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Abstract. 17 

Despite significant advancements in improving the dataset for biomass burning (BB) emissions over the past few decades, 18 

uncertainties persist in BB aerosol emissions, impeding the accurate assessment of simulated aerosol optical properties (AOPs) 19 

and direct radiative forcing (DRF) during wildfire events in global and regional models. This study assessed AOPs (including 20 

aerosol optical depth (AOD), aerosol absorption optical depth (AAOD), and aerosol extinction coefficients (AEC)) and DRF 21 

using eight independent BB emission inventories applied to the WRF-Chem model during the BB period (March 2019) in 22 

Peninsular Southeast Asia (PSEA), where the eight BB emission inventories were the Global Fire Emissions Database version 23 

4.1s (GFED), Fire INventory from NCAR version 1.5 (FINN1.5), the Fire Inventory from NCAR version 2.5 MOS (MODIS 24 

fire detections, FINN2.5 MOS), the Fire Inventory from NCAR version 2.5 MOSVIS (MODIS+VIIRS fire detections, 25 

FINN2.5 MOSVIS), Global Fire Assimilation System version 1.2s (GFAS), Fire Energetics and Emissions Research version 26 

1.0 (FEER), Quick Fire Emissions Dataset version 2.5 release 1 (QFED), and Integrated Monitoring and Modelling System 27 

for Wildland FIRES Project version 2.0 (IS4FIRES), respectively. The results show that in the PSEA region, organic carbon 28 

(OC) emissions in the eight BB emission inventories differ by a factor of about 9 (0.295-2.533 Tg M-1), with 1.09 ± 0.83 Tg 29 

M-1 and a coefficient of variation (CV) of 76%. High-concentration OC emissions occurred primarily in savanna and 30 

agricultural fires. The OC emissions from the GFED and GFAS are significantly lower than the other inventories. The OC 31 

emissions in FINN2.5 VISMOS are approximately twice as high as those in FINN1.5. Sensitivity analysis of AOD simulated 32 

by WRF-Chem to different BB emission datasets indicated that the FINN scenarios (v1.5 and 2.5) significantly overestimate 33 

AOD compared to observation (VIIRS), while the other inventories underestimate AOD in the high AOD (HAOD, AOD>1) 34 
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regions range from 97-110°E, 15-22.5°N. Among the eight schemes, IS4FIRES and FINN1.5 performed better in terms of 35 

AOD simulation consistency and bias in the HAOD region when compared to AERONET sites. The AAOD in WRF-Chem 36 

during the PSEA wildfire period was assessed using satellite observations (TROPOMI) and AERONET data, and it was found 37 

that the AAOD simulated with different BB schemes did not perform as well as the AOD. The significant overestimation of 38 

AAOD by FINN (v1.5 and 2.5), FEER, and IS4FIRES schemes in the HAOD region, with the largest overestimation for 39 

FINN2.5 MOSVIS. FINN1.5 schemes performed better in representing AAOD at AERONET sites within the HAOD region. 40 

The simulated AOD and AAOD from FINN2.5 MOSVIS always show the best correlation with the observations. AEC 41 

simulated by WRF-Chem with all the eight BB schemes trends were consistent with CALIPSO in the vertical direction (0.5 42 

km to 4 km), demonstrating the efficacy of the smoke plume rise model used in WRF-Chem to simulate smoke plume heights. 43 

However, the FINN (v1.5 and 2.5) schemes overestimated AEC, while the other schemes underestimated it. In the HAOD 44 

region, BB aerosols exhibited a daytime shortwave radiative forcing of -32.60±24.50 W m-2 at the surface, positive forcing 45 

(1.70±1.40 W m-2) in the atmosphere, and negative forcing (-30.89±23.6 W m-2) at the top of the atmosphere. Based on the 46 

analysis, FINN1.5 and IS4FIRES are recommended for accurately assessing the impact of BB on air quality and climate in the 47 

PSEA region. 48 

1 Introduction 49 

Peninsular Southeast Asia (PSEA), including Vietnam, Thailand, Myanmar, Cambodia, and Laos, is one of the major biomass 50 

burning (BB) emission source areas in the world (Yadav et al., 2017). Due to widespread forest fires and agro-residue burning, 51 

extensive BB activities occur over PSEA, especially during the dry season (BB usually peaks in March) (Reddington et al., 52 

2021)  and release large amounts of aerosols and trace gases (including organic carbon (OC), black carbon (BC), particulate 53 

matter (PM), nitrogen oxides (NOx), and volatile organic compounds (VOC)) into the air, thus leading to significant impacts 54 

on atmospheric composition, radiative budget, and human health (Reid et al., 2013). Therefore, it is crucial to understand the 55 

BB emission inventories, as well as the behavior of aerosols, and accurately model their properties, to assess their impact on 56 

air quality and climate change in the PSEA region. 57 

Numerous studies have been conducted to assess the effects of BB emissions on aerosol optical properties (AOPs), such as 58 

aerosol optical depth (AOD), absorbing aerosol optical depth (AAOD), and aerosol extinction coefficient (AEC), as well as 59 

direct radiative forcing (DRF) in the PSEA region (Zhu et al., 2017; Lin et al., 2014; Dong and Fu, 2015b).  However, most of 60 

these studies have relied on only one single BB emission inventory without comparing different inventories, leading to large 61 

uncertainties in assessing the impact of BB aerosols. Due to the challenges in directly measuring BB emissions, various global 62 

fire emissions inventories have been developed based on satellite observations in the past decades (Ichoku and Ellison, 2014; 63 

Wiedinmyer et al., 2023; Wiedinmyer et al., 2011). These inventories use different empirical methods and underlying data to 64 

represent gas and aerosol emissions from fires, resulting in inherent uncertainties (Carter et al., 2020).  65 
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These uncertainties arising from different BB emissions often manifest as regional variations and inconsistencies with 66 

observations when integrated into models (Liu et al., 2020). Addressing these uncertainties is crucial for refining climate 67 

models and providing more accurate projections of future climate change. For example, Pan et al. (2020) compared six BB 68 

aerosol emission datasets from 2008 globally as well as from 14 regions, and the total global emissions from these BB emission 69 

datasets differed by a factor of 3.8. Sensitivity analysis of AOD simulated by Goddard Earth Observing System-Chemistry 70 

(GEOS-Chem) to different BB emission datasets during the peak BB period in each region and at most AERONET sites in 71 

each region found that Quick Fire Emissions Dataset version 2.4 (QFED2.4) produced the highest AOD values, closest to 72 

observations, followed closely by Fire Energetics and Emissions Research version 1.0 (FEER1.0). In the North American 73 

region, the GEOS-Chem incorporating four different BB emission inventories and remote-sensing data analysis during wildfire 74 

periods indicated a 4 to 7-fold difference in BB aerosol emissions. Simulations driven by Global Fire Emissions Database 75 

version 4s (GFED4s) and Global Fire Assimilation System version 1.2 (GFAS1.2) provide better agreement with surface 76 

measurements of organic aerosol and BC mass concentrations, BC observations at higher altitudes, and Moderate Resolution 77 

Imaging Spectroradiometer (MODIS) observations of AOD (Carter et al., 2020). To explore the uncertainty of BB emissions 78 

in the tropics, GFED V3, Fire INventory from NCAR version 1 (FINN1.0), and GFAS1 were used to evaluate Global Model 79 

of Aerosol Processes (GLOMAP) model simulations of AOD in South America, Africa, and Southeast Asia showing that the 80 

model underestimates AOD for all emission datasets (Reddington et al., 2016). In the North Sub-Saharan Africa BB region, 81 

Zhang et al. (2014) found a 12-fold difference in estimates of total smoke emissions and an even larger difference (up to 33-82 

fold) in WRF-Chem simulated smoke-related variables and radiative effects. Wiedinmyer et al. (2023) have shown that the 83 

seasonal cycle (averaged over 2012-2019) of CO emissions from BB in various regions of the world and the latest version of 84 

FINN v2.5 (MODIS+ VIIRS) has an emission peak in March, primarily driven by emissions from the PSEA. However, this 85 

peak is absent in GFED and is less pronounced in other emission inventories (FINN1.5, FEER, GFAS, QFED). Despite 86 

substantial research efforts, accurately representing BB aerosols in models remains a challenge. In summary, compared to the 87 

differences between global BB emission inventories, regional differences may be larger, especially in the PSEA region, where 88 

the satellite inversions of BB contain a large fraction of uncertainty due to high cloud cover (Dong and Fu, 2015a). Significant 89 

differences exist in AOPs and radiative forcing simulated by different emission inventories in the high BB emission region 90 

within a single model (Carter et al., 2020; Zhang et al., 2014). To reduce uncertainties, it is necessary to compare the differences 91 

between commonly used BB emission inventories and evaluate the model simulations of AOPs and radiative effects for the 92 

PSEA region. 93 

The World Meteorological Organization's report highlights that the early part of 2019 corresponds to the El Niño cycle (from 94 

April to May, the temperature of waters beneath the surface of the tropical Pacific has notably declined) (Organization, 2019), 95 

during which meteorological conditions are more favourable for the occurrence and propagation of BB (Cochrane, 2009). 96 

Additionally, Yin (2020) discovered that over the past 18 years (2001-2018), the PSEA region predominantly experienced the 97 

peak of BB activity in March each year. Fan et al. (2023) and Duc et al. (2021) confirmed that the PSEA suffered severe air 98 

quality impacts during the BB in March 2019. Therefore, centered on the period of March 2019, this study aims to analyze 99 
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how emission uncertainties or differences from different BB inventories affect the spatial and temporal distribution of aerosols 100 

and their radiative effects in the PSEA region. Section 2 describes the model configuration, experimental design, and data 101 

sources. Section 3 presents a comparison of eight emission inventories in March 2019 and the results of simulating AOPs and 102 

DRF. Discussions are provided in Section 4, and the study concludes with a summary in Section 5.  103 

2 Data and Methods 104 

2.1 Model Description and Configuration  105 

2.1.1 WRF-Chem 106 

The simulations were conducted using version 3.9.1.1 of the WRF-Chem online-coupled meteorology and chemistry model  107 

(Grell et al., 2005). Figure 1 depicts the simulation domain, outlined in blue (Figure 1(a)). It shows that the MODIS active fire 108 

instances during March 2019 were primarily consolidated in Laos, Cambodia, and Northern Thailand, as well as in Eastern 109 

and Western Myanmar (Figure 1(b)). Importantly, with a total of 69,771 fire counts, March 2019 saw the highest monthly peak 110 

of fires for that year (Figure 1(c)). The simulation period is from February 26 to March 31, 2019, where the initial 3 days of 111 

the model simulation were used as a spin-up period. The model consisted of 27 vertical layers and one nested horizontal 112 

resolution of 27 x 27 km. The selected physical configurations included the Morrison double-moment microphysics scheme 113 

(Morrison et al., 2005), the Rapid Radiation Transfer Model (RRTMG) longwave and shortwave radiation schemes (Iacono et 114 

al., 2008), the Mellor-Yamada-Janjic (MYJ) planetary boundary layer scheme (Mellor and Yamada, 1982; Janjić, 1990), the 115 

Eta similarity surface Layer scheme (Monin and Obukhov, 1954), the Noah Land Surface Model land surface scheme (Niu et 116 

al., 2011) and the Grell 3D cumulus parameterization scheme (Grell and Dévényi, 2002). The Model for Ozone and Related 117 

chemical Tracers (MOZART) trace gas chemistry with the Model for Simulating Aerosol Interactions and Chemistry 118 

(MOSAIC with 4 bins)  aerosol scheme with the Kinetic Preprocessor (KPP) library is used in the model (Emmons et al., 119 

2010). In this study, MOSAIC uses a sectional approach to represent aerosol size distributions with four discrete size bins with 120 

glyoxal uptake into aqueous aerosols to form secondary organic aerosol (SOA) in the PSEA region by WRF-Chem, which is 121 

capable of simulating all major aerosol components, including nitrates (𝑁𝑂3
−), sulfates (𝑆𝑂4

−2), ammonium (𝑁𝐻4
+), BC, 122 

primary organic aerosols, and other inorganic aerosols through a thermodynamic approach, with high efficiency and accuracy 123 

for use in air quality and regional/global aerosol modeling (Zhang et al., 2018). The aerosol-radiation interactions (ARI) 124 

scheme of WRF-Chem includes the traditional aerosol direct and semi-direct effects (Baró et al., 2016). Mallet et al. (2020) 125 

and Palacios-Peña et al. (2018) found that model incorporation of ARI can effectively replicate smoke aerosol simulations, so 126 

the ARI scheme was selected for this paper. The Community Atmosphere Model with Chemistry (CAM-chem) simulation 127 

outputs (Emmons et al., 2020; Buchholz et al., 2019) are used as chemical lateral boundary and initial conditions for WRF-128 

Chem (https://rda.ucar.edu/datasets/ds313.7/, last access: 11 May 2023). The product simulated by CAM-chem has a 129 

horizontal resolution of 0.9 degrees by 1.25 degrees and 56 vertical levels in the vertical direction. Meteorological initial and 130 
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boundary conditions were obtained from the National Centers for Environmental Prediction Final Analysis data with a 1° x 1° 131 

horizontal resolution.  132 

WRF-Chem employs Mie theory to perform calculations of AOPs using MOSAIC size distributions and the complex refractive 133 

indices associated with each MOSAIC chemical constituent. Specifically, it simulates AOPs (such as AEC, single scattering 134 

albedo (SSA), and asymmetry factor for scattering) distributed in four different bands: 300, 400, 600, and 1000 nm. This study 135 

used the Ångström power law (Ångström, 1929; Martınez-Lozano et al., 1998) to derive the model at 550 nm for AOD, and 136 

the detailed calculation procedure follows Kumar et al. (2014) and Saide et al. (2013). In addition, the aerosol direct radiative 137 

feedback was coupled with the RRTMG for both shortwave (SW) and longwave (LW) radiation as implemented by Zhao et 138 

al. (2010). A detailed description of the computation of  AOPs and DRF in WRF-Chem has been given by Fast et al. (2006), 139 

Zhao et al. (2011), and Lin et al. (2014). 140 

2.1.2 Anthropogenic and Biogenic Emissions 141 

The latest version of the global anthropogenic emissions inventory, the monthly Emissions Database for Global Atmospheric 142 

Research (EDGAR) v5.0, was published by Marvin (2022) on February 17, 2022. It provides global air pollutant emissions 143 

for the year 2015 at a resolution of 0.1°×0.1°. These emissions were speciated for the MOZART chemical mechanism and can 144 

be accessed at https://zenodo.org/record/6130621 (last accessed on 11 May 2023). Biogenic emissions were calculated online 145 

within the model using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) inventory developed by 146 

Guenther et al. (2012).  147 

2.2 BB Emission Inventories 148 

There are two primary approaches to estimating BB emission inventories: "bottom-up" and "top-down" methods (Archer-149 

Nicholls et al., 2015). The "bottom-up" approach involves estimating emissions per species by multiplying emission factors 150 

(EF) with estimates of the biomass burned (Yevich and Logan, 2003). The latter, the "top-down" approach, bypasses the largely 151 

uncertain fuel consumption estimation step by estimating emission fluxes directly from fire radiative power (FRP) (Ichoku 152 

and Ellison, 2014). The "top-down" approach commonly utilizes AOD retrieved from satellite remote sensing to constrain 153 

aerosol emissions from wildfires (Huneeus et al., 2012). This study evaluates the performance of the WRF-Chem using eight 154 

different BB emission inventories to simulate wildfires in the PSEA region during March 2019. These emission inventories 155 

include the Global Fire Emissions Database version 4.1s (GFED), Fire INventory from NCAR version 1.5 (FINN1.5), the Fire 156 

Inventory from NCAR version 2.5 MOS (MODIS fire detections, FINN2.5 MOS), the Fire Inventory from NCAR version 2.5 157 

MOSVIS (MODIS+VIIRS fire detections, FINN2.5 MOSVIS), Global Fire Assimilation System version 1.2s (GFAS), Fire 158 

Energetics and Emissions Research version 1.0 (FEER), Quick Fire Emissions Dataset version 2.5 release 1 (QFED), and 159 

Integrated Monitoring and Modelling System for Wildland FIRES Project version 2.0 (IS4FIRES). Table 1 provides a detailed 160 

comparison of their spatial and temporal resolution, the main references for the EF, the satellite data sources, Non-methane 161 

hydrocarbons (NMHCs), oxygen volatile organic compounds (OVOCs), gases (CO, NOX, SO2, NH3), and aerosols in the 162 
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inventory. NMHCs refer to organic compounds containing only C and H besides methane (CH4), such as alkanes, alkenes, 163 

alkynes, etc. OVOCs contain C, H, and O compounds, e.g., alcohols, aldehydes, ketones, etc. NMHCs and OVOCs combined 164 

constitute nearly all of the non-methane volatile organic compounds (NMVOCs) emitted by wildfires (Akagi et al., 2011). 165 

2.2.1 GFED (v4.1s) 166 

The GFED4.1s datasets provide the area burned, dry matter (DM), and EF from global fires. It has a spatial resolution of 0.25° 167 

x 0.25° and can be accessed at https://daac.ornl.gov/get_data/ (last accessed on 11 May 2023). This dataset includes fractional 168 

contributions from different fire types and offers daily or 3-hourly data to scale monthly emissions to a higher temporal 169 

resolution. GFED4.1s is an enhanced version of the GFED4 dataset, incorporating small fire inputs to enhance the accuracy 170 

and completeness of emission estimates (Randerson et al., 2017). It covers the period from June 1997 to 2022 and includes a 171 

wide range of emission species such as carbon (C), DM, carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), 172 

hydrogen (H2), nitrous oxide (N2O), NOx, NMHCs, OVOCs, OC, BC, PM less than 2.5 microns in diameter (PM2.5), total PM 173 

(TPM), and sulfur dioxide (SO2). The raw GFED emission data (0.25°x 0.25°) were first re-gridded to the required spatial 174 

resolution for the WRF-Chem domains using the Earth System Modeling Framework (EMSF) program in Figure 2, followed 175 

by supplementing the GFED emission species (Table S1) to meet the MOZART-MOSAIC scheme based on the study by 176 

Akagi et al. (2011) and Heil A. (2020). The construction of the final emission inventory included incorporating the mean 177 

fraction and fire size of the four vegetation types (grassland, extratropical forest, savanna, tropical forest) from FINN1.5. This 178 

incorporation enables WRF-Chem to calculate the smoke plume rise (Freitas et al., 2007; 2010). 179 

2.2.2 FINN (v1.5, v2.5 MOS, and v2.5 MOSVIS) 180 

The emissions estimation of FINN (v1.5 and 2.5 ) are based on the framework described by Wiedinmyer et al. (2011) and 181 

Wiedinmyer et al. (2023), which utilizes two types of satellite observations: (1) MODIS fire detections and (2) active fire 182 

detections from both MODIS and VIIRS. It provides global daily estimates of BB emissions for important gases and aerosols, 183 

along with comprehensive specifications of total VOC emissions for three commonly used chemical mechanisms (MOZART-184 

T1, SAPRC99, and GEOS-Chem) in regional and global chemical transport models (https://www.acom.ucar.edu/Data/fire/, 185 

last accessed on 11 May 2023). Since its release, FINN has been widely utilized by researchers to assess air quality during 186 

wildfire events (Lin et al., 2014; Vongruang et al., 2017; Pan et al., 2020). The latest version, FINN v2.5, was introduced in 187 

2022 and incorporates an updated algorithm for determining fire size by aggregating adjacent fire detections. Compared to 188 

FINN1.5, FINN2.5 incorporates significant improvements in input data and processing methods for detecting fire activity, 189 

characterizing annual land use/land cover and vegetation density, estimating burned area, and applying fuel loads across 190 

different global regions (Wiedinmyer et al., 2023). In this study, FINN1.5 and FINN2.5 MOS (MODIS-only fire detections), 191 

and FINN2.5 MOSVIS (MODIS+VIIRS fire detections) were used. Detailed information on emission species and factors can 192 

be found in Tables S2 and S3. 193 
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2.2.3 GFAS (v1.2) 194 

The GFAS provides data outputs that encompass spatially gridded FRP, DM burning, and BB emissions for numerous chemical, 195 

greenhouse gas, and aerosol species (Andela et al., 2013). These data are globally available from 2003 to the present, with a 196 

regular latitude and longitude grid resolution of 0.1° x 0.1° (https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-197 

global-fire-emissions-gfas, last accessed on 11 May 2023). The latest version, GFAS 1.2, includes injection height daily data 198 

(mean altitude of maximum injection and altitude of plume top), which are obtained from the plume rise model and IS4FIRES. 199 

To ensure BB data quality, quality control procedures were applied to the MODIS data. In Figure 2, it is illustrated that GFAS 200 

1.2 data put into the WRF-Chem process, where the missing emission species (Table S4) required for the MOZART-MOSAIC 201 

scheme are added by Jose et al. (2017), Andreae and Merlet (2001), and Andreae (2019) method. Additionally, the mean 202 

fraction and fire size of the four vegetation types were obtained from FINN1.5, and the 3-hour time allocation from GFED4.1s 203 

was utilized for the GFAS scheme. 204 

2.2.4 FEER (v1.0-G1.2) 205 

In 2005, a new algorithm was developed by Ichoku and Kaufman (2005) to calculate BB emissions directly from FRP 206 

measurements (https://feer.gsfc.nasa.gov/data/emissions/, last accessed on 11 May 2023). This approach aimed to overcome 207 

the delays and uncertainties associated with other variables previously used. Subsequently, their work resulted in the release 208 

of the FEER Ce v1.0 product, a global BB inventory with a resolution of 0.1° x 0.1°. In this study, the FEERv1.0-G1.2 product 209 

utilizes the GFASv1.2 FRP dataset to provide daily data from 2003 to the present at a spatial resolution of 0.1° x 0.1°. It 210 

includes species such as CO, SO2, NH3, NO2, OC, BC, PM2.5, NMHCs, among others. Notably, the GFASv1.2 dataset has also 211 

been incorporated to ensure compatibility with the MOZART-MOSAIC scheme, as depicted in Table S5. 212 

2.2.5 QFED (v2.5r1) 213 

QFED emissions are estimated using the FRP method and draw on the cloud correction technique developed in the GFAS. 214 

However, QFED employs a more sophisticated approach for non-observed land areas, such as those obscured by clouds (Koster 215 

et al., 2015). Fire locations and FRPs are derived from MODIS Level 2 fire products (MOD14 and MYD14) and MODIS 216 

geolocation products (MOD03 and MYD03). QFEDv2.5r1, covering the period from 2000 to 2023, provides daily average 217 

emissions at a horizontal spatial resolution of 0.1° x 0.1°, encompassing information on OC, BC, SO2, CO, PM2.5, and other 218 

species. It can be accessed from https://portal.nccs.nasa.gov/datashare/iesa/aerosol/emissions/QFED/v2.5r1/ (last accessed on 219 

11 May 2023). Figure 2 shows the detailed process of QFEDv2.5r1 to ensure consistency with the MOZART-MOSAIC 220 

program. Table S5 illustrates the addition of missing data. 221 
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2.2.6 IS4FIRES (v2.0) 222 

IS4FIRES is based on a reanalysis of FRP data obtained from the MODIS on the Aqua and Terra satellites. The dataset covers 223 

the period from 2000 to the present (Sofiev et al., 2009). IS4FIRESv2 emissions are global, with a spatial resolution of 0.1° x 224 

0.1°, provided every 3 hours, and represented in five stacked vertical layers (http://silam.fmi.fi/thredds/catalog/i4f20emis-225 

arch/catalog.html, last accessed on 11 May 2023)  (Soares et al., 2015). It distinguishes between seven vegetation classes: 226 

boreal, temperate, tropical forests, residual crops, grasses, shrubs, and peat. The linear relationship between FRP and PM is 227 

based on the IS4FIRESv1 EF but scaled to vegetation class types using the BB EF described in Akagi et al. (2011). Additional 228 

IS4FIRES emission species according to Jose et al. (2017), Andreae and Merlet (2001) and  Andreae (2019), Baró et al. (2021), 229 

and Wiedinmyer et al. (2011) meet the WRF-Chem selected MOZART-MOSAIC scheme (Table S5). It is noteworthy that its 230 

time allocation is processed using the self-contained 3 hours (Figure 2). 231 

2.3 Observations and Reanalysis Data 232 

2.3.1 Satellite observations 233 

Remote sensing satellite observation is widely utilized to evaluate AOPs, as it offers several advantages (Palacios-Peña et al., 234 

2018), including non-interference with observed samples, sensitivity to various properties, particularly AOPs relevant to 235 

wildfires, and the ability to provide different types of data products such as points, columns, or profiles (Reid et al., 2013). To 236 

assess the AOD of European wildfires simulated by WRF-Chem, Palacios-Peña et al. (2018) compared products from different 237 

satellite inversions of AOD and selected the best product for model evaluation. Following a similar research approach, we 238 

chose the following satellite products: MODIS, VIIRS, and Himawari-8. In addition, Cloud-Aerosol Lidar and Infrared 239 

Pathfinder Satellite Observation (CALIPSO) satellites were selected to evaluate AEC simulated by WRF-Chem with BB 240 

emissions. Detailed descriptions of various satellite parameters and algorithms can be found in a previous study (Ma et al., 241 

2021). 242 

For a comprehensive understanding of absorbing aerosols emitted by global/regional wildfires, the Tropospheric Monitoring 243 

Instrument (TROPOMI) on the Sentinel-5 Precursor (S5P) satellite, launched on October 13, 2017, was employed to assess 244 

AAOD (Torres et al., 2020; Filonchyk et al., 2022). TROPOMI is a high spectral resolution spectrometer that covers the 245 

ultraviolet (UV) to shortwave infrared regions in eight spectral windows, offering enhanced capabilities for atmospheric 246 

monitoring compared to OMI satellites (Veefkind et al., 2012). Operating in a push-broom configuration, TROPOMI provides 247 

a wide swath width of approximately 2600 km over the Earth's surface. The instrument boasts higher spatial resolution, wider 248 

observation range, increased sensitivity and accuracy, more measurement parameters, and higher temporal resolution, making 249 

it an advanced tool for atmospheric monitoring. The TROPOMI aerosol algorithm (TropOMAER), employed for atmospheric 250 

observations, uses observations at two near-UV wavelengths to calculate the UV Aerosol Index (UVAI) and retrieve total 251 

column AAOD and SSA (Torres et al., 2020). The AOD retrieved using TropOMAER inversion on land exhibits a root-mean-252 

square error (RMSE) comparable to the OMI retrieval (maximum 0.1 or 30%). The RMSE of AOD over water may be two 253 
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times larger, while the RMSE of AAOD is estimated to be approximately 0.01 (Torres et al., 2020). For this study, the 254 

TropOMAER L2 product (https://search.earthdata.nasa.gov/, last accessed on 11 May 2023) with a spatial resolution of 7.5 255 

km x 3 km was selected. The WRF-Chem simulated AAOD at 500 nm was derived based on the method proposed by  Hu et 256 

al. (2016), utilizing SSA (500 nm) from TROPOMI and Equation (1), where λ represents the wavelength. The uncertainty in 257 

SSA is approximately 0.03 (Dubovik and King, 2000) 258 

 259 

2.3.2 In-situ observations 260 

To assess the effect of AOPs during wildfires, Baro et al. (2017) and Lin et al. (2014) first validated the meteorological field 261 

and pollutants simulated by WRF-Chem. Therefore, in this study, the FINN 1.5 scheme (the most common scheme used by 262 

WRF-Chem) was selected for validation of the model output for meteorological parameters and pollutants. The selected 263 

meteorological parameters include 2 m temperature (T2), 2 m relative humidity (RH2), and 10 m wind speed (WS10). These 264 

data were obtained from the data-sharing website (https://rp5.ru/, last accessed on 11 May 2023) and their global weather 265 

station identifications can be found in Table S6. The PM2.5 data used to assess the stability of the model were collected from 266 

multiple publicly available website datasets from China (https://quotsoft.net/air/, last accessed on 11 May 2023), Thailand 267 

(http://air4thai.pcd.go.th/webV2/history/, last accessed on 11 May 2023), and global public datasets (https://aqicn.org/data-268 

platform/covid19/, last accessed on 11 May 2023), and their locations are shown in Table S7. 269 

The AERONET (AErosol RObotic NETwork) project is a collaboration between NASA and PHOTONS (PHOtométrie pour 270 

le Traitement Opérationnel de Normalisation Satellitaire; Univ. of Lille 1, CNES, and CNRS-INSU), establishes a 271 

collaborative network involving ground-based remotely sensed aerosol networks. This project has been in existence for over 272 

25 years and provides a long-term, continuous, and easily accessible public-domain database for aerosol research, including 273 

the optical, microphysical, and radiometric properties of aerosols. AOD and AAOD measurements from AERONET are based 274 

on multiple wavelength bands, including visible and near-infrared spectra. Common band ranges include 340 nm, 380 nm, 440 275 

nm, 500 nm, 675 nm, 870 nm, etc. AOD and AAOD data are classified into three levels based on data quality: level 1.0 276 

(unscreened), level 1.5 (cloud shielding and quality control), and level 2.0 (quality assurance). For this study, data at the 2.0 277 

level were used, indicating that the data underwent cloud screening and quality assurance following the detailed procedures 278 

outlined by Smirnov et al. (2000). In the absence of cloud contamination, the uncertainty in AOD was estimated to be 0.01 to 279 

0.02, depending on wavelength. AAOD was calculated using Equation (1). 280 

2.3.3 ERA5 Reanalysis data 281 

European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) is a global meteorological reanalysis 282 

dataset developed and maintained by the ECMWF (Hersbach et al., 2018). The ERA5 dataset is based on global observational 283 

AAOD(λ) = [1-SSA(λ)] × AOD(λ) (1) 
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data, satellite remote sensing data, and numerical model forecast data. It uses advanced data assimilation techniques to fuse 284 

data from these different sources to produce consistent and high-quality global meteorological reanalysis data. Hourly data are 285 

available from 1979 up to the current time, and ERA5 data have a spatial resolution of 0.25° x 0.25° (about 25 km) at the 286 

horizontal level. In this paper, the effect of ERA5 950 hpa wind on BB aerosols is analyzed. 287 

2.4 Methodology 288 

In order to assess AOD, AAOD, AEC, and DRF using WRF-Chem with different BB inventories, apart from the FINN schemes, 289 

other emissions inventories are re-gridded and time-allocated, as shown in Figure 2. Subsequently, species are supplemented 290 

according to the gas-phase chemistry and aerosol scheme (MOZART-MOSAIC) employed by WRF-Chem. It is worth noting 291 

that all scenarios utilized fire size and vegetation type proportion data from FINN1.5 to calculate smoke plume rise. The 292 

performance of WRF-Chem model simulations against measurements is evaluated using statistical metrics (Wu et al., 2019) 293 

including the mean bias (MB), RMSE, Correlation coefficient (R), and the index of agreement (IOA) in Table S8. This research 294 

further investigated DRF over PSEA during the study period. Zhao et al. (2013) and Lin et al. (2014) were referenced for the 295 

treatment of BB aerosol radiative forcing, as shown in the following equations. 296 

𝐃𝐑𝐅 = (𝑭𝒊
↓− 𝑭𝒊

↑) − (𝑭𝒏𝒐−𝒇𝒊𝒓𝒆
↓ − 𝑭𝒏𝒐−𝒇𝒊𝒓𝒆

↑ ) (2) 

where 𝐹↑ and 𝐹↓ indicate the aerosol upward radiation flux and the aerosol downward radiation flux, respectively. i indicates 297 

that WRF-chem is added to the different BB emission inventories, and no-fire denoted scene without BB inventory applied. 298 

3 Result 299 

3.1 Inter-comparison of Eight BB Inventories. 300 

Several studies have utilized OC as a measurable metric to compare variations among multiple BB inventories (Reddington et 301 

al., 2016; Carter et al., 2020). This is because OC is a major component in smoke particles from fresh BB, with mass fractions 302 

ranging from 37% to 67% depending on the fuel type (Pan et al., 2020). Figure 3 presents the spatial distribution characteristics 303 

of OC for the eight BB datasets in the study region, along with the total OC emissions in the PSEA region during March 2019. 304 

The highest OC emissions across all datasets are observed in the northern regions of Laos, Cambodia, and Thailand, as well 305 

as in eastern and western Myanmar and southern Bangladesh. Lower emissions are observed in the central regions of Myanmar 306 

and Thailand, northern Vietnam, and southern regions of China. Similar spatial distribution characteristics of OC emissions in 307 

the PSEA region during March have also been reported by Pan et al. (2020) and Reddington et al. (2021). These emissions 308 

mainly originate from shrubland, evergreen broadleaf, mixed shrubland/grassland, and dryland cropland, as classified by the 309 

WRF-Chem land use data in the PSEA (Figure S1). The eight BB emissions, ranked based on their total OC emissions (PSEA) 310 

in descending order, are FINN2.5 MOSVIS (2.533 Tg M-1), FINN2.5 MOS (2.002 Tg M-1), QFED (1.303 Tg M-1), FINN1.5 311 

(1.214 Tg M-1), IS4FIRES (0.604 Tg M-1), FEER (0.462 Tg M-1), GFAS (0.296 Tg M-1), and GFED (0.295 Tg M-1). The 312 
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highest OC emission in the dataset is exhibited by FINN2.5 MOSVIS, which can be attributed to the use of updated burned 313 

area data and the inclusion of fire information from VIIRS, capturing a larger number of small-scale fires (Wiedinmyer et al., 314 

2023). The lowest OC emissions are provided by GFED, which may have underestimated DM and agricultural fire EF (OC, 315 

EF=2.3g kg-1), and GFAS, which only underestimated DM. The overall mean and standard deviation of OC for different BB 316 

emission inventories in the PSEA region was 1.09 ± 0.83 Tg M-1, with a coefficient of variation (CV) of 76% (CV is defined 317 

as the ratio of the standard deviation to the mean of all inventories). 318 

Figure 4 illustrates the total emissions of the eight emission inventories in the PSEA region during March 2019 added to the 319 

WRF-Chem after processing (Figure 2). It also presents the percentage composition of CO, OVOCs, NMHCs, NOX, Gas (SO2 320 

and NH3), PM2.5, PM10, BC, and OC. The total BB emissions (aerosol and gas) are ranked as FINN2.5 MOSVIS (105.7 Tg M-321 

1), FINN2.5 MOS (83.7 Tg M-1), FINN1.5 (41.9 Tg M-1), IS4FIRES (19.4 Tg M-1), FEER (15.4 Tg M-1), QFED (11.1 Tg M-322 

1), GFED (10.3 Tg M-1), and GFAS (9.9 Tg M-1). Although the total QFED emissions are low, the aerosol emissions (OC, BC, 323 

PM2.5, PM10) are not, just smaller than the FINN schemes. The PSEA aerosol emissions from FINN2.5 are higher than those 324 

predicted for FINN1.5 and approximately twice as high as the latter, consistent with the findings of Wiedinmyer et al. (2023). 325 

Among them, the highest and lowest emissions of OC+BC are observed in FINN2.5 MOSVIS (2.82 Tg M-1) and GFAS (0.32 326 

Tg M-1), respectively. Since the FINN schemes employ the EF from Akagi et al. (2011) and subsequent updates, the proportions 327 

of each species are relatively similar. In summary, FINN schemes (v1.5 and 2.5) have relatively high total aerosol emissions 328 

compared to the other schemes, and the "top-down" scenario (GFAS, FEER, QFED, IS4FIRES) does not have high total 329 

emissions despite being constrained by the AOD. To evaluate the spatiotemporal distribution characteristics of absorbing 330 

aerosols from BB emissions, particularly the BC to OC ratio, was also displayed in Figure 4. Except for QFED, which exhibits 331 

a lower ratio of approximately 0.08 (1/13), the ratios for the other BB datasets are greater than or equal to 0.1(1/10). Ferrada 332 

et al. (2022) found that QFED emission inventories compared to other inventories (GFED4.1s, FINN1.5, GFAS1.2) increased 333 

BC and OC emissions by up to 5 times in different ecological regions. In addition, differences in emission EF in Southeast 334 

Asia may result in a BC/OC equal to approximately 0.08. 335 

3.2 Model Validation  336 

To assess the AOPs and DRF simulated by the WRF-Chem adding different BB emissions, the stability of the model is verified 337 

by comparing the simulated meteorological fields and PM2.5 concentrations with observations at monitoring stations using the 338 

WRF-Chem with the FINN1.5 scheme. The statistical results in Table S6 demonstrate good agreement (IOA ≥ 0.6) between 339 

the simulated T2, RH2, and WS10 and the data from 13 stations. However, at some stations, the wind speed RMSE exceeds 2 340 

m s-1, which may be attributed to unresolved topographic features in the surface drag parameterization (Saide et al., 2016). The 341 

bias between observations and simulations for RH2 can be partially explained by the influence of different surface and 342 

boundary layer parameterizations on the simulated near-surface water vapor fluxes (Chen et al., 2019). During the wildfire 343 

period of March 2019, the daily average observed PM2.5 concentrations of 23 cities at the surface were compared with the 344 

model results for the FINN1.5 case in Figure S2, where the statistical indicators are shown in Table S7. The WRF-Chem was 345 
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able to simulate PM2.5 concentrations in urban sites located in the high BB emission region of northern Laos (Chiang Rai 346 

Mueang in northern Thailand and Jinghong in China) with consistency to the observed data (R of 0.64 and 0.75, respectively), 347 

where the model was able to reproduce the pollution peaks (IOA of 0.74 and 0.82, respectively). In a previous study by 348 

Vongruang et al. (2017), the WRF-CMAQ model was used to simulate PM2.5 in the PSEA region by incorporating BB 349 

emissions (GFAS v1.1 or FINN1.5) and comparing them with observed stations. The average IOA value was 0.51 (with the 350 

optimal IOA being 0.69). In this study, all 23 stations had IOA values greater than 0.51 (with over 52% exceeding 0.69), 351 

indicating that the model can consistently reproduce the spatial and temporal distribution characteristics of pollutants in the 352 

PSEA region. Although the WRF-Chem model could reasonably capture the spatial-temporal characteristics of PM2.5 353 

concentrations observed in most cities (IOA > 0.54), the influence of anthropogenic emission inventories and BB vertical 354 

transport may lead to biases in some areas (e.g., Hong Kong). 355 

3.3 AOD 356 

3.3.1 Satellites vs. AERONET AOD 357 

The linear regression results between AOD daily averages from different satellite sensors and AERONET data are shown in 358 

Figure S3. Overall, during the wildfire event in the PSEA region, the DB algorithm of VIIRS demonstrated the best skill, as 359 

indicated by optimal R2 and RMSE values. Su et al. (2022) found that VIIRS DB also exhibited the highest accuracy and 360 

stability when analyzing long-term multiple satellite inversions of AOD aerosol datasets in Asia. This is because the VIIRS 361 

DB incorporates upgraded surface and aerosol models specifically designed for Asian regions, which have not been applied to 362 

the MODIS DB (Sayer et al., 2019). Therefore, to evaluate the representation of AOD in the WRF-Chem experiments for the 363 

PSEA wildfires in March 2019, the AOD at 550 nm provided by VIIRS DB (along with AERONET observations) was chosen 364 

to determine biases and errors in the conducted experiments. 365 

3.3.2 WRF-Chem vs. VIIRS AOD 366 

To assess the agreement between the simulated AOD from WRF-Chem and the observed AOD, we utilized the extracted data 367 

(WRF-Chem) based on VIIRS satellite transit time and compared the daily average values with AERONET observations. 368 

Figure 5 illustrates the daily average AOD at 550 nm from the VIIRS and wind (scaled in 10 m s-1) at 900 hPa (a), along with 369 

the corresponding AOD from the WRF-Chem simulation over the PSEA region during March 2019, considering different BB 370 

scenarios (b-i).  The high AOD (HAOD, AOD > 1.0) derived from VIIRS retrievals is primarily concentrated in Laos, Thailand, 371 

and Vietnam (97-110°E, 15-22.5°N). Additionally, Beibu Gulf and coastal cities in southern China also exhibit high AOD 372 

values (AOD > 0.6), which may be attributed to the long-range BB transport of tropical westerly and southwesterly winds 373 

depicted in Figure 5(a). The FINN (v1.5 and 2.5), FEER, QFED, and IS4FIRES schemes demonstrate the ability to reproduce 374 

high aerosol concentrations in areas with elevated AOD values as observed by VIIRS satellites. These simulations align with 375 

the spatial distribution of monthly mean AOD during the wildfire period in the PSEA simulations conducted by Dong and Fu 376 
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(2015a). However, the GFED and GFAS schemes fail to capture the high AOD areas in the PSEA region, likely due to the low 377 

BB emission inventories of the input model (Pan et al., 2020).  378 

Figure 6 ((a)-1 to (a)-8) displays the estimated MB between the model with eight BB scenarios and VIIRS daily mean AOD. 379 

The FINN schemes (v1.5 and 2.5) noticeably overestimate AOD in the HAOD region, while the GFED, GFAS, FEER, and 380 

IS4FIRES schemes underestimate AOD. Moreover, the FINN schemes also exhibit AOD overestimation in the Beibu Gulf, 381 

South China Sea, Bay of Bengal, and Andaman Sea. As the FINN schemes have the largest aerosol emissions compared to 382 

other BB emissions (Figure 4), it may lead to an overestimation of AOD in the HAOD region. All schemes exhibit varying 383 

degrees of overestimation for a significant portion of southern China. Table 2 provides statistics on the MB of AOD between 384 

satellite-retrieved and WRF-Chem AOD in the HAOD region. The AOD simulated by FINN schemes are significantly 385 

overestimated, whereas the rest of the schemes exhibit underestimation. Although FEER (-0.12) and IS4FIRE (-0.14) 386 

underestimate the simulated AOD, their performance is considerably better than other BB emission inventories. As highlighted 387 

by Palacios-Pena et al. (2017) and Crippa et al. (2019), the MB between simulated and observed AOD can be attributed to 388 

estimation errors in BB uncertainty, aerosol dry mass, and specifically related to the certain mass of small particles or too 389 

much moisture associated with the aerosol. The RMSE estimation (Figure 6(b)-1 to (b)-8) reveals noticeable uncertainty in the 390 

FINN schemes compared to other schemes in the HAOD and southern China, while the performance of the remaining schemes 391 

in simulating AOD in Laos and northern Thailand is unsatisfactory. The RMSE statistics in Table 2 show that the AOD 392 

simulated by the FINN2.5 schemes (MOS and MOSVIS) have greater uncertainty in the HAOD region compared to FINN1.5, 393 

and the RMSE of the other schemes are generally comparable. Figure 6(c)-1 to (c)-8 depicts the temporal R between simulated 394 

AOD and observations, with high values of R (>0.6) concentrated in Laos and northern Thailand, Myanmar, the Bay of Bengal, 395 

the Andaman Sea, and the South China Sea. The FINN2.5 MOSVIS scheme exhibits the highest R compared to other schemes 396 

in the HAOD region (Table 2), potentially due to the updated acquisition time (local time) and increased VIIRS data, leading 397 

to improved R with the observed data. 398 

3.3.3 WRF-Chem vs. AERONET AOD  399 

Figure 7 illustrates the time series of AOD at 550 nm, measured at the 16 AERONET sites marked in Figure 1, in comparison 400 

to simulated AOD from WRF-Chem with different BB emissions. These 16 sites are categorized into three major classes, 401 

namely, the satellite inversion of HAOD regions (97-110°E, 15-22.5°N, Figure 7 a-g), the adjacent HAOD area (AHAOD, 402 

Figure 7 h-l), and the downwind area (DA, Figure 7 m-p), allowing for further analysis of AOD variations during wildfire 403 

events. In the HAOD stations (Laos, Chiang Mai, Fang, Nong Khai, Son La, and Ubon Ratchathani), high aerosol loading was 404 

captured by all schemes and AERONET sites on March 15, 23, and 30, respectively. Among the sites, the Laos station 405 

performed the best in terms of simulated and observed AOD mean R and IOA for all BB scenarios, with R and IOA values of 406 

0.82 and 0.80, respectively (Table 3). To compare the performance of the multi-BB emission scenario model for the AOD 407 

simulation, a Taylor diagram was constructed (Figure 8). The Taylor diagram demonstrates that, in the HAOD regions, the 408 

FINN schemes (v1.5 and 2.5) exhibit a higher overall R compared to other schemes when simulating AOD against observations. 409 
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Furthermore, the FINN2.5 schemes show a slightly better correlation than FINN1.5. Among the eight schemes, the IS4FIRES 410 

and FINN1.5 schemes simulated AOD performed better in terms of consistency and deviation from the observed comparison 411 

in the HAOD region (Figure 8(a)). In the AHAOD stations, peaks of AOD simulated by WRF-Chem were also found on three 412 

dates (March 15, 23, and 30), but these peaks were lower than the HAOD in Figure 7. Despite the FINN2.5 MOSVIS scheme 413 

showing the best correlation between simulated AOD and observations in the HAOD regions compared to other schemes, its 414 

performance in AHAOD regions was unsatisfactory (Table 3). Poorly performing stations in the AHAOD regions included 415 

Bangkok, Silpakorn, and Songkhla, which are located between 0° and 22.5° N latitude (Figure 7). This discrepancy may be 416 

attributed to the assumptions made by the FINN2.5 MOSVIS scheme for fire detection in the equatorial region to achieve daily 417 

global coverage (Wiedinmyer et al., 2023) and the overestimation of AOD values by WRF-Chem, which can be explained by 418 

the presence of excess aerosol dry mass (Chapman et al., 2009). In the DA regions, such as Hong Kong and Taiwan, high 419 

concentrations of aerosols were simulated and observed after March 23 in Figure 7. Previously, studied the same event using 420 

models and ground measurements and reported a contribution of BB of about 56% to local AOD and 26%-62% to DA.  421 

3.4 AAOD  422 

3.4.1 WRF-Chem vs. TROPOMI AAOD 423 

Wildfire releases significant amounts of absorbing aerosols such as OC and BC, which can absorb solar radiation and increase 424 

the radiation absorption capacity of the atmosphere, thereby affecting the Earth's radiation balance. Therefore, it is crucial to 425 

evaluate the model's ability to simulate absorbing aerosols using AAOD results obtained from satellite observations. To reduce 426 

the discrepancies caused by missing data in the inversion of different observations, the WRF-Chem simulations are matched 427 

with the observed data. Figure 9 shows the spatial distribution of daily mean AAOD at 500 nm retrieved by TROPOMI (a) 428 

and simulated by WRF-Chem with eight BB emissions (b-j) during March 2019 in the PSEA region. The high AAOD (AAOD > 429 

0.03) from TROPOMI is mainly concentrated in northern Laos, northern Vietnam, northern Thailand, and eastern Vietnam, 430 

which is similar to the spatial distribution characteristics of HAOD provided by VIIRS. Kang et al. (2017) also found similar 431 

AAOD distribution patterns when studying the spatial and temporal characteristics of absorbing aerosols in Southeast Asia 432 

from 2005 to 2016. The WRF-Chem simulations with different BB emissions exhibit high AAOD values not only in the 433 

aforementioned regions but also in southern China and the South China Sea (Figure 9). Figure 10 shows the spatial distribution 434 

characteristics of MB(a), RMSE(b), and R(c) for the comparison of TROPOMI-inverted AAOD with WRF-Chem-simulated 435 

AAOD using different BB scenarios. All FINN, FEER, and IS4FIRES schemes overestimate AAOD in the HAOD region (97-436 

110°E, 15-22.5°N) compared to TROPOMI inversion, with FINN2.5 showing the most significant overestimation (Figure 437 

10(a)-1 to (a)-8). Table 2 further confirms these overestimations with statistics of 0.056, 0.073, 0.08, 0.02, and 0.018, 438 

respectively. The overestimation may arise from underestimating AAOD in TROPOMI, as well as overestimating absorbing 439 

aerosols in the BB inventory and uncertainties in the representation of absorbing aerosols by WRF-Chem, including aerosol 440 

size distribution, chemical composition, aging processes, vertical and horizontal transport (including injection heights for fire 441 
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emissions), and errors in dry/wet removal from the atmosphere. Figure 10(b)-1 to (b)-8 and Table 2 demonstrate that the FINN 442 

schemes exhibit greater uncertainties in simulating AAOD in the HAOD region compared to other schemes. Comparing the R 443 

between satellite-retrieved AAOD and simulated AAOD, values of R > 0.6 are primarily concentrated in northern Laos, 444 

northern Thailand, and Myanmar. Particularly, the FINN2.5 MOSVIS scheme, due to the incorporation of improved local time 445 

and inclusion of small fires from VIIRS, exhibits the best correlation with the simulated AAOD relative to satellite retrievals 446 

(Table 2). 447 

3.4.2 WRF-Chem vs. AERONET AAOD 448 

To reduce the uncertainty caused by missing AERONET data, quality control has been applied to the AERONET site data 449 

(samples > 10 days). In the HAOD region within the range of 97-110°E, 15-22.5°N, where both the satellite-retrieved AOD 450 

and AAOD exceed the thresholds of 1 and 0.03 (BB high emission area), respectively. Figure 11 presents a comparison of 451 

time series between AAOD measurements from four AERONET sites within the HAOD region and AAOD simulated by the 452 

nearest corresponding AERONET site using WRF-Chem with different BB inventories. Similar to peaks of AOD, AAOD 453 

from the Doi Ang Khang site also exhibits peaks on March 15th, 23rd, and 30th. Although most schemes can capture the high 454 

AAOD loading, the performances of the GFED, GFAS, and QFED schemes are unsatisfactory (Table S9). This could be 455 

attributed to lower concentrations of absorbing aerosols or inaccurate spatial distribution in the BB emission inventories 456 

(Reddington et al., 2016). The Fang site shows the best mean R and IOA among the eight BB scenarios simulating AAOD 457 

compared with AERONET, with R and IOA values of 0.69 (Table S9). The Taylor diagram indicates that the FINN schemes 458 

perform better than others in representing AAOD in Figure 8 (b), which may be the FINN schemes for unique calculating 459 

biomass burned area and EF that are more suitable for the HAOD region (Wiedinmyer et al., 2011; 2023). When comparing 460 

simulated AAOD with observations for the FINN2.5 MOSVIS scheme, both the R and IOA perform better than other schemes 461 

at all sites. The improved performance of the FINN2.5 MOSVIS scheme in simulating AAOD during wildfires in the PSEA 462 

region can be attributed to two factors: the inclusion of smaller fires using VIIRS 375m fire detection data and updated 463 

information on time and burned area. 464 

3.5 AEC 465 

Although AOD and AAOD provide useful information about atmospheric aerosol loading, there is limited information 466 

available regarding the vertical distribution of aerosols. Palacios-Peña et al. (2018) found that uncertainty in the vertical 467 

distribution of aerosols during wildfires in Europe affects AOPs.  The CALIPSO, with its unique capability to actively retrieve 468 

vertical aerosol spatial distribution, offers an opportunity to assess the simulation of aerosol vertical optical properties by 469 

WRF-Chem during wildfire events. Figure 12 displays the aerosol vertical extinction profiles at 532 nm retrieved by CALIPSO 470 

in the HAOD region during March 2019, along with the aerosol extinction profiles (550 nm) simulated by various BB schemes, 471 

where model data are matched with CALIPSO overpass times. AEC retrieval by CALIPSO is greater than 0.2 within the range 472 

of 0.5 km to 4 km above ground level, possibly due to the uplifted aerosols from wildfires. WRF-Chem utilizes the smoke 473 
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plume rise model, with upper and lower limits of heat flux determined for each land type, to calculate the minimum and 474 

maximum plume heights, and the emitted pollutants are distributed across each vertical layer within the injection height (Grell 475 

et al., 2011). From 0.5 km to 4 km, the trends of AEC changes in the eight BB schemes are consistent with CALIPSO, 476 

indicating that the employed smoke plume rise model in WRF-Chem can reproduce the minimum and maximum plume heights. 477 

However, all the FINN schemes overestimate AEC compared to CALIPSO from 0.5 km to 4 km, while the other schemes 478 

underestimate it. The aerosol concentration in the BB emission inventories may play a decisive role, leading to differences in 479 

the AEC (Reddington et al., 2019). Figure S4 illustrates the frequency distribution of six aerosol types at an altitude of 8 km 480 

over the PSEA region in March 2019. Within the higher altitudes of 5-7 km the presence of dust, polluted dust, and smoke 481 

aerosols is evident, with the dust aerosols originating from the upper-level westerlies in the Indian region. Within this altitude 482 

range, the simulated AEC gradually approaches zero with increasing altitude. However, the AEC retrieved by CALIPSO 483 

exhibits three peaks, which may be attributed to uncertainties in the calculation model for BB injection heights and the 484 

influence of external dust transport. 485 

3.6 DRF 486 

Considering the significant impact of BB aerosols on radiation, this study investigates the radiative perturbation of SW 487 

radiation caused by BB aerosols under clear-sky conditions at the top of the atmosphere (TOA), surface (SFC), and in the 488 

atmosphere (ATM). The focus is on the DRF of BB aerosols during the daytime, as Ge et al. (2014) found that local 489 

convergence in the smoke source region caused by smoke during the daytime transmits more smoke particles on the above 490 

surface. Figure 13 illustrates the spatial distribution of daytime average SW radiative perturbation caused by BB aerosols 491 

during 2019 March in the PSEA region at the TOA, ATM, and SFC. It is evident that BB aerosol DRF exists not only in the 492 

PSEA region but also in other regions such as southern China, Hong Kong, and Taiwan. The spatial distribution of SW radiative 493 

perturbation by BB aerosols aligns with the simulated distribution of AOD, with the highest values observed in the HAOD 494 

region (97-110°E, 15-22.5°N). Lin et al. (2014) have confirmed that BB aerosols, mainly BC and OC, play significant roles in 495 

the radiative budget. On one hand, the solar absorption by BC in the atmosphere increases the rate of radiative heating, leading 496 

to a significant decrease in solar radiation reaching the surface. On the other hand, OC enhances the reflected solar radiation 497 

at the TOA, resulting in a cooling effect due to reduced incident solar radiation on the atmosphere and surface. The SW 498 

radiative perturbation of BB in TOA is negative with a cooling effect in the model domain for eight scenarios, except for areas 499 

with high surface albedo such as Himalayan glaciers. Figure 14 shows that during the wildfire period in the HAOD region, the 500 

eight schemes exhibit DRF of -30.89±23.6 W m-2 at TOA. The SW radiative perturbation of BB aerosol at TOA depends 501 

largely on the SW absorption rate of BB aerosol. The FINN schemes (v1.5 and 2.5) exhibit a significantly stronger cooling 502 

effect compared to other schemes, possibly due to higher BC concentrations in BB emissions compared to other inventories. 503 

At the ATM, the absorption by BB aerosols leads to a positive radiative forcing, causing atmospheric warming, particularly in 504 

the HAOD region. In the HAOD region, the eight schemes exhibit a BB aerosol SW DRF of 1.70±1.40 W m-2 in the ATM 505 

(Figure 14). WRF-Chem can simulate the heating effect of BB aerosols in the ATM regardless of the BC/OC ratio used in the 506 
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emission inventory (1:8, 1:9, or 1:13). At the SFC, the cooling effect is due to the scattering of non-absorbing atmospheric 507 

aerosols and absorbing aerosols that increase the radiative heating rate, resulting in a significant reduction of solar radiation 508 

reaching the surface. The eight schemes simulate the DRF of -32.60±24.50 W m-2 at SFC in the daytime with FINN2.5 509 

MOSVIS reaching a maximum of approximately70 W m-2 (Figure 10), which is comparable to the level of the PSEA region 510 

studied previously by Lin et al. (2014) and Ge et al. (2014).  511 

4. Discussion  512 

Biases in the simulated AOPs (AOD, AAOD, AEC) over tropical BB have been attributed to a variety of factors (Reddington 513 

et al., 2016), including (1) uncertainties in BB emission fluxes, (2) errors in modeling the atmospheric distribution and 514 

properties of BB aerosols. These deviations in optical properties further affect the DRF, leading to uncertainties in the 515 

assessment of climate change. 516 

4.1 BB Emission Fluxes 517 

Uncertainties associated with the derivation of emission fluxes arise from errors in satellite detection of active fire or burned 518 

areas (e.g., cloud and smoke obscuration of the surface, satellite spatial resolution and detection limitations, and satellite 519 

exceedance times), as well as uncertainties in EF and fuel consumption estimates (Carter et al., 2020; Wiedinmyer et al., 2023). 520 

Eight BB inventories were inverted from MODIS data, but there were significant gaps between the bandwidths of MODIS in 521 

the equatorial region, as well as difficulties in detecting fires located under thick clouds, and a reduction in fire detection 522 

sensitivity at the scan edge sensitivity, leading to an underestimation of total regional BB emissions (Wang et al., 2018). In 523 

this paper, The FINN2.5 dataset (BB emission fluxes and AOPs) is consistently higher than the other datasets, with FINN2.5 524 

MOSVIS being the highest overall. FINN2.5 includes improved burned area calculations, uses year-specific land cover and 525 

vegetation datasets, updates fuel loads and EF, and can use multiple fire detection satellite inputs (e.g., MODIS and VIIRS), 526 

which may account for the improved BB emission fluxes. In the PSEA region, during wildfire events, the BB emissions from 527 

FINNv2.5 are consistently higher than the emissions provided by FINNv1.5, approximately twice as much as the latter, even 528 

when considering only MODIS fire detections. The increase in emissions is primarily attributed to the new treatment of burned 529 

areas (Wiedinmyer et al., 2023). Despite updates to input data, parameters, and processing methods, the FINN2.5 scheme tends 530 

to overestimate AOPs compared to observations. This overestimation may arise from inaccurate ecosystem identification (e.g., 531 

tropical forests instead of shrublands or areas with fewer trees) and fuel load allocation (Pan et al., 2020). Furthermore, in 532 

tropical regions, the FINN scheme employs smoothing of fire detections to mitigate the impact of clouds, which could lead to 533 

an overestimate of BB emissions (Wiedinmyer et al., 2011; 2023). QFED provides relatively higher OC concentrations, but 534 

lower total BB emissions, and the primary driving factors behind these differences are the assumed fuel types and related EF. 535 

Therefore, it is inappropriate to consider OC as the sole criterion for evaluating BB emission fluxes when comparing multiple 536 

BB emission inventories. Although the aerosol concentrations provided by QFED are larger than those of IS4FIRES and FEER, 537 
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the simulated AOPs and DRF of this scheme are lower than those of the latter, which may be due to the influence of secondary 538 

pollutant emission precursors (NO2, NH3, etc.). Previous studies have often used an expansion of aerosols (BC+OC) in the BB 539 

emission inventories by a factor of 3-6 to assess the AOPs (Reddington et al., 2016; Marlier et al., 2013), and the simulation 540 

results from the QFED scheme above reveal that there may be significant uncertainties in this expanded aerosol (BC+OC) 541 

approach. Although GFED4.1s improves the detection of small fires, the agricultural EF = 2.3 g kg-1 is lower than in other 542 

emission inventories, which could result in an underestimation of AOPs simulated by WRF-Chem with the GFED scheme. 543 

Yin (2020) found that BB in the PSEA region from 2001 to 2018 was predominantly driven by agro-residue burning and 544 

shrubland fires while GFED4.1s underestimation of DM for both fires and the mismatch in vegetation types may have 545 

contributed to the underestimation of BB emission fluxes (Reddington et al., 2016). In general, FRP-based estimation methods, 546 

such as GFAS, FEER, QFED, and IS4FIRES, allow for a more direct estimation of fuel consumption from fire-release energy 547 

without the uncertainty associated with the estimation. However, in the PSEA region, when the FRP from MODIS inversion 548 

is observed at a nominal spatial resolution of 1 km at its nadir, it risks missing a large number of smaller fires, as well as 549 

missing fires that are obscured by clouds (Dong and Fu, 2015a), which may lead to an underestimation of the simulated AOPs. 550 

Furthermore, the representation of aerosols in the BB emission inventories is insufficient, including chemical components, 551 

size distribution of aerosols, aging processes, hygroscopic growth, vertical and horizontal transport (including the injection 552 

height of fire emissions), and oxidation state (Reddington et al., 2016) which can all lead to modeling biases in AOPs. 553 

Importantly, these attributes also have an impact on aerosols in cloud and radiative forcing. 554 

4.2 Modeling Uncertainty and Calculation Bias 555 

There may be uncertainties in the gas-phase chemistry and aerosol scheme selected to characterize BB aerosols in the model 556 

(e.g., growth of aerosol hygroscopicity, scale distributions, aging processes, wet and dry deposition, etc.), which may lead to 557 

inaccurate simulation results (Palacios-Peña et al., 2018; Reddington et al., 2016). Sensitivity experiments using the global 558 

aerosol model reveal that calculations of hygroscopicity growth are most sensitive in simulating AOD (Reddington et al., 559 

2016). The contribution of SOA formed through the oxidation of VOCs in BB plumes is also a significant source of uncertainty 560 

(Jathar et al., 2014). In this study, we employed the meteorological chemistry and aerosol scheme: MOZART-561 

MOSAIC_4bin_aqueous, which includes aqueous-phase chemistry and SOA, but this mechanism may lead to 562 

overestimation/underestimation of AOPs in the model. The smoke plume rise model developed by Freitas et al. (2010) was 563 

used to vertically represent smoke plumes. Although all schemes capture the vertical profiles of BB aerosol extinction from 564 

0.5 km to 4 km altitude, some deviations still exist. Previous research has indicated that assuming all fire emissions injected 565 

at the top of the plume could be a worse assumption than prescribing surface-based emissions, which may lead to deviations 566 

in simulated AOPs (Mallia et al., 2018). The AEC is not characterized in all BB scenario simulations for 4-8 km, which may 567 

also lead to an underestimation of AOD or AAOD, and this high-level perturbation of AEC may come from the influence of 568 

external dust aerosols, so the model emission inventory should consider the effect of dust emissions. Despite the influence of 569 

sea salt aerosols in the near-surface region of PSEA (Figure S4), the contribution of sea salt aerosol to AOD is notably small, 570 
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approximately 2% (Zeng et al., 2023). Additionally, Dong and Fu (2015b) observed that the model, during the period from 571 

2006 to 2010, accurately simulated BB AOD without incorporating sea-salt emissions over the PSEA region. Consequently, 572 

our model does not consider sea-salt emission inventories. Other studies have also found that uncertainties in anthropogenic 573 

emission inventories can also lead to simulation errors in AOPs and DRF during wildfires in the PSEA region (Dong and Fu, 574 

2015b). Although we used the latest version of EDGAR 2015 data, there may be some underestimation of such emission 575 

inventories with a large number of incoming factories in the PSEA region (Yang, 2016). Additionally, the inclusion of ARI 576 

and aerosol–cloud interactions (ACI)  in the WRF-Chem model has been found to effectively improve the simulation of AOPs 577 

in European wildfire simulations (Palacios-Peña et al., 2019), whereas this study only incorporates ARI. ACI is concerned 578 

with aerosols altering the albedo and lifetime of clouds (Baró et al., 2016). Failure to account for ACI may result in models 579 

that do not accurately simulate cloud droplet numbers and sizes, lifetimes, and radiative balances, with implications for climate 580 

and atmospheric AOPs (Gao et al., 2022). There is some uncertainty in the AOD from the VIIRS satellite inversion and in the 581 

SSA and AAOD from the TROPOMI inversion due to cloud cover effects in the PSEA region, which may also lead to biased 582 

assessments. In addition, the closest proximity method used in the gridding process of BB emission inventories can also lead 583 

to some calculation errors. 584 

5. Summary and Conclusion  585 

This study conducted sensitivity analyses to simulate AOPs and DRF in the PSEA region using eight commonly global BB 586 

emission inventories (GFED, FINN1.5, FINN2.5 MOS, FINN2.5 MOSVIS, GFAS, FEER, QFED, IS4FIRES) and the WRF-587 

Chem model. The main findings can be summarized below. 588 

Regarding BB emissions in the PSEA region, high OC emissions in all datasets (BB) are mainly concentrated in the northern 589 

parts of Laos, Cambodia, and Thailand, and in eastern Myanmar, with a difference in emissions of about a factor of 9 (0.295-590 

2.533 Tg M-1), an overall mean and standard deviation of 1.09±0.83 Tg M-1 and a CV of 76%, respectively. Those high BB 591 

emissions are primarily from savanna and agricultural fires. OC emissions in GFED and GFAS are significantly lower than in 592 

the other inventories. This is attributed to lower DM and agricultural fire EF in GFED, while DM is underestimated in GFAS. 593 

The OC in FINN2.5 VISMOS is about twice as high as those in FINN1.5, which is explained by the difference in DM rather 594 

than EF. Total aerosol emissions are relatively high in the FINN scenarios (v1.5 and 2.5) compared to the other scenarios. 595 

Although the "top-down" emission inventories (GFAS, FEER, QFED, IS4FIRES) are constrained by the AOD from MODIS, 596 

the total aerosol emission flux is still insufficient. 597 

The AOD from VIIRS (DB algorithm) demonstrates the best ability to retrieve the AOD compared to AERONET data. An 598 

evaluation of the AOPs in the PSEA region during March 2019 reveals different performances between observations (VIIRS, 599 

TROPOMI, AERONET) and BB emission inventories. When comparing the AOD simulated by WRF-Chem with the observed 600 

AOD from VIIRS, the FINN1.5, FEER, QFED, and IS4FIRES schemes show a better ability to reproduce high aerosol 601 

concentrations in the HAOD region, the GFED and GFAS schemes show limitations in characterizing these regions. The FINN 602 
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(v1.5 and 2.5) schemes tend to overestimate AOD in the region, while other schemes underestimate AOD. The comparison 603 

with AERONET data further highlights the performance of different BB emission scenarios, with the FINN1.5 and IS4FIRES 604 

scenarios generally showing better agreement with observations. For AAOD comparison, it was found that the WRF-Chem 605 

simulations with different BB scenarios were less capable of simulating AAOD than AOD. The unsatisfactory performance of 606 

the GFED, GFAS, and QFED schemes may be due to low concentrations of absorbing aerosols or inaccuracies in the spatial 607 

distribution of BB emissions. Among the evaluated BB scenarios, the FINN1.5 schemes generally performed better in 608 

representing AAOD. Particularly, the FINN2.5 MOSVIS scheme, due to the incorporation of improved local time and inclusion 609 

of small fires from VIIRS, exhibits the best R with the simulated AOD and AAOD relative to observations. CALIPSO 610 

observations versus AEC simulated by WRF-Chem suggest that the smoke plume rise model can reproduce the minimum and 611 

maximum smoke plume heights of wildfire aerosols. However, the FINN (v1.5 and 2.5) schemes tend to overestimate the AEC 612 

compared to CALIPSO, while the other scenarios underestimate it. Regarding the DRF, the spatial distribution of the SW 613 

radiative disturbances due to BB aerosols closely follows the pattern of the AOD. the FINN (v1.5 and 2.5) schemes exhibit a 614 

stronger cooling effect at TOA, which may be due to the higher BC concentration in its emissions. In the HAOD region, BB 615 

aerosols exhibited a daytime SW radiative forcing of -32.60±24.50 W m-2 at the SFC, positive forcing (1.70±1.40 W m-2) in 616 

the ATM, and negative forcing (-30.89±23.6 W m-2) at the TOA. Overall, the FINN scenarios (especially FINN2.5) result in 617 

an overestimation of the AOPs in the PSEA region due to an overestimation of DM rather than EF, which in turn may lead to 618 

an overestimation of the DRF. Although the FINN2.5 MOSVIS scenario presents an overestimation of AOPs, the R is the best. 619 

Although the "top-down" emission inventory (GFAS, FEER, QFED, IS4FIRES) is constrained by the AOD from MODIS, the 620 

total aerosol emission flux is still insufficient, which leads to an underestimation of the AOPs modeled by WRF-Chem in the 621 

PSEA region. In addition, uncertainties in anthropogenic emissions, dust emissions, and vertical distribution of aerosol 622 

concentrations, may be attributed to differences from simulations versus observations during the wildfire period in the PSEA 623 

region. 624 

Additional evaluations of satellite-based fire emission inventories, particularly in large BB source regions (PSEA), would 625 

contribute to a deeper understanding of the uncertainties associated with fire emissions. In the PSEA region, greater attention 626 

should be given to the impacts of small fires, cloud cover, different ecosystem types, and EF during various burning stages 627 

and ecosystem types on the inversion of BB emission inventories. To further explore the subsequent effects of BB emissions 628 

(e.g., AOPs and radiative forcing), additional investigation of fire aerosol aging and treatment uncertainties (e.g., injection 629 

height, mixing state, SOA formation) are needed. Our study demonstrates that the uncertainty in BB emission inventories is 630 

an important factor influencing the WRF-Chem simulation of air quality and climate during wildfires, although the limitations 631 

of the model itself should not be overlooked. In the future, we will conduct additional sensitivity experiments and utilize more 632 

observational data to further validate the aforementioned uncertainties. 633 

 634 
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Appendix A 906 

Abbreviations and Acronyms 907 

AAOD Absorbing aerosol optical depth 

AEC Aerosol extinction coefficient 

AHAOD Adjacent HAOD area 

AOD Aerosol optical depth 

AOPs Aerosol optical properties 

ATM In the atmosphere  

BB Biomass burning 

BC Black carbon 

CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation 

CAM-chem Community Atmosphere Model with Chemistry 

DA Downwind area 

DRF Direct radiative forcing 

DM Dry matter 

EDGAR Emissions Database for Global Atmospheric Research 

EF Emission factors 

FEER Fire Energetics and Emissions Research 

FINN Fire INventory from NCAR 

FRP Fire radiative power 

GEOS-Chem Goddard Earth Observing System-Chemistry 

GFAS Global Fire Assimilation System 

GFED Global Fire Emissions Database 

HAOD High AOD 

IS4FIRES Integrated Monitoring and Modelling System for Wildland FIRES Project 

LW Longwave 

MEGAN Model of Emissions of Gases and Aerosols from Nature 

MODIS Moderate Resolution Imaging Spectroradiometer 

MOSAIC Model for Simulating Aerosol Interactions and Chemistry 

MOZART The Model for Ozone and Related chemical Tracers 

NMHCs Non-methane hydrocarbons 

NMVOCs Non-methane volatile organic compounds 

OC Organic carbon 
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OVOCs Oxygenated volatile organic compounds  

PSEA  Peninsular Southeast Asia 

PM Particulate matter 

QFED Quick Fire Emissions Dataset 

RH2 2 m relative humidity 

SFC At the surface 

SOA Secondary organic aerosol 

SSA Single scattering albedo 

SW Shortwave 

T2 2 m temperature 

TOA The top of the atmosphere 

TPM Total particle matter 

VIIRS Visible Infrared Imaging Radiometer Suite 

WS10 10 m wind speed 

 908 

 909 



29 

 

Tables 910 

Table 1. Comprehensive comparison of eight BB emission inventories globally in terms of different methodological details and 911 
species, where Bottom-up approach to construct emission inventories are GFED v4.1s, FINN v1.5, FINN v2.5 MOS, FINN v2.5 912 
MOSVIS, and others are Top-down approach. 913 

aThe main references for Emission factors (EF) used in the BB emission database.  914 

bOxygenated volatile organic compounds (OVOCs) contain C, H, and O. examples include alcohols, aldehydes, ketones, and organic 915 
acids. 916 

cNon-methane hydrocarbons (NMHCs) are defined as organic compounds excluding methane (CH4) that contain only C and H.  917 

dThe total particle matter (TPM) considers three different particle sizes (0.17 µm, 1.1 µm and 3 µm). 918 

Notes: OVOCs and NMHCs together account for nearly all the gas-phase non-methane volatile organic compounds (NMVOC) 919 
emitted by fires (Akagi et al., 2011). NA: Not available. 920 

BB dataset 
Resolution 

Temporal 
Data source 

EF reference 

(s)a 
OVOCsb NMHCsc Gases Aerosols 

GFED v4.1s 

0.25°x 0.25° 

3-hourly 

daily 

monthly 

1997-2022 

MODIS C5 

Akagi et al. (2011), 

Andreae and 

Merlet (2001) with 

updates 

CH3COCHO, 

CH3COOH,etc 

C2H4,C2H6, 

C3H8, etc 

CO, NOx, 

SO2, NH3 

OC, BC, 

PM2.5 

FINN v1.5 

1 km2 

Daily 

2002-Present 

MODIS C6 

Akagi et al. (2011), 

Andreae and 

Merlet (2001) 

CH3COCHO, 

CH3COOH,etc 

C2H4,C2H6, 

C3H8, etc 

CO, NOx, 

SO2, NH3 

OC, BC, 

PM2.5,PM10 

FINN v2.5 

MOS 

1 km2 

Daily 

2002-2021 

MODIS C6 

Akagi et al. (2011), 

Wiedinmyer et al 

(2011) 

CH3COCHO, 

CH3COOH,etc 

C2H4,C2H6, 

C3H8, etc 

CO, NOx, 

SO2, NH3 

OC, BC, 

PM2.5, PM10 

FINN v2.5 

MOSVIS 

1 km2 

Daily 

2002-2021 

MODIS C6 

VIIRS 

Akagi et al. (2011), 

Wiedinmyer et al 

(2011) 

CH3COCHO, 

CH3COOH,etc 

C2H4,C2H6, 

C3H8, etc 

CO, NOx, 

SO2, NH3 

OC, BC, 

PM2.5, PM10 

GFAS v1.2 

0.1°x 0.1° 

Daily 

2003-Present 

MODIS C6 Akagi et al. (2011) 
CH3COCHO, 

CH3COOH,etc 

C2H4,C2H6, 

C3H8, etc 

CO, NOx, 

SO2, NH3 

OC, BC, 

PM2.5 

FEER 

v1.0-G1.2 

0.1°x 0.1° 

Daily 

2003-Present 

GFAS v1.2 

FRP 

Andreae and 

Merlet (2001) 

CH3COCHO, 

CH3COOH,etc 

C2H2,C2H6, 

C3H8, etc 

CO, NOx, 

SO2, NH3 

OC, BC, 

PM2.5 

QFED v2.5r1 

0.1°x 0.1° 

Daily 

2000-Present 

MODIS C6 

Akagi et al., 

(2011), Andreae 

and Merlet, (2001) 

CH3COCHO, 

CH3COOH,etc 

C2H6,C3H6, 

C3H8, etc 

CO, NOx, 

SO2, NH3 

OC, BC, 

PM2.5 

IS4FIRES 

v2.0 

0.1°x 0.1° 

3-hourly 

2000-Present 

MODIS C6 
Akagi et al. (2011), 

Sofiev et al., (2009) 
NA NA NA TPMd 
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Table 2.  WRF-Chem AOD and AAOD vs. satellites evaluation in HAOD (97-110°E, 15-22.5°N) region during March 2019. 921 

BB Inventories 
WRF-Chem vs. VIIRS WRF-Chem vs. TROPOMI 

MB RMSE R MB RMSE R 

GFED 

FINN1.5 

FINN2.5 MOS 

FINN2.5 MOSVIS 

GFAS 

FEER 

QFED 

IS4FIRES 

-0.26 0.48 0.22 0.009 0.018 0.191 

0.39 0.71 0.27 0.056 0.071 0.190 

0.63 0.98 0.27 0.073 0.094 0.205 

0.78 1.01 0.28 0.080 0.102 0.232 

-0.34 0.52 0.21 0.004 0.013 0.185 

-0.12 0.44 0.25 0.020 0.029 0.213 

-0.24 0.46 0.23 0.011 0.020 0.187 

-0.14 0.43 0.27 0.018 0.028 0.208 

 922 

 923 

 924 

 925 

 926 

 927 

 928 

 929 

 930 

 931 

 932 

 933 

 934 

 935 

 936 

 937 

 938 

 939 

 940 

 941 

 942 

 943 
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Table 3. WRF-Chem AOD at 550 nm vs. AERONET in HAOD, AHAOD, and DA during the wildfire period, where HAOD includes 944 
Laos, Chiang Mai, Doi Ang Khang, Fang, Nong Khai, Son La, and Ubon Ratchathani stations. 945 

Stations Variables 

BB emission inventories 

GFED FINN1.5 
FINN2.5

MOS 

FINN2.5

MOSVIS 
GFAS FEER QFED IS4FIRES 

Laos 

R 0.74 0.9 0.9 0.81 0.7 0.84 0.79 0.85 

IOA 0.78 0.83 0.75 0.75 0.76 0.84 0.8 0.86 

Chiang 

Mai 

R 0.46 0.61 0.53 0.77 0.48 0.54 0.45 0.55 

IOA 0.75 0.79 0.74 0.82 0.73 0.77 0.76 0.78 

Doi Ang 

Khang 

R 0.48 0.66 0.66 0.8 0.49 0.64 0.52 0.63 

IOA 0.78 0.75 0.68 0.69 0.77 0.81 0.79 0.81 

Fang 

R 0.42 0.71 0.7 0.85 0.42 0.68 0.5 0.63 

IOA 0.71 0.81 0.77 0.82 0.7 0.73 0.71 0.75 

Nong 

Khai 

R 0.25 0.39 0.59 0.51 0.28 0.27 0.31 0.37 

IOA 0.73 0.71 0.69 0.65 0.71 0.72 0.73 0.74 

Son La 

R 0.5 0.75 0.76 0.64 0.43 0.81 0.64 0.64 

IOA 0.72 0.72 0.65 0.65 0.71 0.84 0.75 0.79 

Ubon 

Ratchath

ani 

R 0.23 0.6 0.54 0.3 0.41 0.35 0.36 0.37 

IOA 0.68 0.64 0.61 0.58 0.64 0.69 0.66 0.69 

AHBA 

�̅� 0.44  0.51  0.48  0.24  0.53  0.52  0.55  0.52  

𝐼𝑂𝐴̅̅ ̅̅ ̅ 0.73  0.69  0.66  0.63  0.72  0.76  0.75  0.74  

DA 

�̅� 0.43  0.41  0.39  0.48  0.44  0.44  0.46  0.39  

𝐼𝑂𝐴̅̅ ̅̅ ̅ 0.69  0.71  0.69  0.71  0.69  0.71  0.70  0.70  

Note: AHAOD and DA only contain the corresponding site mean R and IOA 946 

 947 
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 948 

Figures  949 

 950 

Figure 1. (a) WRF-Chem simulation domain (D01, blue line) and observation stations,  where the red dots are AERONET stations, 951 
the black triangle are air quality stations, and the purple rectangle are meteorological stations. (b) Spatial distribution characteristics 952 
of fire points in PSEA (red line, including Vietnam, Thailand, Myanmar, Cambodia, and Laos) from MODIS satellite retrieval in 953 
March 2019. (c) Total fire counts in the PSEA region from Jan to Dec, 2019 (MODIS). 954 
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 955 

956 
Figure 2. The flowchart illustrates the three processes of Pre-processing, Reconstructing data, and Model setup to put the eight BB 957 
emission inventories into the WRF-Chem simulation of AOPs and DRFs during the March 2019 wildfires in the PSEA region. The 958 
Pre-processing consisted of re-gridding and time allocation, where the FINNs scenario was processed using the fire_emiss program 959 
from NCAR, while the grids generated by the other scenarios based on the FINN 1.5 scenario were spatially allocated using the 960 
EMSF program. The GFED, GFAS, FEER, and QFED have the same time allocations as GFED, and the remainder use self-961 
contained time allocations. The Reconstructing data has three components: emissions (OVOCs, NMHCs, aerosol, and gas) composed 962 
by the MOZART-MOSAIC mechanism, fire size, and vegetation proportions (extratropical forest, grassland, savanna, tropical 963 
forest). Compared to the FINNs scheme, the missing compounds and aerosols from the other schemes were added based on the 964 
methodology of Jose et al. (2017), Andreae and Merlet (2001;2019). Eight BB emission inventories used the fire sizes provided by 965 
the FINN 1.5 scheme, as well as the vegetation proportions. The Model setup turned on BB simulations including the smoke plume 966 
rise. 967 

 968 
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 969 

Figure 3. The spatial distribution of eight BB emission inventories of OC in the study region, for (a-h): GFED, FINN1.5, FINN2.5 970 
MOS, FINN2.5 MOSVIS, GFAS, FEER, QFED, IS4FIRES, and the total OC emissions in the PSEA region during March 2019. 971 
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 972 

Figure 4. Total emissions and percentage composition of different substances in the eight BB emission inventories (after processing 973 
in Figure 2, i.e., the missing BB data has been supplemented.) over PSEA in the WRF-Chem model, which indicates the proportion 974 
of BC and OC, where "Gas" represents the combination of SO2 and NH3. OVOCs contain C, H, and O compounds (ethanol 975 
(C2H5OH), formaldehyde (CH2O), acetaldehyde (CH3CHO), acetone (CH3COCH3), methanol (CH3OH), methyl ethyl ketone (MEK), 976 
pentanedial (C5H6O2), acetic acid (CH3COOH), cresol (C6H4(CH3)(OH)), glyceraldehyde (GLYALD), methylglyoxal (MGLY), 977 
glyoxal (GLY), acetol (CH3COCH2OH), methacrolein (MACR), methyl vinyl ketone (MVK)). NMHCs refer to organic compounds 978 
containing only C and H besides methane (CH4), including pentane (C5H12), butadiene (C4H8), ethylene (C2H4), ethane (C2H6), 979 
propane (C3H8), propylene (C3H6), toluene (C6H5(CH3)), lumped monoterpenes, as α-pinene (C10H16), isoprene (C5H8). NMHCs and 980 
OVOCs combined constitute nearly all of the non-methane volatile organic compounds (NMVOCs) emitted by wildfires. PM2.5 is 981 
the PM2.5 fraction excluding OC and BC. PM10 is the PM10-2.5 fraction. 982 
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 983 

Figure 5. The daily mean AOD retrieved by the VIIRS satellite (a) transiting the PSEA region and the AOD simulated by WRF-984 
Chem with eight corresponding BB emission inventories (b-i, GFED, FINN1.5, FINN2.5 MOS, FINN2.5 MOSVIS, GFAS, FEER, 985 
QFED, IS4FIRES) in the PSEA region during March 2019, where 950 hPa wind (vectors, m/s) based on March 2019 of ERA5 data. 986 
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 997 

Figure 6. Spatial distribution of MB, RMSE, and R between AOD from VIIRS satellite vs. AOD simulated by WRF-Chem with 8 998 
BB emission inventories (GFED, FINN1.5, FINN2.5 MOS, FINN2.5 MOSVIS, GFAS, FEER, QFED, IS4FIRES) in PSEA during 999 
March 2019, where (a)-1 to (a)-8 are the MB for the comparison of the eight BB scenarios, (b)-1 to (b)-8 are the RMSE for the 1000 
comparison of the eight BB scenarios, (c)-1 to (c)-8 are the R for the comparison of the eight BB scenarios. 1001 
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 1002 

 1003 

Figure 7. Time series of daily average AOD (550 nm) simulated by WRF-Chem including 8 BB emissions in March 2019 compared 1004 
to 16 AERONET sites (a-p). These stations are divided into three categories, where the first category of stations is located within the 1005 
HAOD range of satellite inversion (97-110°E, 15-22.5°N, a-g); The second type consists of observational sites located in adjacent high 1006 
AOD regions (namely AHAOD, h-l); The third type encompasses observational sites situated within the downwind areas (namely 1007 
DA, m-p). The legend line characterizes different BB simulation scenarios. 1008 
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 1016 

 1017 

Figure 8. Taylor diagrams of (a) AERONET vs. WRF-Chem AOD at 550 nm and (b) AERONET vs. WRF-Chem AAOD at 500 1018 
nm in the HAOD region (97-110°E, 15-22.5°N) during the wildfire period. 1019 
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 1021 

Figure 9. Spatial distribution of AAOD between Sentinel-5 TROPOMI satellite (a) vs. AAOD simulated by WRF-Chem with 8 BB 1022 
emission inventories (b-i) during wildfire period in PSEA. 1023 
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 1036 

Figure 10. Spatial distribution of MB, RMSE, and R between AOD from VIIRS satellite vs. AOD simulated by WRF-Chem with 8 1037 
BB emission inventories (GFED, FINN1.5, FINN2.5 MOS, FINN2.5 MOSVIS, GFAS, FEER, QFED, IS4FIRES) in PSEA during 1038 
March 2019, where (a)-1 to (a)-8 are the MB for the comparison of the eight BB scenarios, (b)-1 to (b)-8 are the RMSE for the 1039 
comparison of the eight BB scenarios, (c)-1 to (c)-8 are the R for the comparison of the eight BB scenarios. 1040 
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 1041 

Figure 11. Comparisons of time series between daily mean AAOD at 500 nm measurements provided by four AERONET sites within 1042 
the HAOD range and AAOD simulated by the nearest corresponding AERONET site using WRF-Chem adding different BB 1043 
inventories, where the satellite inversions of both AOD > 1 and AAOD > 0.03 range 97-110°E, 15-22.5°N are called HAOD. The 1044 
legend line is the same as in Figure 7. 1045 

 1046 

Figure 12. Vertical distributions of monthly mean aerosol extinction (550 nm) from WRF-Chem with different BB inventories and 1047 
the corresponding CALIPSO retrieval (532nm) in HAOD (97-110°E, 15-22.5°N). The black dotted line indicates CLIAPSO and the 1048 
remaining lines are the same as in Figure 7. 1049 
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 1050 

Figure 13. The average difference in clear-sky SW radiation fluxes (daytime) simulated with and without BB emission (GFED, 1051 
FINN1.5, FINN2.5 MOS, FINN2.5 MOSVIS, GFAS, FEER, QFED, IS4FIRES) over the PSEA in March 2019 at the top of the 1052 
atmosphere (TOA), ground surface (SFC), and in the atmosphere (ATM), Where (a)-(h) represent 8 emission inventories. 1053 
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 1054 

Figure 14. The average difference in clear-sky SW radiation fluxes (daytime) simulated with and without BB emission in the HAOD 1055 
(97-110°E,15-22.5°N) region during March 2019. 1056 
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