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Abstract. Fires have great ecological, social, and economic impacts. However, fire prediction and 13 

management remain a challenge due to a limited understanding of their role in the Earth system. 14 

Fires over southern Mexico and Central America (SMCA) are a good example, which greatly 15 

impact local air quality and regional climate. Here we report that the spring-peak (Apr-May) fire 16 

activities in this region have a distinct quasi-biennial signal based on multiple satellite datasets 17 

measuring different fire characteristics. The variability is initially driven by the quasi-biennial 18 

variations of precipitation. Composite analysis indicates that strong fire years correspond to 19 

suppressed ascending motions and weakened precipitation over the SMCA. The anomalous 20 

precipitation over the SMCA is further found to be mostly related to the East Pacific-North Pacific 21 

(EP-NP) pattern two months previous to the fire season. The positive phase of EP-NP leads to 22 

enhanced precipitation over the eastern US yet suppressed precipitation over SMCA, similar to the 23 

spatial pattern of precipitation difference between strong and weak fire years. Meanwhile, the 24 

quasi-biennial signals in precipitation and fires appear to be amplified by their interactions through 25 

a positive feedback loop on short timescales. Model simulations show that in strong fire years, 26 

more aerosol particles are released and transported downstream over the Gulf of Mexico and the 27 

eastern US, where suspended light-absorbing aerosols warm the atmosphere and cause ascending 28 

motions of the air aloft. Subsequently, a compensating downward motion is formed over the fire 29 

source region and ultimately suppresses precipitation and intensifies fires. Statistical analysis 30 

shows the different duration of the two-way interaction, where the fire suppression effect by 31 

precipitation lasts for more than 20 days, while fire leads to a decrease in precipitation at shorter 32 

time scales (3-5 days). This study demonstrates the importance of fire-climate interactions in 33 

shaping the fire activities on interannual scale and highlights how precipitation-fire interactions at 34 

short timescales contribute to the interannual variability of both fire and precipitation.   35 
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1 Introduction 36 

Natural and human-induced fires are key features of the Earth system (Bowman et al., 2009). 37 

Uncontrolled large fires damage biodiversity, affect human health, and incur high economic costs 38 

(Knorr et al., 2017; Aguilera et al., 2021; Bowman et al., 2017). Comprehensive knowledge of 39 

fires’ causes, variability, and climate effects is necessary to accommodate or manage fires 40 

effectively, and to mitigate adverse societal impacts.  41 

Changes in climate alter fire regimes (Power et al., 2008; Jolly et al., 2015), because the occurrence 42 

and intensity of fires depend on meteorological factors such as precipitation, wind, and humidity 43 

(Flannigan et al., 2009; Marlon et al., 2008; Abram et al., 2021; Fang et al., 2021). Fires alter 44 

weather and climate as well: they are important sources of aerosol particles that modify Earth’s 45 

energy and water budget either by directly absorbing and scattering sunlight or affecting cloud 46 

microphysical processes (Voulgarakis and Field, 2015; Jiang et al., 2020; Liu et al., 2018; Yue et 47 

al., 2022; Lu et al., 2018). There are many modes of interaction. The modes are complex, operate 48 

through a variety of mechanisms, and manifest on a large variety of time and space scales (Ding 49 

et al., 2021; Zhang et al., 2022). For example, Huang et al. (2023) have demonstrated that synoptic-50 

scale fire-weather feedback plays a prime role in driving extreme fires in the Mediterranean and 51 

monsoon climate regimes over the US West Coast and Southeastern Asia. On interannual scales, 52 

fires in the maritime subcontinent have been shown to affect SSTs, land temperature as well as 53 

atmospheric stability, and influence ENSO on 3-6 year timescales (Tosca et al., 2010). The 54 

extreme 2019-2020 Australian fires have also been demonstrated to contribute to the 2020-2022 55 

strong La Nin"a event by enhancing cloud albedo, cooling and drying out the air, and forming a 56 

positive feedback between the northward migration of intertropical convergence zone and sea 57 

surface temperature cooling in the Nin"o3.4 region (Fasullo et al., 2023). Moreover, on even longer 58 

timescales, fires can affect the accumulation of carbon dioxide and methane by modifying global 59 

features like the Hadley circulation that change precipitation and temperature patterns and 60 

eventually affect forest ecosystems to produce feedback operating over decades and centuries 61 

(Crutzen and Andreae, 1990; Page et al., 2002; Tosca et al., 2013). It is hence necessary to explore 62 

fire characteristics with special considerations of their multi-scale variability and feedback. 63 

From a global perspective, fires occur progressively more frequently towards the tropics (Mouillot 64 

and Field, 2005). Tropical savanna and forest burning contribute approximately 80% of global 65 
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open fire emissions (Bond et al., 2013). However, tropical regions also feature a great diversity of 66 

climate-weather systems that affect fire occurrence and seasonality. In the tropical Northern 67 

Hemisphere, fires over tropical southern Mexico and Central America (SMCA) occur during the 68 

Feb-May dry season and peak in April-May (Magi et al., 2012). These fire activities have a 69 

substantial influence on local air quality and human health (e.g., over Mexico City [19-20°	N, 98-70 

100°W] and the Yucatan region (Crounse et al., 2009; Yokelson et al., 2007; Yokelson et al., 71 

2009). Fire emissions over the SMCA region also affect the eastern US after long-range transport 72 

(Kreidenweis et al., 2001; Lee et al., 2006; Rogers and Bowman, 2001). Understanding the 73 

processes that shape fire variabilities over this region is hence important locally (for air quality 74 

and fire management) and over broader regions. 75 

Here, for the first time, we report a distinct quasi-biennial variability of fire activities over the 76 

southern Mexico and Central America region (SMCA, 10-25°N, 80-100°W) during the peak 77 

burning months (April – May) over 2003-2019 by validating different fire characteristics with the 78 

use of multiple independent datasets. We further explored the dominant causes of this quasi-79 

biennial signal and provided concrete evidence for positive fire-precipitation feedback on short 80 

timescales to amplify the quasi-biennial signal based on model simulations.  81 

2 Data and Methods 82 

2.1 Observations 83 

Two sets of fire emission inventories were used to investigate the interannual variability of fire 84 

activities. The Global Fire Emissions Database with small fires version 4.1 (GFED v4.1s) is a 85 

bottom-up inventory that generates fire-consumed dry matter using fire-burned areas combined 86 

with emission factors (Giglio et al., 2013; Randerson et al., 2012). GFED v4.1s provides monthly 87 

mean fire-consumed dry matter in total and for individual fire types at 0.25-degree spatial 88 

resolution. The Quick Fire Emissions Dataset (QFED) is a top-down emission inventory that 89 

generates fire emissions by using empirical relationships between fire-consumed dry matter 90 

consumption and fire radiative power (Koster et al., 2015). Daily emissions of fire-emitted species 91 

at 0.1 horizontal resolution from QFED version 2.5 were examined. Since the interannual 92 

variations of different species are consistent, only variation of fire-emitted black carbon (BC) is 93 

shown here. We focused on the fire activities after 2003 to exclude the influence of the extremely 94 
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strong ENSO events, specifically the 1997/1998 El Nin"o event and the subsequent 1998-2000 La 95 

Nin"a event, which are among the most powerful ENSO events in recorded history.  96 

We also examined the interannual variation of fire-induced changes in aerosol optical depth based 97 

on the MERRA-2 reanalysis data (Gelaro et al., 2017) and Level 3 version 4.2 CALIPSO satellite 98 

dataset (Winker et al., 2013). For the MERRA-2 data, monthly mean BC aerosol optical depth 99 

(AOD) was used for a better comparison with the BC emission from QFED emission data. The 100 

CALIPSO product divides aerosol into six sub-types, and the gridded monthly mean 532nm AOD 101 

for the biomass burning aerosol type under all-sky conditions was analyzed. We used the MODIS 102 

version 6.1 gross primary productivity (GPP) product (MOD17A2H, (Running, 2021)), which 103 

measures the growth of the terrestrial vegetation NOAA Climate Data Record of Advanced Very 104 

High Resolution Radiometer (AVHRR) version 5 leaf area index (LAI) (Vermote, 2019), which 105 

is defined as the one-sided green leaf area per unit ground surface as a proxy for fuel load. A 106 

cumulative 8-day composite of Daily LAI GPP values product is provided with a 500m pixel size. 107 

on a 0.05-degree grid. The average of GPP in the month (March) LAI in the 10 days previous prior 108 

to the burning season is examined.  109 

In order to investigate the climate influence on fire activities, we analyzed monthly mean 110 

temperature and maximum temperature from the Climatic Research Unit gridded Time Series 111 

(CRU TS) version 4.06 (Harris et al., 2014). The dataset is constructed based on station 112 

observations and provides monthly data over the global land surface at 0.5-degree resolution. Apart 113 

from the CRU dataset, two sets of satellite observations of precipitation were analyzed: the 114 

monthly Integrated Multi-satellitE Retrievals for GPM (IMERG) precipitation estimates at 0.1 115 

degrees (Huffman et al., 2015) and the 1-degree daily (version 1.3), 2.5-degree monthly 116 

(version2.3) Global Precipitation Climatology Project (GPCP) precipitation estimates (Adler et al., 117 

2018; Adler, 2017). IMERG is intended to intercalibrate and merge satellite microwave 118 

precipitation estimates together with microwave-calibrated infrared satellite estimates and 119 

precipitation gauge analyses (Huffman et al., 2020). Monthly mean 500hPa vertical velocity (w) 120 

at 2.5 degrees from NCEP/NCAR reanalysis (Kanamitsu et al., 2002) and 10m wind speed at 0.25 121 

degrees from ERA5 reanalysis (Hersbach et al., 2020) were also used in our work. In order to 122 

understand the interannual variation of precipitation, we examined the relationship between 123 

precipitation and ten different teleconnection patterns, including Atlantic Meridional Mode 124 
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(AMM), East Pacific/North Pacific Oscillation (EP/NP), ENSO, North Atlantic Oscillation 125 

(NAO), North Tropical Atlantic index (NTA), Pacific North American index (PNA), Tropical 126 

Northern Atlantic index (TNA), Tropical Southern Atlantic index (TSA), Western Hemisphere 127 

warming pool (WHWP), Quasi-biennial Oscillation (QBO). These indice and their detailed 128 

definitions can be obtained from  https://psl.noaa.gov/data/climateindices/list/. 129 

2.2 Model experiment 130 

The CESM2.1.0 model with the Community Atmosphere Model version 6 (CAM6) (Danabasoglu 131 

et al., 2020) was used to investigate the feedback of fire-emitted aerosols on precipitation. The 132 

F2000 component set was used with the prescribed sea surface temperature in the year 2000. The 133 

horizontal resolution is set as 0.9-degree latitude by 1.25-degree longitude with 32 vertical levels. 134 

Two groups of simulations were conducted. Each was driven by the representative fire emissions 135 

in strong and weak fire years and referred to as Case_Strong and Case_Weak. The difference in 136 

variables (e.g., temperature and precipitation) between the two cases (Case_Strong minus 137 

Case_Weak) indicate the influence, or difference in feedback, caused by stronger fire emissions. 138 

As our work focused on the influence of fire activities over SMCA, only fire emissions over the 139 

SMCA region were considered. Since fire emissions and anthropogenic emissions are specified 140 

separately in the CESM2 model, we modified Tthe default fire emission inventory (Van Marle et 141 

al., 2017) in CESM2.1.0 was modified accordingly while global anthropogenic emissions wereare 142 

kept unchanged and remained the same between cases. Given that composite analysis indicates 143 

fire emissions in weak fire years are approximately half those in strong fire years. We simply used 144 

the average of fire emissions during strong fire years in Case_Strong, and reduced these by half in 145 

Case_Weak. More subtle changes in fire locations between strong and weak fire years are hence 146 

ignored. Furthermore, global climate models have long been found to underestimate fire-induced 147 

changes in aerosols (Zhong et al., 2022). Hence, in order to ensure the simulated difference in fire-148 

induced AOD between Case_Strong and Case_Weak is comparable to observations, the default 149 

inventory is multiplied by a factor of 3 to ensure the simulated fire-induced AOD changes are 150 

comparable to observations. For each group, 9 ensemble simulations were performed with slight 151 

differences in their initial conditions. The ensemble mean is calculated as the average of 9 152 

members.  All simulations start on Jan.1 with a 3-month spin-up time. The T-test is used to identify 153 

statistically significant differences between Case_Strong and Case_Weak. 154 



 

 7 

3 Results 155 

3.1 Biennial variability of fire activities 156 

We focus on the southern Mexico and Central America region (SMCA) covering both the Yucatan 157 

region and Mexico City. Major fire types in this region consist of deforestation fires, savanna fires, 158 

and agricultural waste burning, which respectively are estimated to consume 45.5%, 42.1%, and 159 

12.40% of the total burned dry matter during the peak burning months (Apr-May) of the 17-year 160 

(2003-2019) study period. 161 

As shown in Fig. 1a, GFEDv4.1s estimates of the regional sum of the total dry matter consumed 162 

by fire activities feature obvious quasi-biennial variability. Generally speaking, fire activities in 163 

odd-numbered years show higher consumption of dry matter than adjacent even-numbered years 164 

with the only exception of the year 2016, which might be related to a long-lasting El Nin"o event 165 

spanning 2014-2016. Composites of fire consumption of dry matter indicate enhanced fire 166 

activities along both sides of the high terrains in odd-numbered years, and the most profound 167 

difference appears over the bordering area between southern Mexico and Guatemala (Fig. S21). 168 

The average fire-consumed dry matter here differs by more than a factor of 6 between odd-169 

numbered and even-numbered years.    170 

The quasi-biennial variability of fire activities is also evident when examining fire emissions of 171 

typical fire-emitted species based on the QFED inventory (Fig. 1b). Similarly, fire-emitted BC in 172 

odd-numbered years is basically higher than those in the adjacent even-numbered years, when 173 

considering both regional mean and medium values. Furthermore, among the 9 odd-numbered 174 

years, fire activities in years 2003/2011/2013 show the highest three BC emission, which is also 175 

consistent with results from the GFEDv4.1s dataset. Hence, the two independent fire emission 176 

inventories agree on the interannual variation of fire activities.  177 

Apart from cross-checking different fire emission inventories, we further validated the variability 178 

of fire activities by investigating fire-induced changes in AOD (Fig. 1c). BC AOD from MERRA-179 

2 reanalysis and AOD of biomass burning aerosol type from CALIPSO were adopted to represent 180 

fire activities. Basically, the interannual variation of fire-related AOD in both datasets agrees well 181 

with the estimates from fire inventories, thus providing additional support for the quasi-biennial 182 

variability of fire activities in the peak burning months over SMCA. Overall, the intercomparison 183 

between multiple datasets indicates a consistent quasi-biennial variability in different fire 184 
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characteristics, including fire-consumed dry matter, fire-emitted aerosols as well as fire-related 185 

changes in optical properties. Note that among the four datasets, the GFEDv4.1s inventory and 186 

MERRA-2 reanalysis data provide data till the year of 2023, and the quasi-biennial variability in 187 

the extended time series remains robust till 2023 (Fig. S1). To describe this quasi-biennial 188 

variability for convenience, we hereafter refer to the odd-numbered (even-numbered) years that 189 

have higher (lower) fire consumptions of dry matter than adjacent years as strong (weak) fire years.  190 
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 191 

 192 
 193 

Figure 1. Interannual variations of different fire characteristics during the peak burning season 194 
(Apr-May) over Southern Mexico and Central America (SMCA). (a) Regional sum of the total dry 195 
matter consumed by fire activities based on the GFEDv4.1s emission data. (b) Distributions of the 196 
daily sum of fire-emitted black carbon (BC) over SMCA based on QFED emission data. Boxes 197 
denote the 25th and 75th percentiles. Bars outside the boxes denote the 10th and 90th percentiles. 198 
Bars within the boxes denote the medium values, and dots denote regional mean values (c) 199 
Regional mean aerosol optical depth (AOD) of smoke aerosols from CALIPSO product and BC 200 
AOD from MERRA-2 reanalysis. The odd-numbered years with strong fires are denoted by the 201 
grey bars. 202 

203 
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3.2 Dominant role of the biennial variability of precipitation 204 

Fire activity is strongly affected by factors including fire ignition, fuel load, and climate-weather 205 

conditions (Flannigan et al., 2005; Archibald, 2016; Ichoku et al., 2016; Veira et al., 2016). Fire 206 

ignition is affected by both natural lightning and human activities (Pechony and Shindell, 2009). 207 

Since there ishas no policy to regulate fire activities with periodicity, it is unlikely that human 208 

impact is the major driving force. Fuel availability may play a role in the interannual variation of 209 

fires. After having examined the GPP (surrogate for fuel load) prior to the burning season, we 210 

found little evidence regarding the role of fuel availability in contributing to the interannual 211 

variation of fires (Fig. S3). Lower values of GPP are found in some strong fire years compared to 212 

their adjacent years, e.g., the years 2003 and 2005. Correlations between regional GPP and fire-213 

consumed dry matter are even slightly negative., but there is little evidence for it in the leaf area 214 

index, our surrogate for fuel load (Fig. S2). Correlations between LAI previous to the burning 215 

season and fire consumption are statistically insignificant.  216 

Close yet complex relationships between ambient conditions (e.g., humidity, temperature, 217 

precipitation) and fire activities have been widely revealed in previous studies (Cary et al., 2006; 218 

Gillett et al., 2004; Prasad et al., 2008). For example, warm temperatures could increase fire 219 

activity by increasing evapotranspiration and also by lengthening fire duration, while both the 220 

timing and amount of precipitation could regulate fire behavior. To identify the climatic factors 221 

that might be responsible for the quasi-biennial variation of fire activities, we first examined the 222 

relationships between fire-consumed dry matter consumption and different meteorological 223 

variables (Table 1). Temporal correlations of their regional mean values indicate that fire activities 224 

are enhanced with warmer mean and maximum temperature (R=0.47 and 0.59), but are weakened 225 

with higher precipitation (R=-0.69). Though wind speed could affect the spread of fire activities, 226 

the insignificant correlation signifies a minor influence on the interannual scale (Fig. S3). Other 227 

meteorological metrics such as vapor pressure deficit (VPD) and relative humidity (RH) are also 228 

frequently used to help understand fire-meteorology interactions. Here we found the interannual 229 

variations of regional mean VPD and RH are highly correlated with precipitation (R =-0.8 for VPD 230 

and R=0.7 for RH, respectively) and temperature (R = 0.7 for VPD and R = -0.5 for RH, 231 

respectively) over the SMCA region. 232 

Figure 2 shows the spatial distribution of correlations of fire-consumed dry matter consumption 233 

with precipitation and mean temperature during peak burning months. With respect to 234 
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precipitation, negative correlations cover almost the entire SMCA region and are statistically 235 

significant over major fire source areas from Yucatan extending southwestward to Chiapas. In 236 

contrast, positive correlations between fire- consumedption dry matter and maximum temperature 237 

mainly appear over the northern part of SMCA (southern Mexico), albeit with less influence over 238 

Central America (e.g., fire source areas in Guatemala). Hence, the interannual variability of 239 

precipitation affects the variation of fire activities on a wider spatial range. We next examined 240 

closely the time series of regional mean precipitation and temperature (Fig 3). Here regional mean 241 

values are calculated using data over land so that only climate conditions that could directly affect 242 

fire activities are considered. Two independent precipitation datasets show similar temporal 243 

evolution patterns. An obvious quasi-biennial variability is seen in regional mean precipitation. 244 

More suppressed precipitation (compared to adjacent years) corresponds well to the strong fire 245 

years (excluding the year 2016). Furthermore, spectral analysis confirms a statistically significant 246 

periodicity of approximately 2 years (0.042 cycles per month) for precipitation, suggesting the 247 

mediation of precipitation on the quasi-biennial feature of fire activities. Meanwhile, the quasi-248 

biennial signal is less apparent in mean and maximum temperatures. For instance, temperatures in 249 

the strong fire years 2007 and 2009 are smaller in magnitude compared to adjacent weak fire years. 250 

Nevertheless, higher mean and maximum temperatures (compared to adjacent years) appear in 251 

2003 and 2011, which combines with the suppressed precipitation, contributing to the abnormally 252 

high fire-consumed dry matter consumption in the two years. As a result, while both temperature 253 

and precipitation are critical in shaping fire activities over the SMCA region, precipitation plays a 254 

more fundamental role in formulating the quasi-biennial variability of fires. 255 

 256 

Table 1. Correlations between the regional sum of fire consumed dry matter based on the 257 
GFEDv4.1 data and regional mean values of different meteorological variables (including the 258 
monthly mean precipitation from IMERG dataset, mean temperature, maximum temperature from 259 
CRU dataset, and 10m wind speed from ERA5 reanalysis) averaged in the peak fire season (April-260 
May). 261 

Correlation Precipitation Mean 
Temperature 

Maximum 
Temperature 

10m wind 
speed 

Fire-consumed 
Dry matter -0.69* 0.47* 0.59* 0.29 

* represents the correlations are statistically significant at the 90% confidence level based on the 262 
student’s T-test. 263 

 264 
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 265 
 266 

 267 
Figure 2. The influence of meteorological factors on fire activities over SMCA. Spatial 268 
distributions of grid-to-grid correlations between fire-consumed dry matter and (a) precipitation 269 
from IMERG and (b) maximum temperature from CRU during the peak fire season (Apr-May) 270 
over 2003-2019. Stippling indicates the correlations are statistically significant at the 90% 271 
confidence level based on the student’s T-test. The green boxes denote the SMCA region. 272 
  273 
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 274 
Figure 3. Interannual variability of meteorological factors in peak fire season over SMCA. Time 275 
series of the Apr-May (a) mean/maximum temperature and (b) mean precipitation anomalies (with 276 
respect to the 2003-2019 climatology mean) averaged over SMCA (land only). (c) Spectral 277 
analysis of monthly mean precipitation averaged over SMCA during 2003-2019. The black solid 278 
line and dashed lines represent the red noise curve and the 10%, 90% confidence interval.  279 
 280 
  281 
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The leading role of precipitation on the interannually varying fire activities is evident in the 282 

composite analysis, as shown by the contrast of reduced precipitation in strong fire years and 283 

enhanced precipitation in weak fire years (Fig. 4a). The composite analysis further shows that the 284 

anomalous precipitation is closely related to vertical motions, with stronger subsidence 285 

corresponding to weaker precipitation (Fig. 4b). It is worth noting that to the northwest of the 286 

SMCA region near the southeast US, composited precipitation and vertical velocity also differ 287 

significantly between strong and weak fire years albeit of opposite signs. Consistent changing 288 

features of precipitation and vertical velocity are also captured when regressing the two variables 289 

on the regional mean precipitation over SMCA (Fig. 4c-d). The negative regression coefficients 290 

indicate a stronger upward (downward) motion corresponding to higher (weaker) precipitation. In 291 

sum, for a specific year, stronger subsidence and the subsequent suppression of precipitation tend 292 

to amplify fire activity in that year, and vice versa for the year with weakened subsidence and less 293 

suppression effect of precipitation. In this way, the quasi-biennial variability of precipitation leads 294 

to the same interannual variability of fire activities.  295 

Precipitation patterns over the SMCA region and the variability are associated with complex 296 

physical forcing mechanisms, e.g. changes in sea surface temperature, low-level winds, the 297 

strength and position of ITCZ et al., and all of these processes could be modulated by large-scale 298 

modes of atmospheric and oceanic variability (Duran-Quesada et al., 2017; Perdigon-Morales et 299 

al., 2019; Amador et al., 2006). Here we chose 10 typical teleconnection patterns, for example, the 300 

El Nin"o-Southern Oscillation, (ENSO), based on previous studies and examined their relationships 301 

with SMCA precipitation in the peak fire months. After calculating the correlations between Apr-302 

May mean precipitation and the index in varying months (both simultaneously and previous to the 303 

fire season), we found that the precipitation in the fire season is mostly affected by the East 304 

Pacific/North Pacific Oscillation (EP/NP) pattern in the previous two months (Feb-Mar). 305 

Generally, the positive phase of EP/NP features negative height anomalies and an enhanced 306 

cyclonic circulation over the eastern United States (Athanasiadis et al., 2010). Consequently, in 307 

the following fire season, this causes anomalous upward and downward motions over the 308 

southeastern US and the SMCA region respectively (Fig. S43), and enhances precipitation over 309 

the southeastern US yet suppressing precipitation over the SMCA region (Fig. 5). Hence, the 310 

EP/NP teleconnection results in an opposite responding pattern in precipitation and vertical 311 
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velocity between the eastern US and the SMCA region. This further explains the similar 312 

contrasting spatial pattern that is found in the aforementioned composite and regression analysis.  313 

 314 
 315 

Figure 4. Varying characteristics of precipitation and circulations. Differences of composites of 316 
(a) precipitation and (b) 500hPa vertical pressure velocity (reversed signs) between strong and 317 
weak fire years. Stippling indicates the differences are statistically significant at the 90% 318 
confidence level based on T-test. Regressions of Apr-May mean (c) precipitation and (d) 500hPa 319 
vertical velocity on the regional mean precipitation over SMCA (reversed signs) during 2003-320 
2019. Stippling indicates regression coefficients are statistically significant at the 90% confidence 321 
level based on the T-test. 322 
  323 
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 324 

 325 
Figure 5. Influence of the EP/NP teleconnection pattern on precipitation in peak fire season. 326 
Spatial distributions of correlations of EP/NP index in (a) February and (b) March with the mean 327 
precipitation in the peak fire season (Apr-May) during 2003-2019. Stippling indicates the 328 
correlations are statistically significant based on the student’s T-test.  329 

 330 

 331 

 332 

 333 



 

 17 

 334 

Figure 6. Different duration of fire-precipitation interaction. Lead-lag correlations between 335 
regional mean daily precipitation and fire emission composites in (a) strong fire years and (b) weak 336 
fire years over SMCA. Positive lead-lag days represent that precipitation leads while negative lead-337 
lag days represent fire emissions leads. Correlations that are statistically significant at the 90% 338 
confidence level based on Student’s t-test are marked with yellow triangles. 339 

  340 
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3.3 Positive feedback between enhanced fire emissions and suppressed precipitation 341 

Previous studies have found that fire-emitted aerosols could interact with synoptic weather, which 342 

in turn affects fire variability (Huang et al., 2023). In view of this, one concern is if fire and 343 

precipitation interact on short timescales (i.e., within individual fire seasons) in our case over the 344 

SMCA region, and if so, how this feedback modulates the quasi-biennial variability of 345 

precipitation and fire activities. We first calculated lead-lag correlations between daily 346 

precipitation and fire emissions to identify the short-term fire-precipitation interaction. As shown 347 

in Fig. 6 lead-lag correlations between regional mean precipitation and fire emission are generally 348 

similar whether fire activities in strong or weak fire years are considered. When precipitation leads, 349 

precipitation negatively correlates with fire emission for more than 20 days, signifying a long-350 

lasting suppression effect of precipitation on fire activities. In other words, weakened precipitation 351 

would enhance fire activities. Meanwhile, when fire leads, negative correlations indicate that 352 

increased fire activities would further suppress precipitation at shorter timescales (3-5 days) 353 

through rapid adjustments. In short, there is a two-way interaction between precipitation and fire 354 

activities on short timescales with different duration, forming a positive feedback loop.  355 

We also conducted sensitivity simulations to investigate the underlying processes involved in the 356 

fire-precipitation feedback. Fig. 7 shows the simulated difference in AOD (referred to as fire AOD) 357 

between Case_Strong and Case_Weak. Both the spatial pattern and magnitude agree well with the 358 

difference in AOD between strong and weak fire years based on CALIPSO observations. 359 

Compared to the spatial patterns of fire consumption in Fig. 7, we can clearly see two transport 360 

pathways of fire-emitted aerosols due to the continental divide by the Central Mexican Plateau. 361 

North of 15°N, fire-emitted aerosols are transported northward by the subtropical high, among 362 

which large amounts accumulate over the downstream Gulf of Mexico due to the block of the high 363 

terrain, and the rest is further transported northward reaching the southeastern US; South of 15°N, 364 

prevailing easterlies transport fire-emitted aerosols directly westward, far away to the eastern 365 

Pacific.  366 
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 367 
 368 

Figure 7. Evaluation of model simulated fire-induced AOD. (a) Spatial distributions of differences 369 
in biomass burning AOD between strong and weak fire years from CALIPSO satellite data. (b) 370 
Differences in simulated AOD between Case_Strong and Case_Weak. Mean 850hPa wind vectors 371 
from (a) NCEP reanalysis data averaged in all years and (b) model simulations averaged between 372 
both cases are overlaid respectively. Stippling indicates the differences in AOD are statistically 373 
significant based on T-test.  374 

 375 

 376 
 377 

Figure 8. Changes in meteorological variables induced by fire-emitted aerosols. Differences in (a-378 
c) atmospheric temperature and (d-f) vertical pressure velocity (reversed signs and shaded colors) 379 
at different vertical levels between Case_Strong and Case_Weak. Changes in horizontal winds 380 
between the two cases are overlaid in (d-fb). Stippling indicates the differences are statistically 381 
significant at the 90% confidence level based on T-test.  382 
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Considering the northward pathway, with the stack of light-absorbing BC aerosols, air temperature 383 

warms up by approximately 1-2K, and this warming extends from 800hPa to 700hPa where BC 384 

aerosols suspend (Fig. 8a-c). Vertical slices of the temperature anomalies indicate significant 385 

warming to the north (downstream) of the fire source regions (Fig. 9a). In response to this warming, 386 

the air above the fire aerosol layers rises up (Fig. 8d-f). The anomalous ascending motion covers 387 

from the Gulf of Mexico to the southeastern US, with the maximum center located near the Gulf 388 

of Mexico. This abnormal ascending motion, on one hand, enhances precipitation downstream of 389 

the fire source regions, and on the other hand forces a compensating anomalous descending motion 390 

over the SMCA region and suppresses the precipitation over the fire source regions (Fig. 9b-c). 391 

This simulated opposite change in precipitation resembles the spatial pattern of the composited 392 

precipitation difference between strong and weak fire years (Fig. 4a), suggesting that fire-393 

precipitation interaction reinforces the contrast of precipitation between strong and weak fire years. 394 

Therefore, the model simulations confirm a positive fire-precipitation feedback loop on the short 395 

timescale within the fire season.  396 
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 397 
 398 

Figure 9. Vertical slices of differences in (a) atmospheric temperature and (b) pressure velocity 399 
averaged along [80 ° -100 ° W] between Case_Strong and Case_Weak. (c) Differences in 400 
precipitation between Case_Strong and Case_Weak. Stippling indicates the differences are 401 
statistically significant based on T-test.  402 

 403 

As illustrated in Fig. 10, originally on the interannual scale, fire activities over the SMCA region 404 

exhibit a significant quasi-biennial variability that is predominantly determined by the quasi-405 

biennial variation of precipitation. On this basis, there is an additional two-way interaction between 406 

fire and precipitation on short timescales. Typically, precipitation suppresses fire activities with a 407 

time lag of more than 20 days, while fire-emitted aerosols suppress precipitation by modifying 408 

circulations with a timescale of 3-5 days. That is to say, for a year with abnormally weak 409 

precipitation, fire activities would get amplified, which in turn further weakens precipitation. In 410 
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this way, the short-term positive feedback loop ultimately enhances the quai-biennial variability 411 

of precipitation and fire activities over the SMCA region. 412 

 413 

 414 

 415 
Figure 10. A schematic diagram illustrating how multi-scale fire-precipitation interactions shape 416 
the quasi-biennial variability of fires over SMCA. On the interannual scale, the quasi-biennially 417 
varying precipitation triggers a similar quasi-biennial variability of fire activities via its 418 
suppression effect. Compared to adjacent years, a weaker precipitation year will facilitate stronger 419 
fires. On short timescales within each fire season, there is a positive feedback loop between fire 420 
and precipitation (denoted by dashed lines). The suppression effect of precipitation lasts long for 421 
approximately 20 days, while fires affect precipitation through a rapid adjustment of 3-5 days. In 422 
the weaker precipitation year, stronger fire activities emit more aerosols, which by mediating 423 
temperature and circulations, ultimately suppress precipitation over the fire source region. Such 424 
short-term interactions between precipitation and fire amplify the magnitude of anomalous fire and 425 
precipitation in individual years and enhance the quasi-biennial variability of both precipitation 426 
and fire.  427 
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4 Conclusion and Discussion 428 

Fires play an important role in the Earth system, and the complex interaction between fire activities 429 

and ambient conditions poses a great challenge to fire prediction and management. This study 430 

identifies a distinct quasi-biennial variability of fire activities over the SMCA region during 2003-431 

2019 on the basis of different fire metrics. Both the bottom-up (GFEDv4.1s) and top-down(QFED) 432 

emission inventories show relatively higher fire consumption (or emission) in the odd-numbered 433 

years than the adjacent even-numbered years with the only exception of the year 2016. Moreover, 434 

fire-induced changes in AOD also reveal consistent quasi-biennial variation.  435 

By examing the relationships between fire consumption and different meteorological variables, 436 

our analysis indicates that the quasi-biennial signal is dominated by the quasi-biennially varying 437 

precipitation, while the influence of temperature is mostly reflected in a few extremely strong fire 438 

years. Typically, strong fire years correspond to suppressed upward motions and weakened 439 

precipitation. The quasi-biennial variability of precipitation is seen in the time series of the regional 440 

mean precipitation over SMCA and the spectral analysis, and is closely related to the EP-NP 441 

teleconnection pattern in the two months previous to the fire season. The positive phase of the EP-442 

NP pattern implies enhanced precipitation over the southeastern US (downstream of the SMCA), 443 

albeit reduced precipitation over the SMCA region.   444 

On the other hand, we further found that positive feedback exists between fire-emitted aerosols 445 

and precipitation on short timescales and acts to amplify the quasi-biennial oscillations in both fire 446 

and precipitation over the SMCA region. Lead-lag correlations between daily fire emission and 447 

precipitation suggest that the two-way interactions occur with different duration. The suppression 448 

effect of precipitation lasts for approximately 20 days, while fire-emitted aerosols weaken 449 

precipitation through rapid adjustments of 3-5 days. Furthermore, model simulations reveal that 450 

compared to weak fire years, more fire-emitted aerosols are transported downstream and 451 

accumulate near the Gulf of Mexico in strong fire years. These suspended light-absorbing BC 452 

aerosols warm the low-level atmosphere by 1-2K and induce anomalous ascending motion aloft 453 

700hPa. A compensating descending motion is subsequently forced over the SMCA region, which 454 

ultimately suppresses the precipitation over the fire source region and hence forms a positive 455 

feedback loop. 456 
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These findings provide useful information relevant to the fire control and mitigation of air quality 457 

over the SMCA region. Given that fire activities over the SMCA represent a typical tropical fire 458 

regime, our work may also provide new insight into some fundamental features of fires in the Earth 459 

System. The mechanism may also operate elsewhere useful on the planet. While precipitation is 460 

demonstrated to play the primary role in determining the periodicity of fire activities over the 461 

SMCA region, the fundamental cause of the quasi-biennial variability of precipitation is unknown. 462 

Currently, we have only shown that the EP-NP teleconnection, among all selected indexes, exerts 463 

the most influence on the interannual variability of precipitation. Other teleconnection patterns, 464 

e.g., ENSO, despite their insignificant correlations with SMCA precipitation, may affect the 465 

circulation and precipitation over the southeastern US or over the neighboring Intra-American Sea 466 

(Anthony Chen and Taylor, 2002), and hence might more or less affect the precipitation over the 467 

SMCA region. Moreover, though we demonstrated positive feedback between fire-emitted 468 

aerosols and precipitation exists on short timescales, to what extent this feedback contributes to 469 

the quasi-biennial variability of fire activities remains unquantified due to the absence of coupled 470 

fire-climate interactions in current model simulations. Future efforts to quantify how different 471 

factors and feedback work together and to shape the quasi-biennial variability of precipitation and 472 

fire activities using interactive fire-climate models would further benefit the prediction and 473 

management of fire activities over the SMCA region.   474 
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Data availability 475 

The GFED v4.1s fire emission data is available at http://www.globalfiredata.org/data.html. 476 
The CRU TS v.4.06 can be found at https://crudata.uea.ac.uk/cru/data/hrg/. The QFEDv2.5 data 477 
can be found at http://ftp.as.harvard.edu/gcgrid/data/ExtData/HEMCO/QFED/v2018-07/. The 478 
AVHRR leaf area index is available from https://www.ncei.noaa.gov/access/metadata/landing-479 
page/bin/iso?id=gov.noaa.ncdc:C01559.The MODIS GPP data is available from  480 
https://lpdaac.usgs.gov/products/mod17a2hv061/ The MERRA-2 reanalysis data can be found at 481 
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/. The IMERG precipitation dataset 482 
can be obtained from https://gpm.nasa.gov/data/imerg. The GPCP dataset can be obtained from 483 
https://www.ncei.noaa.gov/products/climate-data-records/precipitation-gpcp-daily. 484 
Teleconnection indices can be found at https://psl.noaa.gov/data/climateindices/list/. The NCEP-485 
NCAR reanalysis is obtained from 486 
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html. 487 
The CALIPSO product is available at 488 
https://asdc.larc.nasa.gov/project/CALIPSO/CAL_LID_L3_Tropospheric_APro_AllSky-489 
Standard-V4-20_V4-20.  490 
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