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Abstract.  

Explosive eruption events have been clustered by machine learning techniques applied on strain signal recorded by high-

precision borehole strainmeters. We focus on the extraordinary intense and frequent eruptive activity at Etna in the period 

December 2020 ï February 2022 when more than 60 lava fountains occurred. We apply the k-means algorithm on the 

associated strain variations which are representative of the eruptive dynamics. Lava fountains at Etna volcano are spectacular 10 

eruptive events characterized by powerful jets that expel hot mixtures of solid particles and volcanic gases reaching easily 

stratospheric heights. Ash dispersal and fall-out of solid particles affect the inhabited areas, often causing hazards both to 

infrastructures and to air and vehicular traffic.  

We focus on the extraordinary intense and frequent eruptive activity at Etna in the period December 2020 - February 2022, 

when more than 60 lava fountain events occurred with various ejected magma volume, lava fountain height, duration. 15 

Differences among the events are also imprinted in tiny ground deformation caught by strain signals recorded concurrently 

with the lava fountain events reflecting a strict relationship with their evolution. To characterize this variability, which denotes 

changes in the eruption style, we clustered the lava fountain events using the k-means algorithm applied on the strain signal. 

A novel procedure was developed to ensure a high-quality clustering process and obtain robust results. The analysis identified 

four distinct groups of strain variations which stand out forcharacterize the events in terms of their amplitude, and duration 20 

and time derivative of the signal. The temporal distribution of the clusters provides useful insightshighlighted transition in the 

different types of the eruptions revealing thus the importance of clustering the strain variations for monitoring the volcano 

activity and evaluating the associated hazards. into the evolution of the volcano activity and reveals transitions in the eruptive 

style.  
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1 Introduction  

In the last decade, lava fountains represented a typical eruptive style at the Etna volcano (i.e., Calvari et al., 2018; Andronico 

et al., 2021). These eruptive events are powerful jets that can expel hot mixtures of solid particles and volcanic gases to heights 
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ranging from tens to several hundred meters (Fig. 1a). The ash dispersal and fall-out deposits of the solid particles, known as 30 

tephra, cause critical hazards to civil infrastructures and to aviation, frequently provoking the temporary closure of southern 

Italy airports. The characterization of such eruptive events is thus fundamental for both monitoring the volcano activity and 

evaluating the associated hazards. 

At Etna, lava fountains events produce short-term and small deformations of the ground (Bonaccorso and Calvari, 2017; 

Bonaccorso et al., 2013b; Bonaccorso et al., 2016; Bonaccorso et al., 2021) that are well-captured by the Sacks-Evertson 35 

dilatometer (Fig. 1b; Sacks et al., 1971), a widely employed geophysical instrument to study ground deformation processes 

associated with volcano unrest (i.e. Amoruso et al., 2015; Bonaccorso et al., 2012; Bonaccorso et al., 2020; Linde and Sacks, 

1995; Linde et al., 2016; Linde et al., 1993; Voight et al., 2006). This dilatometer is particularly appropriate to monitor lava 

fountains since it measures the volumetric strain within a very wide frequency range (10-7 to >20 Hz) and with the highest 

resolution (10-10 to 10-11) achievable among geophysical instruments (i.e. NASEM, 2017; Roeloffs and Linde, 2007). Other 40 

geodetic techniques such as GPS and InSAR are unable to detect the deformations associated with lava fountains because of 

their lower accuracy (GPS > 0.5 cm) or lower frequency sampling (InSAR periodic passages). These technical characteristics 

make the strain measurements fundamental for monitoring lava fountainsexplosive events, especially when images from 

surveillance cameras do not allow the event detection because of poor visibility (Carleo et al. 2022b; Calvari and Nunnari, 

2022).  45 

From December 2020 to February 2022, Etna underwent an intense eruptive activity with more than 60 lava fountains events 

from the South East Crater (Calvari and Nunnari, 2022). A variability in terms of duration, degree of explosiveness and portion 

of effusive flows, has been observed (Calvari and Nunnari, 2022; Calvari et al., 2022), implying a different degree of the 

hazard associated with these eruptive events. Indeed, the onset and the dynamic of the lava fountain is usually a gradual 

growing process, starting from weak Strombolian activity, continuing with transitional explosive activity, and eventually 50 

leading to sustained eruptive columns. The intensity and the duration of these three main phases are not always the same and 

characterize the temporal evolution of the episodes. A preliminary inspection on the strain signal recorded during the lava 

fountains reveals a similar pattern for all the events and a strict relationship with their temporal evolution (Bonaccorso et al., 

2021; Calvari et al., 2021) allowing tracing the waxing and waning of each episode and marking the onset and the end of the 

eruptions. On average, but not systematically, some differences arise in terms of amplitude and duration of the strain signal. 55 

For example, the lava fountains occurring in February ï April 2021 were characterized by strain changes with high amplitudes 

(hundreds of nstrain) and temporal evolutions ranging from tens of minutes to 8-9 hours. Conversely, the strain changes 

accompanying the eruptions in May ï June 2021 were lower in amplitude (tens of nstrain) and developed in intervals from 1 

hour to less than 4 hours (Fig. 2).  

In the recent past, attempts to classify the lava fountains at Etna have been made manually by the experts by comparing 60 

different geophysical and volcanological data (i.e. Andronico et al., 2021; Calvari et al., 2022). Andronico et al. (2021) 

manually found different eruptive styles at the Etna volcano on the basis of volcanological observations. Calvari et al. (2022) 

analysed three lava fountain episodes that occurred in 2021 with a multidisciplinary approach and gave insights into the 
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different eruptive styles. However, mManual classification is time consuming since it involves a huge amount of data analysis 

and it is prone to subjective biases. With the aim of avoiding a classification biased by expertsô belief, we investigate whether 65 

an objective cluster analysis on instrumental dataset could help in discovering group of events with similar characteristics. 

Clustering analyses on monitoring signals have already been performed in volcanology (Cirillo et al. 2022; Corradino et al., 

2021; Langer et al., 2009; Nunnari, 2021; Romano et al., 2022; Unglert et al., 2016) but never applied on the strainmeter data 

for clustering eruptive events.Clustering analyses of monitoring signals have already been performed in volcanology (Cirillo 

et al. 2022; Corradino et al., 2021; Langer et al., 2009; Nunnari, 2021; Romano et al., 2022; Unglert et al., 2016). 70 

Here, we made use of clustering techniques applied on the strain variations recorded concurrently with the eruptive episodes 

from December 2020 to February 2022 in order to derive the key features that characterize the eruptive process and distinguish 

the events. In particular, we applied the k-means methodclustering algorithm, a widely employed unsupervised machine 

learning algorithm technique to solve clustering problems in several domains (Lloyd, 1982; MacQueen, 1967). One of the 

drawbacks of such algorithm is that the optimal number of the clusters and also the optimal set of key features which lead to a 75 

high-quality clustering are not known a priori. We developed a procedure to appropriately identify the features and the number 

of clusters with which ensure high cohesion and separation. Moreover, since the clustering solution could depend on the initial 

position of the barycenterbarycentre of the clusters (centroids) chosen to start the algorithm (Fränti and Sieranoja, 2019), we 

also investigated the influence of the initial position of the centroids on the k-means performance by comparing different 

initialization techniques. Lastly, we discuss the implications that this result entails in the assessment of volcanic activity and 80 

the associated eruptive style. 
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Figure 1: (a) Lava fountain occurring on 23 October 2021 (photo from INGV internal report n° 43/2021). (ab) Location of the 

borehole strainmeter stations installed at the Etna volcano. The coordinates system is WGS 84 UTM 33S. (b) Lava fountain occurring 85 

on 23 October 2021 (photo from INGV internal report n° 43/2021). 

2 Strain changes during the Etna lava fountains in 2020-2022 

The December 2020 - February 2022 Etna eruptive activity was extraordinarily intense. It started with four lava fountains from 

13 December 2020 to 16 January 2021 (period Pi). Successively, a first lava fountain sequence of 17 events took place up to 

1 April 2021, with an average frequency of 0.39 events/day (sequence S1). After 49 days of repose, Etna volcano reawakened 90 

and a second lava fountain sequence of 34 episodes occurred till 10 August 2021, with a frequency of about 0.42 events/day 

(S2). Then, the eruptive activity diminished with 5 events occurring from 10 August 2021 to the end of February 2022 (Pf). 

The borehole strainmeter network, operating at Etna since 2011 (Bonaccorso et al., 2016; Fig. 1b), was fundamental in 

investigating the dynamics of the eruptions (Bonaccorso et al., 2021) and monitoring the eruptive events in near real-time for 

volcanic surveillance (Carleo et al., 2022b). In this study, we focus on the measurements recorded by the DRUV station, which 95 

is located quite far from the summit craters, at ~11 km, and installed in a massive rock layer (at ~180 m depth) guaranteeing 

high-efficiency in transferring deformation from the rock to the sensor. The strainmeter was calibrated with three different 

techniques (Bonaccorso et al., 2013a; Bonaccorso et al., 2016; Currenti et al., 2017) that confirmed its high sensitivity (~10-

10). The DRUV strain signal was filtered from the disturbing effects of both the Earth tides and the barometric pressure to 

highlight small strain variations related to the volcano activity (Currenti and Bonaccorso, 2019). We used the procedure 100 

proposed by Carleo et al. (2022a) to highlight tiny volcano-related strain changes up to 10-10 for time scales less than 1 day. 

Furthermore, we removed the long-term drift component from the strain signal due to the effect of both the curing of the 

cement and the relaxation of the drilled hole (Canitano et al., 2021). 
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  105 
Figure 2: The detrended recorded (a) and filtered (b) DRUV signals in the study period. Negative step-like strain variations, clearly 

detected in the filtered signal, occurred concurrently with the lava fountain episodes. The lava fountains on 29 August and 23 October 

2021 were not recorded due to technical problems. The eruptive activity is divided into 4 periods: Pi (4 events), S1 (17 events), S2 (34 

events) and Pf (5 events). The black arrow in (b) indicates the lava fountain events occurred on 01 July ï 02 July 2021. The zoom of 

the Tthe filtered strain signal (c) and the related strain rate signal (d) during the lava fountain on 01 July ï 02 July 2021such event 110 

are shown as an example. ti and tf indicate the onset and the end of the strain variations. At the beginning of the lava fountain (I), 
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expansion rate at the sensor gradually increases. In the central part (II), strain rate rapidly reaches its absolute maximum value. 

The expansion gradually diminishes up to a minimum and the strain rate reaches the pre-event level during the final part of the 

eruptive event episode (III).   

 115 

In Fig. 2a and 2b, both the recorded and the filtered DRUV signals are presented for the period December 2020 ï February 

2022. Each negative step-like strain variation, clearly visible in the filtered signal, happened concurrently with a lava fountain 

and correspond to rock expansion around the sensor. The recorded dilatation is the response to the decompression of the 

magmatic source feeding the lava fountain (Currenti and Bonaccorso, 2019). The near-real time detection algorithm developed 

by Carleo et al. (2022b) allowed the automatic detection of all the 58 strain variations, all related to the eruptive episodes in 120 

the analyzeanalysed period. Such strain variations are the response to the decompression of the magmatic source feeding the 

lava fountain (Bonaccorso et al., 2013; Bonaccorso et al., 2016; Bonaccorso and Calvari, 2017; Bonaccorso et al., 2021; 

Currenti and Bonaccorso 2019). The time derivative of the filtered strain signal (strain rate signal), like other high-precision 

geodetic signals (Kozono et al, 2013; Ichihara, 2016), is expected to be related to the rate of magma chamber decompression 

and, thus to the speed of magma ascent (Hreinsdóttir et al., 2014). The Etna lava fountains grow gradually starting from 125 

Strombolian activity and evolving towards a sustained eruptive column. As already found in previous studies (Calvari et al., 

2021; Calvari et al., 2022), the evolution of a lava fountain is well represented by both the strain and the strain rate signals. In 

Fig. 2c and 2d, the filtered strain signal and its time derivative (the filtered strain rate signal) s during the lava fountain on 1 ï 

2 July 2021 are shown as an example of the recorded strain variations. Typically, the strain and the strain rate signals show the 

strain and the strain rate signals show a sigmoid and a V shape Typically, the strain and the strain rate signals show a sigmoid 130 

and a V shape, respectively. The different lava fountain phases can be described by dividing the signals in three main parts, 

respectively, which can be described by separating the signals in three parts: in the initial part (Part I), when the Strombolian 

activity takes place, both the strain and the strain rate gradually decreases with time showing  and the strain signal shows an 

elbow with a downward concavity; in the central part (Part II) , the lava fountaining is persistent and the strain rate changes its 

slope abruptly reachesing the absolute maximum value; in the final part (Part III) , the eruptive activity starts declining and the 135 

strain rate inverts its trend reaching the pre-event level. We define the onset of the variation ti when the strain rate reaches the 

value of ï10 nstrain/h, while the end of the variation tf was set when the sign of the strain rate becomes positive. To identify 

the beginning of the event, we focused on the strain rate signal. We first evaluated the amplitude of the background noise of 

the strain rate signal, ů, as the mean standard deviation in a moving time window of 3 hours. We found a value of ů of 0.93 

nstrain/h. The beginning of the variation ti was chosen concurrently with the time when the beginning of the deformation rate 140 

can be clearly identified, namely when the strain rate exhibits a value of one order of magnitude higher than ů. Therefore, we 

selected ti as the time when the strain rate reaches -10 nstrain/h. The end of the variation tf was set when the sign of the strain 

rate becomes positive. 
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We characterized each lava fountain event by extracting the main features from both the strain and strain rate signals in the 

period ti and tf. In particular, we focused on pParts I and II of the signals. The extracted fFeaturess extraction transforms each 145 

eruptive event into a strain data point in the feature domain which forms a dataset that is going to be clustered. 

3 Clustering the strain variations with the k-means algorithm 

The k-means is an unsupervised machine learning algorithm (Lloyd, 1982; MacQueen, 1967) designed to partition data points 

into clusters by minimizing the sum of the squared distances (SSE) between every data point and its nearest cluster mean 

(centroid). The data points are formed by a set of features which should be chosen by following two rules: the features should 150 

identify the data point uniquely and the smaller the feature vector, the better (Langer et al., 2009).  

The k-means algorithm starts by selecting the initial centroid position in the feature domain. Each data point is assigned to the 

k-th cluster represented by the closest centroid to the data point. The initial positions of the centroids, which represent the 

barycentre of the related clusters, change on the basis of the assigned data points. Iteratively, new centroid positions are re-

estimated and the data point are eventually re-assigned to the closest cluster. The algorithm stops until centroids no longer 155 

move. The k-means algorithm has excellent fine-tuning capabilities (Fränti and Sieranoja, 2019). However, the goodness of 

the clustering solution depends on the choice of both the number of cluster k and the set of feature C to cluster the data. 

Moreover, the results are influenced by the centroid positions chosen to start the algorithm.  

To overcome the drawbacks of k-means, we tried different clustering solutions by varying the inputs of the algorithm, namely 

the number of clusters, the employed set of features and the initial centroid positions. The quality of the different clustering 160 

solutions was estimated by employing two methods: the ñElbow methodò and the Silhouette value (Sil; Kaufman and 

Rousseeuw, 2009). The Elbow method is one of the most widely used techniques to find the optimal number of clusters. It is 

a method based on the SSE value: the less the SSE of the clustering solution, the better the clustering. Normally, the higher 

the number of the clusters, the lower the SSE. In a k - SSE plot, the elbow of the curve represents the optimal number of 

clusters for the analysed dataset and corresponds to the most effective clustering solution in terms of k and SSE.  165 

The Silhouette value (Sil ) for a single data point is defined as: 

ὛὭὰ
ȟ

 ,   (1)

  

where b is the average distance between the datum and the data of another cluster minimized over the clusters, and a is the 

average distance between the datum and the data within the cluster to which the datum belongs. The Sil  value is a measure of 170 

how much a data point is cohesive within its own cluster (distance a) and, at the same time, separated from the other clusters 

(distance b). It ranges from -1 to 1, where -1 corresponds to a completely wrong clustering while 1 to an optimal clustering. 

We designed an iterative procedure to find the optimal number of cluster, kopt, and the optimal set of features, Copt, that allow 

for a high quality clustering solution for our dataset of strain variations. We analysed different clustering solutions (C, k) by 

varying the number of clusters k and the involved subset of feature C and evaluated the quality of the clustering by using both 175 
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the Elbow method and the Silhouette value. The initial centroid position was chosen randomly. To have a more robust result, 

for each analysed clustering solution, we performed n = 104 repetitions of the k-means algorithm, setting different random 

initial seeds and keeping fixed the other inputs. Then, we chose the solution with the lowest SSE value. The robustness of the 

choice of n and of the initial random position of the centroids in providing reliable results will be also proven.  

The sets of the features used in the iterations of the procedure are extracted from a set of 15 potential features X = {X1, X2, é, 180 

Xj}  (Table 1), where j represents the j-th feature of X, which were taken into account to describe the strain variations in the 

part I and II of both the strain and the strain rate signals. Since the features are in different units and ranges, we normalized 

them in the range [0 1] to ensure a balanced weight in the clustering process (Langer et al., 2020). The procedure is organized 

in the following steps: 

1) create the most basic subset of features Cstart composed by the amplitude A and the duration D of the strain variation;  185 

2) if it is the first iteration of the procedure, the starting subset of feature related to the i-th iteration, Ci, is Cstart otherwise 

Ci-1,j_max, defined at point 7);  

3) consider a new set of features Xleft = X - Ci. Create all the possible subsets of features, Ci,j, composed by Ci plus one 

feature from Xleft; 

4) cluster the dataset using Ci and all the Ci,j; 190 

5) find the optimal number of clusters for the i-th iteration of the procedure, kopt,i, by comparing all the k ï SSE curves; 

6) at kopt,i, calculate the Silhouette values averaged over the clusters related to Ci and all the Ci,j, Sila,Ci and Sila,Ci,j 

respectively; 

Table 1: Features considered in the cluster analysis 

Symbol Description 

A Amplitude of the strain change from ti to tf 

D Duration of the strain change from ti to tf 

Srmin Minimum strain rate from ti to tf 

SA0-75 Amplitude from ti to the instant when 75% of Srmin is reached 

SA0-100 Amplitude from ti to the instant when 100% of Srmin is reached 

SD0-75 Length of the time window from ti to the instant when 75% of Srmin is reached 

SD0-100 Length of the time window from ti to the instant when 100% of Srmin is reached 

SS0-75 Average strain rate from ti to the instant when 75% of Srmin is reached 

SS0-100 Average strain rate from ti to the instant when 100% of Srmin is reached 

AS0-50 Average strain rate from ti to the instant when 50% of A is reached 

AS0-75 Average strain rate from ti to the instant when 75% of A is reached 

ASrmin,0-50 Minimum strain rate from ti to the instant when 50% of A is reached 

ASrmin,0-75 Minimum strain rate from ti to the instant when 75% of A is reached 



10 

 

AD0-50 Length of the time window from ti to the instant when 50% of A is reached 

AD0-75 Length of the time window from ti to the instant when 75% of A is reached 

 195 

 

7) if max{Sila,Ci,j} > Sila,Ci then define a new subset of features Ci,,j_max composed by Ci plus the feature that provides 

max{Sila,Ci,j}; repeat from point 2) to point 7) updating Ci with Ci,j_max. If max{Sila,Ci,j} < Sil a,Ci, stop the procedure and 

take Ci as the optimal set of features, Copt, and kopt,i as the optimal number of clusters, kopt.  

The influence of the initialization was investigated by comparing two seeding techniques: the random centroid (RC) position 200 

(MacQueen, 1967) and the method proposed by Yelda et al. (2010) (YC). The former method is the most popular and consists 

of locating the centroids randomly in the range of variation of the features, namely, in our case, between 0 and 1. The latter 

method involves first sorting data points in accordance with their distance from the origin and, then, partitioning them in k 

clusters with equal number of sorted points. Yelda et al. (2010) proposed to locate the initial centroid position in the barycentre 

of each cluster. We introduced more randomness by locating the centroids randomly in each cluster. The tests were performed 205 

using the optimal set of features Copt found with the iterative procedure previously described. To investigate the importance of 

performing repetitions of the k-means algorithm choosing different initial centroid positions, we repeated the algorithm n 

times, with n in the range [10 106]. 

43 Clustering the lava fountain events through the related strain variations Clustering results 

We used the k-means algorithm to characterize the 2020-2022 lava fountain events using the associated strain changes. We 210 

varied the inputs of the algorithm, namely the k number of clusters, the employed set of features and the initial centroid 

positions. We analyzeanalysed the quality of the different clustering solutions by employing two methods, both described in 

Appendix A: the ñElbow methodò, based on the Sum-of-Squared Errors (SSE), and the Silhouette value (Sil; Kaufman and 

Rousseeuw, 2009). An iterative procedure (Appendix B) was developed to find the optimal number of clusters, kopt, and the 

optimal subset of features, Copt, from a set of 15 potential features (Table B1) whose values were previously normalized to 215 

warrant a balanced weight in the clustering process (Langer et al., 2020). We compared two different initialization techniques 

to evaluate the effects of the initial centroid position on the k-means performance: the random centroid (RC) position 

(MacQueen, 1967) and the method proposed by Yelda et al. (2010) (YC). We repeated the k-means clustering n times by 

varying the RC and the YC positions randomly and took the solution with the lowest SSE value. We tested the influence of 

different values of n for the quality of the clustering.  220 

The iterative procedure provided the optimal number of clusters, kopt, and the optimal subset of features, Copt, that allow for a 

high quality clustering of the strain changes. The procedure converged in two steps  and provided an The optimal subset of 

features is composed by three features: (i) the amplitude A and (ii) the duration D of the strain variation and (iii) the average 
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strain rate in the time window ranging from ti to the time when the strain rate reaches the 75% of the minimum strain rate, SS0-

75. The whose results are presented in Fig. 3B1. Fig 3a shows In the k ï SSE curves plot related to all the subsets of features 225 

analysed in the last step of the procedure.(Fig. B1a), It can be seen that the elbow of most of the curves is found at k = 4 which 

can thus be selected as the optimal number of clusters, kopt, for our dataset of strain variations, kopt. By exploring the Silhouette 

values of all the analysed clustering solution at kopt, the optimal subset of features Copt is selected in correspondence of the 

maximum Sil value. The optimal subset is composed by three elements: (i) the amplitude A and (ii) the duration D of the strain 

variation and (iii) the average strain rate in the time window ranging from ti to the time when the strain rate reaches the 75% 230 

of the minimum strain rate, SS0-75. The Sil value of the (Copt, kopt) solution, obtained averaging among all the single Sil values 

associated with the clustered data points, is very high and equal to 0.83 confirming the goodness of the clustering. Fig. 3b 

shows the single Sil values, presented on the x-axis, of all the data points grouped in the related cluster indicated by the y-axis, 

for the optimal clustering solution (Copt, kopt), where kopt = 4.  

 235 

 

Figure 3: (a) k ï SSE curves related to all the clustering solutions (C, k) analysed in the last iteration when the procedure converged. 

(b) Silhouette values related to the optimal clustering solution (Copt, kopt), where kopt = 4, for all the data points grouped in the related 

cluster indicated by the y-axis. 

 240 
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Figure 4: k ï SSE and k ï Sil plots obtained using the optimal set of features Copt. The SSE and Silhouette values are presented 

considering the random initial centroid (RC) positions and centroids located as proposed by Yelda et al. (2010) (YC). The results 

obtained performing a number of repetitions n equal to 10 (a and b), 104 (c and d) and 106 (e and f) are shown as an example.  

 245 
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Table 23: Coordinates of the cluster centroids and mode values of the optimal features for each cluster. 

Clusters 
Amplitude A [nstrain]  Duration D [hour]  Strain rate SS0-75 [nstrain/h]  

Centroid coordinate Mode Centroid coordinate Mode Centroid coordinate Mode 

Cluster 1 50.0 51.5 1.15 0.98 32.5 20.4 

Cluster 2 177.5 181.8 1.92 1.78 59.1 40.5 

Cluster 3 232.7 225.3 0.83 0.98 187.6 181.4 

Cluster 4 116.8 116.7 9.25 8.94 12.3 20.4 

 

The Sil values are all positives indicating a good clustering for all the strain data points. Moreover, the average Silhouette 

values averaged among the points within the same cluster for the four clusters are very high and equal to 0.90, 0.71, 0.82 and 250 

0.99 for Cluster 1, Cluster 2, Cluster 3 and Cluster 4, respectively. These values , denoteing both both a high cohesion in the 

same cluster and a high separation among the clusters (Text B1).  

The results of the analysis on the influence of the initial centroid position and on the number of repetitions of the k-means 

algorithm are summarized in Fig. 4B2. We reported the k ï SSE and the k ï Sil plots related to the optimal subset of feature 

Copt  and initialized with the random centroid position (RC) and the YC method for a number of repetitions, n, equal to 10, 104 255 

and 106. The k ï SSE plots for the different values of n (Fig. 4B2a,c,e) showed notably overlapped curves, indicating that the 

analyzeanalysed initial centroid positions do not affect the shape of the curves and, hence, the choice of kopt .can be easily 

identified at k = 4. In Fig. 4B2b,d,f the number of cluster k is plotted against the Sil value for n equal to 10, 104 and 106, 

respectively. The figures highlight that a high number of repetitions is necessary to make the clustering independent from the 

analyzeanalysed initialization techniques. Indeed, the k ï Sil curves overlap only with n values higher than 104 and up to k = 4 260 

which corresponds to kopt. Therefore, the outputs of the procedure, kopt and Copt, obtained with n = 104, can be considered 

reliable. The mode values of the frequency distributions of the Copt features are presented together with their centroids locations 

in Table 1.  

In Fig. 35a, the strain changes are presented in the Copt feature domain, where a. A very good clustering can also also be 

observed visually confirming the reliability of the procedure in providing high-quality results. The frequency distribution of 265 

the values of the Copt features, A, D and SS0-75, are presented in Fig. 53b-d, respectively. In Fig. 3e, all the strain changes are 

plotted by aligning them with their initial time ti for a further visual comparison. The mode values of the frequency distributions 

of the Copt features are presented together with their centroids locations in Table 2. The analysis of the distributions of the 

cluster features allows us to identify the main characteristics of the events. Cluster 1 gathers lava fountain episodes of low 

strain amplitude and duration and characterized by small initial strain rate changes. All the features of Cluster 1 are located in 270 

the lower range of variations. Cluster 2 groups events whose features cover more the intermediate part of their ranges. Cluster 

3 gathers events characterized by high deformations evolving in a very short time window, less than 1 hour. Furthermore, the 

mode value of the SS0-75 feature for Cluster 3 (181.4 nstrain/h; Table 1) is 4.5 to 9 times higher than for the others. Cluster 4 
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groups the episodes with the highest mode value for the duration feature D, which is 5 to 11 times higher with respect to the 

ones related to the other clusters. The mode of the SS0-75 feature in the Cluster 4 shows the lowest value among the clusters. In 275 

Fig. 5e, all the strain changes are plotted by aligning them with their initial time ti for a further visual comparison among the 

clustered variations. 
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Figure 53: (a) All the clustered strain data points plotted as circles in the domain of the optimal features: amplitude A, duration D 

and strain rate SS0-75. Stars represent the cluster centroids. Frequency distribution of A (b), D (c) and SS0-75 (d) for the different 280 

clusters. Mode values of the distributions are reported in Table 1. In (e), all the clustered strain variations are aligned with the initial 

time ti. 

 

 
Figure 46: Temporal distribution of the clusters in the analyzeanalysed time period plotted together with the filtered DRUV signal. 285 

45 Discussions and Conclusion 

For the first time, an automated clustering analysis was applied on strainmeter data to provide an objective quantitative measure 

of similarities and differences between explosive eruptive episodes. In particular, we studied the lava fountain events that 


