

Supplementary Information

Fire-precipitation interactions amplify the quasi-biennial variability

of fires over southern Mexico and Central America

Yawen Liu ^{1, 2}, Yun Qian ^{3*}, Philip J. Rasch ^{3*}, Kai Zhang ³, Yuhang Wang ⁴, Minghuai Wang ^{1, 2}, Hailong Wang ³, and Xiu-Qun Yang ¹

¹School of Atmospheric Sciences, Nanjing University, China

²Joint International Research Laboratory of Atmospheric and Earth System Sciences & Institute for Climate and Global Change Research, Nanjing University, China

³Pacific Northwest National Laboratory, Richland, Washington, USA

⁴School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA

Correspondence to: Yun Qian and Philip J Rasch and (yun.qian@pnnl.gov and Philip.Rasch@pnnl.gov)

14

18

19

Figure S2. Temporal variations of the regional mean 10m wind speed and leave area index averaged over SMCA in and 10 days previous to the peak burning season (Apr-May).

23

24 **Fig. S3** Spatial distributions of correlations of EP/NP index in February and March with
 25 the mean vertical pressure velocity (reversed signs) in the peak fire months (Apr-May)
 26 during 2003-2019. Stippling indicates the correlations are statistically significant based
 27 on the student's T-test.