Supplementary Materials for "Extreme Weather exacerbates Ozone Pollution in the Pearl River Delta, China: Role of Natural Processes"

Nan Wang¹, Hongyue Wang², Xin Huang³, Xi Chen⁴, Xiaopu Lyu^{5*}, Yu

Zou⁶, Tao Deng⁶, Tingyuan Li⁷, Fumo Yang^{1*}

¹College of Carbon Neutrality Future Technology, Sichuan University, Sichuan, China ²Department of Atmospheric Science, China University of Geosciences, Wuhan, 430078, China

³School of Atmospheric Science, Nanjing University, Nanjing, China

⁴Institute of Mass Spectrometry and Atmospheric Environment, Guangdong

Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, PR China

⁵Department of Geography, Hong Kong Baptist University, Hong Kong, 000000,

China

⁶Institute of Tropical and Marine Meteorology, China Meteorological Administration (CMA), Guangzhou, China

⁷Guangdong Ecological Meteorological Center, Guangzhou, China Correspondence to xiaopu_lyu@hkbu.edu.hk and fmyang@scu.edu.cn

Supporting Information

Supporting Information includes 12 pages, 9 figures and 4 tables

SI Figures S1-S9, p3-p10

SI Tables S1-S4, p11-p12

Figure S1 Validation of the stepwise regression model

Monthly Comparison

Figure S2 Comparisons of CAM-Chem simulated O3 and satellite retrieved O3 from AIRS. (a) and (b) distribution of monthly averaged O3 levels at 300hpa; (c) and (d) distribution of 300 hpa O3 levels on Sep. 15 2022 (illustrating the STE event); (e) and (f) same as (c) and (d) but at 700 hpa.

Figure S3 Comparisons of the CAM-Chem performance with surface monitrong O3 concentrations (MBE stands for mean bias error and RMSE stands for root mean square error).

Figure S4 Historical variation of monthly average daily-maximum temperature in PRD in September from 1999 to 2022

Figure S5 Synoptic weather from September 13 to September 16 2022

Figure S6 LPDM simulated 48h retroplume (footprint residence time) showing transport pathways of air masses impacting PRD

Figure S7 Evidence illustrating STE O₃ intrusion on September 13, 2022. (a) Spatial distribution of potential vorticity (PV) at 300hPa over China (The blue solid line indicates the dynamical tropopause of 2PVU, 1 PVU= 10^{-6} m² s⁻¹ K kg⁻¹); (b-e) The distribution of O₃ concentration (at 300 hPa), specific humidity (at 300 hPa, SH), geopotential height (at 500 hPa, Gph), vertical velocity (at 500 hPa, Omega), and O₃ concentration (at 700 hPa), respectively. All the data were identified based on ERA5 database.

Figure S8 Same as Fig S7 but on September 15

Figure S9 Same as Fig S7 but on September 16

	Parameter	Manufacture	model	resolution
	O ₃	Thermo Scientific	49i-D1NAA	5min
	NOx	Thermo Scientific	42i-DNMSDAA	5min
	CO	Thermo Scientific	48i-DNSAA	5min
	SO_2	Thermo Scientific	43i-DNSAA	5min
_	VOC	AMA, Germany	GC5000-FID	1h

Table S1 Introduction of monitoring instruments used in this work

Table S2 Configuration and settings of WRF-CMAQ modeling system

Item	Scheme		
Grid resolution	12×12 km		
Initial/boundary	WRF: NCEP FNL reanalysis data		
conditions	CMAQ: Mother domain (36k×36km grid resolution)		
Microphysics	WRF single-moment 5-class microphysics		
Short-wave radiation	Goddard		
Long-Wave radiation	RRTM		
WRF nudging	Yes		
Boundary Layer	ACM2		
Gas-phase Chemistry	CB05		
Aerosol option	AERO5		
Dry deposition	M3DRY		
Anthropogenic emissions	MEIC		
Natural emissions	MEGAN		

Variables	O ₃ (ppb)*	NO ₂ (ppb)*
MB	-8.08	1.76
NME	-0.28	0.11
RMSE	27.74	9.42
IOA	0.74	0.72

Table S3 WRF-CMAQ Model performance of O₃, and NO₂ in Guangzhou

*The WRF-CMAQ simulated O₃ and NO₂ were validated with observed O₃ and NO₂ in Guangzhou using statistical metrics (MB stands for mean bias, NME stands for normalized mean bias, RMSE stands for root mean square error and IOA stands for index of agreement)

Table S4 The recorded tropical cyclones influencing PRD in September 2022

Name	Start time	End time	Max intensity
Hinnamnor	Aug 27	Sept 8	SuperTY*
Muifa	Sept 6	Sept 16	STY ^{**}
Nanmadol	Sept 12	Sept 20	SuperTY
Noru	Sept 21	Sept 29	SuperTY

*SuperTY refers to super typhoon

**STY refers to severe typhoon. The classification was based on China Grade of tropical cyclones (GB/T 19201-2006)