

For instance, the Watson Creek Fire that started on August 15, 2018, had two flight missions, 0819a and 0819b, and their aviation 

operation dates were fairly close to the fire start date compared to 0824a and 0825a. The challenging terrain with dense fuel on the 580 

ground facilitated rapid fire spread, and no containment efforts were in place. Therefore, we can expect that the intense fire behavior 

would generate a higher amount of smoke plumes injected into the FT, where both SPHtop:PBLH and SPHext:PBLH are larger than 

1. Five days later, as the fire activity reduced and containment of the fire increased to 15%, there was likely more smoldering and 

thus lower plume heights. SPHext reaches a similar level to the PBLH, although SPHtop:PBLH remains relatively high. When 

comparing the morning and afternoon SPH patterns, the morning SPH relationships might be less complex and potentially easier 585 
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to model. Basically, turbulence, convection, and fire-atmosphere interactions contribute to more chaotic plume and PBL dynamics 

in the afternoon, causing the growth rate of the fire to exceed the growth rate of the PBL. The Sheep Creek Fire is an exception. It 

was accidentally begun by a crashed helicopter but was nearly 100% suppressed within one week, due to a timely and consistent 

fire response making rare SPH behavior in the afternoon possible, where smoke plumes reside within the PBL. Additionally, a 

significant portion of the lidar vertical cross-section is missing for the 0823a flight during the South Sugarloaf Fire, as depicted in 590 

Fig. S6g. In spite of the fire’s high severity, which categorizes it as an extreme wildfire episode, the absence of the extinction 

coefficient data as well as lidar measurements in the downwind region (described in Table 2) leads to inaccurate, low estimates of 

SPHtop and SPHext.  
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Figure 3: Comparison of the 30-min average PBLH obtained from WRF simulations (grey bars) with the WCL-determined SPH using 595 
two different definitions (SPHtop, blue bars; SPHext, red bars) for the morning (left) and afternoon (right) flight missions. Note that the 
height of the bar in the bar charts represents the mean of the range of plume height values, and the length of the horizontal error bars 
displays the STD-calculated uncertainty. 

4.2 3 Reconstructed lidar curtain and lidar–-satellite collocationcomparison 

It is necessary to implement post-processing procedures to conduct a comparative analysis between the lidar observations and the 600 

satellite retrievals. Here we present detailed reconstructed lidar vertical cross-sections of aerosol extinction coefficient along with 
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collocated satellite SPH data on August 19, 2018, for the morning (0819a, Fig. 64) and afternoon (0819b, Fig. 57) flight missions. 

Similar plots are included in Figs. S45 and S56 for each flight. Figs. 64a and 75a demonstrate that the smoke plume coverage of 

the MISR/MERLIN product aligns well with the manually identified plume area and reveals high-resolution SPH retrievals. In 

contrast, the MODIS/MAIAC product with the highest spatial resolution displays lower SPH values in general over primary 605 

biomass-burning regions. Meanwhile, both the VIIRS/ASHE product and the TROPOMI/ALH product indicate that higher SPH 

values are generally shifted towards the downwind region of fire sources. 

The vertical distributions of wildfire smoke aerosols (Figs. 64b and 75b) are useful to visualize the smoke plume structure and 

provide more information about the physical processes influencing aerosol layering in the atmosphere. A visual comparison of the 

SPH values from the four satellite products and against the WCL is presented in Figs. 64b and 75b. In Fig. 64b, even when faced 610 

with intricate aerosol structures, the MISR/MERLIN data is capable of reaching SPHtopSPHtop, except for thin plumes with 

comparably low AOD values. The MODIS-Terra/MAIAC data SPH appears is similar to SPHextSPHext, although it is unable to 

distinguish the top of multiple aerosol layers and consequently produces exceptionally low SPH values. Since the reconstructed 

aerosol vertical cross-section for Fig. 75b is located in the downwind region of the burn area, there is an increase in SPHtopSPHtop 

and SPHextSPHext as the distance from the fire source increases. We recommend caution when using the MODIS-Aqua/MAIAC 615 

product for estimating downwind SPH, as its effectiveness in such scenarios is not always optimal (also refer to Figs. S4b and S4c 

for more details). This limitation in the MAIAC PIH algorithm has also been reported in previous studies (Lyapustin et al., 2019; 

Loría‐Salazar et al., 2021). It is not advisable to use the MODIS-Aqua/MAIAC product for estimating downwind SPH due to its 

suboptimal performance in such scenarios. Regarding heterogeneous aerosol vertical profiles, the spatial agreement between the 

collocated VIIRS/ASHE SPH values and the two SPH definitions’ general trends is poor, despite achieving, on average, a good 620 

numerical agreement with SPHtopSPHtop. This is partly due to the coarse spatial resolution of OMPS UVAI data used in the 

algorithm (~50 km at nadir; ~100 km near the scan edge) not being able to represent finer-scale features. The TROPOMI/ALH 

data seems is consistent with the valid SPHextSPHext values, given the observed overestimation of SPHextSPHext attributable to the 

elevated flight height. The potential explanation for this phenomenon is that in cases where there may be several layers of smoke 

aerosols, the retrieved SPH would be the average height of the plume much lower than the height of where the optically thick 625 

aerosol layer is placed (Michailidis et al., 2023). 

According to these results and specific fires studied, the MODIS/MAIAC product struggles with most heterogeneous aerosol 

structures even in close proximity to active fire sources. The evaluation of the MODIS/MAIAC-derived SPH in the afternoon is 

lacking in literature because MISR onboard the Terra as a comparison data set does not coincide with the Aqua overpass time in 

the afternoon. Even though the MISR/MERLIN product aims to capture the top boundary of the smoke plume, it can be highly 630 

biased in thin plume height estimates with low AOD,  or for a more complex aerosol structure with multiple aerosol layers. The 

challenges observed for the VIIRS/ASHE retrievals are: (1) poor correlation with general trends in lidar measurements; (2) it may 

not accurately represent complex atmospheric conditions with multiple aerosol layers. Among Out of the four satellite SPH datasets 

we investigated, TROPOMI/ALH has the lowest least SPH variance in the retrieved SPH across spatial areas., which This is not 

ideal for application purposespractical use since as the real-world wildfire and smoke plume activity varies significantly  in space 635 

and timeacross spatial areas. However, elevated smoke layers with a high aerosol loading, over dark surfaces at not very high 

altitudes are favorable for the TROPOMI ALH algorithm to retrieve vertically localized aerosol layers in the free troposphere. 
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Figure 6: Cont. 
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Figure 64: (a) The nearest satellite pixels of (MODIS-Terra/MAIAC and ; purple, MISR/MERLIN : orange) to the corresponding 
airborne lidar points along the 20180819a flight track during the reconstructed time period from 17:12 to 19:12 UTC highlighted in 
green. Wind barbs are plotted along the trajectory with each short barb representing 5 knots and each long barb representing 10 knots. 645 
The star symbol indicates the center location of the Watson Creek fire taken from the incident report system (Inci-Web). Note that tThe 
NASA WorldView MODIS Terra true-color (i.e., corrected reflectance) images are shown alongside the satellite-retrieved SPH maps 
with the user-drawn smoke plume polygons (denoted as the dashed white region). (b) (Bottom panel) Composite latitude–-height cross-
sections of the reconstructed WCL vertical aerosol extinction coefficient at 355 nm, overlaid with performance comparisons for 
variations of WCL-determined SPHtopSPHtop  and SPHextSPHext and as well as the collocated satellite-retrieved mean SPH with error 650 
bars,  for the Watson Creek fire in the morning on August 19, 2018 with ; (top panel) the corresponding AOD variations at 355 nm. 
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Figure 7: Cont. 
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 655 

Figure 57: (a)  Same as Figure 6a, but for the nearest satellite pixels of MODIS-Aqua/MAIAC, VIIRS/ASHE and TROPOMI/ALH to 
the corresponding airborne lidar points along the 20180819b flight track during the reconstructed time period from 20:43 to 23:18 UTC 
highlighted in green. Note that the NASA WorldView true-color images (both MODIS Aqua and VIIRS are used) at the corresponding 
moment are shown alongside the satellite-retrieved SPH maps with the user-drawn smoke plume polygons (denoted as the dashed white 
region). The nearest satellite pixels (MODIS-Aqua/MAIAC, violet; VIIRS/ASHE, pink; TROPOMI/ALH, magenta) to the corresponding 660 
airborne lidar points along the 20180819a flight track during the reconstructed time period from 20:43 to 23:18 UTC highlighted in 
green. The star symbol indicates the center location of the Watson Creek fire taken from Inci-Web. The NASA WorldView true-color 
images (both MODIS Aqua and VIIRS are used) at the corresponding moment are shown alongside the satellite-retrieved SPH maps 
with the user-drawn smoke plume polygons (denoted as the dashed white region). (b) Same as Figure 6b, but for the Watson Creek fire 
in the afternoon on August 19, 2018.(Bottom panel) Composite latitude-height cross-sections of the reconstructed WCL vertical aerosol 665 
extinction coefficient, overlaid with performance comparisons for variations of WCL-determined SPHtop and SPHext as well as the 
collocated satellite-retrieved mean SPH with error bars for the Watson Creek fire in the afternoon on August 19, 2018; (top panel) the 
corresponding AOD variations at 355 nm. 

4.4 SPH Application 

Knowing SPH has additional benefits beyond atmospheric modeling, here we illustrate how SPH can be used to improve our 670 

understanding of surface air pollution concentrations and smoke plume dynamics resulting from fire–atmosphere interactions. By 

using both definitions of SPH, SPHtop and SPHext, additional insights related to plume dynamics can be assessed. How smoke 

aerosols are vertically distributed throughout the atmosphere plays a dominant role in estimating surface particulate matter (PM) 

models from satellite AOD products. High-elevation smoke aerosol layers above the planetary boundary layer height (PBLH) lead 

to high column AOD while not elevating the near-surface PM levels. Generally, aerosol concentrations are low in the higher, 675 

relatively stable atmospheric layers above the planetary boundary layer (PBL). However, large wildfires can have vigorous buoyant 

plume cores that lift the smoke plume into the free troposphere (FT) or even the stratosphere (Fromm et al., 2019) contributing to 

elevated aerosol concentrations above the PBLH. Based on burned area in Table 2, the fires in our study meet the definition of a 

megafire (10,000–100,000 ha) suggested by Linley et al. (2022), but it should be noted that fire size alone cannot characterize the 

fire intensity or activity and the resulting smoke plume behavior (Tedim et al., 2018). The ratio of effective SPH to PBLH 680 

(SPH:PBLH) is an indicator of the AOD and surface PM concentration relationship (Cheeseman et al., 2020). We incorporated the 

modeled PBLH from the Weather Research and Forecasting Model (WRF) as shown in Fig. 8, so we can better understand local 

meteorology and its impact on wildfire SPH. The WRF model for our use has a domain extending over the WUS with a 4 km 

spatial resolution, nudged with observations from weather stations as well as balloon soundings. PBLH were recalculated from the 
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WRF simulations using the vertical potential temperature gradient method or the Richardson number method (de Arruda Moreira 685 

et al., 2020). The locations and elevations of each balloon sounding station are in Table S3, and details of the WRF model 

configuration are in Table S4. Results of the WRF model evaluation are in Fig. S6.  

In Fig. 8, there is no clear single pattern for the vertical spread of the smoke plume due to the fire–atmosphere coupling and 

boundary-layer turbulence (Sun et al., 2009; Deng et al., 2022b). The difference between SPHtop and SPHext is often greater within 

a single plume than the differences across different plumes. Based on the wildfire information in Table 2, we can qualitatively 690 

discuss the differences between SPHtop:PBLH and SPHext:PBLH for each wildfire in terms of their start dates, approximate 

containment dates, and approximate acres burned. SPH:PBLH characterizes a joint interaction between buoyant plume cores and 

boundary layer mixing (e.g., entrainment and wind shear). It also depends on other important factors such as the fire size, distance 

from the fire source, and the fire spread. In some cases, high SPHtop:PBLH (> 1) but low SPHext:PBLH (< 1) occur concurrently, 

as shown in Fig. 8. This means that a higher columnar AOD does not necessarily give rise to the majority of the smoke plume 695 

concentrations being above the PBL. For instance, the Watson Creek Fire that started on August 15, 2018, had two flight missions, 

0819a and 0819b, and their aviation operation dates were close to the fire start date, compared to 0824a and 0825a flights. The 

challenging terrain with dense fuel on the ground facilitated rapid fire spread, and the fire was not contained. Therefore, we can 

expect that the intense fire behavior would generate a higher amount of smoke plumes injected into the FT, where both 

SPHtop:PBLH and SPHext:PBLH are larger than 1. Five days later, as the fire activity reduced and containment of the fire increased 700 

to 15%, there was likely more smoldering and thus lower plume heights. SPHext reaches a similar level to the PBLH, although 

SPHtop:PBLH remains relatively high. When comparing the morning and afternoon SPH patterns, the morning SPH relationships 

are less complex and potentially easier to model. Where turbulence, convection, and fire-atmosphere interactions contribute to 

more chaotic plume and PBL dynamics in the afternoon, and the growth rate of the fire exceeds the growth rate of the PBL. The 

Sheep Creek Fire is an exception due to a timely and consistent fire response making rare SPH behavior in the afternoon possible, 705 

where smoke plumes were contained within the PBL. Additionally, a significant portion of the lidar vertical cross-section is missing 

for the 0823a flight during the South Sugarloaf Fire, as depicted in Fig. S4g. In spite of the fire size indicating a megafire (Linley 

et al., 2022), the absence of the extinction coefficient data as well as in situ sampling in the downwind region (Table 2) leads to 

low estimates of SPHtop and SPHext.  

 710 

Figure 8: Box plots comparing the 30 min average modeled PBLH (grey) with the WCL-determined SPH using two different definitions 
(SPHtop, blue; SPHext, red) for the morning (shaded by green) and afternoon (shaded by yellow) flight missions. Each panel represents a 
single wildfire case. Upper and lower whiskers represent the 95th and 5th percentiles, respectively, while the box spans from the 25th 
percentile to the 75th percentile. The line inside the box represents the median (the 50th percentile), and the triangle indicates the mean 
of the range of height values. Note that the range of WCL SPH measurements for both morning (0820a) and afternoon (0820b) flight 715 
missions on August 20, 2018, is limited because only a small fraction of flight tracks is considered valid transects for reconstruction. 
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5 Summary and conclusions 

The notion of SPH can be visualized as the vertical displacement from the ground to the upper atmosphere, marking the extent to 

which smoke plumes ascend. This parameter is vital for simulating the initial stage of plume production and predicting the potential 

spread of smoke from wildfires (e.g., Walter et al., 2016; Tang et al., 2022). As If smoke crosses overis emitted above the PBL, it 720 

tends to persist longer and may travel farther. Smoke emitted wWithin the PBLH, the adversely impacts of smoke on air quality 

can be amplifiedand increases ground-level air pollution concentrations. 

Current efforts to study wildfire SPH mainly rely on the use of active lidar data and passive satellite sensor retrievals. However, 

these instruments face inherent spatial and temporal limitations, such as their inability to swiftly adapt to changes in fire and smoke 

plume behavior. Nonetheless, fusing multi-satellite products to quantify estimate SPH and prove the existing aerosol layers is still 725 

an evolving field. TThough transported smoke aerosols may can form complex, multilayer structures, but this study has shown 

that a single, uniform aerosol layer is encountered more frequently than previously assumed. This means that, making it possible 

a single value can be used to describe the height of the aerosol layer using a single numeric number. With this more straightforward 

representation, sScientists can more readily incorporate aerosol layer data into climate and AQ models with this more 

straightforward representation, including our earlier discussion of and a concept ofan “effective SPH” is further discussedconcept. 730 

We used two SPH definitions for comparisons, since the SPH criterion varies between plume rise retrieval algorithms, given their 

diverse representations of aerosol vertical allocation that may not sufficiently reflect the real wildfire-associated smoke aerosol 

layering. WThen we also employed two different collocation methods to deal withprovide the lidar-satellite collocated pairs. CThe 

collocation uncertainties can be caused by the discrepancy between the coarse spatial resolution of the satellite retrieval algorithm 

and the fine-scale variability of wildfire smoke plume activity detected by high-resolution active lidar measurements. 735 

Results in this paper reaffirmed that uncertainties in various multiple satellite-derived SPH products arise from different remote 

sensing techniques (Tosca et al., 2011; Flower and Kahn, 2017). The current state of satellite-based SPH data products is impacted 

by significant errors, which we ascribe mostly to either complex, multiple aerosol layers or thin, transparent plumes. The user 

recommendations and main conclusions drawn from this study are:  

(1) The MAIAC PIH algorithm necessitates careful quality verification since its SPH retrievals are routinely lower than the lidar 740 

measurements, especially for MODIS/MAIAC-Aqua. We suggest selecting SPHextSPHext as a suitable height metric to evaluate 

the MODIS/MAIAC-Terra product under conditions when the distance from the fire source is < 20 km and for AOD at 355 nm > 

1. 

(2) The MISR plume height climatology is promising to help locate wildfire-associated SPHtopSPHtop and provide the best estimates 

over mountainous terrain. However, as WUS fires have become more frequent since the 2000s, the available MISR/MERLIN 745 

datasets are relatively minimal. Some challenges associated with using MISR/MERLIN include the limited timing of The most 

striking problem is that the MISR observations overpasses (which can only occur be made in the mid-late morning, local time), 

and require the labor-intensive nature of operatingon of the MINX software to digitize the smoke plumes. 

(3) Both the VIIRS/ASHE and the TROPOMI/ALH products show great potential for characterizing SPHtopSPHtop in a single 

homogenous aerosol-rich layer. An overestimation of SPH in the near-fire-event region and an underestimation of SPH in the 750 

downwind region still prevail in AOD of different size bins. We find that large retrieval errors occur in the studied cases, 

underscoring the need for a robust quality screening approach related to the UVAI parameterization.   
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However, the performance evaluation of four satellite SPH datasets products presented here indicates only a weak to moderate 

correlation between passive satellite retrievals and airborne lidar observations. Deploying both passive and active sensors in tandem 

can offer a synergistic approach, filling gaps in our understanding of fire and smoke plume behavior by utilizing the unique 755 

strengths of each method. The lack of synchronization between satellite overpass times and variations in fire activity and aerosol 

layering is responsible for more than half of the collocated mismatches. It is expected that future satellites,  equipped with active 

or passive sensors,  can increase the chances of capturing a large wildfire event at its peak increase, as exemplified by (i.e., increased 

improved spatial and temporal coverage of the Advanced Baseline Imager (ABI) on the geostationary satellites). Notably, NASA’s 

forthcoming aerosol investigations from space, such as ACCP (Aerosol and Cloud, Convection and Precipitation) AOS 760 

(Atmosphere Observing System), MAIA (Multi-Angle Imager for Aerosols), PACE (Plankton, Aerosol, Cloud, ocean Ecosystem), 

and TEMPO (Tropospheric Emissions: Monitoring of Pollution), are expected to play a pivotal role in this regard. By integrating 

data from multiple satellite systems as a potential solution to the synchronization issue, scientists can create a more comprehensive 

and improved picture of wildfire plume rise.  

This study provides a preliminary comparison reference for multiple satellite-based SPH data applications. Our findings serve to 765 

connect smoke transport and AQ forecasting frameworks and future satellite missions that aim to quantify the vertical distribution 

of aerosols in the atmosphere, similar to the efforts of Raffuse et al. (2012), Solomos et al. (2015),  Ke et al. (2021), and Kumar et 

al. (2022). We therefore encourage conversations between the communities involved in satellite remote sensing and atmospheric 

modeling to enhance the diversity of perspectives and foster a consensus on the measurement and comprehension of effective SPH 

with greater clarity.  770 

Appendix A. Evaluation metrics for collocated lidar–-satellite SPH comparisoncollocation 

We evaluate the performance of a satellite SPH product against with respect to lidar observations using the following statistics: the 

mean bias (MB), the mean absolute error (MAE), the root mean square error (RMSE), coefficient of determination (R2) and the 

Pearson’s correlation coefficient score (r). The metrics are calculated for SPH using the Eqs. (A1) to (A4A5): 

ܤܯ = ௟పௗ௔௥തതതതതതതതതതതܪܲܵ − ௦௔௧௘௟௟ప௧௘തതതതതതതതതതതതതതതܪܲܵ −  ௟పௗ௔௥തതതതതതതതതതത,                                                                                                                                             (A1) 775ܪܲܵ

ܧܣܯ =
∑ หܵܲܪ௟௜ௗ௔௥,௜ − ௦௔௧௘௟௟௜௧௘,௜หேܪܲܵ

௜ୀଵ

ܰ
,                                                                                                                           (A2) 

ܧܵܯܴ = ඨ∑ ൫ܵܲܪ௟௜ௗ௔௥,௜ − ௦௔௧௘௟௟௜௧௘,௜൯ܪܲܵ
ଶே

௜ୀଵ
ܰ

,                                                                                                                  (A3) 

ܴଶ = 1 −
∑ ൫ܵܲܪ௟௜ௗ௔௥,௜ − ௦௔௧௘௟௟௜௧௘,௜൯ܪܲܵ

ଶே
௜ୀଵ

∑ ൫ܵܲܪ௟௜ௗ௔௥,௜ − ௟పௗ௔௥തതതതതതതതതതത൯ଶேܪܲܵ
௜ୀଵ

,                                                                                                                     (A4) 

ݎ =
∑ ൫ܵܲܪ௟௜ௗ௔௥,௜ − ௦௔௧௘௟௟௜௧௘,௜ܪ௟పௗ௔௥തതതതതതതതതതത൯൫ܵܲܪܲܵ − ௦௔௧௘௟௟ప௧௘തതതതതതതതതതതതതതത൯ேܪܲܵ

௜ୀଵ

ට∑ ൫ܵܲܪ௟௜ௗ௔௥,௜ − ௟పௗ௔௥തതതതതതതതതതത൯ଶேܪܲܵ
௜ୀଵ ට∑ ൫ܵܲܪ௦௔௧௘௟௟௜௧௘,௜ − ௦௔௧௘௟௟ప௧௘തതതതതതതതതതതതതതത൯ଶேܪܲܵ

௜ୀଵ

,                                                              (A54) 

, where ܵܲܪ௟௜ௗ௔௥,௜ is the ith collocated lidar measurement, ܵܲܪ௦௔௧௘௟௟௜௧௘,௜ is the ith collocated satellite observationretrieval, ܵܲܪ௟పௗ௔௥തതതതതതതതതതത 780 

is the arithmetic mean of the collocated lidar measurements, ܵܲܪ௦௔௧௘௟௟ప௧௘തതതതതതതതതതതതതതത  is the arithmetic mean of the collocated satellite 

observationsretrievals, ܰ is the number of collocated pairs. 
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MB represents the average bias of a satellite SPH product but should be interpreted cautiously because positive and negative errors 

will cancel out. MAE measures the average over the sample absolute differences between lidar measurements and satellite 

observations retrievals where all individual differences have equal weight, without considering their direction. RMSE is the square 785 

root of the average of squared differences between lidar measurements and satellite observationsretrievals. RMSE should be is 

more useful when large outlier errors are particularly undesirable. Unlike RMSE, MAE is an unambiguous measure of average error 

magnitude. R2 provides a statistical measure of how well a satellite SPH retrieval algorithm reflects the real-world conditions as 

measured by the more direct lidar technique. The closer R2 is to 1, the more reliable the satellite retrieval is in representing the 

actual SPH. A negative R2 happens when the performance of the satellite SPH product is worse than the mean absolute deviation 790 

of the lidar observations. r is a measure of the strength of a linear association between two variables, indicating that the spatial 

distribution of both lidar measurements and satellite observations retrievals for SPH has a similar change trend in the change. The 

best performance that a satellite SPH product would have for these evaluation metrics is: MB (km) = 0, MAE (km) = 0, RMSE (km) 

= 0, R2 (unitless) = 1, and r (unitless) =1.    

Appendix B. Additional statistical evaluation of four satellite-derived SPH products against WCL-determined SPH 795 
observations. Note that the satellite SPH information is only shown in one column to be compared with two distinctive 
WCL-determined SPH definitions. STD – standard deviation; Q25 – lower quartile, 25% of the data lie below this value; 
Q50 – median, 50% of the data lie below this value; Q75 – upper quartile, 25% of the data lie above this value. 

 WCL-Determined SPH 
 SPHtop SPHext 

MODIS-Terra/MAIAC   
# Collocated Pairs (spatial average) 163 

  
Lidar Observations Mean ± 1 STD (km) 2.162 ± 0.542 1.382 ± 0.368 
Satellite Retrievals Mean ± 1 STD (km) 0.733 ± 0.447  

  
Lidar Observations Max/Min (km) 3.903/1.254 2.253/0.800 
Satellite Retrievals Max/Min (km) 2.114/0.015 

  

Lidar Observations Q25, Q50, Q75 (km) 1.776, 2.064, 2.508 1.131, 1.298, 1.581 
Satellite Retrievals Q25, Q50, Q75 (km) 0.438, 0.687, 0.903 

MODIS-Aqua/MAIAC   
# Collocated Pairs (spatial average) 114 

  
Lidar Observations Mean ± 1 STD (km) 2.686 ± 0.797 1.790 ± 0.644 
Satellite Retrievals Mean ± 1 STD (km) 0.425 ± 0.262  

  
Lidar Observations Max/Min (km) 4.215/1.374 3.422/0.800 
Satellite Retrievals Max/Min (km) 0.935/0.025 

  

Lidar Observations Q25, Q50, Q75 (km) 2.063, 2.627, 3.350 1.274, 1.728, 2.325 
Satellite Retrievals Q25, Q50, Q75 (km) 0.192, 0.379, 0.697 

MISR/MERLIN   
# Collocated Pairs (spatial average) 90 

  
Lidar Observations Mean ± 1 STD (km) 2.216 ± 0.506 1.498 ± 0.449 
Satellite Retrievals Mean ± 1 STD (km) 2.124 ± 0.625  

  
Lidar Observations Max/Min (km) 2.982/1.254 2.253/0.853 
Satellite Retrievals Max/Min (km) 3.029/0.625 



35 
 

  

Lidar Observations Q25, Q50, Q75 (km) 1.791, 2.204, 2.648 1.129, 1.428, 1.969 
Satellite Retrievals Q25, Q50, Q75 (km) 1.658, 2.083, 2.801 

VIIRS/ASHE   
# Collocated Pairs (matched pair) 130 

  
Lidar Observations Mean ± 1 STD (km) 2.823 ± 0.999 1.895 ± 0.890 
Satellite Retrievals Mean ± 1 STD (km) 2.707 ± 1.165  

  
Lidar Observations Max/Min (km) 5.493/1.497 4.003/0.811 
Satellite Retrievals Max/Min (km) 4.930/0.231 

  

Lidar Observations Q25, Q50, Q75 (km) 1.977, 2.904, 3.318 1.094, 1.629, 2.489 
Satellite Retrievals Q25, Q50, Q75 (km) 2.060, 2.683, 3.579 

TROPOMI/ALH   
# Collocated Pairs (matched pair) 127 

  
Lidar Observations Mean ± 1 STD (km) 2.677 ± 1.075 1.894 ± 0.936 
Satellite Retrievals Mean ± 1 STD (km) 2.052 ± 0.588  

  
Lidar Observations Max/Min (km) 5.493/1.374 4.003/0.734 
Satellite Retrievals Max/Min (km) 3.425/1.412 

  

Lidar Observations Q25, Q50, Q75 (km) 1.718, 2.337, 3.308 1.019, 1.542, 2.684 
Satellite Retrievals Q25, Q50, Q75 (km) 1.546, 1.802, 2.431 

 

Data availability. The MODIS/MAIAC MCD19A2 Version 6.1 data product can be found at https:// earthdata.nasa.gov, last 800 

access: 10 May 2023. The Atmospheric Sciences Data Center hosts a web-based interface for freely downloading the 

MISR/MERLIN plume files at https://l0dup05.larc.nasa.gov/merlin/merlin#, last access: 10 August 2022. The TROPOMI/ALH 

Level 2 data are publicly available to users via Copernicus Open Access Hub at https://scihub.copernicus.eu/, last access: 9 

February 2023. The VIIRS/ASHE data can be obtained from the VIIRS Deep Blue Aerosol Group (https://deepblue.gsfc.nasa.gov/, 

last access: 28 July 2022). The BB-FLUX WCL data can be obtained from the official UWKA project website 805 

(http://www.atmos.uwyo.edu/uwka/projects/index.shtml, last access: 31 October 2022). Balloon sounding data are available from 

Atmospheric Soundings Wyoming Weather Website (https://weather.uwyo.edu/upperair/sounding.html, last access: 22 May 

2023).  
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