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Abstract.  

Lava fountains at Etna volcano are spectacular eruptive events characterized by powerful jets that expel hot mixtures of solid 

particles and volcanic gases reaching easily stratospheric heights. Ash dispersal and fall-out of solid particles affect the 

inhabited areas, often causing hazards both to infrastructures and to air and vehicular traffic. 

We focus on the extraordinary intense and frequent eruptive activity at Etna in the period December 2020 - February 2022, 10 

when more than 60 lava fountain events occurred with various ejected magma volume, lava fountain height and duration. 

Differences among the events are also imprinted in tiny ground deformation caught by strain signals recorded concurrently 

with the lava fountain events reflecting a strict relationship with their evolution. To characterize this variability, which denotes 

changes in the eruption style, we clustered the lava fountain events using the k-means algorithm applied on the strain signal. 

A novel procedure was developed to ensure a high-quality clustering process and obtain robust results. The analysis identified 15 

four groups of strain variations which stand out for their amplitude, duration and time derivative of the signal. The temporal 

distribution of the clusters highlighted transition in different types of the eruptions revealing thus the importance of clustering 

the strain variations for monitoring the volcano activity and evaluating the associated hazards.  

 

1 Introduction 20 

In the last decade, lava fountains represented a typical eruptive style at the Etna volcano (i.e. Calvari et al., 2018; Andronico 

et al., 2021). These eruptive events are powerful jets that can expel hot mixtures of solid particles and volcanic gases to heights 

ranging from tens to several hundred meters (Fig. 1a). The ash dispersal and fall-out deposits of the solid particles, known as 

tephra, cause critical hazards to civil infrastructures and to aviation, frequently provoking the temporary closure of southern 

Italy airports. The characterization of such eruptive events is thus fundamental for both monitoring the volcano activity and 25 

evaluating the associated hazards. 

At Etna, lava fountains produce short-term and small deformations of the ground (Bonaccorso and Calvari, 2017; Bonaccorso 

et al., 2013b; Bonaccorso et al., 2016; Bonaccorso et al., 2021) that are well-captured by the Sacks-Evertson dilatometer (Fig. 

1b; Sacks et al., 1971), a widely employed geophysical instrument to study ground deformation processes associated with 
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volcano unrest (Amoruso et al., 2015; Bonaccorso et al., 2012; Bonaccorso et al., 2020; Linde and Sacks, 1995; Linde et al., 30 

2016; Linde et al., 1993; Voight et al., 2006). This dilatometer is particularly appropriate to monitor lava fountains since it 

measures the volumetric strain within a very wide frequency range (10-7 to >20 Hz) and with the highest resolution (10-10 to 

10-11) achievable among geophysical instruments (i.e. NASEM, 2017; Roeloffs and Linde, 2007). Other geodetic techniques 

such as GPS and InSAR are unable to detect the deformations associated with lava fountains because of their lower accuracy 

(GPS > 0.5 cm) or lower frequency sampling (InSAR periodic passages). These technical characteristics make the strain 35 

measurements fundamental for monitoring explosive events, especially when images from surveillance cameras do not allow 

the event detection because of poor visibility (Carleo et al. 2022b; Calvari and Nunnari, 2022).  

From December 2020 to February 2022, Etna underwent an intense eruptive activity with more than 60 lava fountains from 

the South East Crater (Calvari and Nunnari, 2022). A variability in terms of duration, degree of explosiveness and portion of 

effusive flows, has been observed (Calvari and Nunnari, 2022; Calvari et al., 2022), implying a different degree of the hazard 40 

associated with these eruptive events. Indeed, the onset and the dynamic of the lava fountain is usually a gradual growing 

process, starting from weak Strombolian activity, continuing with transitional explosive activity, and eventually leading to 

sustained eruptive columns. The intensity and the duration of these three main phases are not always the same and characterize 

the temporal evolution of the episodes. A preliminary inspection on the strain signal recorded during the lava fountains reveals 

a similar pattern for all the events and a strict relationship with their temporal evolution (Bonaccorso et al., 2021; Calvari et 45 

al., 2021) allowing tracing the waxing and waning of each episode and marking the onset and the end of the eruptions. On 

average, but not systematically, some differences arise in terms of amplitude and duration of the strain signal. For example, 

the lava fountains occurring in February – April 2021 were characterized by strain changes with high amplitudes (hundreds of 

nstrain) and temporal evolutions ranging from tens of minutes to 8-9 hours. Conversely, the strain changes accompanying the 

eruptions in May – June 2021 were lower in amplitude (tens of nstrain) and developed in intervals from 1 hour to less than 4 50 

hours (Fig. 2).  

In the recent past, attempts to classify the lava fountains at Etna have been made manually by the experts by comparing 

different geophysical and volcanological data. Andronico et al. (2021) manually found different eruptive styles at the Etna 

volcano on the basis of volcanological observations. Calvari et al. (2022) analysed three lava fountain episodes that occurred 

in 2021 with a multidisciplinary approach and gave insights into the different eruptive styles. Manual classification is time 55 

consuming since it involves a huge amount of data analysis and it is prone to subjective biases. With the aim of avoiding a 

classification biased by experts’ belief, we investigate whether an objective cluster analysis on instrumental dataset could help 

in discovering group of events with similar characteristics. Clustering analyses on monitoring signals have already been 

performed in volcanology (Cirillo et al. 2022; Corradino et al., 2021; Langer et al., 2009; Nunnari, 2021; Romano et al., 2022; 

Unglert et al., 2016) but never applied on the strainmeter data for clustering eruptive events. 60 

Here, we made use of clustering techniques applied on the strain variations recorded concurrently with the eruptive episodes 

from December 2020 to February 2022 in order to derive the key features that characterize the eruptive process and distinguish 

the events. In particular, we applied the k-means clustering algorithm, a widely employed unsupervised machine learning 
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technique to solve clustering problems in several domains (Lloyd, 1982; MacQueen, 1967). One of the drawbacks of such 

algorithm is that the optimal number of the clusters and also the optimal set of key features which lead to a high-quality 65 

clustering are not known a priori. We developed a procedure to appropriately identify the features and the number of clusters 

which ensure high cohesion and separation. Moreover, since the clustering solution could depend on the initial position of the 

barycentre of the clusters (centroids) chosen to start the algorithm (Fränti and Sieranoja, 2019), we also investigated the 

influence of the initial position of the centroids on the k-means performance by comparing different initialization techniques. 

Lastly, we discuss the implications that this result entails in the assessment of volcanic activity and the associated eruptive 70 

style. 

 

 
Figure 1: (a) Lava fountain occurring on 23 October 2021 (photo from INGV internal report n° 43/2021). (b) Location of the borehole 

strainmeter stations installed at the Etna volcano. The coordinates system is WGS 84 UTM 33S.  75 

2 Strain changes during the Etna lava fountains in 2020-2022 

The December 2020 - February 2022 Etna eruptive activity was extraordinarily intense. It started with four lava fountains from 

13 December 2020 to 16 January 2021 (period Pi). Successively, a first lava fountain sequence of 17 events took place up to 

1 April 2021, with an average frequency of 0.39 events/day (sequence S1). After 49 days of repose, Etna volcano reawakened 

and a second lava fountain sequence of 34 episodes occurred till 10 August 2021, with a frequency of about 0.42 events/day 80 

(S2). Then, the eruptive activity diminished with 5 events occurring from 10 August 2021 to the end of February 2022 (Pf). 

The borehole strainmeter network, operating at Etna since 2011 (Bonaccorso et al., 2016; Fig. 1b), was fundamental in 

investigating the dynamics of the eruptions (Bonaccorso et al., 2021) and monitoring the eruptive events in near real-time for 

volcanic surveillance (Carleo et al., 2022b). In this study, we focus on the measurements recorded by the DRUV station, which 

is located quite far from the summit craters, at ~11 km, and installed in a massive rock layer (at ~180 m depth) guaranteeing 85 

high-efficiency in transferring deformation from the rock to the sensor. The strainmeter was calibrated with three different 

techniques (Bonaccorso et al., 2013a; Bonaccorso et al., 2016; Currenti et al., 2017) that confirmed its high sensitivity (~10-
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10). The DRUV strain signal was filtered from the disturbing effects of both the Earth tides and the barometric pressure to 

highlight small strain variations related to the volcano activity (Currenti and Bonaccorso, 2019). We used the procedure 

proposed by Carleo et al. (2022a) to highlight tiny volcano-related strain changes up to 10-10 for time scales less than 1 day. 90 

Furthermore, we removed the long-term drift component from the strain signal due to the effect of both the curing of the 

cement and the relaxation of the drilled hole (Canitano et al., 2021). 
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Figure 2: The detrended recorded (a) and filtered (b) DRUV signals in the study period. Negative step-like strain variations, clearly 95 

detected in the filtered signal, occurred concurrently with the lava fountain episodes. The lava fountains on 29 August and 23 October 

2021 were not recorded due to technical problems. The eruptive activity is divided into 4 periods: Pi (4 events), S1 (17 events), S2 (34 

events) and Pf (5 events). The black arrow in (b) indicates the lava fountain events occurred on 01 July – 02 July 2021. The zoom of 

the filtered strain signal (c) and the related strain rate signal (d) during such event are shown as an example. ti and tf indicate the 

onset and the end of the strain variations. At the beginning of the lava fountain (I), expansion rate at the sensor gradually increases. 100 

In the central part (II), strain rate rapidly reaches its absolute maximum value. The expansion gradually diminishes up to a 

minimum and the strain rate reaches the pre-event level during the final part of the eruptive episode (III).   

 

In Fig. 2a and 2b, both the recorded and the filtered DRUV signals are presented for the period December 2020 – February 

2022. The near-real time detection algorithm developed by Carleo et al. (2022b) allowed the automatic detection of 58 strain 105 

variations, all related to the eruptive episodes in the analysed period. Such strain variations are the response to the 

decompression of the magmatic source feeding the lava fountain (Bonaccorso et al., 2013; Bonaccorso et al., 2016; Bonaccorso 

and Calvari, 2017; Bonaccorso et al., 2021; Currenti and Bonaccorso 2019). The time derivative of the filtered strain signal 

(strain rate signal), like other high-precision geodetic signals (Kozono et al, 2013; Ichihara, 2016), is expected to be related to 

the rate of magma chamber decompression and, thus to the speed of magma ascent (Hreinsdóttir et al., 2014). The Etna lava 110 

fountains grow gradually starting from Strombolian activity and evolving towards a sustained eruptive column. As already 

found in previous studies (Calvari et al., 2021; Calvari et al., 2022), the evolution of a lava fountain is well represented by both 

the strain and the strain rate signals. In Fig. 2c and 2d, the filtered strain and the filtered strain rate signals during the lava 

fountain on 1 – 2 July 2021 are shown as an example of the recorded variations.  Typically, the strain and the strain rate signals 

show a sigmoid and a V shape, respectively. The different lava fountain phases can be described by dividing the signals in 115 

three main parts: in the initial part (Part I), when the Strombolian activity takes place, both the strain and the strain rate 

gradually decrease with time showing an elbow with a downward concavity; in the central part (Part II), the lava fountaining 

is persistent and the strain rate changes its slope abruptly reaching the absolute maximum value; in the final part (Part III), the 

eruptive activity starts declining and the strain rate inverts its trend reaching the pre-event level. To identify the beginning of 

the event, we focused on the strain rate signal. We first evaluated the amplitude of the background noise of the strain rate 120 

signal, σ, as the mean standard deviation in a moving time window of 3 hours. We found a σ value of 0.93 nstrain/h. The 

beginning of the variation ti was chosen concurrently with the time when the beginning of the deformation rate can be clearly 

identified, namely when the strain rate exhibits a value of one order of magnitude higher than σ. Therefore, we selected ti as 

the time when the strain rate reaches -10 nstrain/h. The end of the variation tf was set when the sign of the strain rate becomes 

positive. 125 

We characterized each lava fountain event by extracting the main features from both the strain and strain rate signals in the 

period ti and tf. In particular, we focused on Parts I and II of the signals. The extracted features transform each eruptive event 

into a strain data point in the feature domain which forms a dataset that is going to be clustered. 
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3 Clustering the strain variations with the k-means algorithm 

The k-means is an unsupervised machine learning algorithm (Lloyd, 1982; MacQueen, 1967) designed to partition data points 130 

into clusters by minimizing the sum of the squared distances (SSE) between every data point and its nearest cluster mean 

(centroid). The data points are formed by a set of features which should be chosen by following two rules: the features should 

identify the data point uniquely and the smaller the feature vector, the better (Langer et al., 2009).  

The k-means algorithm starts by selecting the initial centroid position in the feature domain. Each data point is assigned to the 

k-th cluster represented by the closest centroid to the data point. The initial positions of the centroids, which represent the 135 

barycentre of the related clusters, change on the basis of the assigned data points. Iteratively, new centroid positions are re-

estimated and the data point are eventually re-assigned to the closest cluster. The algorithm stops until centroids no longer 

move. The k-means algorithm has excellent fine-tuning capabilities (Fränti and Sieranoja, 2019). However, the goodness of 

the clustering solution depends on the choice of both the number of cluster k and the set of feature C to cluster the data. 

Moreover, the results are influenced by the centroid positions chosen to start the algorithm.  140 

To overcome the drawbacks of k-means, we tried different clustering solutions by varying the inputs of the algorithm, namely 

the number of clusters, the employed set of features and the initial centroid positions. The quality of the different clustering 

solutions was estimated by employing two methods: the “Elbow method” and the Silhouette value (Sil; Kaufman and 

Rousseeuw, 2009). The Elbow method is one of the most widely used techniques to find the optimal number of clusters. It is 

a method based on the SSE value: the less the SSE of the clustering solution, the better the clustering. Normally, the higher 145 

the number of the clusters, the lower the SSE. In a k - SSE plot, the elbow of the curve represents the optimal number of 

clusters for the analysed dataset and corresponds to the most effective clustering solution in terms of k and SSE.  

The Silhouette value (Sil) for a single data point is defined as: 

𝑆𝑖𝑙 =
𝑏−𝑎

𝑚𝑎𝑥{𝑏,𝑎}
 ,   (1)

  150 

where b is the average distance between the datum and the data of another cluster minimized over the clusters, and a is the 

average distance between the datum and the data within the cluster to which the datum belongs. The Sil value is a measure of 

how much a data point is cohesive within its own cluster (distance a) and, at the same time, separated from the other clusters 

(distance b). It ranges from -1 to 1, where -1 corresponds to a completely wrong clustering while 1 to a perfect clustering. 

We designed an iterative procedure to find the optimal number of cluster, kopt, and the optimal set of features, Copt, that allow 155 

for a high quality clustering solution for our dataset of strain variations. We analysed different clustering solutions (C, k) by 

varying the number of clusters k and the involved subset of feature C and evaluated the quality of the clustering by using both 

the Elbow method and the Silhouette value. The initial centroid position was chosen randomly. To have a more robust result, 

for each analysed clustering solution, we performed n = 104 repetitions of the k-means algorithm, setting different random 

initial seeds and keeping fixed the other inputs. Then, we chose the solution with the lowest SSE value. The robustness of the 160 

choice of n and of the initial random position of the centroids in providing reliable results was also proven.  
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The sets of the features used in the iterations of the procedure are extracted from a set of 15 potential features X = {X1, X2, …, 

Xj} (Table 1), where j represents the j-th feature of X, which were taken into account to describe the strain variations in the 

part I and II of both the strain and the strain rate signals. Since the features are in different units and ranges, we normalized 

them in the range [0 1] to ensure a balanced weight in the clustering process (Langer et al., 2020). The procedure is organized 165 

in the following steps: 

1) create the most basic subset of features Cstart composed by the amplitude A and the duration D of the strain variation;  

2) if it is the first iteration of the procedure, the starting subset of feature related to the i-th iteration, Ci, is Cstart otherwise 

Ci-1,j_max, defined at point 7);  

3) consider a new set of features Xleft = X - Ci. Create all the possible subsets of features, Ci,j, composed by Ci plus one 170 

feature from Xleft; 

4) cluster the dataset using Ci and all the Ci,j; 

5) find the optimal number of clusters for the i-th iteration of the procedure, kopt,i, by comparing all the k – SSE curves; 

6) at kopt,i, calculate the Silhouette values averaged over the clusters related to Ci and all the Ci,j, Sila,Ci and Sila,Ci,j 

respectively; 175 

Table 1: Features considered in the cluster analysis 

Symbol Description 

A Amplitude of the strain change from ti to tf 

D Duration of the strain change from ti to tf 

Srmin Minimum strain rate from ti to tf 

SA0-75 Amplitude from ti to the instant when 75% of Srmin is reached 

SA0-100 Amplitude from ti to the instant when 100% of Srmin is reached 

SD0-75 Length of the time window from ti to the instant when 75% of Srmin is reached 

SD0-100 Length of the time window from ti to the instant when 100% of Srmin is reached 

SS0-75 Average strain rate from ti to the instant when 75% of Srmin is reached 

SS0-100 Average strain rate from ti to the instant when 100% of Srmin is reached 

AS0-50 Average strain rate from ti to the instant when 50% of A is reached 

AS0-75 Average strain rate from ti to the instant when 75% of A is reached 

ASrmin,0-50 Minimum strain rate from ti to the instant when 50% of A is reached 

ASrmin,0-75 Minimum strain rate from ti to the instant when 75% of A is reached 

AD0-50 Length of the time window from ti to the instant when 50% of A is reached 

AD0-75 Length of the time window from ti to the instant when 75% of A is reached 
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7) if max{Sila,Ci,j} > Sila,Ci then define a new subset of features Ci,,j_max composed by Ci plus the feature that provides 

max{Sila,Ci,j}; repeat from point 2) to point 7) updating Ci with Ci,j_max. If max{Sila,Ci,j} < Sila,Ci, stop the procedure and 

take Ci as the optimal set of features, Copt, and kopt,i as the optimal number of clusters, kopt.  180 

The influence of the initialization was investigated by comparing two seeding techniques: the random centroid (RC) position 

(MacQueen, 1967) and the method proposed by Yedla et al. (2010) (YC). The former method is the most popular and consists 

of locating the centroids randomly in the range of variation of the features, namely, in our case, between 0 and 1. The latter 

method involves first sorting data points in accordance with their distance from the origin and, then, partitioning them in k 

clusters with equal number of sorted points. Yedla et al. (2010) proposed to locate the initial centroid position in the barycentre 185 

of each cluster. We introduced more randomness by locating the centroids randomly in each cluster. The tests were performed 

using the optimal set of features Copt found with the iterative procedure previously described. To investigate the importance of 

performing repetitions of the k-means algorithm choosing different initial centroid positions, we repeated the algorithm n 

times, with n in the range [10 106]. 

4 Clustering results 190 

We used the k-means algorithm to characterize the 2020-2022 lava fountain events using the associated strain changes. The 

iterative procedure provided the optimal number of clusters, kopt, and the optimal subset of features, Copt, that allow for a high 

quality clustering of the strain changes. The procedure converged in two steps whose results are presented in Fig. 3. Fig 3a 

shows the k – SSE curves related to all the subsets of features analysed in the last step of the procedure. It can be seen that the 

elbow of most of the curves is at k = 4 which can thus be selected as the optimal number of clusters, kopt, for our dataset of 195 

strain variations. By exploring the Silhouette values of all the analysed clustering solution at kopt, the optimal subset of features 

Copt is selected in correspondence of the maximum Sil value. The optimal subset is composed by three elements: (i) the 

amplitude A and (ii) the duration D of the strain variation and (iii) the average strain rate in the time window ranging from ti 

to the time when the strain rate reaches the 75% of the minimum strain rate, SS0-75. The Sil value of the (Copt, kopt) solution, 

obtained averaging among all the single Sil values associated with the clustered data points, is very high and equal to 0.83 200 

confirming the goodness of the clustering. Fig. 3b shows the single Sil values, presented on the x-axis, of all the data points 

grouped in the related cluster indicated by the y-axis, for the optimal clustering solution (Copt, kopt), where kopt = 4.  
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Figure 3: (a) k – SSE curves related to all the clustering solutions (C, k) analysed in the last iteration when the procedure converged. 205 

(b) Silhouette values related to the optimal clustering solution (Copt, kopt), where kopt = 4, for all the data points grouped in the related 

cluster indicated by the y-axis. 
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Figure 4: k – SSE and k – Sil plots obtained using the optimal set of features Copt. The SSE and Silhouette values are presented 210 

considering the random initial centroid (RC) positions and centroids located as proposed by Yedla et al. (2010) (YC). The results 

obtained performing a number of repetitions n equal to 10 (a and b), 104 (c and d) and 106 (e and f) are shown as an example.  
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Table 2: Coordinates of the cluster centroids and mode values of the optimal features for each cluster. 215 

Clusters 
Amplitude A [nstrain] Duration D [hour] Strain rate SS0-75 [nstrain/h] 

Centroid coordinate Mode Centroid coordinate Mode Centroid coordinate Mode 

Cluster 1 50.0 51.5 1.15 0.98 32.5 20.4 

Cluster 2 177.5 181.8 1.92 1.78 59.1 40.5 

Cluster 3 232.7 225.3 0.83 0.98 187.6 181.4 

Cluster 4 116.8 116.7 9.25 8.94 12.3 20.4 

 

The Sil values are all positives indicating a good clustering for all the strain data points. Moreover, the Silhouette values 

averaged among the points within the same cluster are very high and equal to 0.90, 0.71, 0.82 and 0.99 for Cluster 1, Cluster 

2, Cluster 3 and Cluster 4, respectively. These values denote both a high cohesion in the same cluster and a high separation 

among the clusters.  220 

The results of the analysis on the influence of the initial centroid position and on the number of repetitions of the k-means 

algorithm are summarized in Fig. 4. We reported the k – SSE and the k – Sil plots related to the optimal subset of feature Copt 

and initialized with the random centroid position (RC) and the YC method for a number of repetitions, n, equal to 10, 104 and 

106. The k – SSE plots for the different values of n (Fig. 4a,c,e) showed notably overlapped curves, indicating that the analysed 

initial centroid positions do not affect the shape of the curves and, hence, the choice of kopt. In Fig. 4b,d,f the number of cluster 225 

k is plotted against the Sil value for n equal to 10, 104 and 106, respectively. The figures highlight that a high number of 

repetitions is necessary to make the clustering independent from the analysed initialization techniques. Indeed, the k – Sil 

curves overlap only with n values higher than 104 and up to k = 4 which corresponds to kopt. Therefore, the outputs of the 

procedure, kopt and Copt, obtained with n = 104, can be considered reliable. 

In Fig. 5a, the strain changes are presented in the Copt feature domain, where a very good clustering can also be observed 230 

visually confirming the reliability of the procedure in providing high-quality results. The frequency distribution of the values 

of the Copt features, A, D and SS0-75, are presented in Fig. 5b-d, respectively. The mode values of the frequency distributions of 

the Copt features are presented together with their centroids locations in Table 2. The analysis of the distributions of the cluster 

features allows us to identify the main characteristics of the events. Cluster 1 gathers lava fountain episodes of low strain 

amplitude and duration and characterized by small initial strain rate changes. All the features of Cluster 1 are located in the 235 

lower range of variations. Cluster 2 groups events whose features cover more the intermediate part of their ranges. Cluster 3 

gathers events characterized by high deformations evolving in a very short time window, less than 1 hour. Furthermore, the 

mode value of the SS0-75 feature for Cluster 3 (181.4 nstrain/h; Table 2) is 4.5 to 9 times higher than for the others. Cluster 4 

groups the episodes with the highest mode value for the duration feature D, which is 5 to 11 times higher with respect to the 

ones related to the other clusters. The mode of the SS0-75 feature in the Cluster 4 shows the lowest value among the clusters. In 240 
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Fig. 5e, all the strain changes are plotted by aligning them with their initial time ti for a further visual comparison among the 

clustered variations. 

 

Figure 5: (a) All the clustered strain data points plotted as circles in the domain of the optimal features: amplitude A, duration D 

and strain rate SS0-75. Stars represent the cluster centroids. Frequency distribution of A (b), D (c) and SS0-75 (d) for the different 245 
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clusters. Mode values of the distributions are reported in Table 2. In (e), all the clustered strain variations are aligned with the initial 

time ti. 

 

 
Figure 6: Temporal distribution of the clusters in the analysed time period plotted over the filtered DRUV signal. 250 

5 Discussions and Conclusion 

For the first time, an automated clustering analysis was applied on strainmeter data to provide an objective quantitative measure 

of similarities and differences between explosive eruptive episodes. In particular, we studied the lava fountain events that 

occurred at Etna in the period December 2020 - February 2022. The number of lava fountains recognized by different 

volcanologists in the studied period may slightly vary. However, the discrepancy in the counting of the events is due to very 255 

few weak events whose classification in a proper category was not simple for the experts themselves. Moreover, when the 

eruptive activity undergoes several phases of waning and waxing, often close-in-time events could be counted separately or as 

one (Calvari et al., 2022; Andronico et al., 2021). Despite these slight discrepancies among the experts’ evaluations, at most 

the total number of lava fountains in the analysed period is 66 (Calvari et al. 2022). We used the protocol proposed by Carleo 

et al. (2022b) to automatically identify the eruptive events from the filtered strain signal. By testing the protocol on the long 260 

period from 20 November 2011 to 31 March 2021, Carleo et al. (2022b) obtained a true positive rate close to 1 which means 

that for each lava fountain event a strain change is associated. Thanks to this high ratio we can discern, select and study the 

signals recorded concurrently with almost all the different explosive events. Using this protocol in the period December 2020- 

February 2022, we recognized 58 lava fountain events from the strain signal. Out of the 8 not recognized events, 2 were not 
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recorded by the DRUV strainmeter because of malfunctioning of the station and the other 6 are or very weak or counted as 265 

sub-events.  

In the studied period, the eruptive events showed a high variability in their characteristics (Andronico et al., 2021; Calvari and 

Nunnari, 2022; Calvari et al., 2022) that is also noticed in the strain variations. Using the extraordinary 2020-2022 strain 

dataset, we investigated the use of an automated clustering analysis that allowed us to methodically identify three key features 

(A, D and SS0-75) that grouped the events in four distinct and coherent clusters. In particular, all the three features are required 270 

to distinguish Cluster 1 and 2 from the other clusters, while SS0-75 and D sharply identify Cluster 3 and Cluster 4, respectively.  

The clustered events do not occur randomly but are grouped over time as shown in Fig. 6, denoting a transition in the eruptive 

dynamic. It turns out that the clusters have an intimate relationship with the volcanic eruption style. In the period Pi+S1 

(December 2020 – March 2021), Andronico et al. (2021) manually identified three eruption styles classified as transitional 

activity (TA), sustained lava fountain (LF) and large-scale lava fountain (LSLF). Comparing the strain clustering and the 275 

eruption style classification reported in Andronico et al. (2021), we observed an interesting correspondence. The first events 

recorded in Pi and classified as TA are all grouped in Cluster 1, except the 21 December lava fountain which falls into Cluster 

2. Then, in the S1 lava fountain sequence, the eruptive style turned into LF with episodic LSLF events. As well, the clustering 

highlights a transition, grouping the S1 events in Cluster 2 and 3. The three events, that belong to Cluster 3, are all classified 

as LSLF in Andronico et al. (2021) and occurred closely in time on 16 February, 28 February and 7 March 2021. At the end 280 

of S1 on 23 March and 31 March, two LF events occurred that the k-means algorithm does not associate to the Cluster 2 and 

requires the further Cluster 4, well separated from Cluster 2. After a period of repose, the new sequence S2 restarted in May 

2021 with events belonging to Cluster 1 that slowly over time turned into events belonging to Cluster 2. This transition is in 

agreement with a variation in the parameters estimated from the thermal camera images (Calvari and Nunnari, 2022). The 

comparison between the manual classification and the automatic clustering highlights that the strain signal is able to recognize 285 

and identify four classes of lava fountains, of which three are closely linked to the manual classification and a further one 

defining a distinctive class. In particular: Cluster 1 groups events that induce small deformation of the volcano edifice; Cluster 

2 includes lava fountains to which, on average, higher deformation, higher strain rate and higher duration, with respect to 

Cluster 1, can be associated; Cluster 3 groups fast events (duration less than 1 hour) with high strain rate. The Cluster 4 

identifies two events well separated from the others since they were characterized by very long duration and very low rate 290 

values. The peculiarity of the events in Cluster 4 was also noticed in previous studies. Calvari and Nunnari (2022) analysed 

thermal camera images and estimated the duration of all the 2020-2022 episodes with three different approaches. A close 

inspection of their results show that the duration of the two events of Cluster 4 exhibits the largest values. Andronico et al. 

(2021) retrieved seismic parameters from volcanic tremor signals recorded during the eruptive episodes. The parameters related 

to the events of Cluster 4 show values higher than the average value estimated for the lava fountain events of the studied 295 

period. 

The identification of clusters of lava fountain events has a strong impact in the alert system in place to manage volcanic crises. 

During lava fountains which emit huge amounts of tephra in the atmosphere, knowledge on intensity and duration of the events 
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has important implication, especially for civil aviation. The distinctive features of the clusters could be attributed to the degree 

of explosiveness and portion of effusive flows accompanying the event, that define the eruptive style.  Changes in the eruptive 300 

style is regulated by many interrelated magmatic properties and processes (Cassidy et al., 2018). The exsolved and dissolved 

gas content, overpressure at depth, magma composition and conduit geometry of the plumbing system, all control the speed at 

which magma ascends, decompresses and outgasses, and hence, determine eruptive style and evolution.  

Our findings demonstrate that the clustering analysis on the strain signal may contribute in characterizing the different eruptive 

styles at Etna volcano and in highlighting persistence and transition in the eruptive style providing indirect insights into the 305 

evolution of the magmatic plumbing system. The obtained results are very promising and encourage us to extend it to 

investigate other volcanic processes that engender strain changes such as magmatic recharges and intrusions. A joint analysis, 

together with other geophysical, geochemical, volcanological and petrophysical data, may help in confirming the evolution of 

the magmatic system conditions and in identifying the most likely magmatic properties and/or processes that regulate the 

volcano activity at Etna.  310 
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