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Abstract.

yrzamic$ountains at Etna volcano are spectacular

eruptive events characterized by powejéib that expel hot mixtures of solid particles and volcanic gases reaching easily
stratospheric heights. Ash dispersal and-dall of solid particles affect the inhabited areas, often causing hazards both to
infrastructures and to air and vehicular tiaff

We focus on the extraordinary interesed frequent eruptive activity &tnain the periodDecember 2020 Felruary 2022

when more than 60 lava fountain everdscurredwith variousejected maga volume, lava fountain heightluration.
Differencesanong the eventare alsamprintedin tiny ground deformation caught by strain signa&sorded concurrently

with thelava fountairevensreflecing a strictrelationshipwith ther evolution To characterizenis variability, whichdenotes
changes in the eruption stylee clustered the lava fountain events using timeelans algorithm applied on the strain signal.

A novel procedure was developed to ensure a-igility clustering process and obtain rolmesults. The analysis identified

four distinetgroups ofstrain variationswhich stand out foeharacterize-the-evenits-terms-oftheir amplitude;and duration

and time derivative of theignal The temporal distribution of the clustersvides-usefubinsighitsghlightedtransition in the
different types othe eruptiors revealingthus the importancef clustering thestrainvariationsfor monitoringthe volcano

activity and evaluating the associated hazade

style.

1 Introduction

In the last decade, lava fountains represented a typical eruptive style at the Etna volcano (i.e., Calvari et al., 8aic&; Andr

et al., 2021). These eruptive events are powerful jets thabqeathot mixtures of solicharticles and volcanic gasesheights
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ranging from tens to several hundred metérs. 1a) The ash dispersal and falut deposits of the solid particles, known as
tephra, cause critical hazards to civil infrastructurestaralziation, frequently provoking the temporary closure of southern
Italy airports.The characterization of such eruptive eventhisfundamental for both monitoring the volcano activity and
evaluating the associated hazard

At Etna, lava fountaimeventsproduce shofterm and small deformations of the ground (BonaccarsbCalvari, 2017;
Bonaccorso et al., 2013b; Bonaccorso et al., 2016; Bonaccorso et al., 2021) that-aeptwedld by the Sacksvertson
dilatometer [fig. 1 Sacks et al., 1991a widely employed geophysical instrument to stgoyunddeformation processes
associated with volcano unrest (i.e. Amoruso et al., 2015; Bonaccorso et al., 2012; Bonaccorso et al., 2G2t] Sauits,
1995; Linde et al., 2016; Linde et al., 1993;iytt et al., 2006). Thiglilatometeris particularly appropriate to monitor lava
fountains since it measures the volumetric strainiwithvery wide frequency range (1o >20 Hz) and with the highest
resolution (16°to 10} achievable among geopligal instruments (i.e. NASEM, 2017; Roelofiad Linde, 2007). Other
geodetic techniques such as GPS and InSAR are unable to detect the deformations associated with lava fountains because
their lower accuracy (GPS > 0.5 cm) or lower frequency samgii8AR periodic passages). These technical characteristics
make thestrain measurements fundamental for monitoriaga—feuntainsxplosive evenisespecially when images from
surveillance cameras do not allow the event detection because of poor visitalityq et al. 2022b; Calvaand Nunnari,
2022).

From December 2020 to February 2022, Etna underwent an intense eruptive activity with more than 60 lavadeentain
from the South East Crater (CalvaridNunnari, 2022)A variability in terms of duation, degree of explosiveness and portion
of effusive flows, has been observ@galvariand Nunnari, 2022; Calvari et al., 2022nplying a different degree of the
hazard associated with these eruptive events. Indeed, the onset and the dynamic af fduntain is usually a gradual
growing process, starting frormweak Strombolian activity, continuing witlransitionalexplosive activity, and eventually
leading to sustained eruptive columns. The intensity and the duration of these three main phasesnagsrthe same and
characterize the temporal evolution of the episodeprefiminary inspection on the strain signal recorded during the lava
fountains reveals a similar pattern for all the events and a strict relationship with their temporalre{Bhniccorso et al.,
2021; Calvari et al., 2021) allowing tracing the waxing and waning of each episode and marking the onset and the end of the
eruptions. On average, but not systematically, some differences arise in terms of amplitude and duretitreaf gignal.

For example, the lava fountains occurring in Febriiakpril 2021 were characterized by strain changes with high amplitudes
(hundreds of nstrain) and temporal evolutions ranging from tens of minute® tw@rs. Conversely, the strainatctyes
accompanying the eruptions in Maylune 2021 were lower in amplitude (tens of nstrain) and developed in intervals from 1
hour to less than 4 houtSig. 2).

In the recent past, attempts to classify the lava fountains at Etna have been made marnialgxjpgrts by comparing
different geophysical and volcanological déta—Andronice—et-ak—2021—Calvari-et-al—2022ndronico et al. (2021
manually foun differenteruptivestylesatthe Etna volcanon the basis ofolcanological observatienCalvari et al. (2022)

analyse three lava fountain episodésat occurred m 2021 with a multidisciplinary approa@nd gaveinsights into the
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different eruptivestyles However-allanual classification is time consumiagce it involves a huge amount of datalysis
anditisprone to subjective biases. With the aim of whetleer di ng
an objective clusteanalysis on instrumental dataset could help in discovering group of events with similar characteristics.
Clustering analysesn monitoring signals have already been performed in volcanology (Cirillo et al. 2022; Corradino et al.,
2021; Langer et al., 280 Nunnari, 2021; Romano et al., 2022; Unglert et al., 2016) but never applied on the strainmeter data

for clustering eruptive evenGlustering-analyses-of-monitoring-signals-have-already-been-performed-in-voleanology (Cirillo

Here, we made use of clustering techniques applied on the strain variations recorded concurrently with the eruptive episode

from December 2020 to February 2022 inertbderive the key features that characterize the eruptive prasdstistinguish

the eventsln particular, we applied the-tkeansmetheod|ustering algorithma widely employed unsupervised machine

learningalgerithmtechniqueto solve clustering problems in several domains (Lloyd, 1982; MacQueen, 1967). One of the

drawbacks of such algorithm is that the optimal number of the clusters and also the optimal set of key features whéch lead to

high-quality clustering are not knovanpriori. We developed a procedure to appropriately identify the features and the number

of clustersaith-which ensurdiigh cohesion and separatidvioreover, since the clustering solution could depend on the initial

position of thebaryecentevarycentreof the clusters (centroids) chosen to start the algorithm (Faidtsieranoja, 2019), we

also investigated the influence of the initial position of the centroids on-theaks performance by comparing different

initialization techniques. Lastly, we disauthe implications that this result entails in the assessment of volcanic activity and

the associated eruptive style.
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Figure 1. (a) Lava fountain occurring on 23 October 2021 (photo from INGV internal report n® 43/2021)(ab) Location of the

borehole strainmeter stations installed at the Etna volcano. The coordinates system is WGS 84 UTMb3®)-Lava-fountain-oceurring
cp2e-Celebor 2000 Lobote popn MO intorpnl proor n 02000 1)

2 Strain changes during the Etna lava fountans in 20262022

The December 2020February 2022 Etna eruptive activity was extraordinarily intense. It started with four lava fountains from
13 December 2020 to 16 January 2021 (peFigdSuccessively, a first lava fountain sequence of 17 events took place up to
1 April 2021, with an average frequency of 0.39 events/day (seq@enddter 49 days of repose, Etna volcano reawakened
and a second lava fountain sequence of 34 episodegeddill 10 August 2021, with a frequency of about 0.42 events/day
(S2). Then, the eruptive activity diminished with 5 events occurring from 10 August 2021 to the end of FebruaRy)2022 (

The borehole strainmeter network, operating at Etna since 20dria¢Borso et al., 201&ig. 1b), was fundamental in
investigating the dynamics of the eruptions (Bonaccorso et al., 2021) and monitoring the eruptive events irtinearfoeal
volcanic surveillance (Carleo et al., 2022b). In this study, we focus angasurements recorded by the DRUV station, which

is located quite far from the summit craters, at ~11 km, and installed in a massive rock layer (at ~180 m depth) guaranteein
high-efficiency in transferring deformation from the rock to the sensor. Taesteter was calibrated with three different
techniques (Bonaccorso et al., 2013a; Bonaccorso et al., 2016; Currenti et al., 2017) that confirmed its high seritivity (~1
10, The DRUV strain signal was filtered from the disturbing effects of both thid Fides and the barometric pressure to
highlight small strain variations related to the volcano activity (Curr@mtiBonaccorso, 2019). We used the procedure
proposed by Carleo et al. (2022a) to highlight tiny voleeiated strain changes up todor time scales less than 1 day.
Furthermore, we removed the leteyrm drift component from the strain signal due to the effect of both the curing of the

cement and the relaxation of the drilled hole (Canitano et al., 2021).
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Figure 2: The detrendedrecorded (a) and filtered (b) DRUV signals in the study period. Negative stejke strain variations, clearly

detected in the filtered signal, occurred concurrently with the lava fountain episodes. The lava fountains on 29 August ai3d2ctober
2021 werenot recorded due to technical problems. The eruptive activity is divided into 4 period®; (4 events)S1 (17 events) S (34
events) andPs (5 events).The black arrow in (b) indicates thelava fountain events occurredon 01 Julyi 02 July 2021.The zoomof

110 the Fthe filtered strain signal (c) and the related strain rate signal (d) duringhe-lava-fountain-en-01-Julyi-02 July-202%uch event
are shown as an exampld; and tr indicate the onset and the end of the strain variations. At the beginning of the lava fountain (1),
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expansion rateat the sensorgradually increases. In the central part (ll), strain rate rapidly reaches its absolute maximum value.
The expansion graduallydiminishes up to a minimum and the strain rate reaches the preevent level during the final part of the
eruptive eventepisode(lll).

In Fig. 2a and 2b, both the recorded and the filtered DRUV signals are presantied period December 2020Februay

2022 Each-negative-stelike-strain-variation,clearly visible-in-the filtered-signal-happened-concurrenthywith-alavafountain

IbeNeareal time detection algorithm developed

by Carleo et al. (2022b) allowed the automatic detecticailahe 58 strain variationsall related tothe eruptive episodes in

the anralyzanalysd period.Such strain variations are the response to the decompression of the magmatic source feeding the
lava fountain Bonaccorso et al., 2013; Bonaccorso et al., 2016; Bonaccorso and Calvari, 2017; Bonaccorso et al., 2021;
Currenti and Boaccorso 2019)The time derivative of théltered strainsignal(strain rate signal), like othdigh-precision

geodetic signals (Kozono et al, 2013; Ichihara, 2016), is expected to be related to the rate of magma chamber decompressit
and, thus to the sed of magma ascef(itreinsdottir et al., 2014)The Etna lava fountains grograduallystaring from
Strombolian activity and evoivg towardsa sustained eruptive columAs already found in previous studies (Calvari et al.,

2021; Calvarkt al., 2022), the evolution of a lava fountain is well represented by both the strain and the strain ratinsignals.
Fig. 2c and 2d, the filtered strasignatandits-time-derivativethefiltered strain rate signals during the lava fountain onil

2 July 2021 are shown as an example of the recastladhvariations Fypically-the-strain-and-the-strain-rate-signals-stmv

ainand-the-strainratsignab showa-sigmeidanda-\-shapdypically, the strairand the strain rate signalkow asigmoid

and a Vshape respectively The differentlava fountainphases can be described by dividing the signatlsreemain parts
respectively—which-can-be-deseribed-by separating-the-sighals-in-threénpduasinitial part Partl), when theStrombolian
activity takes place,boththe strain and thestrain rate gradually decreasgith time showing-and-the-strain-sighat-showan
elbow with a downward concavity; in the central p&edi(ll), the lava fountainings persistent athithe strain ratehanges its
slope abruptlyeackesng the absolute maximum value; in the final paratlll) , theeruptive activity starts declinirandthe
strain rate inverts its trend reaching the-pvent level\We definethe-onset-of the-variatidnwhen-the-strain-rate reaches the

value o 0-n ain/hwhile-the end of the variaticiwa et when the sign-of the ain-rate become |Ment|fy

the beginningf the event, we focused on the strain rate $ighie first evaluated the amplitude of the background noise of
the strain rate signalll, as the mean standard deviation in a moving time window of 3 hours. We found a vialoie0sd3
nstrain/h. The beginning of the variatibmvas chosen concurrently with the time when the beginning of the deformation rate
can be clearly identified, namely when the strain rate exhibits a value of one order of magnitude highdiibiaaiore, we
selected: as the time when the strain rateaie@s-10 nstrain/h. Tie end of the variationwas set when the sign of the strain

rate becomes positive.
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We characterized each lava fountain event by extracting the main features from both the strain and strain ratefsignals
periodti andt:. In paticular, we focused opParts | and Il of the signalS.he extractedBeatures extractiontransforns each

eruptiveevent into a strain data point in the feature domain which forms a dataset that is going to be clustered.

3 Clustering the strain variations with the k-means algorithm

The kmeans is an unsupervised machine learning algo(ithowd, 1982; MacQueen, 196dgsigned to partition data points
into clusters by minimizing the sum of the squared distances (SSE) betwegndata point and its nearest cluster mean
(centroid).The data poirgtareformedby a set of featusawhich should be&hosen by following two rules: the features should
identify the data point uniquely and the smaller the feature vectdoetter (Langer etl., 2009).

The kmeans algorithm starts by selecting the initial centroid position in the feature d&aellata poinis assigned to the
k-th cluster represented by the closest centroid to the data phatnitial positiors of the centroids, which represethie
barycentreof the relatedcclusters changeon the basi®f the assignedata pointsliteratively, new centroid positionsrere-
estimated and the data point are eventuallgissigned tdhe closestluster. The algorithm stops until centroids no longer
move. Thek-meansalgorithmhas excellent finguning capabilities (Franti and Sieranoja, 2019). However, the goodness of
the clustering solution depends on ti®ice of both theaumber of clustek and thesetof featureC to clusterthe data.
Moreover theresults are influenced hifie centroid positionghosen to start the algorithm

To overcome the drawbacks ofikeans wetried different clustering soluti@by varyingthe inputs of the algorithm, namely
the number of clusters, the employed set of features and the initial centroid po$iiertgiality of thedifferent clustering
solutions was estimatebly employing two methodss he A E| b o and time Sillooetted Wze (Sil; Kaufman and
Rousseeuw, 2009T.he EIbow method is one of the mostdely used technigueto find the optimal number aflustersilt is
amethodbased on the SSE valuée less the SSE&f the clustering solutigrthe better the clusteringlormally, the higher
the number of the clusters, the lower the SSE. kn &SE plot,the elbowof the curve representhe optimal number of
clusters for thenalyse dataseand corresponds the most effective clustering solution in term&kaind SSE

The Silhouette valugsSil) for a single data point is defined as:

YQe—, 1)

whereb is the average distance between the datum and the data of another cluster minimized over thamntleststhe
average distance between the datum and the data within the cluster to which the datum bel&ligsllibés a measure of
how much a data point is cohesive within its own cluster (distanaad, at the same time, separated from the other clusters
(distanceb). It ranges from1 to 1, wherel corresponds to a completely wratlgsteringwhile 1 to a optimal clustering

We designedraiterativeprocedured find the optimal number of clustég,, and the optimal set of featur€, that allow

for a high quality clustering solution for our dataset of strain variatMfesanalyse different clustering solutionC, k) by

varyingthe number of clusteidsand the involved subset of feat@eand evaluated the quality of the clustering by using both

8



the Elbowmethod and the Silhouette valuighe initial centroid position was chosen randomly. To hew®re robust result,
for eachanalysé clustering solution, we performetd= 10* repetitions of thek-meansalgorithm settingdifferent random
initial seeds an#teepingfixed the other inputs. Then, we chose the solution with the lowest SSE Thtusobustness of the
choice ofn and of thenitial random position of the centroids providing reliable resultwill be alsoproven
180 The sets othefeatures used in theteratiors of theprocedureare extracted from a set of 15 potential featdres{Xi, Xo, € ,
X} (Table 1) wherej represents thgth feature ofX, which weretaken into accountb describe thastrainvariationsin the
part | and Il of both the strain and the strain rate sigisitiee thefeatures are in different units and ranges, we normalized
them in the range [0] 1o ensurea balanced weight in the clustering procgsmger et al., 2020The procedure isrganized
in the following steps:
185 1) create the most basic g offeature<Csiat cOMmposed byhe amplitudeA and the duratio® of the strain variation
2) ifitis the first iteration of the procedure, the starting subset of feature relateditthtiteration,C;, is Cstart Otherwise
Ci.1j_maxdefined at point ¥,
3) consider a new set of featur¥gr = X - Ci. Create all the possible subsetdfedtures, Cij, composed by plusone
feature fromXe;
190 4) cluster the dataset usi@and all theCij;
5) find the optimal number of clustefsr thei-th iteration of the procedurk,i, by compaing all thek i SSE curves;
6) at kopt, calculate theSilhouettevalues averaged over the clusteetated toC; and all theCij, Silaci and Silacij

respectively;

Table 1: Features considered in the cluster analysis

Symbol Description
A Amplitude of the strain change frotto t;
D Duration of the strain change fragto t
Shmin Minimum strain rate front to t;
Sh.7s Amplitude fromt; to theinstant when 75%f Srmin is reached
SAv100 Amplitude fromt; to the instant when 106 of Stmi, is reached
SDys Length of the time window frorfi to the instant when 75%f Skyin is reached
SDv100 Length of the time window fror to the instantvhen 1006 of Stwin is reached
S5 Average strain rate fromnto the instant when 75%f Srmi, is reached
SD100 Average strain rate fromto the instant when 100 of St is reached
ASys0 Average strain rate fromto the instant wheB0% of A is reached
ASy7s Average strain rate fromnto the instant when 5 of A is reached
ASHnin,0-50 Minimum strain rate fron to the instant wheB0% of A is reached
AShin,0-75 Minimum strain rate front to the instant when B5 of A is reached
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ADg-s50 Length of the time window fror to the instant wheB0% of A is reached

ADq.75 Length of the time window frori to the instant when 25 of A is reached

7) if max{Silacij} > Silaci thendefine a new subset of featur€s; max composed byCi plus the feature that provides
max{Sila,ci;}; repeat from point 2) to point)updatingC; with Cij max If max{Silacij} < Slaci, stop the procedure and

takeC; as the optimal set of featur&,,, andkop, as the optimal number of clusteksg:

The influence of the initialization wasvestigated by comparing two seeding techniques: the randatmoice(RC) position
(MacQueen1967) and the method proposed by Yelda €RafL0) (YC).The former method is the most popular and consists
of locaiing the centroids randomin the range of variation of theatures, namely, in our case, between 0 and 1. The latter
methodinvolvesfirst sorting data points in accordance with their distance from the origin and, then, partitioning them in
clusters with equal number of sorted points. Yelda et al. (2010) proposed to locate the initial centroid positiaryoehee

of each cluster. We introduced more randomness by locating the centroids randomly in each lctutgstsvere performed
using the optimal set of featur€s, found with the iterative procedure previously descrifexinvestigatehe importance of
performing repetition®f the kmeans algorithm choosing different initial centroid positjone repeatedhe algorithmn

times, withn in the range [1Q.0).

-3 Clustering-the-lavatountain-events-through-therelated-stram-varations Loy resulis

We used the 4neans algorithm teharacterizéhe 20262022 lava fountain eventssingthe associatedtrain changesi/e




225 z—Fhewhoseresults are presented ig. 3B1. Fig 3ashows lathek T SSEcurves pletrelated to althe subsetof features
analyse in the last step of the procedyFag-B1a); It can be seen ththie elbow of most of the curvesf@indatk = 4 which
canthusbe selected as the optimal number of clustegs for our dataset of strain variatigigg. By exploringthe Silhouette
values ofall the analyse clustering solutiorat kopr, the optimal subset of featur€s is selected ircorrespondnce ofthe
maximumsSil value The optimal subseés composed by threslements(i) the amplitudeA and (ii) the duratio of the strain

230 variation and (iii) the average strain rate in the timiedow ranging front; to the time when the strain rate reaches the 75%
of the minimum strain rat&§S.7s. The Sil valueof the (Copt, kopy) SOItiON, Obtainedaveraging amongll the single Sil values
associated with thelustereddata poing, is very high andequal to 0.8%onfirming the goodness of the clusterikgg. 3b
showsthesingleSil values, presented on tkexis,of all thedata point grouped in the related cluster indicated byyHais,

for the optimal clugring solution(Copt, Kopt), Wherekop: = 4.

235
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Figure 3: (a) ki SSE curves related to all the clustering solution&C, k) analysal in the lastiteration when the procedureconverged
(b) Silhouette valuegelated to the optimal clustering solution (Copt, Kopt), Wherekopt= 4, for all the data points grouped in the related
cluster indicated by they-axis.
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Figure 4: ki SSE andk i Sil plots obtained using the optimal set of feature€opt. The SSE and Silhouette values are presented
considering the random initial centroid (RC) positions and centroids located as proposed by Yelda et al. (2010) (YC). Theuttss
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Table 23: Coordinates of the cluster centroids and mode values of the optimal features for each cluster.

Amplitude A [nstrain] Duration D [hour] Strain rate SS.75 [nstrain/h]
Clusters Centroid coordinate Mode Centroid coordinate Mode Centroid coordinate Mode
Cluster 1 50.0 51.5 1.15 0.98 325 204
Cluster 2 177.5 181.8 1.92 1.78 59.1 40.5
Cluster 3 232.7 2253 0.83 0.98 187.6 181.4
Cluster 4 116.8 116.7 9.25 8.94 12.3 204

The Sil values are all positives indicating a good clustering for all the strain data points. MoreowerhgeSilhouette

250 valuesaveraged among the pointdthin the same clustder-the-foureclusterare very high and equal to 0.90, 0.71, 0.82 and
0.99for Cluster 1, Cluster 2, Cluster 3 and Cluster 4, respectiVélgse valuesdenoting-bethbotha high cohesion in the
same cluster and a high separation among the cliStexsB1).
The results of the anais on the influence of the initial centroid position and on the number of repetitions ofrtbarnis
algorithm are summarized Fig. 482. We reported th& 7 SSE and th& i Sil plots related tahe optimal subset okhture

255 Cop andinitialized with therandom centroid positiolrRC) andthe YC method for enumber of repetitions, equal to 10, 19
and 16. Theki SSE plots for the different values m{Fig. 4B2a,c,e) showed notably overlapped curves, indicating that the
analyzeinalysd initial centroid positions do not affect the shape of the curves and, hence, the chgjeecafi-be-easily
identified-atk=-4- In Fig. 4B2b,d,fthe number of clustek is platted against th&il value forn equal to 10, 19and 16,
respectively. Théigureshighlight that a high number of repetitions is necessary to make the clustering independent from the

260 analyzenalysd initialization techniques. Indeed, thé Sil curves overlapnly with n values higher than $@&nd up tk = 4

which corresponds tko.. Therefore, the outputs of the procedug; and Cop, Obtained withn = 10%, can be considered

In Fig. 35a, the strain changes are presented inChefeature domainwhere a-A very good clustering caalsealso be
265 observed visually confirming the reliability of the procedure in providing-ajgdiity results. The frequency distribution of

the values of th€,,; features A, D andSS.75, are presented iRig. 53b-d, respectivelyln-Fig—3e-al-the-straintmnges-are
otted-by-aligning-them-with-theirinitiaHimgorafurthervisualcomparisedl he mode values of the frequency distributions

of the Cop features are presented together with their centroids locations in Tabhe analysis of the distributions of the

cluster features allows us to identify the main characteristics of the events. Cluster 1 gathers lava fountain episodes of lo
270 strain amplitude and duration and characterized by small initial strain rate charigls.féhtures of Cluster 1 are located in

the lower range of variations. Cluster 2 groups events whose features cover more the intermediate part of their ramnges. Clust

3 gathers events characterized by high deformations evolving in a very short tideeswviess than 1 hour. Furthermore, the

mode value of th&%.75 feature for Cluster 3 (181.4 nstrain/h; Tah) is 4.5 to 9 times higher than for the others. Cluster 4

13



groups the episodes with the highest mode value for the duration fBatwéch is 5to 11 times higher with respect to the

275 ones related to the other clusters. The mode dB&he; feature in the Cluster 4 shows the lowest value among the clusters.
Fig. 5e, all the strain changes are plotted by aligning them with their initialitforea further visual comparisamong the
clustered variations
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Figure 53: (a) All the clustered strain data points plotted as circles in the domain of the optimal features: amplitud&, duration D
280 and strain rate SS.7s. Stars represent the cluster centroids. Frequency distribution oA (b), D (c) and SS.7s (d) for the different
clusters. Mode values of the distributions are reported in Table 1. In (e), all the clustered strain variations are alignedtthe initial

timeti.
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285 Figure 46: Temporal distribution of the clusters in the analyzeanalysed time period plotted together with the filtered DRUV signal.

45 Discussions and Conclusion

For the first time, an automated clustering analysis was applied on straidatatey provide an objective quantitative measure
of similarities and differences betweerplosiveeruptive episodes. In particular, we studied the lava fountain etreits
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