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Abstract. This paper examines teleconnections between the Arctic and the Baltic Sea region and is based on two cases of 

CESM-LE climate model simulations': the stationary case with pre-industrial radiative forcing and the climate change case 

with measured and RCP8.5 radiative forcing. 

Stationary control simulation 1800-year long time-series were used for stationary teleconnection and 40-member ensemble 

from the period 1920–2100 for teleconnections during ongoing climate change. We analyzedanalysed seasonal temperature at 10 

a 2-meter level, sea-level pressure, sea ice concentration, precipitations, geopotential height and 10-meter level wind speed. 

The Arctic was divided into seven areas. 

theThe Baltic Sea region climate has strong teleconnections with the Arctic climate; the strongest connections are with 

Svalbard and Greenland region. There is high seasonality in the teleconnections, with the strongest correlations in winter and 

the lowest correlations in summer, when the local meteorological factors are stronger. The majority ofNAO and AO climate 15 

indices can explain most teleconnections in winter and spring can be explained by climate indexes NAO and AO.. During 

ongoing climate change, the teleconnection patterns did not show remarkable developmentschanges by the end of the 21st 

century. Minor pattern changes are between the Baltic Sea region temperature and the sea ice concentration. 

ToWe calculated the correlation between the parameter and its Ridge regression estimation to estimate different Arctic regions' 

collective statistical connections with the Baltic Sea region, we calculated the correlation between the parameter and its Ridge 20 

regression estimation.. Seasonal coefficient of determination, R2, were highest for winter: for temperatureT2m R2 = 0.64, for 

surface pressureSLP R2 = 0.44 and for precipitationPREC R2 = 0.35. When doing the same for the seasons' previous month 

values in the Arctic, the relations are considerably weaker, with the highest R2 = 0.09 for temperature in the spring. Hence, 

theArctic climate data forecasting capacity of Arctic climate data for the Baltic Sea region is weak. 

Although there are statistically significant teleconnections between the Arctic and Baltic Sea region, the Arctic impacts are 25 

regional and mostly connected with climate indexes. There are no simple cause-and-effect pathways. By the end of the 21st 

century, the Arctic ice concentration has significantly decreased. Still, the general teleconnections patternteleconnection 

patterns between the Arctic and the Baltic Sea region will not change considerably by the end of the 21st century. 
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1 Introduction 

The Arctic region is warming at least twice as fast as the whole planet (IPCC, 2021; Nakamura &and Sato, 2022; Overland et 30 

al., 2018; Meleshko et al., 2020);), some authors showed that nearly four times (Rantanen et al., 2022) as fast as the whole 

planet; also, the Baltic Sea region is warming faster than the global average (BACC, 2015). The question of the faster warming 

in the Arctic region affecting mid-latitudes has been under debate for a long time. We want to address the Baltic Sea region 

and find out if it is affected by the changing Arctic and if this information can be used in long-term weather forecasts. 

The faster warming in the Arctic compared to the global mean, a phenomenon known as Arctic amplification (AA), resultsis 35 

a result from a number of positive feedbacks that are relatively large in the Arctic, including theinteracting processes: sea ice 

loss and surface albedo feedback, lapse rate feedback and Planck feedback ( (Laîné et al., 2016; Yoshimori et al., 2014; Serreze 

et al., 2009; Screen and Simmonds 2010), changes in longwave and/or temperature feedbacks (Dai and Jenkins, 2023; Jenkins 

and Dai, 2021; Duan et al., 2019; Pithan and Mauritzen 2014)., 2014; Lu and Cai, 2009), cloud changes (Taylor et al., 2022; 

Boeke and Taylor, 2018; Taylor et al., 2015; Taylor et al., 2013; Francis and Hunter, 2006; Vavrus, 2004), intraseasonal 40 

cycling of heat (Clark et al., 2021; Bintanja and Krikken, 2016; Bintanja and Linden, 2013), and poleward energy transport 

(Sang et al., 2022; Spielhagen et al., 2011). However, the relative weight of these different factors is still under debate (Taylor 

et al., 2022; Dai et al., 2019).  

The assessment of the potential for AA to influence broader hemispheric weather (referred to as linkages) is complex and 

controversial (Dai and Song, 2020,; Francis and Vavrus, 2015; Barnes and ScreensScreen, 2015; Sun et al., 2016) and many 45 

details of linkage mechanisms remain elusive (Sun et al., 2018).  

For a long time, it has been recognised that ice conditions in the Greenland region might be connected to several variables in 

Europe (Hildebrandsson, 1914; Wiese, 1924; Schell, 1956; etc.). Zhuo et al. (2023) found that the Greenland region is the most 

influential of all Arctic regions on teleconnections to the Baltic region. Deng et al. (2018) showed that the Greenland region 

was the most important of Arctic regions considering heat waves in Eastern Europe.  50 

AA is expected to be related to further changes that affect mid-latitudes and the rest of the world (Jung et al., 2015; Vihma et 

al., 2019). According to Overland et al. (2015), potential Arctic teleconnections with Europe are less clear than with North 

America and Asia. The linkages between the Arctic and mid-latitudes depend strongly on the season and geographical region 

(Zhuo et al., 2023; Coumou et al., 2018; Jakobson et al., 2017; Coumou et al., 2018).). Furthermore, it has been 

recognizedrecognised that extratropical impacts depend highly on the regional structure of the anomalous Arctic climate state 55 

(Kug et al., 2015). It appears that Arctic impacts will be regional and intermittent, clouding the identification of cause-and-

effect and raising the issue of how to effectively communicate potential Arctic impacts (Overland et al., 2021; Rudeva and 

Simmonds, 2021; Luo et al., 2019; Cohen et al., 2018). 

The Baltic Sea region is very sensitive to climate change; it is a region with spatially varying climate and diverse ecosystems 

(Christensen et al., 2022). Climate change may bring profound ecological changes in the region (Halkka, 2022). During the 60 

last half-century, the duration of permanentseasonal snow cover and snow depth have decreased (Viru and Jaagus, 2020); 
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during the last decades, there has been a major increase in both extreme mild ice winters and severe ice winters;, minor increase 

in the intense precipitations, heat waves and cold spells (Rutgersson et al., 2022). Because of the closeness to the Arctic, the 

Baltic Sea region receives influences from the Arctic either remotely (teleconnections) or directly. The weather in the region 

depends highly on the position of the polar front: it can be located northward as well as southward of the area (Jakobson et al., 65 

2017). 

One of the reasons scientists are so interested in knowing the Arctic and its influence on mid-latitude weather is that there is a 

possibility to glance to the future. The pace of climate change is a crucial metric in risk assessment surrounding future climate 

predictions and directly impacts the efforts required to adapt (Rondeau-Genesse and Braun 2019; Lehner et al., 2017). The 

planning processes of decision-makers are very limited if the pace of changes is unknown (Klein et al., 2014). However, for 70 

short timescales, this pace can be masked by internal variability. Over a few decades, this can cause climate change effects to 

exceed what would be expected from the greenhouse gas (GHG) emissions alone or, to the contrary, cause slowdowns or even 

hiatuses (Rondeau-Genesse and Braun, 2019). Slowdowns, temporary hiatuses, and negative trends can be expected, regardless 

of the spatial scale (Medhaug et al., 2017; Fyfe et al., 2016). However, cooling trends should become less common or even 

nonexistent (Risbey et al., 2017; Grenier et al., 2015; Kay et al., 2015). At the same time, extremely warm decades should 75 

become more likely to happen (Risbey et al., 2017; Chavaillaz et al., 2016). 

Furthermore, some direct impacts are influenced by remote processes in the Arctic. For example, possibly the Barents and 

Kara Seas warming associated with the sea ice loss affects the Ural blocking (Peings et al., 2023; Yao et al., 2017; Luo et al., 

2017), which has been identified as precursors of sudden stratospheric warmings (Statnaia et al., 2020; Lee et al., 2019; Martius 

et al., 2009), and extreme temperature/precipitation anomalies over Europe (Yang et al., 2022; Peings, 2019; Cattiaux et al., 80 

2010).  

Widely used climate model simulations, such as those from the Coupled Model Intercomparison Project (CMIP5CMIP6), 

combines internal and inter-model variability caused by differing physics, dynamical cores, and resolutions, making it almost 

impossible to assess the portion of uncertainty caused by internal variability alone (Kay et al., 2015). To enable quantification 

of internal variability in the midst of transient climate change, large ensembles with individual models have been performed. 85 

Comparison across ensemble members that are simulated with the same model and the same external forcing provides a 

measure of simulated internal variability. Here, we use the Community Earth System Model version 1 large ensemble (CESM-

LE; Kay et al., 2015) to diagnose connections between the Arctic and Baltic regions. In the last few years, CESM-LE has 

aimed at better understanding internal variability (Rondeau-Genesse and Braun, 2019). The CESM-LE has been used in 

multiple studies of Arctic sea ice cover, performing well overall (Smith and Jahn, 2019; Labe et al., 2018; Jahn, 2018; 90 

Massonnet et al., 2018; Barnhart et al., 2016; Jahn et al., 2016; Swart et al., 2015). The CESM-LE also produces credible NAO 

interannual aspects, given the length of the observational record available for assessment (93 years) (Deser et al., 2017). 

Our previous research studied Arctic-Baltic teleconnections and physical mechanisms behind Arctic-Baltic teleconnections 

(Jakobson et al., 2017), using ERA-Interim and NCEP-CFSR reanalyzesreanalyses. In this paper, we used the CESM-LE 

model time-series to verify previous results, searchexamine climate changechange's influence on teleconnections and study 95 
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different Arctic regions' collective forecasting capabilities. CESM-LE differs from reanalyzesreanalyses by a much longer 

time-series and the aspect that it is not constrained by observations, allowing projections. The purpose of the study is to 

understand which Arctic factors influence the Baltic Sea, how strong these connections are, how is AA affecting these 

relationships, and if the knowledge can be used in long- term weather forecasting for next some months in the Baltic Sea 

region. 100 

The paper is organizedorganised as follows: Section 2 describes the used datasets and methodology. Section 3 explains the 

results of the spatial correlations of climatic variables (stationary, 20-year periods up to the year 2100 and lagged correlations), 

whereas Section 4 provides a discussion of the results and completes with conclusions. 

2 Data and methodology 

We used the CESM Large Ensemble Project (CESM-LE) set of climate model simulations on a 1º×1º horizontal grid (Kay et 105 

al., 2015). The CESM1 is a fully coupled model as described by Hurrell et al. (2013). A control simulation under pre-industrial 

(1850) radiative forcing conditions was run for 1800 years. A single ensemble member was branched from this control and 

ran from 1850 to 1920 with transient forcing. A 40-member ensemble was then performed for the period 1920-2100. All 40 

CESM-LE ensemble members use the same model and the same external forcing. Each ensemble member has a unique climate 

trajectory because of small round-off level differences in their initial atmospheric conditions. Simply put, the CESM-LE 110 

ensemble spread results from internally generated climate variability alone (Kay et al., 2015). Each member is subject to the 

same radiative forcing scenario (historical up to 2005 and RCP8.5 thereafter). 

We used Pearson's correlation coefficient to measure ofthe dependence between two variables. To measure the strength of a 

relationship between two variables without the possible controlling effect of a third variable, we used partial correlation: 

𝑅(𝑋, 𝑌|𝑍) =
( , ) ( , )∙ ( , )

( ( , ))∙( ( , ))
,          (1) 115 

where R(A, B) is the regular Pearson correlation. Partial correlation difference from Pearson correlation reveals the controlling 

factor Z effect on input variables X and Y. 

The following parameters were analyzedanalysed: the temperature at 2-meter level (T2m); sea-level pressure (PSLSLP); sea 

ice concentration (ICECSIC); precipitations (PREC) as the sum of large-scale and convective precipitation; geopotential height 

at 500 mb (Z500); and wind speed at 10-meter level (U10). The following teleconnection indices – North Atlantic Oscillation 120 

(NAO), Arctic Oscillation (AO) and Barents Oscillation (BO) were calculated from the model data using eofs.xarray module 

in Python. NAO is defined as EOF–1 of seasonal SLP anomalies for 20–80N, 80W–40E, BO as EOF–2 of seasonal SLP 

anomalies for 30–90N, 90W–90E, and AO as EOF–1 of seasonal geopotential anomalies for 20–90N. 

Correlations with and without the effect of teleconnection indices were analyzedanalysed. For that purpose, partial correlations 

between atmospheric variables with the controlling impact of the teleconnection index were calculated. 125 

For the testing area (TA), we chose a region around the Baltic Sea (50–65N, 10–40E). For the Arctic, we looked at the area 

above 50Nnorth of 60N. We chose 7seven important areas (IA) in the Arctic, where the correlations with TA were stronger, 
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to analyzeanalyse the relationships between regions in the Arctic and TA (FigureFig. 1, Table 1). Initially, we also looked also 

at the Chukchi Sea and Canada Basin regions, but allthe correlations between climate parameters between TA and these 

regions' correlations with TAregions were clearly weaker than with the remaining regions. 130 

 

 

Figure 1: Important areas (IA, coloured areas) in the Arctic and test area (TA, black rectangle). 

 

Table 1. Important Areasareas (IA) 135 

 Area   Lat 1 Lat 2 Lon1 Lon 2 Mask 

1 Central Arctic  85 90 0 360 No 

2 Greenland  60 85 297 340 Land 

3 West-Greenland  60 77 295 315 Sea 
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4 East-Greenland  60 75 315 340 Sea 140 

5 Svalbard   75 82 10 30 No 

6 Kara Sea  66 80 60 100 Sea 

7 Laptev Sea  66 80 100 170 Sea 

 

We assessed the control simulation to reveal statistically significant seasonal correlations between TA and the Arctic region. 145 

For control simulation 1800-year long time-series, all correlations stronger than ±0.046 are statistically significant at the 

confidence level of 95 %. To analyzeanalyse the strength and shape changes in teleconnections transformations during climate 

change, we looked at 20-year periods of the ensemble simulation from 1980 to 2100. For every ensemble simulation, 20-year 

long periods with 40 ensemble members (in a total of 800 events), all correlations stronger than ±0.069 are statistically 

significant at the confidence level of 95%. This paper only looks at correlations stronger than ±0.1, as %. In order to make the 150 

connections clearer, we do not show weaker correlations are supposedly not important.than ±0.1, though they were still 

statistically significant. For control simulation, this gives a confidence level of 99.998 %, while for ensemble simulations of 

20-year -long series, the confidence level is 99.5 %. Still, the relationship shown by the correlations may not be causal,; there 

can be indirect connections, and we cannot rule out model internal feedback-generated correlations. 

For understanding correlation maps, the first correlation parameter marks always the TA areal average, and the second one is 155 

from the Arctic. We also calculated correlations between TA and IA areal seasonal averages. We computed correlations with 

IAIA's previous month's averages to investigate the Arctic region's capability to forecast TA seasonal averages. 

Ridge regression (Saleh et al., 2019) is a multiple-regression method developed for cases with a strong correlation between 

input parameters. We used the Ridge regression method to estimate IA-s collective forecasting capability, using the module 

sklearn.linear_model in Python with complexity parameter alpha = 1.0. 160 

3 Results 

3.1 Stationary spatial correlations of climatic variables 

The climatic variables of separate areas are usually dependent, but correlations in space depend highlythe strength of the 

correlation depends on the distance and climaticconcrete variables. In addition to natural spatial correlations between climatic 

variables within near distances, also correlations emerge within longer distances. To reveal stationary connections between 165 

remote regions, we used CESM-LE 1800 year-long stationary control run. This model run is very stable without significant 

trends, as the radiative forcing conditions were constantly at the year 1850 level during the whole period. 

We found significant correlations between several variables between the Baltic Sea testing area (TA; shown with the rectangle 

in our Figures) and different Arctic areas. The most robust results were found for 2-meter temperature (T2m):: the negative 

correlation between TA and the Greenland area is R < –0.6 in winter and only slightly weaker in spring and autumn (FigureFig. 170 

2, row 1).  
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Figure 2: The 2-meter temperature (T2m) seasonal correlations between the testing area (black rectangle) and surrounding areas 
according to the CESM-LE 1800-year control run. The second row shows the partial correlation with the controlling factor NAO. 175 

 

The summer is more influenced by local circulations, and remote correlations are weak. Most of these correlations are related 

to the NAO index – the same partial correlation with the controlling factor NAO has values in the Greenland area in winter 

weaker than –0.2 (FigureFig. 2, row 2) and in spring and autumn mostly weaker than –0.3. Teleconnections with TA that are 

not controlled by the NAO index are strongest at the Atlantic Ocean east to Iceland, but the correlation strength exceeds 0.3 180 

only in spring and autumn. The AO index effect is similar to the NAO index, with a slightly weaker impact in the Iceland 

region but stronger in Siberia (not shown). The BO index effect was clearly lower than that of NAO and AO (not shown). The 

volume of physics-based analysis of these correlations does not fit in this paper, some methods and ideas can be found in Luo 

et al. (2016). TA parameters correlations with Z500 or U10 were weaker than with T2m, SIC and PREC and were not included 

in the following analysis. 185 
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Table 2. Seasonal correlations of control run 1800 years-long data between areal averages of testing area (TA, rows) and important 
area (IA, columns) parameters. The first column is the correlation between the parameter in TA and its estimation using Ridge 190 
regression over all parameters in IA-s. All shown correlations are statistically significant at the 95 % confidence level. For each TA 
parameter in each IA-s, the strongest correlation is highlighted in bold. 

  

Corr
el Central Arctic Greenland West-Greenland East-Greenland Svalbard Kara Sea Laptev Sea 

Ridg
e 

PSLSL
P T2m 

ICECSI
C 

PSLSL
P T2m 

ICECSI
C 

PSLSL
P T2m 

ICECSI
C 

PSLSL
P T2m 

ICECSI
C 

PSLSL
P T2m 

ICECSI
C 

PSLSL
P T2m 

ICECSI
C 

PSLSL
P T2m 

ICECSI
C 

MA
M 

T
2m

 (
T

A
) 

0.68 -0.42   0.05 -0.49 
-
0.55 0.36 -0.39 

-
0.51 0.14 -0.52 

-
0.49 0.33 -0.54 0.07 -0.07 -0.41 0.43 -0.15 -0.38 0.39 -0.27 

JJA 0.54 -0.31   -0.13 -0.25 
-
0.17 0.13 -0.18 

-
0.21 0.17 -0.28 -0.1   -0.29 0.23 -0.29 -0.15 

-
0.12 0.06 -0.17 0.19 -0.16 

SON 0.59 -0.21 
-
0.09   -0.28 

-
0.47 0.16 -0.15 

-
0.38 0.14 -0.34 

-
0.41 0.08 -0.42 0.09 -0.13 -0.13 0.19     0.06   

DJF 0.8 -0.47 -0.2 0.29 -0.58 
-
0.65 0.28 -0.46 

-
0.61 0.21 -0.61 

-
0.57 0.23 -0.68 

-
0.07   -0.52 0.47 -0.28 -0.37 0.2 -0.31 

MA
M 

P
SL

SL
P

 (
T

A
) 0.51   0.11   -0.09 0.16 -0.07 -0.11   0.08 -0.07 0.28 -0.13 0.08 0.31 -0.22 0.21 

-
0.08   0.17     

JJA 0.47 -0.19 
-
0.06 -0.06 -0.24 

-
0.24 0.06 -0.16 

-
0.19   -0.27 

-
0.17   -0.28 0.09 -0.07   0.05   0.09 0.13 -0.05 

SON 0.6 -0.08     -0.31 0.08 0.08 -0.3 
-
0.14 0.12 -0.31 0.28     0.25 -0.1 0.08 

-
0.12       -0.07 

DJF 0.66 0.1 0.13 -0.23 0.12 0.39 -0.12 0.07 0.21   0.15 0.47 -0.15 0.28 0.29 -0.17 0.31 
-
0.19 0.07 0.18     

MA
M 

P
R

E
C

 (
T

A
) 

0.47 0.12     0.28 0.05   0.28 0.22 -0.12 0.27 
-
0.11 0.06 0.13 

-
0.23 0.18         

-
0.08 0.08 

JJA 0.53 0.22     0.35 0.26 -0.12 0.28 0.27 -0.13 0.37 0.16   0.37 
-
0.12 0.12 0.22 

-
0.09     

-
0.17 0.07 

SON 0.56 0.16     0.39 0.02 -0.1 0.37 0.2 -0.15 0.38 
-
0.16   0.19 

-
0.15 0.07 0.11 0.07   0.1   0.06 

DJF 0.59 -0.06 
-
0.07 0.17   

-
0.31 0.09   

-
0.14 -0.05 -0.07 

-
0.41 0.13 -0.19 

-
0.22 0.15 -0.19 0.2   -0.12   0.06 

 

To generalizegeneralise the results, we divided the Arctic region into important areas (IA, FigureFig. 1) and calculated 

correlations between IA and TA seasonal averages (Table 2). 195 

The strongest correlations for IA-s are between T2m in TA and PSLSLP in Svalbard, and seasonally, the correlation was 

strongest in winter (R = –0.68). Meanwhile, correlations with Svalbard T2m and ICECSIC are much weaker with |R| < 0.31 

in all seasons. TA T2m correlations with the Greenland region IA-s PSLSLP are comparable to Svalbard, but correlations with 

T2m are much stronger. The correlations between T2m values in the Greenland region in winter and spring are –0.65 ≤ R ≤ – 

0.49 and in autumn –0.47 ≤ R ≤ –0.38. 200 

Correlations between TA and IA-s parameters are the weakest in summer, where the strongest correlations are R = 0.37 

between PREC in TA and PSLSLP in both East Greenland and Svalbard. Correlations in summer between T2m in TA and 

PSLSLP are even weaker, with the strongest correlation R = –0.31 in the Central Arctic. ICECSIC in IA-s has generally weaker 

correlations with TA parameters than PSLSLP or T2m. 

Central Arctic parameters correlation with TA is stronger than 0.4 only between TA T2m and Central Arctic PSLSLP in winter 205 

and spring. Laptev Sea parameters correlations with TA parameters were weaker than in other IA-s, with a correlation stronger 

than |R| > 0.3 occurring with TA T2m only in spring and winter. 

To estimate IA-s collective forecasting capability, we calculated the correlation between the parameter in TA and its Ridge 

regression estimation (Table 2, first column). All IA-s seasonal PSLSLP, T2m and ICECSIC values were used for the Ridge 

regression estimation. The correlation between T2m in TA and its Ridge regression estimation varies from 0.54 in summer to 210 

0.8 in winter. The correlation between PSLSLP in TA and its Ridge regression estimation is from 0.47 in summer to 0.66 in 

winter. The correlation between PREC in TA and its Ridge regression estimation is from 0.47 in spring to 0.59 in winter. When 
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examining As correlation square is the coefficientmeasure of determination R2the proportion of variance explained, then 0.82 

= 64 % of T2m variability in TA in winter can be explained by PSLSLP, T2m and ICECSIC variability in Arctic IA-s. The 

weakest connection with the Arctic is TA PSLSLP in summer and PREC in spring, with R2 = 0.472 = 22 %. 215 

Local correlations (at the same spot, no figures shown) are necessary to better understand teleconnections between different 

parameters. The abovementioned strong correlation between T2m in the Greenland region and TA can be connected through 

local relationships with other parameters. There is a robust local connection between T2m and ICECSIC, especially in the 

areas of ice margin (R~–0.9). ICECThe SIC correlation between TA and the Greenland region reaches R = –0.4; the correlation 

between T2m at TA and ICECSIC in the Greenland region reaches R = 0.5. 220 

The local correlation between ICECSIC and U10 is mostly strongly negative (strength up to –0.8, not shown), especially in 

the regions where ICECSIC is lower than 0.8. No significant local correlation exists between ICECSIC and PSLSLP in the 

Greenland Sea (not shown).. 

3.2 Spatial correlations of climatic variables during 2020 – –2100 

To analyzeanalyse how teleconnections are modified by climate change, we investigated the differences between 20-year 225 

periods and the control run. Depending on the variable, the correlation might change its spatial pattern and value between 

different 20-year periods. The correlations between the following variables (the temperature at 2-meter levelwere analysed: 

T2m; sea-level pressure PSL and sea ice concentration ICEC; precipitations, SLP, SIC, PREC; geopotential height at 500 mb 

, and Z500) were analyzed.. To get statistically reliablesignificant results, we used for every 20-year period all 40 ensemble 

members, so we had ina total of 800 values for each period. Most of the correlations did not show significant changes in 20-230 

year periods from the control run, including the most emphasizedemphasised correlation between T2m in TA and the Arctic 

region. 

However, there are some statistically significant changes in correlations between T2m in the TA and ICECSIC in the Arctic. 

Positive correlations between T2m in the TA and ICECSIC in the North Pole regionwinter (DJF) show simultaneously a 

remarkable weakening in winter (DJF) after 2020. At the same time, the positive correlation strengthens significantlythe North 235 

Pole region but a significant strengthening in the Davis Strait and Hudson Bay region.  (Fig. 3).  
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Figure 3: The correlation in DJF between 2-meter temperature (T2m) in the testing area (black box) and sea ice concentration (SIC) 
in the control run and 20-year periods from ensemble simulations at the period 2020–2100. 240 

 

The strong positive correlation in the Davis Strait is also remarkable in spring (MAM), but it does not strengthen as much as 

in winter (not shown). The correlation in winter in the region between Greenland and Iceland weakens. The negative correlation 

between T2m and ICECSIC in the control run in the coastal areas of Siberia fades awayRussia becomes negligible after 2040, 

except in the Barents Sea, where it strengthens. A positive correlation is found in the East Siberian Sea in 2080–2100 (Fig. 3), 245 

supposedly connected with the decrease in the SIC (Fig. 4). 

 

In regions of changing correlations, the average ICECSIC in winter will be lessening in the Barents Sea, Hudson Bay and 

between Greenland and Iceland (FigureFig. 4). ICECSIC in the North Pole region and coastal areas of Siberia eastward of the 

Barents Sea do not decrease in winter. 250 
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Figure 4: The difference of sea ice concentration (SIC) 20-year average in DJF from the control run average (first column) at the 
20-year long periods of 2020–2100. 

 255 

3.3 Lagged correlations 

We are interested in factors driving variations in the Baltic Sea region and whether prior conditions may provide predictive 

capability. Given this, we studied the connections between earlier months (November for DJF, etc) average month values of 

different parameters in the Arctic region and seasonal values of TA conditions. The strongest correlations were between spring 

(MAM) T2m in TA and the previous month's (February) average T2m and PSLSLP (Fig. 5). The correlation values were –260 

0.22 in Svalbard and Greenland regions; correlations between other parameters showed a weaker correlation (|R|<0.2). 

Analogous correlations during other seasons were weaker. We used Ridge regression to determine the predictive capability of 

all previous months' average PSLSLP, T2m and ICECSIC in all IA-s to TA next seasonal condition. Using Ridge regression 

did not improve the predictability much – the strongest correlation was R = 0.30 for T2m in MAM. Thus, even for the best 

case, the previous month's average values over the Arctic describe less than 10 % of the variance of next season's TA average 265 

climate state variance. 

 



 

12 
 

 

Figure 5: Lagged correlation between spring (MAM) mean 2-meter temperature (T2m) in TA and IA-s monthly means of 1) T2m 
(left); 2) sea level pressure (SLP, middle); and 3) sea ice concentration (SIC, right). On the x-axis are the monthly means in IA-s. All 270 
correlations stronger than ±0.046 are statistically significant at the confidence level of 95 %. 

 

We focused on the testing area and searched for information at which rate the Arctic region climate parameters are statistically 

connected with incoming parameters in the testing area. It turned out that quite common areFor several variables, the 

connection also occasionsworked contrariwise, where the values of the testing area variables can give information about the 275 

value of the Arctic region variables. For example, the spring average T2m in TA has R > 0.35 with ICECSIC in June at 

Greenland and East-Greenland. Stronger lagged correlations from TA to the Arctic can be explained by different averaging 

intervals – the monthly average in the Arctic has a lower influence on the next seasonal average in the TA than the TA seasonal 

average to the following month's average in the Arctic. 

4 Conclusion and Discussiondiscussion 280 

The advantage of this study is the length of the stationary 1800-year long CESM-LE self-consistent control database, which 

also reveals relations with a weaker strength (correlations stronger than ±0.046 are statistically significant at the confidence 

level of 95 %). CESM-LE 40-member ensemble forecast until 2100 allows us to investigate how relationships may change in 

the changing climate. The most important teleconnections for the testing area are T2m, PSLSLP and ICECSIC in regions 

around Greenland and Svalbard (FigureFig. 1, Table 1). For a long time, it has been recognizedOur results confirmed that ice 285 

conditions in the Greenland region might be connectedis the most influential of all Arctic regions on teleconnection to several 

variables in Europe (Hildebrandsson 1914, Wiese 1924, Schell 1956, etc.). Our results did notthe Baltic region (as also found 

by Zhuo et al., 2023) but didn't confirm the old hypothesis by Hildebrandsson (1914) that the mean winter conditions over 

Europe depend on the summer sea ice extent in the Greenland Sea. Lagged(Hildebrandsson 1914). The lagged correlation 
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between summer ICECSIC in the Greenland Sea did not significantly correlate with any primary TA parameter in the following 290 

winter. It has to be considered that our testing area is only part of the area Hildebrandsson investigated. 

As far as we know, the first attempt to reveal the teleconnections between the Baltic Sea region and the Arctic was made by 

our workgroup in 2017 (Jakobson et al., 2017). It was based on NCEP-CFSR, and ERA-Interim reanalyses models for the 

period 1979 – –2015. Differences between the model parameters and different periods from the CESM-LE ensemble 

complicated the comparison with the present study. The comparablecomparison of T2m in the present study and temperature 295 

at the 1000 hPa level in the study made in 2017 showed a different extent in the Greenland region but similar negative 

correlation strength in winter. In the present study, spring and autumn showed a much stronger correlation in much wider 

regions around Greenland. Summer showed a very weak correlation in both studies, probably due to the more 

emphasizedemphasised local circulation. 

In investigating the influence of climatic parameters of the Arctic region on the testing area, we have to consider also the local 300 

correlations. Our results from the 1800-year long CESM-LE ensemble confirmed a strong (R~–0.9) local connection between 

T2m and ICECSIC, as found in many other studies (e.g. Olonscheck et al., 2019; Vihma et al., 2014; Outten and Esau, 2012). 

Our results also confirm the strong negative local correlation between ICECSIC and U10 in the ice margin regions (strength 

up to –0.8), as shown in Jakobson et al. (2019). The negative correlation between SIC and W10 originates from the reduction 

of both stratification and aerodynamic surface roughness with a reduction of SIC (Vavrus and Alkama, 2022; Jakobson et al., 305 

2019). Many scientists have found a lower PSLSLP over the shrunk ice areas (Cassano et al., 2013; Alexander et al., 2004; 

Deser et al., 2000; Agnew, 1993), suggesting increased surface heating as a possible cause. Although Deser et al. (2000) found 

that mean PSLSLP has decreased over the retracted ice margin in the Greenland Sea (according to 1958–97 reanalysis 

products), our results did not show a significant correlation between ICECSIC and PSLSLP in the Greenland Sea region during 

any season. According to Agnew (1993), the reason why the correlation is not present in the Greenland Sea may be due to the 310 

important role that ice export through Fram Strait and ocean currents play in determining ice extent in this region. 

According to Chen et al. (2013), Barents Oscillation (BO) is through meridional flow and zonal wind anomalies related to 

natural variability (the variation that humans do not cause) of Arctic surface air temperature (SAT) variability.through 

meridional flow and zonal wind anomalies (Chen et al., 2013). Our T2m–T2m correlation pattern in winter (FigureFig. 2) was 

similar to the BO winter pattern. We tested the BO index influence on correlations between Arctic and TA, using partial 315 

correlation. The BO index effect was insignificant or more negligible than the NAO and AO index influence on all parameters 

we checked in all seasons. NAO and AO index had the largest impact in winter. In summer, the local effects are more dominant, 

and climate indexesindices influence is weaker. 

We also aimed to reveal the ongoing climate change, especially AA's influence on teleconnections between TA and the Arctic 

until the year 2100. Most of the correlations of 20-year periods did not show remarkable differences from the control run. 320 

Changes in the TA T2m correlations with ICECSIC in the Arctic in the areas with decreasing ICEC concur with negative 

trends in ICECSIC and positive trends in T2m in TA. Changes in the correlations in winter with regions with high and stable 

ICECSIC values are hard to suspect to have any direct physical basis. The strongest correlation between TA and Arctic region 
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parameters was T2m in TA and T2m in the Greenland region (Table 2). This correlation is constant up to 2100, opposite to 

(not shown). Sun et al. (2016), who) declared that the "Warm Arctic, Cold Continents" regime is transient and becoming 325 

increasingly unlikely as the climate continues to warm. There seems to be a discrepancy between these two results, but it is 

not necessary. A strong negative correlation in winter means that warmer than average Arctic concur with colder than average 

Baltic Sea region; it does not exclude that both regions' climate can continue to warm simultaneously. 

To generalizegeneralise separate Arctic regions' statistical connections with the TA, we used The Ridge regression. PSLSLP, 

T2m, and ICECSIC variability in Arctic IA-s can explain from 22 % of spring PREC to 64 % of winter T2m variability in TA. 330 

AClimate indices can explain a substantial amount of it can be explained by climate indices. The previous month's IA-s 

averages forecasting capacity for TA seasonal average is much weaker – TA spring T2m has the highest coefficient of 

determination R2 = 9 % with the Ridge regression estimation. Thus, we have to conclude that the use ofusing Arctic climate 

data could not improve the Baltic Sea region's weather forecasting. 

In conclusion – the Baltic Sea region climate has strong teleconnections with the Arctic climate; the strongest connections are 335 

with the Svalbard and Greenland region. There is high seasonality in the teleconnections, with the strongest correlations in 

winter and the weakest correlations in summer, when the local meteorological factors are stronger. The majority of 

teleconnections in winter and spring can be explained by climate indexes NAO and AO. 

By the end of the 21st century, the Arctic ice concentration haswill significantly decreaseddecrease. There will also be slight 

changes in the teleconnection locations and strength. Still, the general teleconnections pattern between the Arctic and the Baltic 340 

Sea region will not change during the 21st-century climate change. 

The most important Arctic factors influencing the Baltic Sea are T2m and PSLSLP, and the most important Arctic regions are 

Greenland and Svalbard, but the mechanisms for these teleconnections remainedremain unknown. We have to agree with 

Overland et al. (2016) that there are no simple cause-and-effect pathways in the Arctic and mid-latitude weather and climate 

linkages. 345 
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Figure 3. The correlation in DJF between 2-meter temperature (T2m) in the testing area (black box) and ice concentration (ICEC) 
in the control run and 20-year periods from ensemble simulations at the period 2020 – 2100. 600 

 

 

Figure 4. The difference of ice concentration (ICEC) 20-year average in DJF from the control run average (first column) at the 20-
year long periods of 2020 – 2100. 

 605 
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Figure 5. Lagged correlation between spring (MAM) mean 2-meter temperature (T2m) in TA and IA-s monthly means of 1) 

T2m (left); 2) pressure at sea level (PSL, middle); and 3) ice fraction (ICEC, right). On the x-axis are the monthly means in 

IA-s. All correlations stronger than ±0.046 are statistically significant at the confidence level of 95%. 


