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Abstract.

The current representation of key processes in Land Surface Models (LSM) for estimating water and energy balances still

relies heavily on empirical equations that require calibration oriented to site-specific characteristics. When multiple parameters

are used, different combinations of parameter values can produce equally acceptable results, leading to a risk of obtaining “right

answers for wrong reasons”, compromising the reproducibility of the simulations and limiting the ecological interpretability5

of the results. To address this problem and reduce the need for free parameters, here we present novel formulations based

on first-principles to calculate key components of water and energy balances, extending the already parsimonious SPLASH

model v.1.0 (Davis et al. 2017, GMD). We found analytical solutions for many processes, enabling us to increase spatial

resolution and include the terrain effects directly in the calculations without unreasonably inflating computational demands.

This calibration-free model estimates quantities such as net radiation, evapotranspiration, condensation, soil water content,10

surface runoff, subsurface lateral flow and snow-water equivalent. These quantities are derived from readily meteorological

data such as near-surface air temperature, precipitation and solar radiation, and soil physical properties. Whenever empirical

formulations were required, e.g. pedotransfer functions and albedo-snow cover relationships, we selected and optimized the

best-performing equations through a combination of remote sensing and globally distributed terrestrial observational datasets.

Simulations at global scales at different resolutions were run to evaluate spatial patterns, while simulations with point-based15

observations were run to evaluate seasonal patterns using data from hundreds of stations and comparisons with the VIC-3L

model, demonstrating improved performance based on statistical tests and observational comparisons. In summary, our model

offers a more robust, reproducible, and ecologically interpretable solution compared to more complex LSMs.

Copyright statement.
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1 Introduction20

Robust representations of water and energy fluxes provide essential foundations for the analysis of interactions and feedbacks

within soil, atmosphere and vegetation continuum in complex Land Surface Models (LSMs) (Wang et al., 2014; Prentice et al.,

2015). These fluxes are greatly shaped by complex topography, which determines the amount of solar energy received at the

surface; and by gradients of atmospheric pressure, temperature and moisture, soil development and gravitational potential en-

ergy, which together control vegetation dynamics and the emergent spatial patterns of ecosystem composition and structure25

(Tromp-van Meerveld and McDonnell, 2006; Körner, 1999; Sarmiento, 1986). Current models represent the complexity of

topographic effects in various simplified ways, for example through discretization of the spatial continuum into hydrological

response units (Grayson and Blöschl, 2000; Rodell et al., 2004), or predefined biomes (Liang et al., 1996) or stochastic rep-

resentation of terrain and land cover at subgrid scales (Lawrence et al., 2019; Liang and Xie, 2001). Or, alternatively, models

designed for large-scale applications may simply disregard terrain effects (Davis et al., 2017). This approach has arisen because30

models typically divide the soil-vegetation-atmosphere column into layers, or small storages, resulting in a large computational

demand. So, to run models at higher resolution would increase the required computing power exponentially (Clark et al., 2017).

Although the higher precision of numerical schemes increases the accuracy of the models, the representation of some core

hydrological processes still relies on empirical equations that require site-specific calibration (Clark et al., 2017). One outcome

of this process is that different combinations of parameter values can produce equally acceptable results, implying a risk of ob-35

taining “right answers for wrong reasons” (Grayson and Blöschl, 2000; Prentice et al., 2015), compromising the reproducibility

of simulations, and limiting the ecological interpretability of the results obtained.

The use of optimization algorithms for multiple parameters in ever more complex models may not necessarily improve

matters and, indeed, may hide the inadequacy of concepts such as "field capacity" and "permanent wilting point" when repre-

senting one of the most important ecological quantities, the soil water availability to plants. Although these constructs make40

sense conceptually, they can be misleading. For example, field capacity is described as the remaining water in the soil after

drainage has ceased (Kramer and Boyer, 1995; Veihmeyer and Hendrickson, 1931). Still, its value is found in laboratory tests

using small soil cores, and it is arbitrarily assumed to be equivalent to the water left after applying 33 kPa of suction (or 10

kPa in sandy soils). The permanent wilting point by definition depends on the plant as well as soil properties. Nonetheless, it

is assumed by convention to be equivalent to the water left after applying 1.5 MPa of suction (M. B. Kirkham, 2005). Such45

values are upscaled globally using pedotransfer functions (PFTs), assuming they represent conditions found in nature, but their

validity is virtually impossible to test using current LSMs.

The SPLASH model (Davis et al., 2017), is a highly parsimonious, multi-purpose set of algorithms mainly designed for eco-

hydrological and bioclimatic analysis: see e.g. Harrison et al. (2010); Gallego-Sala and Prentice (2012); Ukkola et al. (2015).

Even though the original SPLASH assumes a flat cell, neglecting terrain influence on the fluxes, it includes explicit effects of50

elevation on biophysical quantities with minimum meteorological inputs. At its core, it conceptualizes the daily cycles of water

and energy fluxes, and it solves their respective budgets using analytical integrals at a daily timestep (Cramer and Prentice,
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1988; Davis et al., 2017). We propose new formulations to extend the original SPLASH using theory and concepts based on

first principles, thus minimizing the need for free parameters while allowing the representation of processes in complex terrain.

To improve the calculations of the energy fluxes we adapted SPLASH v1.0 mathematical framework to use shortwave55

radiation as input instead of cloudiness as a proxy for it. Furthermore, we included terrain (slope and aspect) effects on the

analytical integrals of the daily energy fluxes and updated the empirical functions used to estimate net longwave radiation.

Since one of the main applications of SPLASH is to infer the water limitation on photosynthesis (Wang et al., 2014; Stocker

et al., 2018), we no longer consider the available plant water capacity as a constant value and added the calculation of subsurface

flows. Here, we enhanced SPLASH with an analytical solution for the Green-Ampt equation to calculate daily infiltration,60

including corrections for slope effects; and analytical solutions for lateral flow, water viscosity effects on hydraulic conductivity,

and Dunne and/or Hortonian runoff generation. To upgrade the “bucket model” used in the estimation of soil water content in

SPLASH we have included soil hydrophysical properties estimated by PTFs and proposed a theoretical field capacity found by

equilibrating gravity with capillarity force. This new version of SPLASH also includes an analytical solution to estimate soil

moisture at any depth; and a simple snowpack module, which accounts for snowfall occurrence, snow mass balance and effects65

on albedo. Processes that still require empirical formulations in the model (i.e., snowfall occurrence, snow-albedo feedback,

and the effect of soil physical properties on the water retention curve) were optimized using “big data” from remote sensing

and in situ measurements.

Some simplifications were adopted in order to allow analytical solutions, based on the prevalence of shallow soils and

impervious bedrock in mountain regions around the world:70

1. The drop of the saturated hydraulic conductivity with depth is neglected.

2. Soil moisture redistribution through the soil profile (down to 2 m) takes no longer than one day.

3. Water fluxes in the soil column are in a steady state.

4. The shape of the moisture profile follows Hilberts et al. (2005) and Fan et al. (2007).

5. The snow temperature is 0◦C, so implicitly the energy required to raise the snow temperature is neglected.75

The proposed analytical solutions greatly reduce the computational demand compared to numerical schemes, enabling the

model to perform calculations using global high-resolution datasets at daily or monthly timesteps, and to provide emergent

spatial patterns of key model outputs such as net radiation, snowpack size, lateral flow, surface runoff, condensation, evapo-

transpiration and soil water content.

The inputs of the model are precipitation, solar radiation and air temperature. To derive terrain information (slope, aspect80

and upslope contributing area) the algorithm requires a digital elevation model (DEM) when the grid functionality is used,

but, if used with site-specific data (i.e. station data), these variables should be computed beforehand. To estimate some soil

hydrophysical properties, the algorithm also requires soil texture, organic matter content and thickness.
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2 Methods: Model description

2.1 Energy fluxes85

2.1.1 Surface solar radiation

Starting from the original formulation for extraterrestrial solar radiation flux I0 (W m−2) from SPLASH (Davis et al., 2017),

which is defined as:

I0 = ISC dr cos θz (1)

Where, ISC is the solar constant (W m−2), dr (unitless) is the distance factor, and cosθz is inclination factor. The effects90

of the slope inclination and orientation on the surface solar radiation were included by using a more complex formulation of

cos θz , parameterized after Allen et al. (2006) as follows:

cos(θz) = sin(δ) sin(φ) cos(s)

− sin(δ) cos(φ) sin(s) cos(γ)

+ cos(δ) cos(φ) cos(s) cos(h)

+ cos(δ) sin(φ) sin(s) cos(γ) cos(h)

+ cos(δ) sin(γ) sin(s) sin(h)

(2)

Where, δ(rad) is the declination angle between earth’s equator and the sun at solar noon, and describes the seasonal changes

at different latitude φ(rad), the hour angle h(rad) describes the sun’s position above the horizon, s(rad) is the slope inclination95

and γ(rad) is the slope orientation, or aspect, being γ = 0 for slopes oriented due south with its values increasing clockwise.

The hour angle when the solar radiation flux reaches the horizon or sunset hour hs was found by replacing Eq. (2) in Eq.

(1), setting Io = 0, and solving for h, thus:

hs = arccos

(
−sin(δ) sin(φ) cos(s) − sin(δ) cos(φ) sin(s) cos(γ) + cos(δ) sin(γ) sin(s) sin(hs)

cos(δ) cos(φ) cos(s) + cos(δ) sin(φ) sin(s) cos(γ)

)
(3)

Furthermore, to simplify the notation, Eq. (3) can be rewritten as:100

hs = arccos

(
−ru
rv

)
(4)

Where, ru = sin(δ)sin(φ)cos(s)−sin(δ)cos(φ)sin(s)cos(γ)+cos(δ)sin(γ)sin(s)sin(hs) and rv = cos(δ)cos(φ)cos(s)+

cos(δ)sin(φ)sin(s) cos(γ), respectively. To account for the occurrences of polar days (i.e., no sunset) or polar nights (i.e., no

sunrise), hs is set to π when ru/rv ≥ 1, and to zero when ru/rv ≤−1 respectively. Here, to approximate the value of sin(hs),

the analytical solution proposed by Allen et al. (2006) is used as follows:105

sin(hs) =
ac+ b

√
b2 + c2− a2
b2 + c2

(5)
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Where,

a=sin(δ) cos(φ) sin(s) cos(γ)− sin(δ) sin(φ) cos(s) (6a)

b=cos(δ) cos(φ) cos(s) + cos(δ) sin(φ) sin(s) cos(γ) (6b)

c=cos(δ) sin(γ) sin(s) (6c)110

Note that if we evaluate Eq. (3) for flat surfaces (s= 0), it becomes hs = arccos
(
− sin(δ) sin(φ)cos(δ) cos(φ)

)
, which is the original

SPLASH equation described by Davis et al. (2017).

The daily accumulated incoming radiation (MJ m−2 d−1) is calculated as twice the integral of the Eq. (1), with cos(θz(h))

ranging from solar noon (h= 0) to sunset (h= hs), times the atmosphere’s transmittance τ (unitless).

H = 2

hs∫
0

τI0 = 2

hs∫
0

τISC dr cosθzdh=
86400

π
τ ISC dr (ruhs + rv sin(hs)) (7)115

To exploit datasets of daily average incoming shortwave radiation SW (W m−2) and deprecate the empirical parameters in the

previous model version which uses the classic Ångstrom–Prescott formula and cloudiness data, we set, H = SW (W m−2) ∗
86400(s d−1) in Eq. (7). Then multiplying both sides of Eq. (7) by (1−βSW ), we solve for τ ISC dr (1−βSW ) to match the

original formulation of the variable rw (Wm−2) as follows:

rw = τ ISC dr (1−βSW ) =
SW π(1−βSW )

ruhs + rv sin(hs)
(8)120

Where βSW is the albedo and the other variables previously defined.

2.1.2 Net surface radiation

The net radiation flux at the surface, IN (W m−2), is defined as the difference between the net shortwave radiation flux, ISW

(W m−2) and the net long-wave radiation flux, ILW (W m−2),

IN = ISW − ILW (9)125

Where, ISW is computed simply as the fraction of the incoming shortwave radiation flux not reflected by the albedo, βSW

(unitless):

ISW = SW (1−βSW ) (10)

ILW is computed in a similar fashion as the original SPLASH, by merging empirical formulations for clear and cloudy skies,

both fitted using Eddy covariance data from the whole FLUXNET database, thus, replacing the old empirical formulations130

from (Monteith and Unsworth, 1990) and (Linacre, 1968) used in the first version.

ILW = (k4 + (1.0− k3)Sf ) (k1 + k2 Tair); (11)
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Where k1−4 are empirical coefficients, Tair (◦C) is the daily mean near-surface air temperature and Sf (unitless) is the

sunshine fraction, derived from a general form of the Ångstrom–Prescott equation, with parameters fitted from global databases

according to Suehrcke et al. (2013):135

sf =

(
τ − τo k5
τo (1− k5)

)(1/k6)

(12)

Where k5−6 are empirical coefficients, τ is the atmosphere’s transmittance, calculated as the ratio between TOA solar radiation

and surface SW data, and τo is the clear sky atmospheric transmittance, computed following (Allen, 1996). Values for the

coefficients are provided in the Table (1).

Table 1. Constants and Standard Values

Variable Value Units Description Reference

ISC 1360.8 W m−2 solar constant Eq. (1) (Kopp and Lean, 2011)

βo 0.17 − shortwave background albedo Eq. (25) (Federer, 1968)

βsnwo 0.85 - new fallen snow albedo Eq. (26) (Wang and Zeng, 2010; Barry, 1996)

k1 91.86 (◦C) empirical constant Eq. (11) (This study)

k2 1.95 − empirical constant Eq. (11) (This study)

k3 0.20 − empirical constant Eq. (11) (Linacre, 1968)

k4 0.088 − empirical constant Eq. (11) (This study)

k5 0.1898 − empirical constant Eq. (12) (Suehrcke et al., 2013)

k6 0.7410 − empirical constant Eq. (12) (Suehrcke et al., 2013)

k7 -0.5827 − empirical constant Eq. (19) (This study)

k8 1.319 − empirical constant Eq. (19) (This study)

k9 4.18× 10−4 − empirical constant Eq. (19) (This study)

k10 1.140× 10−2 − empirical constant Eq. (19) (This study)

k11 0.443 − empirical constant Eq. (26) (This study)

k12 0.895 − empirical constant Eq. (26) (This study)

Lf 334000 J kg−1 Latent heat of fusion Eq. (32) (Monteith and Unsworth, 1990)

g 9.81 ms−2 gravitational acceleration Eq. (19) (Monteith and Unsworth, 1990)

SWEcn 140 mm
Minimum snow water equivalent for
full snow cover Eq. (27) (This study)

The daily accumulated net radiation, HN (MJ m−2d−1), is calculated as net positive H+
N (daytime approximately), and net140

negative H−N (night-time approximately), the threshold between H+
N and H−N is the hour angle when ISW equals ILW , (hn)
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(Fig.1). It is found by setting IN = 0 in Eq. (9) as follows:

hn = arccos

(
ILW − rw ru

rw rv

)
(13)

For cases where the net radiation is always positive ((ILW − rwru)/(rwrv)≥−1) hn is limited to π, while for the opposite

cases, where the net radiation is always negative ((ILW − rwru)/(rwrv)≥ 1), hn is limited to zero.145

Figure 1. Conceptualization of the net radiation flux between solar noon (i.e., h= 0) and solar midnight (i.e., h= π) after Davis et al. (2017).

Therefore, as described by Davis et al. (2017), H+
N is defined as twice the integral of IN from solar noon to the flux cross-

over hour angle hn (Eq.14), whileH−N is calculated as twice the integral of IN between hn and solar midnight (h= π) (Eq.15),

H+
N = 2

hn∫
h=0

IN =
86400

π
((rwru− ILW )hn + rwrvsin(hn)) (14)

150

H−N = 2

 hs∫
hn

IN −
π∫

hs

ILW

=
86400

π
[rwrv(sin(hs)− sin(hn)) + rwru(hs−hn)− ILW (π−hn)] (15)

2.2 Water fluxes and storages

2.2.1 Snowfall

The freezing temperature of the water, 0.0 °C is the usual threshold to categorize rainfall as snowfall in several models (Pomeroy

and Brun, 2001), however, other atmospheric variables like cloudiness, atmospheric pressure and relative humidity define the155
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snowfall formation (Jennings et al., 2018), therefore changing this temperature threshold in a narrow range across locations

(Kienzle, 2008). Here, to get the rainfall/snowfall proportion it is usual to find, among different methods in the literature, linear

approximations based on air temperature (Harder and Pomeroy, 2014; Marks et al., 1999; Rene Orth and Seneviratne, 2015),

or simply the 100% of the precipitation falling below 0.0 °C assigned as snowfall (Bergström, 1995; Dirmeyer et al., 2006)

which might lead to miscalculations in some regions like the Alps, where up to 80% of its annual precipitation might be in the160

form of snowfall (Barry, 2008).

Therefore, in the current version of the model a sigmoid curve is used to describe the rain-snow proportion (frain) following

Kienzle (2008), who fit empirical equations using 64 years of measurements of rainfall/snowfall proportions from 113 Canadian

stations as follows:

frain = 5

(
Tair −Ttm

1.4Trm

)3

+ 6.76

(
Tair −Ttm

1.4Trm

)2

+ 3.19

(
Tair −Ttm

1.4Trm

)
+ 0.5 (16)165

Where, Ttm (C) is the monthly temperature threshold for the 50% of rain-snow occurrence, and Trm (◦C) is the monthly range

of temperatures for snowfall occurrence, both calculated according to:

Ttm = Tt +Tt sin

(
mi + 2

1.91

)
(17)

Trm = Tr (0.55 + sin(mi + 4)) ∗ 0.6 (18)

Where, mi is a monthly index (from 1 to 12), Tr (◦C) is the annual range of temperatures for snowfall occurrence, found in170

13°C as first approximation by Kienzle (2008). And Tt (◦C) is the annual threshold for snowfall formation, defined for each

year as the annual maximum air temperature when the probability of snowfall occurrence p(snow) is equals or exceeds 0.5.

p(snow) was estimated using a binary logistic regression, following the method and datasets provided by Jennings et al.

(2018), but reducing the number of explanatory variables to air temperature Tair (◦C), elevation z (m.a.s.l) and latitude φ (◦)

as follows (Appendix A4.3):175

p(snow) =
1

1 + e(k7+k8 Tair+k9 z+k10 φ)
(19)

Where, k7,k8,k9 and k10 are coefficients (Table 1). Then, the snowfall is calculated by,

Sf = Pn (1− frain) (20)

2.2.2 Snowmelt

Snowmelt Sm (mmd−1) was calculated using a simple relationship between available energy and the size of the snowpack180

SWE (mm) (snow water equivalent) as follows:

Sm= min

(
SWE,

H+
N

ρwLf
∗ 1000

)
(21)
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Where SWE is the size of the snowpack expressed as snow water equivalent (mm), H+
N (MJ m−2d−1) is the daytime accu-

mulated net radiation, ρw (kgm−3) is the water density at 0°C, Lf (J kg−1) is the latent heat of fusion, and 1000 is the factor

to convert m3 to litres. Following Barry (2008), we assumed direct-sublimation as negligible, however, if there is residual en-185

ergy after the melting occurs, we directed that energy to evaporate Sm, flux hereafter denoted simply as "sublimation" (Eswe),

which reduces the amount of Sm reaching the soil or producing runoff.

Eswe = min

(
Sm,

H+
A

Econ
∗ 1000

)
(22)

Where H+
A (MJ m−2d−1) is the daytime available energy, (daytime accumulated net radiation – energy used in melting),

Econ (m3J−1) is the energy to water equivalent conversion factor (Davis et al., 2017) and 1000 is the factor to convert m3 to190

litres. Thus, the water from snowmelt reaching the soil is:

Sme = Sm−Eswe (23)

2.2.3 Snowpack

The size of the snowpack, expressed as snow water equivalent SWE (mm) is computed as a simple balance using the previous-

day SWE, inputs and outputs as follows:195

SWEn = SWEn−1 +Sf −Sm (24)

The effect of the snow on the albedo was formulated as a simple weighted average using the snow cover fraction, following

Wang and Zeng (2010); Roesch and Roeckner (2006); Niu and Yang (2007),

βsw = βo ∗ (1.0− fsnw) + (fsnw ∗βsnw) (25)

Where βo the is background albedo (Federer, 1968), βsnw is the snow albedo, calculated according to the age of the snow,200

following the widely used formulation from the Corps of Engineers (1956)

βsnw = (βsnwo − k11) + k11 e
−k12 nd (26)

Here βsnwo is the albedo of the new-fallen snow, nd is the number of days since a snowfall event greater than 3mm (Chen et al.,

2014), and k11,12 empirical constants. The snow cover fraction (fsnw) from Eq.(25) was estimated using a simple hyperbolic

function following Dickinson et al. (1986) and Barry (1996).205

fsnw =
SWEn

SWEc +SWEn
(27)

Where SWEc is the snow water equivalent where fsnw starts to saturate.

The optimized parameters of eq. 26 and eq. 27 using remote sensing and ground observations are listed in table 1.
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2.2.4 Infiltration

The infiltration flux rate i (mmh−1), was conceptualized as a two stages process, which can happen independently or one after210

another according to the magnitudes of the incoming flux r (mmh−1) (rain/snowmelt), and the infiltration capacity of the soil

(Fig. 2).

Time

F
lo

w
 r

at
e 

(m
m

/h
)

Ksat

r

tp td

Figure 2. Conceptualization of the infiltration process with a constant rainfall r (modified from Tindall et al. (1999)). Here, Ksat is the

saturated hydraulic conductivity, tp and td stand for ponding and duration times respectively.

The first stage, usual when the soil is dry, describes an infiltration rate lower than the infiltration capacity, thus, it is limited by

the rainfall/snowmelt rate and lasts until the water flux starts to pond at tp (Vereecken et al., 2019; Assouline, 2013). A second

stage describes the system once the water starts to pond on the surface, here the infiltration rate is limited by the infiltration215

capacity, which in turn decreases inversely to the water content of the soil, reaching its minimum value (equivalent to Ksat) at

saturation following the Green-Ampt formulation, as described by Assouline (2013); Tindall et al. (1999).

it+1 =
dI

dt
=Ksat

(
ψf (θsat− θt)

I(t)
+ 1

)
(28)

Where Ksat (mmh−1) is the saturated hydraulic conductivity, θt,sat (m3m−3) are the volumetric soil water content at the

time t and at saturation sat respectively, I(t) is the cumulative infiltration at the time t, and ψf (mm) is the capillary head at220

the wetting front, which according to Tindall et al. (1999) is calculated as:

ψf =
2 + 3λ

1 + 3λ

ψb
2

(29)

Being λ the pore-size distribution index (unitless), and ψb (mm) the air-entry pressure, both shaping parameters of the soil-

water retention curve proposed by Brooks and Corey (1964) (referred as BC model hereafter).

Therefore, the ponding time tp can be found by setting Eq.(28) equals to r, which yields:225

tp =
Ksatψf (θsat− θt)

r(r−Ksat)
(30)
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Moreover, to account for the slope (s) effects on tp, the factor 1
cos2(s) , is used to reduce tp, following the analysis of Morbidelli

et al. (2018), thus, the cumulative infiltration is defined as follows:

I = rtp +

td∫
tp

i dt= r
tp

cos2(s)
+Ksat

(
td−

tp
cos2(s)

)
−ψf ∆θ ln

(
1−

r
tp

cos2(s)

ψf ∆θ

)
;r > Ksat (31a)

I = rtd; r ≤Ksat (31b)230

Where td is the duration of the precipitation event, and ∆θ is the difference between θsat and the previous θ at the near soil

surface, which is calculated using an analytical solution of the Brooks and Corey (1964) model with the previous-day moisture

and the depth of the profile (See section 2.7).

The set of equations presented above still requires rainfall intensity and the event’s duration to perform the calculations,

however, the “minimum inter-event time”, which is used to define a precipitation event, is not consistent in the literature, and235

varies according to the author, location and application, ranging from 15 min to 24 hours (Dunkerley, 2008; Molina-Sanchis

et al., 2016), making it difficult to define a criteria for global applications. Therefore, as a simplification, an average daily

rainfall duration was proposed instead, similar conceptually to the design storm, which is used in calculations for infrastructure

design (Smith and Parlange, 1978). In this way, to find the average daily rainfall duration, the daily number of hours with

precipitation and the daily precipitation amount were extracted from the Global Satellite Mapping of Precipitation (GsMap240

v6.0) dataset during the 2000-2014 period (Mega et al., 2014; Yamamoto and Shige, 2015) using the Google Earth Engine

platform (GEE), and the most frequent value was chosen (6hrs).

The parameters λ and ψb, which shape the BC model, and Ksat were estimated using pedotransfer functions detailed in

Saxton and Rawls (2006) which use soil texture and soil organic matter (SOM) as inputs.

To account for the effects of temperature and atmospheric pressure on the water viscosity and hence on Ksat (Fig. 3), we245

used the formula described by Hillel (1998):

Ksat = ki
ρg

η
(32)

Where, ki (m2) is the soil’s intrinsic permeability, ρ (kgm−3) is the water density, g (ms−2) gravitational acceleration and η

(Pa s) is the dynamic viscosity. Thus, we simply usedKsat from the pedotransfer functions, assuming ρ
η at standard conditions

to find ki, which was later replaced in Eq. 32 using actual environmental conditions.250

11



Sand content (%)

E
le

va
tio

n 
(m

as
l)

60 50 40 30 20 10
Clay content (%)

0

1000

2000

3000

4000

10 20 30 40 50 60
27

20.5

14

7.5

1

M
AT

 (ºC
)

0

5

10

15

20

KSAT (mm h−1)

Figure 3. Effects of elevation (atmospheric pressure and temperature) on the saturated hydraulic conductivity, using a hypothetical soil with

10% SOM, 30% Silt, and varying Sand and Clay

2.2.5 Surface Runoff

The runoff formulation considers the different generation mechanisms: the saturation excess overland runoff ROD (mmd−1)

(Dunne runoff), which is produced after the soil became saturated and is frequent in humid climates or riparian areas (Vereecken

et al., 2019), and, the infiltration excess overland runoff ROH (mmd−1) (Hortonian runoff), which is produced when the

precipitation rate exceeds the infiltration capacity, more frequent in semi-arid climates (Grayson and Blöschl, 2000; Vereecken255

et al., 2019).

ROD =max(0,Wn−Wsat) (33a)

ROH =r− I (33b)

Where, r (mmd−1) is water input (rainfall + snowmelt), I (mmd−1) is the infiltration, Wn,sat (mm) are the actual and soil

water content at saturation respectively.260

Therefore, the daily total RO is simply defined as:

RO =ROD +ROH (34)

2.2.6 Lateral flow

The lateral flow in one cell was defined at steady state as:

qin = qout (35)265
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Where qin (mmd−1) is the water draining into the cell from the upslope contributing area and qout (mmd−1) is the water

draining out from the cell.

The lateral outgoing flow qout (mmd−1) was conceptualized using some of the TOPMODEL’s ideas (Beven and Kirby,

1979) on the profile transmissivity (soil hydraulic conductivity K integrated over the soil column), and the hydraulic gradient

defined by local topography tan(s) as follows:270

qout =
w

Ai

zs∫
0

K (θ,z)dz tan(s) (36)

Where w is the width of the profile’s cross-section and Ai is the area of the cell, used here to convert the volumetric flow

through the cross-section to equivalent water column units over the cell.

In order to solve the transmittance, the soil moisture distribution through the profile was conceptualized following Hilberts

et al. (2005) and Fan et al. (2007) (Fig. 4) with hydrostatic equilibrium at the water table (Remson and Randolph, 1962). Here,275

the soil moisture redistribution after infiltration was assumed to last shorter than one day within the first 2 m. of soil depth,

implying a permanent shape of the moisture profile.

Similarly to Fan et al. (2007), due to the lack of information on how Ksat is decreasing with depth, the model assumes Ksat

constant through the first 2 meters of depth extending the original 1.5 m. proposed by Fan et al. (2007).

slope

z

θWP θFC θSAT

s
bedrock

sqin
qout

θ(m m )3 -3

zs
(m
)

Figure 4. Conceptualization of the soil moisture profile in a shallow soil column, after Hilberts et al. (2005) and Fan et al. (2007). We

assumed a cell with low spatial resolution and next to a stream.

Therefore, we defined the transmissivity of the profile as the sum of the transmissivities in the unsaturated and saturated280

parts of the profile as follows:

T =

z∫
0

K (θ,z)dz = Tuns +Tsat =

zwtd∫
0

K (θ,z)dz+

z∫
zwtd

K (θ,z)dz (37)

Thus, to approximate the distribution of θ(z) through the unsaturated part of the soil column, the BC model was used with the

total soil-water potential (matric+gravitational) after Hino et al. (1988); Beldring et al. (1999).

θ(z) = θr + (θsat− θr)
(
ψm +ψg(z)

ψb

)−λ
(38)285

Where, θr (m3m−3) is the residual soil water content, ψm (mm) is the soil-matric potential and ψg(z) (mm) the gravitational

potential.
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The hydraulic conductivity, K(θ) (mmh−1), was defined according to Brooks and Corey (1964) as follows:

K(θ) =Ksat

(
θ

θsat

)(3+ 2
λ )

(39)

Therefore, replacing Eq.(26) in Eq. (27), and solving the integral analytically for the unsaturated part, the transmissivity is290

defined as:

Tuns =

zwtd∫
0

K (θ,z)dz =
Ksatψb
3λ+ 1

[(
ψb
ψm

)3λ+1

−
(

ψb
ψm + zwtd

)3λ+1
]

(40)

Where zwtd (m) is the depth to the water table, found when ψm +ψg = ψb.

While the transmissivity in the saturated part of the profile Tsat is calculated as

Tsat =

z∫
zwtd

K (θ,z)dz =Ksat (z− zwtd) (41)295

The lateral incoming flux qin was formulated using a simple linear reservoir model (Buytaert et al., 2004; Yang et al., 2018;

Vogel and Kroll, 1996), with a decaying volumetric flux as a function of time.

Qf =QoKb
t (42)

Where Qf is the final flux after the time t and Qo (m3 d−1) is the initial volumetric flow soon after the precipitation event. If

we set the cease of drainage at field capacity we get:300

lim
t→∞

QoKb
t =Qfc (43)

Where Qfc (m3 d−1) is the volumetric flow after the time t (d), and Kb is the recession constant (unitless), which was

found using the drainable porosity, see Appendix (A). Therefore, the total volume result of a daily (1d) recharge (R> 0) over

the upslope area (Fig. 5), theoretically, can be approximated by:

AuR (1d) =

t∫
t0

QoKb
tdt (44)305

Where Au is the upslope area (m2), R is the recharge (mmd−1), defined as infiltration minus evapotranspiration R= I −Ea

and t0 is the time at Qo.
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Figure 5. Conceptualization of the recharge from the upslope after one precipitation at t0, using a simple linear reservoir model. The shaded

area represents the Eq.(44).

Therefore, if we find t from both, Eq.(43) and Eq.(44), we can set:

1

ln(Kb)
ln

(
Qfc
Qo

)
=

1

ln(Kb)
ln

(
AuR ln(Kb)

Qo
+ 1

)
(45)

Which, solving for Qo yields:310

Qo =Qfc−AuR ln(Kb) (46)

Where Qfc can be found by setting θ to field capacity in Eqs.(38 and 40). Thus,

qin =


Qfc−AuR ln(Kb)

Ai ; ifR> 0 ∧ θ > θfc

Qinn−1Kb
∆t

Ai
; ifR≤ 0 ∧ θ > θfc

0; if θ ≤ θfc

(47)

2.2.7 Evapotranspiration

The actual evapotranspiration, Ean (mmd−1) is computed following the original formulation Davis et al. (2017) with modi-315

fications to account for the reduction in available energy, which is diverted to snow melting and sublimation, if any. It starts

by defining the actual instantaneous evapotranspiration Ea (mmh−1) as the minimum between supply SW (mmh−1) and

demand Dp (mmh−1) rates (Federer, 1982)

Ea =min(SW ,Dp) (48)
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Then, the daily integration of this flux is computed using an analogous form to the daily energy fluxes calculation (Fig. 6), as320

follows,

Ean = 2

hn∫
h=0

Ea = 2

 hi∫
h=0

SW +

hn∫
hi

Dp

 (49)

Where h(rad) is the hour angle and hi is the cross-over angle when the supply is equal to the demand.

Figure 6. Conceptualization of the actual instantaneous evapotranspiration flux between solar noon (i.e., h= 0) and solar midnight (i.e.,

h= π), modified from Davis et al. (2017). The evaporative demand Dp (red dashed line) is maximum at solar noon, equivalent to the

maximum supply rate Sc. The actual supply rate SW is constant throughout the day, an depends on soil moisture limitations.

The evaporative demand Dp is defined following the Priestley and Taylor (1972) formulation for potential evapotranspira-

tion:325

Dp = 3.6× 106Econ IN (50)

Where IN (Wm−2) is the instantaneous net radiation, and Econ(m3J−1) is the energy-to-water conversion factor, defined fol-

lowing the Priestley-Taylor theory (hereafter PT), with adjustments proposed by Yang and Roderick (2019), which, reproduce

the feedback between the surface temperature and Ea, hence their effect on IN , thus, replacing the need of a Priestley-Taylor

αPT coefficient:330

Econ =
s

Lv ρw(s+ 0.24γ)
(51)

Where Lv(J kg
−1) is the latent heat of vaporization, ρw(kgm−3) is the water density, s(PaK−1) is the slope of the

temperature-pressure curve, and γ(PaK−1) the psychrometric constant, and 0.24 is the constant defined by Yang and Rod-

erick (2019). Equations for temperature and pressure dependencies to calculate ρw and γ were used, while only temperature-

dependant equations were used for s and Lv (Davis et al., 2017).335
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The stress factor controlling the evaporative supply rate SW was conceptualized as a piece-wise linear function, where we

assumed the stress follows the depletion of the water content in the plant available water region (Fig. 7).

Soil water content

st
re

ss
 fa

ct
or

Wpwp Wfc Wsat
0.0

1.0
plant available water content drainable porosity

Figure 7. Conceptualization of the stress factor controlling the evaporative supply rate SW

Therefore, SW is defined as:

SW =

Sc
Wn−1−Wpwp

Wfc−Wpwp
; ifWpwp ≤Wn <Wfc

Sc ifWn ≥Wfc

(52)

Where, Sc (mmh−1) is the maximum evaporative supply rate, and Wn−1 the previous day soil water content.340

Here, Davis et al. (2017) adopts Sc as a constant, following Federer (1982), however, the same Federer (1982) points out

that this value should change according to morphological traits of the vegetation (i.e. root density and depth).

Therefore, since Ea =min(SW ,Dp), and, under well watered conditions SW = Sc, hence, Sc with a value higher than the

maximum Dp (at solar noon) won’t affect the resultant Ea.

Thus, to estimate Sc, so it applies for non-vegetated areas as well, the supply rate is approximated as the maximum rate of345

evaporation as follows,

Sc=DpMAX = rx ((rw(ru + rv))− ILW ) (53)

Where, to simplify the notation, rx(mmm2W−1 h−1) is equal to 3.6× 106Econ.

The upper limit of the Eq.(52) is the water content at field capacity Wfc (mm), which was defined as the amount of water

held after the drainage ceased (Kramer and Boyer, 1995). This was calculated by setting the total water potential to equilibrium,350

following Remson and Randolph (1962):

ψm +ψg = 0 (54)
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Where, the matric potential ψm was calculated following Saxton and Rawls (2006):

ψm =A(θ)−B (55)

with,355

A= eln(33)+B ln(θ33) (56a)

θ =Wn/(1000z) (56b)

B =
1

λ
=

ln(1500)− ln(33)

ln(θ33− ln(θ1500)
(56c)

Where, θ33 is the volumetric water content at 33 kPa, (usually assumed to be field capacity), θ1500 is the volumetric water

content at 1500 kPa and z (m) is the depth of the soil profile. Then, using the minimum between 2 m. and the depth to the360

bedrock as a reference plane, the gravitational potential is defined as:

ψg = ρw gWn (57)

Therefore, Wfc can be found by solving the replacing Eqs. (55 to 57) in Eq. (54) and solving for Wn (See Appendix A for

intermediate steps):

Wfc = 1000z

(
1000A

ρw g z

) 1
1+B

(58)365

The lower limit of the Eq. (52) is defined as water content at permanent wilting point Wpwp (mm), which was computed as:

Wpwp = θ1500 ∗ 1000z (59)

In order to adopt the best option to compute soil hydro-physical properties (θ33, θ1500,θsat and Ksat) and hence the thresh-

olds proposed, a set of the most widely used PTFs in LSMs were evaluated (Van Looy et al., 2017) were tested with a global370

dataset of soil physical properties which was compiled from different sources. The models, ranging in complexity, from the

most simple mathematical formulations are described in Table 2.
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Table 2. Evaluated pedotransfer functions and their use in Land Surface Models

PTF LSM/Product
PTF formulation

approach∗
N samples used for

training
Inputs

Cosby et al. (1984)

NASA CATCHMENT

LSM, CLM 4.5, JULES,

Noah-MP/VIC

MLR 1448
Sand (%), clay (%)

Balland et al. (2008) − NLR 13088

Sand (%), clay (%),

SOM (%), bd (g cm−3)

Saxton and Rawls (2006) ESA CCI SM v03.2 MLR 5320
Sand (%), clay (%),

SOM (%)

Tóth et al. (2015)
Soil Hydraulic Database

of Europe (ESDAC)
RT/LR 2356-5530

Sand (%), clay (%),

SOM (%), bd (g cm−3)

Rosetta 3 (Zhang and

Schaap, 2017)
Noah-MP ANN 2134

Sand (%), clay (%),

SOM (%), bd (g cm−3)

*MLR, Multiple linear regression; ANN, Artificial neural networks; RT, regression trees; LR, Linear regression; NLR, non-linear regression.

Thus, finally Eq.(49) is solved analytically as:

Ean =
24

π
(SWhi + rxrvrw(sinhn− sinhi) + (rxrurw − rxILW ) (hn−hi)) (60)

Where, the intersection hour angle hi is found by setting Eq.(50) equal to Eq. (52) and and solving for h:375

hi = arccos

(
SW

rxrvrw
+
ILW
rvrw

− ru
rv

)
(61)

2.2.8 Condensation

The daily dew formed by condensation Cn(mmd−1) is assumed to represent 10% of the water equivalent (Eq.52) of the

negative net radiation H−n (Eq.15) (Jones, 2013). The remnant energy is assumed to be lost as convective heat. Thus,

Cn = 100EconH
−
n (62)380

2.2.9 Soil water content

Once calculated inputs and outputs, the total soil water content Wn (mm) can now be calculated using a simple balance

expression, with the previous day soil water content Wn−1 as follows:

Wn =Wn−1 + I + qin− qout−ROH −Ean (63)
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Furthermore, to calculate the water content SWC (mm) accumulated to any depth (z′) for further comparison with the obser-385

vations, if we assume the same moisture profile from Eq. (26), it can be defined as:

SWC =

z′∫
0

θ(z)dz = θrz+
(ψm +ψz)(θr − θsat)

(
ψb

ψm+ψz

)λ
λ− 1

∣∣∣∣∣∣∣
z′

0

(64)

2.3 Initial conditions

The SPLASH algorithm assumed steady-state condition as the initial state for the simulations, which is reached by looping

ntimes the first year of data until the water balance is preserved:390

∑(
frainPn +Cn +Smn + qinn

)
=
∑(

Ean + qoutn +RO
)

(65)

3 Methods: Simulation protocol and Performance evaluation

3.1 Point-scale simulations

Point-scale simulations with the SPLASH model were run at individual sites (Figs. 8 and 10) with their entire daily time series

of meteorological measurements. Due to different variables measured by the different networks of monitoring, the performance395

evaluation with the pooled data was done separately per network. The statistics used for the evaluation were the coefficient

of determination (R2), the root mean squared error (RMSE), bias, and the slope of the regression observations simulations.

To evaluate the seasonal patterns of fluxes/storages, all the results were aggregated as daily means and grouped by climate

zone using the Köppen–Geiger climate classification system (Beck et al., 2018). Only direct measurements were used for the

performance evaluations, while some indirect observations were estimated, using the variation with previous-day observations,400

to visualize seasonal patterns of some fluxes (e.g. Sf and Sme). To complement the analysis and interpretation of the results,

simulations with the 3-layer variable infiltration capacity model (VIC-3L) (Liang et al., 1996; Liang and Xie, 2001) were

performed using the same inputs and in the same way as SPLASH, without local calibration.

Vegetation properties, soil parameters and initial soil moisture, all required by VIC-3L were extracted at the site locations

from Schaperow and Li (2020). Extra forcing data required by the VIC-3L, like wind speed and vapour pressure, not measured405

at the SNOTEL sites, was extracted from the daily, high-resolution GRIDMET (Abatzoglou, 2013) and DAYMET (Thornton

et al., 2020) datasets respectively. Since some quantities computed by SPLASH are not standard outputs of the VIC-3L model

(e.g. H+
N and Cn), some calculations were applied to obtain comparable outputs (Appendix A3.1). To compare seasonal

patterns of soil moisture a relative moisture content was calculated with the observations and results from SPLASH, in the

same way as the VIC output:410

Θ =
Wn−Wpwp

Wsat−Wpwp
(66)

Where Wsat is the water content (mm) at saturation. Wn and Wpwp are as defined in Section (2.2.7).
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3.2 Spatially distributed simulations

Spatially distributed simulations were performed to visualize major spatial patterns of the fluxes/storages, test the computa-

tional performance of the model at different resolutions, and evaluate how the global parameters and assumptions of the model415

hold.

Global simulations were run at a resolution of 5 km, regional simulations (e.g., North America) at a resolution of 1 km, and

micro catchments at a resolution of 90 m.

Since the model lacks a routing algorithm, to test the runoff/lateral flow simulations against streamflow observations, yearly

aggregated quantities were used.420

Spatially distributed simulations of runoff across the US were obtained from Kao et al. (2022). These simulations, conducted

independently, employed VIC calibrated with historical hydrological data and were exclusively used for evaluating streamflow

against SPLASH simulations run with identical inputs (i.e. DAYMET (Thornton et al., 2018)).

4 Methods: Fitting/Optimization of empirical functions

Parameters from the selected equations (pedotransfer functions) were optimized using the Nash-Sutcliffe (NSE) coefficient,425

which relates the variance of the residuals with the variance of the data, as the objective function (Nash and Sutcliffe, 1970;

Gupta and Kling, 2011). Here, an NSE closer to 1.0 expresses ideal estimates. The probabilistic model for snowfall occurrence

was fitted using a binomial family Generalized Linear Model (GLM), while the albedo-related functions were fitted using

nonlinear least-squares. To assess the accuracy of the snowfall probability estimation, the Receiver Operating Characteristic

(ROC) curve was used, which plots the true positive rate (specificity) against the false positive rate (sensitivity), using a430

probability of 0.5 as a threshold. Here the area under the curve (AUC) closer to 1.0 expresses a better overall prediction

(Fawcett, 2006).

5 Methods: Input data

5.1 Eddy covariance towers

Data from the whole FLUXNET database (Pastorello et al., 2020), comprising 212 stations distributed around the world (Fig.435

8) was used to update the empirical functions to compute net longwave radiation, superseding the equations formulated by

(Monteith and Unsworth, 1990) and (Linacre, 1968) used in the first version of SPLASH.
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Figure 8. FLUXNET stations used for the ILW parameter calibration.

All the data was aggregated to daily means, while the originally reported latent heat flux was transformed to its equivalent

in water flux density (mmd−1) by using the heat of vaporization corrected for field conditions.

To test the validity of the theorized daily cycles and crossover angles, positive values of net radiation were subsetted and440

aggregated daily, which in theory should be equivalent to Eq.(14). A simple threshold for measured albedo of 0.3 was used to

identify snow presence, then, latent heat measurements when snow was present were excluded from the estimations of daily

evapotranspiration and condensation, trying to prevent the latent heat used in melting/refreeze/sublimation introduce error in

the evaluations.

5.2 Meteorological/hydrometric stations445

To find the parameters used in the snowcover/albedo functions, 315 stations reporting snow water equivalent or snow-depth

from the SNOwpack TELemetry (SNOTEL) network (Serreze et al., 1999), managed by the U.S. Natural Resources Conser-

vation (NCAR) service were used together with remote sensing data (Fig. 9), most of these stations also report solar radiation,

precipitation, air temperature and volumetric soil moisture at different depths.
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Figure 9. SNOTEL stations used for albedo/snow-cover analysis.

To evaluate the model, we subset sites on mountains regions with joint measurements of snow, soil physical properties (i.e.450

texture, bulk density and SOM), and soil moisture deeper than 30cm, resulting in 127 sites (Table A4). Data from the DAYMET

database (Thornton et al., 2018) was used whenever the solar radiation was not reported (Fig. 10).
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Figure 10. SNOTEL soil moisture and SWE validation sites.
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To fit the binary logistic regression used to estimate the probability of snowfall occurrence p(snow), the dataset described

by Jennings et al. (2018) was used. Which comprises 11924 stations distributed over the northern hemisphere, adding a total

of 17810805 binary observations of snowfall (Fig. 11)455
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Figure 11. Stations providing snowfall observations from the Jennings et al. (2018) dataset

To test the model capabilities predicting streamflow, with its improvements accounting for slope, small watersheds with

areas between 5 and 2000 km2 located in the mountain regions of Canada and the USA were selected from the global GSIM

database (Do et al., 2018) due to the quality of the available forcing data over these regions. The GSIM database provides

curated streamflow data from multiple sources and geographic watershed boundaries (Fig. 12). Only watersheds with natural

cover higher than 90% and streamflow data covering at least 10 years since 1980 were subset (Table A5), resulting in 15963460

station-years. Here, the separation surface runoff/ baseflow was done following the method described by Ladson et al. (2013).
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Figure 12. GSIM watersheds for streamflow validation.
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To evaluate the spatial patterns produced by the model with long-term data, hydro-meteorological and soil moisture mea-

surements from the Rietholzbach Research Catchment were used. These datasets are publicly available and described by

Seneviratne et al. (2012); Hirschi et al. (2017). While, to test the model in regions where the rainfall/runoff response is mainly

dominated by subsurface flow (Crespo et al., 2011; Correa et al., 2020), hydro-meteorological data from the tropical Andes,465

compiled by Ochoa-Tocachi et al. (2018) was used.

5.3 Soil physical properties and Terrain

To calibrate the pedotransfer functions which compute field capacity (θ33) and wilting point (θ1500) a dataset containing data

on water retention, texture, organic matter content (SOM ), and bulk density was compiled from the U.S Natural Resources

Conservation services through the ‘soilDB’ R-Package (Skovlin and Roecker, 2018), and the ‘Wosis’ databases (Batjes et al.,470

2020). Both databases have global coverage and resulted in a total of 68567 usable samples (at least one of the response

variables (θfc or θwp) and all the predictors) out of 324380 (Fig. 13).

(a) Probability density (b) Soil organic matter

Figure 13. θfc and θwp measurements used to calibrate the pedotransfer functions. (a) Probability density of the soil samples according their

textural classes. (b) Average soil organic matter content of the samples per textural class.

While, to optimize the functions to estimate soil moisture at saturation (θsat) and saturated hydraulic conductivity (Ksat)

data was gathered from the HYBRAS (Ottoni et al., 2018), the SWIG (Rahmati et al., 2018), the UNSODA (Leij et al., 1996)

and the Florida University (IFAS, 2007) datasets, for a total of 9346 usable samples out of 15160 (Fig. 14).475
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(a) Probability density (b) Soil organic matter

Figure 14. Ksat and θsat measurements used to calibrate the pedotransfer functions. (a) Probability density of the samples according to

their textural classes. (b) Average soil organic matter content of the samples per textural class.

To test the model in the EC sites, soil physical properties above-mentioned were retrieved from the SoilGrids.org dataset

(Hengl et al., 2017), while the ‘soilDB’ R-Package (Skovlin and Roecker, 2018) was used to retrieve soil data at SNOTEL

sites.

Slope, slope orientation (aspect), and upslope area were computed using the TauDEM software (Tarboton, 2016) from the

global SRTM digital elevation model resampled to 250m (Jarvis et al., 2008).480

5.4 Remote sensing

To calibrate the functions that calculate the snow cover fraction, and the snow cover effect on the albedo, data from the MODIS

MOD10A1 500m-daily product (Hall et al., 2016) was compared against 15 years (2001-2015) of daily data from the 315

SNOTEL stations described previously in this section (Fig. 9).

Information on the biome classification, used to interpret the data, was gathered from the simple typology defined by the485

International Geosphere-Biosphere Programme (IGBP), available as a MODIS product (MOD12Q1) (Friedl et al., 2019).

To assess the spatial patterns of evapotranspiration in selected small watersheds, the SEBAL algorithm (Bastiaanssen et al.,

1998a, b), implemented in Google Earth Engine (GEE) by Laipelt et al. (2021), was used with Landsat 5 atmospherically

corrected surface reflectances from 1994-2007 and Landsat 8 from 2014.

To propose a reasonable assumption for the duration of a precipitation event, the global hourly precipitation GsMAP dataset490

was used. This dataset has 0.1° of resolution and was built using retrievals from NASA’s satellite constellation, including

infrared, microwave and radar sensors ( 20 sensors), merged and corrected with NOAA’s ground stations (Mega et al., 2014;

Yamamoto and Shige, 2015). Since the gauge count is also available within the dataset, only pixels with 3 or more gauges were

used to extract and analyse the hourly data using GEE.
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5.5 Spatially distributed forcing495

For the global simulations at 5km of resolution, monthly precipitation data from Beck et al. (2019) was resampled and subset to

2010-2016, air temperature was obtained from the Terraclim dataset (Abatzoglou et al., 2018), together with the solar radiation

produced by Ryu et al. (2018), which uses MODIS atmospheric and albedo retrievals as some of the inputs.

For regional simulations (e.g north America), 1km-resolution, temperature and precipitation from CHELSA (Karger et al.,

2017) were used, while the solar radiation from Ryu et al. (2018) was downscaled using the theoretical effects of terrain500

described in Section (2.1.1). Elevation datasets at 1km and 5km resolution used in the respective runs were obtained from

Amatulli et al. (2018). While the soil data was resampled from the global 250m SoilGrids dataset (Hengl et al., 2017) (sand,

clay, organic matter, coarse fraction, and bulk density). The soil depth/thickness was averaged between SoilGrids and the

Pelletier et al. (2016) datasets.

6 Results505

6.1 Fitting/optimization results

6.1.1 Net longwave radiation functions

Quadratic equations were the best fit for both, incoming and outgoing longwave radiation during clear-sky conditions, improv-

ing noticeably the predictions for temperatures below 0◦C, particularly useful for regions at high elevations (Figs. 15a and

15c). The net longwave equation, resulting from algebraically subtracting LWIN −LWOUT , showed a very small quadratic510

coefficient, which was neglected to adopt a simpler linear equation (Fig. 15c).
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(a) Incoming longwave radiation (b) Outgoing longwave radiation

(c) Net longwave radiation

Figure 15. Clear-sky longwave radiation as a function of air temperature. (a) Clear-sky incoming longwave radiation. (b) Clear-sky outgoing

longwave radiation. (c) Clear-sky Net longwave radiation.

6.1.2 Snowfall probability

The performance of the snowfall occurrence calculation resulted in an AUC of 0.97 (Fig. 16), which considering a maximum

value of 1.0, suggests this method is highly accurate.
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Figure 16. Evaluation of the predicted snowfall probability using a ROC curve.

6.1.3 Snow cover fraction and Snow-albedo correction515

The simple hyperbolic function used to describe the response of the snow cover fraction to the size of the snowpack suggests

that the inflection starts when the SWE reaches 140mm, and most of the variation in snow cover (up to 80%) happens in the

first 1000mm of SWE. Moreover, the standard deviations of SWE aggregated by biomes show that in the sampled period

values higher than 1000 mm are uncommon (Fig. 17a).

The snow ageing function suggests that a reduction of about 50% of the albedo can happen in the first 10 days without new520

snow falling and the lowest albedo can reach 0.4 (Fig. 32b).
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(a) Snow cover fraction (b) Snow ageing

Figure 17. Ground-based observations of snow against satellite retrievals. The color scale shows point density; red indicates higher density.

(a) Daily snow cover fraction from MODIS (fsnw) vs. daily SNOTEL SWE. The black line shows the optimized Eq.(27). (b) MODIS albedo

(βsnw) when the snow cover exceeds 70% vs. Days without fresh snowfall (nd) from the daily SNOTEL SWE. The black line shows the

optimized Eq.(26).

6.1.4 Pedotransfer functions

From the models tested (Table 2), the non-linear equations from Balland et al. (2008), which were fit to the largest dataset

outperformed the other models. Further optimization of these equations (Eq. A25a,A25b,A25c) using the full dataset employed

for this evaluation yielded a slight improvement of around 10% for field capacity (θ33) and saturation (θsat) (Fig. 20). The new525

parameters are detailed in Table A1.

θ1500 =θ33
(
cwp + (dwp− cwp)CLAY 0.5

)
(67a)

θ33 =θsat
(
cfc + (dfc− cfc)CLAY 0.5

)
e
afcSAND−bfcSOM

θsat (67b)

θsat =1− ρb
ρp

(67c)

Ksat =10aks+bks log10(ρp−ρb)+cksSAND (67d)530

Were θ1500 is wilting point (water held at 1500kPa), θ33 is field capacity (water held at 33kPa), θsat is saturation, Ksat the

saturated hydraulic conductivity, and, SAND, CLAY and SOM refer to sand, clay and organic matter contents (%). a,b,c are

constants with the subscripts referring to wilting point, field capacity or hydraulic saturated conductivity respectively, ρb is the
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bulk density, and ρp is the particle density, calculated as follows (Balland et al., 2008):

ρp =
1

SOM
1.3 + 1−SOM

2.65

(68)535

Table 3. Updated parameters for the Balland et al. (2008) PTFs

ax bx cx dx

θ1500 − − 0.2018 0.7809

θ33 -0.0547 -0.0010 0.4760 0.9402

Ksat -2.6539 3.0924 4.2146 −

(a) θ1500 (b) θ33 (c) θsat

Figure 18. Correlation of observed and simulated values of soil hydro-physical properties. The color scale shows point density; red indicates

higher density. (a) Permanent wilting point (θ1500). (b) Field capacity (θ33). (c) Soil porosity or saturation point (θsat).

Ksat estimated by the Saxton and Rawls (2006) PFT was the best performing model, however, it leads to unrealistic values

when the drainable porosity (θsat−θ33) is relatively high. Thus a simple saturating curve was adopted here, which yields similar

estimations to Saxton and Rawls (2006) at the lower end of the drainable porosity but it flattens at a fitted Ksat maximum of

623 mmh−1.
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Figure 19. Correlation of observed and simulated values of saturated hydraulic conductivity Ksat. The color scale shows point density; red

indicates higher density.

6.2 Fluxes540

6.2.1 Net longwave radiation

The evaluation of ILW shows the values clustering around -100 and 0 W m2, nonetheless the simple linear model was able to

explain 70% of the variance with a very low bias (−0.11) (Fig. 20).

Figure 20. Correlation of observed and simulated values of ILW , with data from all the sites pooled. The color scale shows point density;

red indicates higher density.
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6.2.2 Daytime Net Radiation

The Daytime net radiation, or positive net radiation was compared against 87 EC sites distributed over mountain regions545

covering several biomes. The comparison, using all the data pooled at daily resolution shows that the model is able to explain

more than 70% of the observations’ variance with a very small bias (Fig. 21). The evaluation also shows that the highest

overestimation happens in ecosystems with sparse vegetation (BSV biome).

Figure 21. Correlation of observed and simulated values of H+
N with data from all the sites pooled. The color scale shows point density; red

indicates higher density. (a) simulations with SPLASH v1.0. (b) simulations with SPLASH v2.0.

The seasonal patterns ofH+
N averaged by climate zone show a classic bell-shaped curve, peaking during the summer months,

the greater deviations from the mean appear in climate zones with no dry season (Cfb, Dfc). SPLASH simulations reproduce550

the observations more closely than the VIC results in most of the climate zones, noticeably outperforming VIC in climate zones

with dry summers (Csa, Csb). SPLASH overestimation happens primarily in cold deserts during summer months (BWk), while

underestimation is noticeable in temperate zones with no dry season (Cfa) and in the hot steppe (BSh), both during summer

months. (Fig 22).
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Figure 22. Mean seasonal cycle of H+
N per climate zone. The gray areas show one SD from the observed mean. Climate zones are described

in table (A2).

6.2.3 Evapotranspiration555

The performance evaluation of Ean using the data of all the EC stations shows the model reproducing 50% of the variance of

daily observations with a small bias and the slope of the regression of observations simulations equal to 0.072. The standard

deviation of the data aggregated by biome, in the observation axis, shows that at daily timestep Ean is highly variable, and

there is no clear difference between woody and herbaceous ecosystems. The evaluation shows a greater underestimation for
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evergreen broadleaf forests (EBF), while the greater overestimation happens in deciduous broadleaf forests (DBF). Furthermore560

the lowest Ean is shown by ecosystems with sparse vegetation (OSH) and the highest by EBF (Fig. 23).

Figure 23. Correlation of observed and simulated values of Ea
n with data from all the sites pooled. The color scale shows point density; red

indicates higher density. (a) simulations with SPLASH v1.0. (b) simulations with SPLASH v2.0.

The seasonal patterns of Ean broadly follow the pattern of H+
N in zones with no water limitations (Cf* and Cf* types),

the polar tundra exhibits similar patterns but with a higher difference between summer and winter months. While arid zones

(BS* and BW* types) show a very different pattern compared to H+
N . SPLASH simulations correctly reproduced most of the

seasonal patterns, and for certain climate zones (BSk, Csb, Dsc) outperformed VIC simulations. Although SPLASH captures565

the overall seasonal patterns, it overestimates Ean in Dsc sites, while, similarly to the VIC results, it underestimates Ean in the

polar tundra (ET) and in the Cfb sites in the southern hemisphere (Fig. 24).
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Figure 24. Mean seasonal cycle of Ea
n per climate zone. The gray areas show one SD from the observed mean. Climate zones are described

in table (A2).

At a global scale, SPLASH produces major spatial patterns that roughly follow the distribution of the Köppen-Geiger climate

zones. In northern latitudes it overestimates Ean during summer months, nonetheless, it outperforms VIC-3L which produces

high values during winter (Fig. 25).570
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The simulations, with the long-term data from Rietholzbach, exhibit a good overall agreement with the lysimeter-based

observations (Fig. 26e). However, a minor but systematic overestimation happens during the spring months. Here, the spatial

patterns produced by SPLASH show higher magnitudes on south-facing slopes, and, at the valley bottom close to the outlet,

coinciding with the area where a small forest is present (Seneviratne et al., 2012) (Fig. 43c). These patterns contrast with the

spatially distributed LE, calculated from Landsat 5 retrievals, which shows a more uniform LE, except for a few forest patches,575

where LE spikes (Fig. 26d). Both datasets barely agree over the small forest at the valley bottom.
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Figure 26. Spatial and temporal patterns of evapotranspiration in a small wet temperate watershed, Rietholzbach - Switzerland. (a) Slope in

degrees. (b) Slope orientation, N stands for north, S for south and so on. (c) Mean annual simulated evapotranspiration 1994-2007. (d) Mean

instantaneous LE from L5’s clear-sky pixels during 1994-2007. (e) Time series of monthly evapotranspiration, simulated and lysimeter-based

observations.

In the tropical watershed, the spatial patterns of Ean produced by SPLASH (Fig. 27c) show a better agreement with the RS

LE than in the temperate watershed, as shown by some emergent coldspots in the northern part of the watershed (Fig. 27e).
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Moreover, in both datasets, slopes facing the equator show higher magnitudes compared to flat areas, however, in the SPLASH

results, this difference is stronger than in the RS LE estimation.580
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Figure 27. Spatial patterns of daily evapotranspiration in a wet tropical watershed, Jatunhuayco - Ecuador. (a) Slope in degrees. (b) Slope

orientation, N stands for north, S for south and so on. (c) Mean daily evapotranspiration during 2014. (d) Standard deviation of the daily evap-

otranspiration during 2014). (e) Mean instantaneous LE from L8’s clear-sky pixels during 2014. (f) Standard deviation of the instantaneous

LE from L8’s clear-sky pixels during 2014.
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6.2.4 Condensation

SPLASH model showed the poorest performance simulating Cn, it was able to capture around 18% of the variance, with a bias

of 0.913. The slope of the regression observations-simulations points to overestimations at high simulated values. Most of the

observations seem to cluster in the 0-10 mmyr−1, the greater underestimation happens in broadleaf evergreen forests while

Cn is overestimated in barren/sparse vegetated ecosystems.585

Figure 28. Correlation of observed and simulated values of Cn with data from all the sites pooled. The color scale shows point density; red

indicates higher density. (a) simulations with SPLASH v1.0. (b) simulations with SPLASH v2.0.

Just arid climate zones (B* types) showed seasonal patterns of Cn, and potentially important magnitudes, both dimensions

captured by SPLASH. However, the SPLASH model is still underestimating Cn in the hot steppe (BSh) and overestimating

Cn in the cold steppe and desert (e.g. BSk and BWk). In some climate zones with no apparent seasonal pattern and with

random peaks through the year (e.g. Cfc and Dsc) SPLASH model shows a smother prediction, underestimating all the peaks.

Compared to the VIC simulations, the SPLASH model seems to reproduce the general patterns more reasonably (Fig. 29).590
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Legend: Observed SPLASH VIC−3L

Figure 29. Mean seasonal cycle of Cn per climate zone. The gray areas show one SD from the observed mean. Climate zones are described

in table (A2).

6.2.5 Snowfall

The seasonal patterns of Sf show differences in the magnitudes between climate zones with and without dry season only in

temperate types (Cfb, Csb), while wet continental (Df*) types did not show noticeable differences with their dry counterparts

(Ds*). Arid climates (B*), on the other hand, showed the lowest magnitudes. The patterns simulated by SPLASH match almost

perfectly with the observations for all the climate zones, in agreement with the VIC simulations as well. Some underestimation595

is noticeable at the end of the winter in the wet temperate zone (Cfb) (Fig. 30).
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Figure 30. Mean seasonal cycle of Sf per climate zone. The gray areas show one SD from the observed mean. Climate zones are described

in table (A2).

6.2.6 Snowmelt

Seasonal patterns of Sm appear more clearly in the continental climate zones (D* types) with an expected peak at the beginning

of spring, the other climate zones apparently don’t show a general pattern. SPLASH model was able to simulate the start of

the melting process in all the climate zones, however, it captures the seasonal pattern only in wet continental climates (Df*),600

while overestimating Sm in their dry counterparts (Ds*). Overall the seasonal patterns from SPLASH seem to agree with the
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simulations better than the results of the VIC model, which shows a temporal lag in the start and peak of the melting period

(Fig. 31).
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Legend: Observed SPLASH VIC−3L

Figure 31. Mean seasonal cycle of Sm per climate zone. The gray areas show one SD from the observed mean. Climate zones are described

in table (A2).
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6.2.7 Surface Runoff and lateral flow

The SPLASH simulations of total streamflow (TSF) (RO+ qout) in the watersheds were able to explain 71% of the variation605

while the estimations of surface runoff accounted for 69% of the variation. The bias in both analyses shows a systematic

underestimation of this flux, especially at the lower end (Fig. 32).
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R2 = 0.71  RMSE = 395.83  bias = −116.01  slope = 0.99  N = 13406

(b) Surface Runoff
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R2 = 0.69  RMSE = 364.24  bias = −52.98  slope = 0.88  N = 13406

Figure 32. Correlation of observed and simulated values of Discharge with data from all the watersheds pooled. The color scale shows point

density; red indicates higher density. (a) Total Streamflow. (b) Surface Runoff

SPLASH simulations of TSF and RO in the same watersheds as VIC showed that although VIC achieved slightly better

performance, SPLASH can achieve very similar R2 values. The slope of simulated vs. observed data suggests that SPLASH,

without any local calibration, can reach 80% of the accuracy of VIC calibrated with historical data (Fig. 33).610
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Figure 33. Correlation of observed and simulated values of Discharge with data from all the watersheds pooled. The color scale shows point

density; red indicates higher density. (a) Total Streamflow. (b) Surface Runoff

Tracking down the source of the systematic underestimation by analysing in detail the time series of observed and simulated

TSF from Rietholzbach, the underestimation appeared greater during winter months when the precipitation is below the av-

erage. On the other hand, when the precipitation is peaking, overestimation occurs in some years seemingly without showing

any systematic pattern (Fig. 34f).

The simulated time series of baseflow index BFI
(

qout
qout+RO

)
roughly follows the temporal dynamics of the observations.615

Overestimations appear in the winter months due to the underestimations of surface RO during these months (Fig. 34e).
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Furthermore, the spatial patterns resulting from the simulation show the runoff is higher in areas surrounding the stream, which

emerges from the flux accumulation at the valley bottom (Fig. 34b).

Moreover, the lateral flow is mostly produced in the north-facing slopes and in some areas next to the main stream, upslope

from the main outlet. The BFI is close to 1 in most of the watershed, except in areas close to the stream, suggesting that most620

of the simulated hydrological response is subsurface flow (Fig. 34a).
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The monthly means of BFI from the long-term data from Rietholzbach suggest that the underestimation of surface RO is

indeed systematic and the major discrepancies appear in November and December (Fig. 35).
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Figure 35. Mean monthly BFI 1994-2007 in a small wet temperate watershed, Rietholzbach - Switzerland for the period 1994-2007

At daily timestep, the results of the simulation in the tropical watershed, show that the performance of SPLASH simulating

fast storm response is poor, the model fails in capturing the expected runoff peaks during relatively big storms at daily timescale625

(Fig. 36e). Nonetheless, the spatial patterns generated by SPLASH in this small watershed, reproduce mostly saturation excess

runoff in areas close to the streams (Fig. 47a), while the simulated lateral flow appears stable, spatially and over time (Figs.

(47c) and (47d)).
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(e) Time series of daily precipitation and total streamflow (TSF)
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Figure 36. Spatial and temporal patterns of daily fluxes in a tropical small watershed, Jatunhuayco - Ecuador (a) Mean daily runoff during

2014. (b) Standard deviation of the daily runoff in 2014). (c) Mean daily lateral flow during 2014. (d) Standard deviation of the daily lateral

flow during 2014 (e) Time series of daily precipitation and total streamflow during 2014
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6.3 Storages

6.3.1 Snow water equivalent630

The simple formulations proposed to simulate SWE were able to explain 88% of the observed variation across 127 SNO-

TEL sites located in mountain regions. The mean value of the observations aggregated by biome shows that SWE in ever-

green needle-leaf forests (ENF) is the largest among the biomes, while the lowest value was from open/deciduous canopies

(OSH,DBF). The bias suggests that SPLASH is underestimating SWE at low values, however, the huge variation of the

observations in all biomes suggests that the differences are not significant (Fig. 37).635

Figure 37. Correlation of observed and simulated values of daily SWE, values of all sites pooled. The color scale shows point density; red

indicates higher density.

The seasonal patterns of SWE depict the well-known bell-shaped curve during winter with great deviations from the sea-

sonal mean. Here, the sites in the temperate climate zones without dry season showed the greatest deviation (Cfb). SPLASH

model was able to reproduce the seasonal patterns in all the climate zones. It underestimates, to different degrees, the averages

within the range of the observations, which contrasts with the overestimation of the VIC simulations. Nonetheless, SPLASH

captures almost perfectly the length of the snow-covered period, failing only in the Cfb zone, where it overestimates SWE640

during the melting period, here VIC outperforms SPLASH (Fig. 38).
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Figure 38. Mean seasonal cycle of SWE per climate zone. The gray areas show one SD from the observed mean. Climate zones are

described in table (A2).

The spatially distributed high-resolution simulation, over North America, showed strong patterns defined by the topography,

with higher SWE over the mountain regions, and variations according to the slope exposure. A well-defined lower boundary

for the snow-covered area emerged in the eastern US, around 40◦ of latitude, coinciding with the transition from climates Cfa

to Dfa, while on mountain summits the simulated SWE fades at around 35◦ (Fig. 39).645
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6.3.2 Soil water content

The performance evaluation of daily SWC was done with data from stations measuring soil moisture deeper than 30 cm located

in the mountain regions, resulting in 16 EC (Fig. 40a) and 127 SNOTEL (Fig. 40b) stations. Comparison among biomes was

not possible due to the different depths of measurement in each station, this shows for example, because of mostly superficial

measurements, wetlands at the lower end of the observations axis (Fig. 40b). Nevertheless, the SPLASH model was able to650

explain 86% of the variation in the EC dataset which is around 7 times smaller than the SNOTEL dataset where SPLASH

explained 54% of the variation. The evaluation also shows that SWC was overestimated by the SPLASH model in Grassland

ecosystems (GRA) and in open shrublands (OSH) (Fig. 40).

(a) EC sites (b) SNOTEL sites

Figure 40. Correlation of observed and simulated values of daily SWC, values of all sites pooled. The color scale shows point density; red

indicates higher density.

The seasonal patterns of Θ, extracted from the data and simulations at SNOTEL sites, show a sinusoidal shape in all the

climate zones. The highest point appears during the first half of the spring, and the lowest point by the end of the summer. Most655

of the climate zones show huge deviations from the mean, especially the zones without dry season (e.g. Cfb, Dfc), except for

the cold desert (BWk) where this variation is smaller.

SPLASH model shows a reasonable agreement of the seasonal pattern for climate zones with warm and dry summers (i.e.

Csb, Dsb) and for the cold steppe (BSk). At these climate zones, SPLASH reproduces the seasonality in a better way than VIC.

In some continental climates (Dfb, Dfc, Dsc), SPLASH produce a similar pattern to the observed mean but downshifted660

inside the expected deviation. At these climate zones, the VIC model approaches the observed mean only during spring-

summer months. In the Warm-summer temperate climate with no dry season (Cfb), SPLASH is not able to reproduce the

seasonal pattern, the amplitude of the sinusoidal shape is too small to match the observations. Here, VIC agrees with the

observations briefly during winter. In the cold desert (BWk) SPLASH does not produce a seasonal pattern, the average through
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the year remains close to the minimum. Here VIC overestimates Θ during spring and produces negative values during the665

spring and summer months (Fig. 41).
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Figure 41. Mean seasonal cycle of Θ per climate zone. The gray areas show one SD from the observed mean. Climate zones are described

in table (A2).

The spatially distributed simulation of relative soil moisture saturation shows that the patterns of the annual average roughly

follow the global climate zones distribution. At this resolution, the model was incapable of reproducing the streams and most

of the mountain regions emerged as areas half to low saturated (Fig. 42).
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The spatial patterns of the total soil water content in the temperate watershed show an emergent accumulation at the valley670

bottom, shaping the stream. Here, the s.d. is very small, suggesting the valley bottom remains wet most of the year (Fig. 43d).

The different patterns over north and south-facing slopes, show the former with more water content over the latter, but more

variations over time. The emergent variations in the north-facing slope are shaped by the inclination of the slope, while on the

south-facing slope, this pattern seems to follow the aspect (Fig. 43c).

The time series of soil water content over the first meter of depth was poorly reproduced by SPLASH, in some years the675

simulation matches the observations (e.g. 2006), however, in most of the years the droughts are underestimated and the peaks

are overestimated (Fig. 43e).
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Figure 43. Spatial and temporal patterns of soil water content in a small wet temperate watershed, Rietholzbach - Switzerland. (a) Slope in

degrees. (b) Slope orientation, N stands for north, S for south and so on. (c) Mean annual simulated soil water content in the whole column

during 1994-2007. (d) The standard deviation of the daily soil water content in the whole column during 1994-2007. (e) Time series of

monthly soil water content, simulated and observed over the first 1 m. of depth.

In the tropical watershed, the spatial patterns of the daily average Wn show the emergent stream at the valley bottom,

according to the simulations the daily water content here is more variable than in the rest of the watershed (Fig. 44d), contrary
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to the temperate watershed where this pattern was opposite. Here the east-west aspects define the spatial patterns, the eastern680

flanks show less water content than their western counterparts (Fig. 44c).
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Figure 44. Spatial patterns of daily soil water content in a wet tropical watershed, Jatunhuayco - Ecuador. (a) Slope in degrees. (b) Slope

orientation, N stands for north, S for south and so on. (c) Mean daily soil water content during 2014. (d) Standard deviation of the daily soil

water content during 2014).

7 Discussion

The updated SPLASH model showed reasonable agreement with the observations in all the fluxes analysed here without any

local calibration or prescribed land-cover information. The data requirements to run the model (precipitation, solar radiation,

air temperature, elevation and soil texture) are modest; the open-source code, compiled in a ready-to-use package, facilitates685

replication.

The analytical approach used to solve the energy and water fluxes allowed the model to run with high-resolution data on

global scales without using statistical–dynamical flux parameterizations, or hydrological unit responses. Emergent patterns
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produced by the model follow the natural accumulation of soil moisture downslope. Most of the fluxes and storages analysed

here agree with — and sometimes outperform— the more complex VIC-3L model, which was chosen for comparison due to690

its wide use in ecohydrological applications, and its well-known good performance.

SPLASH assumes background albedo, a parameter particularly crucial due to its synergy with water fluxes, to be constant for

all biomes. This contrasts with the VIC model, which uses monthly albedo per vegetation class (Gao et al., 2009). Nonetheless,

SPLASH showed overall good agreement of H+
n with the observations, suggesting that the snow effect on the albedo is much

stronger than the effects of the phenology in snow-covered regions (Xiao et al., 2017). This global albedo assumption, however,695

is more likely to be the cause of the discrepancy ofH+
n in ecosystems with sparse vegetation cover (e.g. BSV and OSH), where

the extent of exposed soil and its moisture status modify the albedo (Campbell and Norman, 1998; Barry, 2008).

Although the ground heat flux is ignored by the model, an improvement in the calculation of H+
n is noticed relative to the

previous version (Davis et al., 2017), where the overestimation in the arid desert (BWh) is fixed with the new parameterization

of the longwave radiation, and the overestimation in the polar tundra (ET) is corrected by the new included feedback snow-700

albedo.

Simulated actual evapotranspiration (Ean) is underestimated to various degrees in all biomes. As model performance for

H+
n is high, this suggests that the Ean discrepancies are related to the empirical parameterization of the water supply/uptake

(SW ). Theoretically, this should be driven by the soil-to-leaf water potentials gradient (∆ψ) (Prentice et al., 2014), thus,

reflecting different plant strategies to deal with drought. However, when this idea was tested during the development stage, the705

performance of the simulations decreased (Fig. 45c), probably due to the calculation method used for the leaf-water potential,

and its assumptions (both taken from the literature): canopy well coupled to the atmosphere at pre-dawn, thus Ts = Ta; and

the relative water content of the leaf close to saturation (Appendix A4).

Although in this version of SPLASH, we propose a physically-based calculation for the upper threshold of SW , its response

to the water deficit is conceptualized as a linear function, which has been reported as the most simple and reasonable empirical710

description (e.g. Federer (1982)). Nonetheless, several authors report more complex formulations depicting, convex (Campbell

and Norman, 1998), concave (Metselaar and de Jong van Lier, 2007) or trapezoidal (Feddes and Raats, 2004) shapes. Some

of these formulations were tested during the development stage of the model, with no significant improvement over the simple

linear formulation (Fig. 45).

From this experimentation, the assumption made on the maximum supply rate Sc as the maximum rate of evaporation715

yielded the best approximations. This assumption makes more sense in bare-ground areas, however, in vegetated areas, this

value should be reflecting the plant controls on transpiration, which ideally, needs to be addressed with ideas based on Eco-

evolutionary optimality theory (Harrison et al., 2021).
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(a) Campbell water uptake eq. (b) Metselaar water stress eq. (c) ∆ψ water uptake eq.

Figure 45. Simulation experiments against EC observations using different soil water stress/water uptake functions. The color scale shows

point density; red indicates higher density. (a) Using Campbell and Norman (1998) water uptake function in mountain sites. (b) Using

Metselaar and de Jong van Lier (2007) water stress function and a constant Sc= 1.05 (mmh−1) (Federer, 1982) in mountain sites. (c)

Using the gradient of water potentials soil-leaf ∆ψ to drive the water uptake in all the FLUXNET database.

Since SPLASH seems to reproduce the evapotranspiration better over non-water limited areas, in such areas, slopes facing

the equator (south-facing slopes in the northern hemisphere) should, in theory, show higher values than their opposite-facing720

counterparts, which receive less radiation (Körner, 2021; Chapin et al., 2011).

This spatial pattern is indeed produced by SPLASH in the Rietholzbach experimental catchment. However, here the latent

heat calculated from the Landsat5 retrievals does not show any strong differences between north and south-facing slopes.

It is still unclear if the spatial patterns from Landsat are correct, the SEBAL algorithm used the calculate LE is limited to

clear-sky pixels only, thus a large amount of data was excluded from the calculation, furthermore, this algorithm computes an725

instantaneous LE
Rn−G (at the satellite overpass), then, it assumes this proportion is constant through the day, so the daily Ea can

be calculated from the daily accumulated Rn measured on the ground (Bastiaanssen et al., 1998a). Therefore, a more accurate

estimation from SEBAL would involve terrain-corrected independent calculations of Rn at Landsat spatial resolution, which

were unavailable at the time of this comparison. Land use in Rietholzbach also plays a key role in shaping the spatial patterns

of LE as well.730

SPLASH in theory reflects the environment the plants experience. The spin-up routine produces an initial state of equilib-

rium, thus in areas with natural vegetation the spatial patterns produced by SPLASH should reflect this vegetation cover to

some degree. This is shown in the agreement (to some extent) of the spatial patterns of Ean produced by SPLASH compared

with the Landsat8 LE in the tropical watershed, which always had natural vegetation. This microclimatic gradient created by

the slope and aspect is particularly important to explain outlier populations existing beyond their major distribution zone, which735

can colonize their surroundings during rapid climatic changes (Chapin et al., 2011).

Although the results presented here are encouraging, more rigorous comparisons are needed to evaluate how well the fluxes

produced by SPLASH reflect patterns of naturally occurring vegetation.
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The less-than-optimal performance of SPLASH simulating condensation is mainly due to the lack of other environmental

variables needed to calculate the dew point and surface temperature, such as air humidity, wind speed, and aerodynamic740

resistance. Nonetheless, the simple assumption made to estimate this flux (10% ofH−N ) reproduces the seasonal Cn better than

VIC. The major discrepancies of VIC’s Cn happen during the spring-summer months suggesting that some of the heat lost as

Cn (latent) is actually lost from the surface by convection, cooling the leaves. The yearly magnitudes of dew formed by Cn

suggest that its impact on the water balance is minimal in most climate zones, except for hot arid climate zones (BSh), where

Cn has ecological importance, in agreement with the observations reported by Guo et al. (2016) and Yu et al. (2020).745

The size of the snowpack (SWE) simulated by SPLASH agrees more than 80% with the observations, however, its seasonal

patterns show a systematic underestimation in most of the climate zones. Since the seasonal patterns of the snowfall (Sf )

produced by SPLASH match the observations in all the climate zones, and, the snowmelt (Sm) is reasonably well predicted

in the steppe (BSk) and the wet continental climates (Df*). In these climate zones, the discrepancies seem to be due to the

redistribution of snow by the wind, which is greatly dependent on the structure of the vegetation (Barry, 2008; Pomeroy and750

Brun, 2001) and it is not considered by the model. In dry continental and temperate climates (Ds*, Csb), on the other hand,

SPLASH systematically underestimates SWE, here the cause is more likely to be neglecting the "cold content" of the snow,

which in turn causes an overestimation of Sm. This effect is stronger at high elevations where the temperature is lower, here

VIC delivers better estimations than SPLASH (Fig. 45). Moreover, despite the discrepancies in the simulated magnitudes at

these sites, the duration of the snow-covered period is reasonably predicted, considering that the multi-annual variation can be755

up to one month (Körner, 2021).
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Legend: Observed SPLASH VIC−3L

Figure 46. Mean seasonal cycle of SWE over dry temperate climates (Csb) per elevation band. Results aggregated every 500 masl. The

lines show the means, while the gray shaded area shows the sd.

Although in theory, different sets of parameters in the snow-albedo functions, depending on the complexity of the canopy,

should yield more accurate predictions (e.g. Romanov (2003) ), the performance of SPLASH simulating SWE shows that one

set of parameters is able to deliver reasonable approximations for all types of biomes, such approximation was possible using

roughly 106 of RS/ground datapoints spawned over 15 years in 315 stations during the optimization process. The use of one760

set of parameters is nothing new and it has been used for a long time, however, in previous studies, the number of observations

and available tools limited the spatial representativity of these calibrations (Clark et al., 2017). Nonetheless, the parameters

found in SPLASH for the snow-albedo decay function, are consistent with the values proposed in the Noah model by Livneh

et al. (2010), although in SPLASH there are no different sets of parameters for accumulation and melt seasons.

The spatial patterns of the surface runoff generated by SPLASH in the small watersheds show that most of this flux is765

generated in the saturated zone in the valley bottom, in agreement with what is expected in montane regions (Grayson and

Blöschl, 2000; Weizu and Freer, 1995).

64



Moreover, the spatial patterns of BFI produced by SPLASH in Rietholzbach agree with previous studies which show that

most of the streamflow is produced by subsurface flow, specially interflow (Von Freyberg et al., 2014; Gurtz et al., 2003).

However, the poor performance of SPLASH simulating the daily surface runoff in the Andean catchment, suggest that the770

assumption made for the event duration doesn’t hold for this area, or the saturated zone close to the stream, which controls this

flux in Andean catchments (Correa et al., 2020) is underestimated.

Although the simulations of soil moisture are overall reasonable and the results mostly matched the temporal dynamics of

the observations, two recurrent errors were observed among the simulations, or a combination of these errors, the resultant soil

moisture appears up or downshifted randomly (1st error), or the amplitude of the variations is different from what is observed775

(2nd error).

The first type of error seems to be related to the estimation of the bucket size, which in turn is defined by the pedotransfer

functions and soil data. Although the pedotransfer functions were optimized with a global dataset, which covers a wide spec-

trum of textural classes with a wide range of SOM combinations, the empirical nature of these equations is a well-documented

source of error (Pachepsky et al., 2015; Van Looy et al., 2017; Paschalis et al., 2022). This error might explain why the780

evapotranspiration and total streamflow agree with the observations in Rietholzbach, but the performance of the soil moisture

simulation was very poor.

The second type of error was less recurrent with the SNOTEL dataset, which includes actual measurements of soil properties,

suggesting that the data obtained from SoilGrids for the EC sites might be a source of this error. The coarser volumetric fraction

(stoniness), particularly, can reduce the size of the bucket dramatically here. However, a rigorous evaluation and sensitivity785

analysis is needed to define this source of error in a broader modelling context.

The spatial patterns of soil moisture at a global scale show how the assumption of the model of a maximum depth breaks the

hydrological connectivity in large watersheds. Here, the model forces the water to flow down instead of laterally if the bedrock

is not in the first two meters of depth. On the other hand, in small watersheds, the hydrological connectivity emerges from the

conceptualization of the model accumulating the moisture at the valley bottom and shaping the streams.790

Furthermore, the lateral flow simulated by SPLASH is strongly related to the soil water content, consistent with what has

been reported in Rietholzbach (Teuling et al., 2010) and in Andean watersheds (Crespo et al., 2011).

The exponential decay of the saturated conductivity with depth, widely used in TOPMODEL-type models, was deliberately

excluded from the model. The saturated hydraulic conductivity is highly dependent on the organic matter content and was

calculated using a weighted average (by depth) of SOM as an input. Since SOM generally decreases exponentially with depth795

(Kramer and Gleixner, 2008; Hobley and Wilson, 2016; Bai et al., 2016) this estimated Ksat should be reproducing the decay

to some degree. However, the available data used for the optimization of the pedotransfer functions calculatingKsat was biased

towards sandy and loamy-sand soils, affecting the performance in the rest of the textural classes.

The lateral flow equation proposed here is based on the profile transmissivity, originally proposed by TOPMODEL and

the assumption of steady-state flow. However, it’s been reported that the steady-state flow assumption holds better in wet800

catchments with high hydraulic gradients. In dry catchments or during dry periods, areas of the catchment may lose their

hydrological connectivity (Woods et al., 1997; Tague and Band, 2001).

65



Analyzing the response of the lateral flow to soil moisture generated by SPLASH the minimum qout reflects the stable

gravity-driven drainage (which in shallow soils defines the baseflow), while the maximum qout appears as pulses product of

individual precipitation events mimicking the behaviour of the interflow. This response is consistent in both, wet and arid sites805

in different magnitudes.

In VIC3-L, however, qout reaches values in the order of hundreds (truncated in the figure) while soil moisture is not even

saturated. In the comparable region of the analysis, the upper envelope of the scattered points shows a linear threshold and a

sharp transition to a plateau. The flux here seems to display relatively high values when the soil moisture is close to the wilting

point, which is theoretically impossible.810

(a) SPLASH ENF/Csb site
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Figure 47. Emergent response of the lateral flow to soil moisture from an ENF in a temperate climate, with a dry and warm summer (Csb)

(Site site SNTL:529), simulated from: (a) SPLASH. (b) VIC-3L. The same relationship from a GRA in an arid cold steppe (Bsk) (Site site

SNTL:871), simulated from: (c) SPLASH. (d) VIC-3L.
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Despite the limitations discussed, the updated SPLASH model provides fast and parsimonious means to generate robust esti-

mates of water and energy budgets across regions, regardless of their topographic complexity and spatial scale. The calibration-

free approach enhances the model’s portability and the ecological interpretability of the results. Moreover, since the structure of

the model contains fewer moving parts than any other LSMs, it facilitates formulating ecologically-driven working hypotheses

on why results do not match the observations in case of big discrepancies. With targeted refinements, SPLASH could become815

an even more robust tool for ecohydrological modeling and for exploring hydrological impacts of global change.

Code availability.

Data availability.

Code and data availability. The equations and methods presented in this chapter were coded in C++ to improve the speed of the computation.

Aiming for replicability, the codes were wrapped in an open-source R package called ’rsplash’ available on Zenodo at https://zenodo.org/doi/820

10.5281/zenodo.10047626 and on github: https://github.com/dsval/rsplash. The algorithms can run either at site-scale or spatially distributed

on a grid. The package is coded to automatically exploit parallel computing capabilities when required. A companion R package called

"splashTools" was created (https://github.com/dsval/splashTools) including all the wrappers and original code for downloading and pre-

processing forcing and soil data from the U.S Natural Resources Conservation Services, SoilGrids, FLUXNET and other cited sources. All

the data used in this research is open access and is available through their respective sources cited in the text.825

Sample availability.

Video supplement.

Appendix A: Derivations and extended mathematical analysis

A1 Recession constant

Analysing the flux from one cell, according to the linear reservoir model (Eq. 42) and the BC model (Eq.39), the maximum830

(initial) lateral flux will happen when the soil is saturated. In the same way, it will be close to zero at field capacity. Thus, if we
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set the volume of the drainable porosity, equal to the total volume drained by Eq. (42):

(Wsat−Wfc)Ai=

t∫
0

QsatKb
tdt (A1)

Then, solving both, Eq.(42) and Eq.(A1) for t, we can set:

1

ln(Kb)
ln

(
Qfc
Qsat

)
=

1

ln(Kb)
ln

(
Ai (Wsat−Wfc) ln(Kb)

Qsat
+ 1

)
(A2)835

Therefore, solving Eq. (A2) for Kb, we get:

Kb = e
Qfc−Qsat

Ai (Wsat−Wfc) (A3)

A2 Actual field capacity

Replacing Eq. (55), Eq. (56b) and Eq.(57) in Eq.(54):

A(θ)−B − ρw g θ (1000z) = 0 (A4)840

Then, converting units to SI and simplifying, we can substitute:

c=
1000

ρw g
(A5)

Where 1000 is a factor to correct the units. This can be rearranged to,

c
A

z
=

θ

θ−B
(A6)

Thus, solving Eq.(A3) for θ:845

θ =

(
cA

z

) 1
1+B

(A7)

A3 Comparable quantities from the VIC-3L model

A3.1 H+
N from IN

VIC-3L provides daily IN (W m−2) as output, so, the comparable quantity representing the total input of energy can be found

as:850

H+
N = 86400 IN +H−N (A8)

Among the outputs from the VIC-3L model are ISWmax and ILW , so, if at solar noon (h= 0) ISW = ISWmax, and, at

h= hn, ISW = ILW , then:

ISWmax coshn = ILW ⇒ hn = arccos
ILW

ISWmax
(A9)
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ISW = ILW , and ISW = 0 at h= hs implies as well the line:855

0 = ISWmax−
(
ISWmax− ILW

hs

)
hn (A10)

Which solving for hs yields:

hs = hn

(
1 +

ILW
ISWmax

)
(A11)

Then, the area representing H−N is:

H−N =
86400

π
(π−hs)ILW +

(hs−hn)ILW
2

(A12)860

A3.2 Cn from latent heat components

VIC-3L provides the daily average of the net latent heat as output, along its components used to melt/refreeze soil and snow,

so Cn was computed simply as the remnant negative latent heat after the components were subtracted from the net latent heat,

in the way

Cn = (OUTLATENT +OUTFUSION +OUTMELT ENERGY +OUTRFRZ ENERGY ) ∗ (86.4/2260)−OUTEV AP (A13)865

Here, the factor (86.4/2260) transforms from W m−2 to mmd−1 assuming constant water density and vaporization heat of

2260kJ/kg.

A4 Water uptake/water stress functions

A4.1 Water uptake from ∆ψ

Transpiration can be defined following Campbell and Norman (1998) as:870

E = SW =

(
ψs−ψL
Rp

)
(A14)

Where, ψs is the soil water potential, ψL the leaf water potential and Rp the total plant hydraulic resistance, from the root to

the leaf.

Then, without soil moisture limitations (ψs = 0), the transpiration becomes:

Emax =Dp =

(
−ψL
Rp

)
(A15)875

Then, solving Eq. (A15) for Rp and replacing in Eq. (A14):

SW =Dp

(
1− −ψs

ψL

)
(A16)
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Where ψL is found using the first law of thermodynamics: dU = dQ−PdV . Where dU is the change in internal energy, dQ

is the instantaneous heat input and PdV is the work done at constant pressure.

So, if ψ = U
V w , and PdV = −nRT

P dP from the ideal gas law, assuming dQ= 0 at pre-dawn, then:880

ψL =
1

V w

P2∫
P1

nRT

P
dP =

RT

V w
ln
eaL
esL

(A17)

Where, V w is the molar volume, eaL and esL are the actual and saturation vapour pressure at the leaf surface, its proportion

was assumed as 0.98 (Nobel, 1983).

A4.2 Water uptake from Campbell and Norman (1998)

SW =Dp

(
1− 2

3

ψs
ψL

)
(A18)885

A4.3 Water stress function from Metselaar and de Jong van Lier (2007)

SW = Sc
Θa+1−Θa+1

W

Θa+1
l −Θa+1

W

(A19)

Where:

Θ =
θ− θr
θs− θwp

(A20)

Θl =
θl− θr
θs− θwp

(A21)890

ΘW =
θwp− θr
θs− θwp

(A22)

θl = θwp +A ∗ (θs− θwp) (A23)

α= 3 + 2λ (A24)

Here, λ is a parameter for the BC water retention model, A is an empirical parameter defining the curvature of the func-

tion, θwp, θs, θ, θr are the volumetric water content at wilting point, saturation, actual and residual respectively, and Sc=895

1.05(mmh−1) after (Federer, 1982).
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A4.4 Rainfall event duration

Pareto distribution, higher frequency events last between 0-1 hrs 80% lower 6 rainy hours, 6hrs chosen parameter

(a) Relative frequency (b) Cumulative Distribution

Figure A1. Distribution of daily rainy-hour counts from GsMap global hourly data 2000-2014. (a) Relative frequencies. (b) Cumulative

probability

A5 Pedotransfer functions

From the models tested (Table 2), the equations from Balland et al. (2008), which use the largest dataset and non-linear900

formulations outperformed the other models with the explained variance exceeding 60% for permanent wilting point (θ1500),

field capacity (θ33) and saturation (θsat) (Fig.A2).
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Figure A2. Evaluation of different pedotransfer functions to estimate θ1500, θ33 and θsat, n = 68567.
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The PTFs for computing Ksat showed poor performances for all the models, most of the measurements seem to cluster

around 0 to 50 mmh−1 which is only captured by the Cosby et al. (1984) model. Overall, the explained variance of all the

models didn’t reach the 10%, (Fig. A3). Here, Ksat values exceeding 526 mmh−1 were considered as outliers (percentile905

90%) and excluded from the analysis, similar maximum values were presented by Van Looy et al. (2017).

Figure A3. Evaluation of different pedotransfer functions to estimate Ksat. (a) Cosby et al. (1984). (b) Balland et al. (2008). (c) Saxton and

Rawls (2006). (d) Tóth et al. (2015). (e) Rosetta 3 (Zhang and Schaap, 2017).

Ksat estimated by the Saxton and Rawls (2006) PFT was the best performing model, however, it leads to unrealistic values

when the drainable porosity (θsat− θ33) is relatively high. So, a simple exponential saturating curve was adopted here, which

yields similar estimations to Saxton and Rawls (2006) at the lower end of the drainable porosity but it flattens at a fitted Ksat

maximum of 623 mmh−1.910

Furthermore, to improve these estimations, the equations from Balland et al. (2008) (Eq. A25a,A25b,A25c,A25d) were

optimized using the full dataset employed for this evaluation resulting in the parameters detailed in Table A1.

θ1500 =θ33
(
cwp + (dwp− cwp)CLAY 0.5

)
(A25a)

θ33 =θsat
(
cfc + (dfc− cfc)CLAY 0.5

)
e
afcSAND−bfcSOM

θsat (A25b)

θsat =1− ρb
ρp

(A25c)915

Ksat =10aks+bks log10(ρp−ρb)+cksSAND (A25d)
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Were θ1500 is wilting point (water held at 1500kPa), θ33 is field capacity (water held at 33kPa), θsat is saturation, Ksat the

saturated hydraulic conductivity, and, SAND, CLAY and SOM refer to sand, clay and organic matter contents (%). a,b,c are

constants with the subscripts referring to wilting point, field capacity or hydraulic saturated conductivity respectively, ρb is the

bulk density, and ρp is the particle density, calculated as follows (Balland et al., 2008):920

ρp =
1

SOM
1.3 + 1−SOM

2.65

(A26)

Table A1. Updated parameters for the Balland et al. (2008) PTFs

ax bx cx dx

θ1500 − − 0.2018 0.7809

θ33 -0.0547 -0.0010 0.4760 0.9402

Ksat -2.6539 3.0924 4.2146 −

Table A1. IGBP Biomes and their description

Biome Code Description

Evergreen Needleleaf Forests ENF Dominated by evergreen conifer trees (canopy >2m). Tree cover >60%.

Evergreen Broadleaf Forests EBF Dominated by evergreen broadleaf and palmate trees (canopy >2m). Tree cover >60%.

Deciduous Needleleaf Forests DNF Dominated by deciduous needleleaf (larch) trees (canopy >2m). Tree cover >60%.

Deciduous Broadleaf Forests DBF Dominated by deciduous broadleaf trees (canopy >2m). Tree cover >60%.

Mixed Forests MF Dominated by neither deciduous nor evergreen (40-60% of each) tree type (canopy >2m). Tree cover >60%.

Closed Shrublands CSH Dominated by >60% cover. woody perennials (1-2m height)

Open Shrublands OSH Dominated by 10-60% cover. woody perennials (1-2m height)

Woody Savannas WSA Tree cover 30-60% (canopy >2m).

Savannas SAV Tree cover 10-30% (canopy >2m).

Grasslands GRA Dominated by herbaceous annuals (<2m).

Permanent Wetlands WET Permanently inundated lands with 30-60% water cover and >10% vegetated cover.

Croplands CRO At least 60% of area is cultivated cropland.

Cropland/Natural Vegetation Mosaics CNV Mosaics of small-scale cultivation 40-60% with natural tree, shrub, or herbaceous vegetation.

Permanent Snow and Ice SNO At least 60% of area is covered by snow and ice for at least 10 months of the year.

Barren BSV At least 60% of area is non-vegetated barren (sand, rock, soil) areas with less than 10% vegetation.

74



Table A2. Köppen-Geiger climate zones after Beck et al. (2018). Where, Tcold is the air temperature of the coldest month (°C); Thot is the

air temperature of the warmest month (°C); Tmon10 is the number of months with air temperature > 10 °C (unitless); Pdry is the precipitation

in the driest month (mmmo−1); Psdry is the precipitation in the driest month in summer (mmmo−1); Pwdry is precipitation in the driest

month in winter (mmmo−1); Pswet is precipitation in the wettest month in summer (mmmo−1); Pwwet is precipitation in the wettest month

in winter (mmmo−1). Pthreshold = 2×MAT if >70% of precipitation falls in winter, Pthreshold =2×MAT+28 if >70% of precipitation falls

in summer, otherwise Pthreshold = 2×MAT+14.

1st level 2nd level 3rd level Description Criteria

A

Tropical Not (B) and Tcold ≤ 18Pdry

f Rainforest Pdry ≥ 60

m Monsoon Not (Af) and Pdry ≥ 100−MAP/25

w Savanna (Dry winter) Not (Af) and Pdry < 100−MAP/25

s Savanna (Dry summer) Not (Af) and Pdry < Pwwet/3

B

Arid MAP < 10×Pthreshold
W Desert MAP < 5×Pthreshold
S Steppe MAP ≥ 5×Pthreshold

h - Hot MAP ≥ 18

k - Cold MAP < 18

C

Temperate Not (B) Thot > 10 and 0< Tcold < 18

s Dry summer Psdry < 40 and Psdry < Pwwet/3

w Dry winter Psdry < Pswet/10

f No dry season Not (Cs) or (Cw)

a - Hot summer Thot ≥ 22

b - Warm summer Not (a) and Tmon ≥ 4

c - Cold summer Not (a or b) and 1≤ Tmon10 < 4

D

Continental Not (B) Thot > 10 and 0< Tcold ≤ 0

s Dry summer Psdry < 40 and Psdry < Pwwet/3

w Dry winter Pwdry < Pswet/10

f No dry season Not (Ds) or (Dw)

a - Hot summer Thot ≥ 22

b - Warm summer Not (a) and Tmon ≥ 4

c - Cold summer Not (a, b, or d)

d - Very cold winter Not (a or b) and Tcold <−38

E

Polar Not (B) Thot ≤ 10

T Tundra Thot > 0

F Frost Thot ≤ 0
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Table A3: Eddy covariance stations used in the performance evaluation. Where Lat. is latitude (◦), Lon. is longitude (◦), Net.

is the network, here FLX, EUR and AME stand for Fluxnet, Europeflux and Ameriflux respectively. Climate refers to the

Köppen-Geiger climate zone, Biome as defined by the IGBP (Table A1) (Friedl et al., 2019). Elev. is the elevation in masl,

Slop. and Asp. are the slope (◦) and aspect (◦) respectively and Au. is the upslope draining area (km2)

.

Station Lat. Lon. Net. Climate Biome Period Elev. Slop. Asp Au Reference

AT-Neu 47.12 11.32 FLX Dfc GRA 2002-2012 981 10 135 0.50 Wohlfahrt et al. (2008)

AU-Rob -17.12 145.63 FLX Cfa EBF 2014-2014 712 1 126 1.88 Bristow et al. (2016)

AU-Tum -35.66 148.15 FLX Cfb ENF 2001-2014 1243 2 26 0.08 Leuning et al. (2005)

AU-Wac -37.43 145.19 FLX Cfb EBF 2005-2008 704 0 311 0.01 Kilinc et al. (2013)

BE-Jal 50.56 6.07 EUR Cfb MF 2006-2007 480 1 198 1.49 −−−
CH-Cha 47.21 8.41 FLX Cfb SAV 2005-2014 392 0 331 0.07 Merbold et al. (2014)

CH-Dav 46.82 9.86 FLX ET MF 1997-2014 1628 22 271 0.01 Zielis et al. (2014)

CH-Fru 47.12 8.54 FLX Cfb GRA 2005-2014 974 1 262 0.02 Imer et al. (2013)

CH-Lae 47.48 8.37 FLX Cfb MF 2004-2014 679 18 180 0.02 Etzold et al. (2011)

CH-Oe1 47.29 7.73 FLX Cfb CRO 2002-2008 454 0 78 0.02 Ammann et al. (2009)

CH-Oe2 47.29 7.73 FLX Cfb CRO 2004-2014 454 0 78 0.02 Dietiker et al. (2010)

CN-Dan 30.50 91.07 FLX ET GRA 2004-2005 4316 1 128 0.70 Shi et al. (2006)

CN-Ha2 37.61 101.33 FLX ET GRA 2003-2005 3205 0 186 0.06 −−−
CN-HaM 37.37 101.18 FLX ET GRA 2002-2004 3985 9 97 0.01 Kato et al. (2006)

CZ-BK1 49.50 18.54 FLX Dfb ENF 2004-2014 833 9 62 0.01 Acosta et al. (2013)

CZ-BK2 49.49 18.54 FLX Dfb MF 2004-2012 859 5 125 0.03 Sigut et al.

DE-Lkb 49.10 13.30 FLX Cfb GRA 2009-2013 1305 5 160 0.01 Lindauer et al. (2014)

DE-Obe 50.78 13.72 FLX Cfb ENF 2008-2014 767 3 336 0.01 −−−
DK-NuF 64.13 -51.39 FLX ET GRA 2008-2009 46 4 343 0.01 Westergaard-Nielsen et al. (2013)

ES-LgS 37.10 -2.97 FLX Csa SAV 2007-2009 2250 3 322 0.06 Reverter et al. (2010)

ES-LJu 36.93 -2.75 EUR Csa OSH 2004-2013 1610 3 309 0.01 −−−
ES-Ln2 36.97 -3.48 FLX Csa SAV 2009-2009 2180 9 186 0.01 Serrano-Ortiz et al. (2011)

ES-VDA 42.15 1.45 EUR Cfb SAV 2004-2008 1759 2 318 0.09 −−−
FR-Lq1 45.64 2.74 EUR Cfb SAV 2004-2010 1031 4 257 0.96 −−−
FR-Lq2 45.64 2.74 EUR Cfb SAV 2006-2010 1031 4 257 0.96 −−−
GL-NuF 64.13 -51.39 EUR ET GRA 2008-2014 46 4 343 0.01 López-Blanco et al. (2017)

HU-Mat 47.85 19.73 EUR Cfb SAV 2004-2008 302 4 236 0.03 −−−
IL-Yat 31.35 35.05 EUR BSh ENF 2001-2009 647 1 245 0.03 −−−
IT-Amp 41.90 13.61 EUR Cfa SAV 2002-2008 836 1 202 0.15 −−−
IT-Col 41.85 13.59 FLX Cfa SAV 1996-2014 1571 11 222 0.12 Valentini et al. (1996)

IT-La2 45.95 11.29 FLX Cfb ENF 2000-2002 1375 4 183 0.01 Marcolla et al. (2003)

IT-Lav 45.96 11.28 FLX Cfb ENF 2003-2014 1403 5 213 0.02 −−−
IT-Mal 46.11 11.70 EUR ET MF 2003-2006 1660 8 142 0.08 −−−
IT-MBo 46.01 11.05 FLX Dfb GRA 2003-2013 1557 3 112 0.65 Marcolla et al. (2011)

IT-Ren 46.59 11.43 FLX Dfc WSA 1998-2013 1761 11 221 0.03 Montagnani et al. (2009)

IT-To1 42.19 11.92 EUR Csa MF 2004-2006 367 7 3 0.01 −−−
IT-To2 42.19 11.92 EUR Csa MF 2004-2006 367 7 3 0.01 −−−
IT-Tol 42.19 11.92 EUR Csa MF 2005-2006 367 7 3 0.01 −−−
IT-Tor 45.84 7.58 FLX Dfc GRA 2008-2014 2133 15 231 0.03 Galvagno et al. (2013)

JP-MBF 44.39 142.32 FLX Dfb WSA 2003-2005 580 2 88 0.02 −−−
SE-St1 68.35 19.05 EUR ET WET 2012-2014 352 0 101 0.33 −−−
SK-Ta1 49.16 20.26 EUR Dfc WSA 2006-2007 1010 7 130 0.06 −−−
SK-Ta2 49.13 20.11 EUR Dfc WSA 2007-2007 1268 9 187 0.58 −−−
SK-Tat 49.12 20.16 EUR Dfc WSA 2005-2007 1043 7 133 0.19 −−−
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Continuation of Table A3

Station Lat. Lon Net. Climate Biome Period Elev. Slop. Asp Au Reference

UK-Gri 56.61 -3.80 EUR Cfc ENF 2000-2006 359 2 0 0.23 −−−
US-ADR 36.77 -116.69 AME BWk BSV 2011-2017 852 0 158 0.11 ?
US-Blk 44.16 -103.65 AME Dfb WSA 2004-2008 1762 4 135 0.09 Novick et al. (2016)

US-Blo 38.90 -120.63 FLX Csa ENF 1997-2007 1330 2 251 0.01 Goldstein et al. (2000)

US-CaV 39.06 -79.42 AME Cfb WSA 2004-2010 978 2 293 0.03 Meyers (2016)

US-CPk 41.07 -106.12 AME Dfc GRA 2009-2013 2758 0 73 0.02 Chu et al. (2018a)

US-CZ2 37.03 -119.26 AME Csb WSA 2010-2016 1181 3 91 0.05 Goulden (2018a)

US-CZ3 37.07 -119.20 AME Csb ENF 2008-2016 2020 2 231 0.01 Goulden (2018b)

US-CZ4 37.07 -118.99 AME Dsc WSA 2009-2016 2712 1 158 0.05 Goulden (2018c)

US-EML 63.88 -149.25 AME Dfc OSH 2008-2018 675 1 0 0.01 Belshe et al. (2012)

US-Fmf 35.14 -111.73 AME Csb GRA 2005-2010 2198 0 81 0.03 Amiro et al. (2010)

US-Fwf 35.45 -111.77 AME Csb GRA 2005-2010 2309 2 0 1.14 Amiro et al. (2010)

US-GBT 41.37 -106.24 FLX Dfc GRA 1999-2006 3193 3 182 0.05 Zeller and Nikolov (2000)

US-GLE 41.37 -106.24 FLX Dfc GRA 2004-2014 3193 3 182 0.05 Frank et al. (2014)

US-GMF 41.97 -73.23 AME Dfb MF 1999-2004 500 3 73 0.02 Chu et al. (2018b)

US-HBK 43.94 -71.72 AME Dfb DBF 2016-2019 396 6 356 0.01 Kelsey and Green (2020)

US-ICh 68.61 -149.30 AME Dfc OSH 2007-2011 950 3 271 0.01 Euskirchen et al. (2012a)

US-ICs 68.61 -149.31 AME Dfc OSH 2007-2011 898 1 281 0.57 Euskirchen et al. (2017)

US-ICt 68.61 -149.30 AME Dfc OSH 2007-2011 918 5 261 0.01 Euskirchen et al. (2012b)

US-Me1 44.58 -121.50 FLX Csb GRA 2004-2005 893 4 79 0.02 Irvine et al. (2007)

US-Me2 44.45 -121.56 FLX Csb ENF 2002-2014 1259 1 166 0.01 Campbell et al. (2004)

US-Me3 44.32 -121.61 AME Csb WSA 2004-2009 1006 0 49 0.04 Barr et al. (2013a)

US-Me4 44.50 -121.62 AME Csb ENF 1996-2000 956 7 274 0.03 Anthoni et al. (1999)

US-Me5 44.44 -121.57 AME Csb ENF 2000-2002 1189 2 208 0.81 Anthoni et al. (2002)

US-Me6 44.32 -121.61 FLX Csb WSA 2010-2014 999 0 65 23.80 Ruehr et al. (2012)

US-MRf 44.65 -123.55 AME Csb ENF 2006-2011 265 6 246 0.02 Chu et al. (2018c)

US-NR1 40.03 -105.55 FLX Dfc WSA 1998-2014 3039 7 83 0.03 Monson et al. (2002)

US-Rls 43.14 -116.74 AME BSk GRA 2014-2018 1611 5 343 0.02 Fellows et al. (2020)

US-Rms 43.06 -116.75 AME BSk GRA 2014-2018 2116 3 324 0.01 Fellows et al. (2020)

US-Rws 43.17 -116.71 AME BSk GRA 2014-2018 1437 4 349 0.07 Fellows et al. (2020)

US-SCf 33.81 -116.77 AME Csa ENF 2006-2015 1739 4 176 0.01 Goulden (2018d)

US-SCg 33.74 -117.69 AME Csa OSH 2006-2016 440 3 9 0.01 Goulden (2018e)

US-SCs 33.73 -117.70 AME Csa GRA 2006-2016 470 4 96 0.02 Goulden (2018f)

US-SCw 33.60 -116.45 AME BWh OSH 2006-2016 1290 2 263 0.01 Goulden (2018g)

US-SO2 33.37 -116.62 AME Csa SAV 1997-2006 1423 5 188 0.39 Barr et al. (2013b)

US-SO3 33.38 -116.62 AME Csa GRA 1997-2006 1480 7 201 0.01 Baldocchi et al. (2015)

US-SO4 33.38 -116.64 AME Csa GRA 2004-2006 1416 3 206 0.01 Baldocchi et al. (2015)

US-SRC 31.91 -110.84 AME BSk OSH 2008-2014 985 1 304 3.06 Wolf et al. (2016)

US-SRG 31.79 -110.83 FLX BSk GRA 2008-2014 1288 3 308 0.39 Scott et al. (2015)

US-SRM 31.82 -110.87 FLX BSk GRA 2004-2014 1112 1 295 0.05 Barron-Gafford et al. (2013)

US-Vcm 35.89 -106.53 AME Cfb GRA 2007-2019 2984 7 334 0.01 Anderson-Teixeira et al. (2011)

US-Vcp 35.86 -106.60 AME Cfb GRA 2007-2019 2503 9 255 0.19 Anderson-Teixeira et al. (2011)

US-Vcs 35.92 -106.61 AME Cfb WSA 2016-2019 2775 3 165 0.01 Remy et al. (2019)
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Table A4: SNOTEL stations used in the performance evaluation. Where Lat. is latitude (◦), Lon. is longitude (◦), Climate refers

to the Köppen-Geiger climate zone, Biome as defined by the IGBP (Table A1) (Friedl et al., 2019). Elev. is the elevation in

masl, Slop. and Asp. are the slope (◦) and aspect (◦) respectively, Au. is the upslope draining area (km2), and SM sens. is the

depth of the soil profile (m) where the soil moisture was measured.

Station Lat. Lon Climate Biome Period Elev. Slop. Asp Au SM sens. Site name

SNTL:1243 40.86 -115.22 BSk GRA 2014-2015 1997 4 200 0.53 0.49 Dry Creek - NV

SNTL:1242 39.25 -119.88 Dsb SAV 2014-2015 1979 0 116 25.64 0.49 Little Valley - NV

SNTL:1244 40.86 -115.12 Dsb GRA 2014-2015 2365 7 148 8.50 0.49 Pole Canyon - NV

SNTL:1236 39.66 -110.38 BSk GRA 2014-2015 2501 11 162 0.04 0.49 Corral - UT

SNTL:1248 37.60 -112.93 Dsb GRA 2014-2015 2453 8 208 0.04 0.49 Suu Ranch - UT

SNTL:1214 40.46 -112.25 Dfb GRA 2013-2015 1987 10 318 0.04 0.98 Bevans Cabin - UT

SNTL:1153 37.87 -109.45 Dsb WSA 2013-2015 2720 6 1 5.66 0.49 Buckboard Flat - UT

SNTL:1215 38.48 -109.29 Dsb GRA 2013-2015 2677 10 299 0.04 0.49 Lasal Mountain-Lower - UT

SNTL:1225 40.68 -111.22 Dfb SAV 2013-2015 2600 5 302 0.04 0.49 Redden Mine Lwr - UT

SNTL:1217 39.50 -111.73 BSk GRA 2013-2015 2196 14 4 0.08 0.49 Rees Flat - UT

SNTL:1155 39.46 -114.65 BSk SAV 2012-2015 2297 13 21 0.04 0.49 Bird Creek - NV

SNTL:1207 41.89 -115.86 Dfb GRA 2012-2012 2105 7 329 0.20 0.49 Merritt Mountain - NV

SNTL:1192 40.84 -110.66 Dfc SAV 2012-2015 2935 2 63 47.60 0.49 Buck Pasture - UT

SNTL:1184 38.79 -111.69 BSk SAV 2012-2015 2559 6 82 0.13 0.49 Gooseberry RS Up - UT

SNTL:992 40.89 -110.83 Dfc GRA 2011-2015 2675 3 281 0.40 0.49 Bear River RS - UT

SNTL:1149 38.50 -111.77 BSk GRA 2011-2015 2681 0 192 159.55 0.49 Fish Lake Utah - UT

SNTL:1145 41.25 -111.41 Dfb SAV 2011-2015 2200 10 180 0.32 0.49 Kilfoil Creek - UT

SNTL:1159 48.95 -118.99 Dfc WSA 2011-2015 1633 7 307 0.04 0.49 Gold Axe Camp - WA

SNTL:1144 47.98 -114.35 Dfc WSA 2010-2014 1722 9 208 0.04 0.98 Blacktail Mtn - MT

SNTL:1117 40.84 -110.01 Dfc WSA 2010-2015 3119 4 30 0.20 0.49 Spirit Lk - UT

SNTL:1113 41.89 -111.57 Dfb GRA 2010-2015 1929 10 100 0.12 0.49 Tony Grove RS - UT

SNTL:1130 43.67 -109.38 Dfc GRA 2010-2014 2560 7 167 0.04 0.98 Castle Creek - WY

SNTL:1123 40.51 -105.77 Dfc WSA 2009-2014 3041 7 118 0.12 0.49 Long Draw Resv - CO

SNTL:1080 48.93 -121.20 Dsc SAV 2009-2014 1776 19 12 0.11 0.49 Brown Top - WA

SNTL:1129 45.99 -120.81 Dsc WSA 2009-2015 1633 8 170 0.11 0.20 Indian Rock - WA

SNTL:1107 47.71 -123.46 ET ENF 2008-2014 1484 13 231 0.11 0.20 Buckinghorse - WA

SNTL:1085 46.87 -121.53 Dsc WSA 2007-2011 1597 23 182 0.11 0.49 Cayuse Pass - WA

SNTL:1081 47.86 -117.04 Dsb MF 2006-2014 1283 17 46 0.18 0.49 Ragged Mountain - ID

SNTL:999 48.76 -121.70 Dfc ENF 2006-2009 1072 14 220 0.04 0.98 Marten Ridge - WA

SNTL:1056 41.36 -111.49 Dfb GRA 2005-2015 2503 3 194 0.04 0.98 Lightning Ridge - UT

SNTL:1051 38.72 -119.89 Dsb GRA 2004-2015 2477 9 213 0.08 0.49 Burnside Lake - CA

SNTL:1049 38.68 -119.96 Dsc SAV 2004-2015 2443 3 172 0.08 0.49 Forestdale Creek - CA

SNTL:1043 48.86 -118.40 Dfb ENF 2003-2014 1426 13 325 0.11 0.20 Sentinel Butte - WA

SNTL:1013 41.79 -111.55 Dfb GRA 2002-2015 2257 4 254 0.04 0.49 Temple Fork - UT

SNTL:989 46.81 -116.85 Dsb ENF 2001-2015 1432 2 267 0.04 0.49 Moscow Mountain - ID

SNTL:926 43.73 -113.83 Dfc GRA 2001-2014 2901 8 334 0.08 0.49 Smiley Mountain - ID

SNTL:979 44.38 -116.34 Dsb GRA 2001-2014 1499 7 205 0.88 0.49 Van Wyck - ID

SNTL:990 48.88 -121.26 Dfc ENF 2001-2008 1106 14 55 0.18 0.98 Beaver Pass - WA

SNTL:985 46.24 -117.39 Dsb GRA 2000-2014 1219 10 339 0.04 0.49 Sourdough Gulch - WA

SNTL:978 43.76 -116.10 Dsb GRA 1999-2014 1932 13 336 0.04 0.49 Bogus Basin - ID

SNTL:2029 43.29 -116.84 BSk GRA 1999-2014 1706 7 151 0.04 0.98 Reynolds Creek - ID

SNTL:942 47.04 -121.94 Dfc ENF 1999-2013 1271 17 205 0.07 0.49 Burnt Mountain - WA

SNTL:974 47.94 -123.43 Dsc ENF 1999-2014 1527 24 216 0.07 0.49 Waterhole - WA

SNTL:939 39.03 -106.08 Dfc GRA 1998-2008 3157 5 338 0.12 0.98 Rough And Tumble - CO

SNTL:921 35.70 -105.81 Dfb GRA 1997-2000 2502 7 290 0.91 0.49 Elk Cabin - NM
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Continuation of Table A4

Station Lat. Lon Climate Biome Period Elev. Slop. Asp Au SM sens. Site name

SNTL:914 37.85 -105.44 Dfc SAV 1996-2001 2941 9 66 0.04 0.49 Medano Pass - CO

SNTL:907 37.52 -112.27 Dfb GRA 1995-2004 2712 12 202 0.04 0.49 Agua Canyon - UT

SNTL:896 40.87 -111.72 Dsb SAV 1994-2009 2209 8 283 0.12 0.49 Hardscrabble - UT

SNTL:895 43.77 -114.42 Dfb SAV 1993-2005 1923 8 136 1.66 0.49 Chocolate Gulch - ID

SNTL:633 38.67 -119.61 Dsb GRA 1991-2001 2531 6 10 0.17 0.49 Monitor Pass - CA

SNTL:387 37.66 -107.80 Dfb SAV 1990-1995 2718 6 169 0.21 0.49 Cascade #2 - CO

SNTL:623 47.15 -116.27 Dsb ENF 1990-1998 1374 11 330 0.04 0.49 Mica Creek - ID

SNTL:871 42.01 -115.00 BSk GRA 1990-2002 2170 3 229 0.04 0.49 Wilson Creek - ID

SNTL:599 46.36 -121.08 Dsc GRA 1990-2004 1560 3 44 0.04 0.20 Lost Horse - WA

SNTL:783 47.18 -114.33 Dfc WSA 1989-1997 1874 11 27 0.47 0.98 Sleeping Woman - MT

SNTL:707 47.88 -117.09 Dsb ENF 1986-1998 1432 9 272 0.04 0.49 Quartz Peak - WA

SNTL:522 40.91 -109.96 Dfc GRA 1985-1995 2780 2 191 0.57 0.49 Hickerson Park - UT

SNTL:694 38.88 -112.25 Dfb SAV 1985-1995 2662 27 10 0.08 0.49 Pine Creek - UT

SNTL:778 38.67 -119.82 Dsb SAV 1984-1996 1848 11 97 0.04 0.49 Spratt Creek - CA

SNTL:425 46.56 -115.29 Dsc WSA 1984-1988 1816 1 25 0.04 0.49 Crater Meadows - ID

SNTL:340 39.45 -119.94 Dsb SAV 1984-1994 2510 8 18 0.12 0.49 Big Meadow - NV

SNTL:454 41.66 -115.32 BSk GRA 1984-1997 2220 13 46 0.04 0.49 Draw Creek - NV

SNTL:734 47.38 -121.06 Dsc WSA 1984-1998 1322 4 23 0.04 0.49 Sasse Ridge - WA

SNTL:735 46.47 -114.63 Dsc ENF 1983-1988 1886 7 251 0.04 0.49 Savage Pass - ID

SNTL:356 38.61 -119.92 Dsc SAV 1981-1991 2458 3 316 0.04 0.49 Blue Lakes - CA

SNTL:463 38.85 -120.08 Dsb WSA 1981-1993 2332 19 182 0.42 0.49 Echo Peak - CA

SNTL:724 39.00 -120.13 Dsb ENF 1981-1994 2322 8 37 0.08 0.49 Rubicon #2 - CA

SNTL:834 39.30 -120.18 Dsb ENF 1981-1994 1983 6 52 0.25 0.49 Truckee #2 - CA

SNTL:445 41.97 -118.19 BSk GRA 1981-1992 1908 18 135 0.12 0.49 Disaster Peak - NV

SNTL:652 39.32 -119.89 Dsc GRA 1981-1990 2682 18 343 0.04 0.49 Mt Rose Ski Area - NV

SNTL:849 39.13 -114.96 BSk GRA 1981-1991 2804 21 234 0.04 0.49 Ward Mountain - NV

SNTL:784 39.19 -120.27 Dsb GRA 1980-1991 2442 8 117 0.17 0.49 Squaw Valley G.C. - CA

SNTL:848 39.14 -120.22 Dsb ENF 1980-1992 2055 3 128 3.36 0.49 Ward Creek #3 - CA

SNTL:531 39.36 -106.06 ET GRA 1980-1990 3474 7 225 0.04 0.98 Hoosier Pass - CO

SNTL:688 40.40 -105.85 Dfc GRA 1980-1985 2752 2 79 63.23 0.49 Phantom Valley - CO

SNTL:312 44.30 -115.23 Dsc WSA 1980-1988 2145 1 48 0.04 0.49 Banner Summit - ID

SNTL:424 44.44 -111.99 Dfc WSA 1980-1988 2103 5 46 0.19 0.49 Crab Creek - ID

SNTL:550 44.05 -115.44 Dsc WSA 1980-1998 2154 7 323 0.04 0.49 Jackson Peak - ID

SNTL:752 46.95 -116.34 Dsb WSA 1980-1981 975 2 42 0.69 0.49 Sherwin - ID

SNTL:395 43.23 -121.81 Dsb WSA 1980-1992 1478 1 104 0.04 0.98 Chemult Alternate - OR

SNTL:529 43.67 -122.57 Csb ENF 1980-1985 1502 3 267 0.04 0.98 Holland Meadows - OR

SNTL:647 45.27 -117.69 Dsc ENF 1980-1992 1755 5 43 0.04 0.98 Moss Springs - OR

SNTL:653 45.27 -117.17 Dsc SAV 1980-1992 2410 9 16 0.04 0.98 Mt. Howard - OR

SNTL:706 42.32 -120.83 Dsb SAV 1980-1994 1743 3 278 0.67 0.98 Quartz Mountain - OR

SNTL:721 44.01 -118.84 BSk GRA 1980-1999 1612 1 208 0.69 0.20 Rock Springs - OR

SNTL:729 43.61 -122.12 Dsb ENF 1980-1985 1286 1 189 0.12 0.49 Salt Creek Falls - OR

SNTL:756 42.96 -121.18 Dsb WSA 1980-1994 1749 3 39 0.04 0.20 Silver Creek - OR

SNTL:557 38.48 -112.39 Dsc SAV 1980-1992 2773 14 352 0.84 0.49 Kimberly Mine - UT

SNTL:679 46.78 -121.75 Dfc ENF 1980-1983 1563 9 216 0.15 0.49 Paradise - WA

SNTL:711 48.52 -120.74 Dsc ENF 1980-1987 1490 19 41 0.04 0.49 Rainy Pass - WA

SNTL:824 46.12 -117.85 Dsb WSA 1980-1994 1685 2 30 0.04 0.49 Touchet - WA

SNTL:508 38.85 -119.94 Dsb WSA 1979-1992 2359 8 10 0.08 0.49 Hagans Meadow - CA

SNTL:539 39.45 -120.29 Dsb WET 1979-1991 2127 0 130 0.08 0.49 Independence Camp - CA

SNTL:541 39.43 -120.31 Dsb WSA 1979-1992 2541 12 48 0.04 0.49 Independence Lake - CA

SNTL:587 38.44 -119.37 Dsb GRA 1979-1990 2819 0 300 9.89 0.49 Lobdell Lake - CA
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Continuation of Table A4

Station Lat. Lon Climate Biome Period Elev. Slop. Asp Au SM sens. Site name

SNTL:771 38.31 -119.60 Dsc SAV 1979-1991 2673 12 28 0.04 0.49 Sonora Pass - CA

SNTL:846 38.07 -119.23 Dsc GRA 1979-1991 2878 8 152 0.04 0.49 Virginia Lakes Ridge - CA

SNTL:682 39.05 -107.87 Dfc SAV 1979-1984 3035 5 260 0.17 0.49 Park Reservoir - CO

SNTL:484 42.05 -111.60 Dfc GRA 1979-1992 2481 5 271 0.28 0.49 Franklin Basin - ID

SNTL:490 43.87 -114.71 Dsc SAV 1979-1984 2676 7 107 0.04 0.49 Galena Summit - ID

SNTL:594 47.46 -115.70 Dsb WSA 1979-1988 1581 10 10 0.04 0.49 Lookout - ID

SNTL:645 48.06 -116.23 Dsc ENF 1979-1984 1603 8 202 0.07 0.49 Mosquito Ridge - ID

SNTL:749 43.21 -111.69 Dfb MF 1979-1988 2026 10 39 0.08 0.49 Sheep Mtn. - ID

SNTL:770 42.95 -111.36 Dfb WSA 1979-1989 2072 9 36 0.20 0.49 Somsen Ranch - ID

SNTL:774 42.76 -116.90 Dsb GRA 1979-1988 1981 13 37 0.28 0.49 South Mtn. - ID

SNTL:532 36.72 -106.26 Dfc GRA 1979-1982 3048 1 63 0.04 0.49 Hopewell - NM

SNTL:615 39.16 -119.90 Dsb WSA 1979-1992 2403 9 41 0.04 0.49 Marlette Lake - NV

SNTL:344 42.41 -122.27 Dsc ENF 1979-1992 1609 4 125 0.16 0.98 Billie Creek Divide - OR

SNTL:361 44.83 -118.19 Dsc WSA 1979-1987 1783 19 164 0.08 0.49 Bourne - OR

SNTL:523 45.70 -118.11 Dsb ENF 1979-1991 1499 7 12 0.15 0.98 High Ridge - OR

SNTL:759 42.75 -118.69 Dsb GRA 1979-1998 2130 2 277 0.04 0.98 Silvies - OR

SNTL:821 44.66 -118.43 Dsb WSA 1979-1991 1569 6 334 0.04 0.49 Tipton - OR

SNTL:339 38.30 -112.36 Dfc SAV 1979-1992 3154 2 311 0.21 0.49 Big Flat - UT

SNTL:364 38.51 -112.02 Dfc GRA 1979-1992 3003 1 148 0.04 0.49 Box Creek - UT

SNTL:455 41.41 -111.54 Dfc GRA 1979-1992 2530 1 90 0.12 0.49 Dry Bread Pond - UT

SNTL:495 38.80 -111.68 BSk GRA 1979-1992 2421 6 282 0.04 0.49 Gooseberry RS - UT

SNTL:832 47.23 -120.29 Dsc SAV 1979-1993 1670 4 55 0.58 0.20 Trough - WA

SNTL:358 44.68 -107.58 Dfc GRA 1979-1986 2849 6 301 0.11 0.98 Bone Springs Div - WY

SNTL:613 48.80 -113.67 Dfc WSA 1977-1993 1493 16 172 0.04 0.20 Many Glacier - MT

SNTL:781 46.78 -110.62 Dfc WSA 1967-1972 2468 4 339 0.04 0.98 Spur Park - MT

SNTL:554 42.27 -110.80 Dfc GRA 1964-1965 2493 6 122 0.20 0.49 Kelley R.S. - WY

SNTL:342 42.65 -109.26 Dfc GRA 1963-1977 2767 3 251 0.87 0.49 Big Sandy Opening - WY

SNTL:822 43.75 -110.06 Dfc GRA 1961-1974 2919 5 199 0.23 0.49 Togwotee Pass - WY

SCAN:2160 41.78 -113.82 BSk GRA 2010-2014 1778 2 172 0.16 0.98 Grouse Creek - UT

SCAN:2149 37.78 -118.42 BWk GRA 2009-2014 1884 4 249 0.13 0.98 Marble Creek - CA

SCAN:2142 36.37 -115.78 BSk OSH 2008-2015 2391 8 201 0.04 0.98 Trough Springs - NV

SCAN:2074 42.02 -121.39 BSk CRO 2003-2014 1247 0 198 0.28 0.98 Lynhart Ranch - OR
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Table A5: GSIM hydrometric stations used in the streamflow performance evaluation. Where Lat. is latitude (◦), Lon. is

longitude (◦), Climate refers to the three largest Köppen-Geiger climate zones in the watershed, Biome refers to the three

largest biomes in the watershed, as defined by the IGBP (Table A1) (Friedl et al., 2019). Elev. is the elevation range in masl.

Area is the watershed area (km2) and River lists the river name and country.

Station Lat Lon Climate Biome Period Elev Area River

CA_0000351 48.52 -89.18 Dfb: 98.9%; Dfc: 1.1% MF: 56.8%; WSA:

37.8%; DBF: 5.4%

1980-2014 341-514 104.70 North Current River - CA

CA_0000373 48.85 -86.61 Dfc: 77.4%; Dfb: 22.6% MF: 83.1%; WSA:

10.1%; ENF: 6.7%

1980-2014 211-536 1324.17 Little Pic River - CA

CA_0000391 47.00 -84.52 Dfb: 100% MF: 56%; DBF: 39.5%;

WSA: 3.7%

1980-2014 239-601 1227.64 Batchawana River - CA

CA_0000395 47.06 -84.43 Dfb: 100% DBF: 100% 1980-2014 370-521 10.36 Norberg Creek - CA

CA_0000396 47.05 -84.41 Dfb: 100% DBF: 100% 1980-2014 373-521 8.03 Norberg Creek - CA

CA_0000397 47.04 -84.41 Dfb: 100% DBF: 100% 1980-2014 387-521 5.05 Norberg Creek - CA

CA_0001119 46.37 -74.50 Dfb: 52.3%; Dfc: 47.7% MF: 100% 1980-2013 447-732 39.90 Saintlouis Ruisseau A 03

Km De La River - CA

CA_0001273 46.44 -73.46 Dfb: 97.2%; Dfc: 2.8% MF: 96.2%; WSA: 3.2%;

DBF: 0.6%

1980-2013 275-663 186.00 Mastigouche River - CA

CA_0001411 47.26 -71.14 Dfc: 100% MF: 89.2%; WSA: 9.6%;

ENF: 1.2%

1980-2013 581-1065 269.00 Montmorency River - CA

CA_0001418 47.27 -71.14 Dfc: 100% MF: 85.7%; WSA:

14.3%

1980-2013 581-904 9.17 Eaux Volees Ruisseau

Des Pres De La River -

CA

CA_0001423 47.12 -70.82 Dfc: 88.2%; Dfb: 11.8% MF: 76.2%; WSA:

15.5%; DBF: 4.5%

1980-1994 288-1106 974.00 Sainteanne Du Nord

River - CA

CA_0001527 49.88 -70.93 Dfc: 100% WSA: 53.3%; ENF:

31.6%; SAV: 8.5%

1980-2007 248-975 1717.00 Manouane River - CA

CA_0001556 49.33 -70.98 Dfc: 100% MF: 71%; ENF: 23.7%;

WSA: 5.4%

1980-1994 383-603 277.00 Shipshaw River - CA

CA_0001566 47.94 -71.38 Dfc: 100% MF: 81.2%; ENF: 9.1%;

WSA: 8.8%

1980-2013 559-1037 495.00 Pikauba River - CA

CA_0001679 48.81 -57.78 Dfc: 100% WSA: 68.8%; SAV:

31.2%

1980-2014 327-584 12.90 Copper Pond Brook - CA

CA_0002036 49.66 -114.13 Dfc: 75%; Dfb: 24.6%;

ET: 0.4%

GRA: 65.4%; ENF:

19.9%; WSA: 12.6%

1980-1993 1201-2293 144.00 Todd Creek - CA

CA_0002038 49.60 -114.41 Dfc: 97.3%; ET: 2.7% WSA: 37.5%; ENF:

37.2%; GRA: 23.4%

1980-2012 1282-2458 402.70 Crowsnest River - CA

CA_0002041 49.47 -114.13 Dfc: 93.4%; Dfb: 6.3%;

ET: 0.3%

WSA: 32.4%; ENF:

26.5%; GRA: 24%

1980-2012 1236-2356 179.00 Mill Creek - CA

CA_0002047 49.49 -114.14 Dfc: 93.9%; Dfb: 5.1%;

ET: 0.9%

ENF: 31.7%; GRA:

31.2%; WSA: 26.4%

1980-2013 1198-2498 820.70 Castle River - CA

CA_0002048 49.81 -114.18 Dfc: 91.2%; ET: 8.6%;

Dfb: 0.2%

WSA: 44.5%; ENF:

36.6%; GRA: 17.4%

1980-2008 1280-2757 1446.10 Oldman River - CA

CA_0002051 49.90 -114.43 Dfc: 89.4%; ET: 10.6% WSA: 42.6%; ENF:

40.4%; GRA: 16.2%

1980-1995 1505-2669 143.00 Dutch Creek - CA

CA_0002052 49.84 -114.42 Dfc: 96.7%; ET: 3.3% ENF: 53.1%; WSA:

34.6%; GRA: 11.7%

1980-2013 1466-2511 217.60 Racehorse Creek - CA

CA_0002053 49.40 -114.34 Dfc: 99.1%; ET: 0.9% ENF: 45.6%; SAV:

18.5%; GRA: 18.4%

1980-2014 1354-2420 375.30 Castle River - CA
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Continuation of Table A5

Station Lat Lon Climate Biome Period Elev Area River

CA_0002055 49.60 -114.40 Dfc: 99.1%; ET: 0.9% WSA: 40.4%; ENF:

32.3%; GRA: 24.2%

1980-2014 1335-2322 63.30 Gold Creek - CA

CA_0002057 49.31 -114.08 Dfc: 100% GRA: 50%; SAV: 28.9%;

WSA: 18.4%

1980-2012 1589-2235 24.00 Pincher Creek - CA

CA_0002059 49.76 -114.24 Dfc: 99.3%; ET: 0.7% GRA: 46.1%; ENF: 33%;

WSA: 20.9%

1980-2013 1406-2293 74.00 Todd Creek - CA

CA_0002064 49.64 -113.80 Dfc: 52.1%; Dfb: 47.9% GRA: 61.4%; ENF:

16.4%; WSA: 11.4%

1980-2012 1102-1770 255.80 Beaver Creek - CA

CA_0002072 50.02 -113.71 Dfc: 72.9%; Dfb: 27%;

ET: 0.1%

GRA: 54.2%; WSA:

21.2%; ENF: 10.8%

1980-2013 1001-2368 1180.60 Willow Creek - CA

CA_0002079 50.20 -114.21 Dfc: 99.7%; ET: 0.3% WSA: 46.3%; ENF:

36.5%; GRA: 7.8%

1980-1995 1315-2229 162.00 Willow Creek - CA

CA_0002087 50.14 -113.94 Dfc: 99.4%; Dfb: 0.4%;

ET: 0.1%

GRA: 45.2%; WSA:

31.9%; ENF: 16.6%

1980-1997 1172-2368 727.00 Willow Creek - CA

CA_0002088 50.24 -114.35 Dfc: 99.2%; ET: 0.8% ENF: 54.2%; WSA:

30.8%; GRA: 9.3%

1980-2014 1478-2229 65.30 Willow Creek - CA

CA_0002089 50.13 -113.85 Dfc: 96%; Dfb: 3.9%;

ET: 0.1%

GRA: 49.8%; WSA:

29.3%; ENF: 15.2%

1980-2012 1079-2368 832.90 Willow Creek - CA

CA_0002091 50.12 -113.75 Dfb: 93.8%; Dfc: 6.2% GRA: 52%; CRO: 48% 1980-2013 1038-1381 85.70 Na - CA

CA_0002133 49.11 -113.84 Dfc: 93.1%; ET: 4%;

Dfb: 2.9%

GRA: 39.3%; WSA:

24.4%; ENF: 16.3%

1980-2012 1274-2699 612.70 Waterton River - CA

CA_0002135 49.10 -113.70 Dfc: 94.8%; ET: 4.9%;

Dfb: 0.4%

GRA: 41.8%; WSA:

22.3%; ENF: 19.5%

1980-2014 1340-2940 319.20 Belly River - CA

CA_0002166 49.23 -113.96 Dfc: 92.1%; ET: 7.9% GRA: 71.6%; ENF:

10.8%; SAV: 9.5%

1980-2013 1460-2483 47.90 Yarrow Creek - CA

CA_0002198 48.83 -113.52 Dfc: 93%; ET: 7% GRA: 65.7%; WSA:

15%; ENF: 9.8%

1980-1994 1454-2757 168.00 Swiftcurrent Creek - CA

CA_0002206 49.03 -113.54 Dfc: 100% WSA: 44.4%; ENF:

34%; GRA: 14.6%

1980-1992 1436-2267 93.80 Lee Creek - CA

CA_0002264 49.74 -110.04 Dfb: 74.1%; Dfc: 25.9% CRO: 88%; GRA: 5.4%;

ENF: 2.2%

1980-1993 998-1390 75.10 Mackay Creek - CA

CA_0002279 51.43 -116.19 ET: 67.8%; Dfc: 32.2% GRA: 29.1%; BSV:

26.5%; ENF: 17.2%

1980-2014 1541-2978 422.40 Bow River - CA

CA_0002280 51.43 -116.17 ET: 80.2%; Dfc: 19.8% GRA: 46.7%; BSV:

20.9%; ENF: 12.8%

1980-2014 1618-3093 306.10 Pipestone River - CA

CA_0002284 51.24 -115.84 ET: 78%; Dfc: 22% GRA: 49.5%; WSA:

17.3%; BSV: 16.8%

1980-1996 1449-2904 124.00 Johnston Creek - CA

CA_0002292 51.10 -115.67 ET: 69.7%; Dfc: 30.3% GRA: 53.9%; WSA:

33.9%; ENF: 7.8%

1980-1996 1622-2762 109.00 Brewster Creek - CA

CA_0002293 51.22 -115.81 ET: 69.2%; Dfc: 30.8% GRA: 33.3%; WSA:

32.9%; ENF: 17.3%

1980-1996 1449-3155 147.00 Redearth Creek - CA

CA_0002294 51.16 -115.55 ET: 50.1%; Dfc: 49.9% GRA: 44.1%; WSA:

36.5%; ENF: 11.4%

1980-2014 1432-3079 750.60 Spray River - CA

CA_0002299 51.06 -115.43 Dfc: 65.3%; ET: 34.7% WSA: 62.7%; GRA:

28.8%; ENF: 8.5%

1980-2012 1643-2693 40.90 Goat Creek - CA

CA_0002303 51.29 -115.53 ET: 77%; Dfc: 23% GRA: 55.5%; WSA:

20.9%; ENF: 14.8%

1980-1996 1571-3043 454.00 Cascade River - CA

CA_0002314 50.70 -115.12 ET: 56.1%; Dfc: 43.9% GRA: 37.1%; ENF:

24.8%; BSV: 20%

1980-2012 1621-3026 362.00 Kananaskis River - CA
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CA_0002319 50.79 -115.30 ET: 70.5%; Dfc: 29.5% GRA: 59.5%; BSV:

21.6%; WSA: 18.9%

1980-1992 1898-2876 29.00 Mud Lake - CA

CA_0002321 50.95 -115.15 Dfc: 60%; ET: 40% ENF: 50%; WSA:

31.2%; GRA: 18.8%

1980-2012 1711-2473 9.10 Marmot Creek - CA

CA_0002328 51.04 -115.03 Dfc: 53.9%; ET: 46.1% GRA: 36.7%; ENF:

26.9%; WSA: 22.6%

1980-2012 1342-3026 899.00 Kananaskis River - CA

CA_0002330 51.30 -115.18 ET: 73.4%; Dfc: 26.6% GRA: 67.3%; BSV:

11.9%; WSA: 11%

1980-1993 1625-2834 211.00 Ghost River - CA

CA_0002334 51.28 -114.84 Dfc: 82.9%; ET: 17.1% ENF: 51.7%; WSA:

22.7%; GRA: 20.4%

1980-2012 1292-2764 332.50 Waiparous Creek - CA

CA_0002336 51.27 -114.93 Dfc: 81.9%; ET: 18.1% ENF: 36.3%; GRA:

31.7%; WSA: 26.5%

1980-2012 1328-2660 484.50 Ghost River - CA

CA_0002345 51.00 -114.94 Dfc: 91%; ET: 9% ENF: 79.3%; GRA:

12.1%; WSA: 8.6%

1980-2012 1654-2320 36.90 Jumpingpound Creek -

CA

CA_0002355 50.86 -114.79 ET: 50.3%; Dfc: 49.7% GRA: 54%; WSA:

22.8%; ENF: 18.2%

1980-1995 1534-2911 437.00 Elbow River - CA

CA_0002356 50.79 -114.92 ET: 71.9%; Dfc: 28.1% GRA: 74.3%; WSA:

20.6%; BSV: 3.3%

1980-1995 1757-2778 129.00 Little Elbow River - CA

CA_0002375 50.41 -114.50 Dfc: 76%; ET: 24% ENF: 46.9%; WSA:

28%; GRA: 21.6%

1980-2012 1426-2939 773.60 Highwood River - CA

CA_0002378 50.29 -114.59 Dfc: 83.7%; ET: 16.3% ENF: 53.3%; WSA:

35.2%; GRA: 11.5%

1980-2012 1680-2629 165.50 Cataract Creek - CA

CA_0002379 50.47 -114.21 Dfc: 98.1%; ET: 1.9% GRA: 29.5%; WSA:

25.7%; CRO: 21.1%

1980-2014 1208-2353 231.90 Pekisko Creek - CA

CA_0002382 50.48 -114.43 Dfc: 78.9%; ET: 21.1% GRA: 41.7%; ENF: 28%;

WSA: 19.7%

1980-2012 1365-2606 137.40 Trap Creek - CA

CA_0002424 51.66 -115.13 Dfc: 100% WSA: 66.7%; GRA:

33.3%

1980-1995 1432-1620 5.44 Deer Creek - CA

CA_0002425 51.66 -115.41 ET: 70.4%; Dfc: 29.6% GRA: 46.8%; WSA:

24.5%; BSV: 16.6%

1980-2012 1513-3052 941.40 Red Deer River - CA

CA_0002506 52.04 -116.38 ET: 81.9%; Dfc: 18.1% GRA: 45.2%; BSV:

34.3%; WSA: 13.3%

1980-1996 1406-3027 515.00 Siffleur River - CA

CA_0002511 51.88 -116.69 ET: 73.2%; Dfc: 26.8% BSV: 38.5%; GRA:

25.7%; WSA: 13.3%

1980-2013 1635-2968 248.00 Mistaya River - CA

CA_0002513 52.00 -116.47 ET: 69.3%; Dfc: 30.7% GRA: 34.5%; BSV:

32.8%; SNO: 13.1%

1980-2014 1355-3333 1923.20 North Saskatchewan

River - CA

CA_0002514 51.80 -116.58 ET: 91.5%; Dfc: 8.5% BSV: 48.8%; GRA:

32.6%; WSA: 11.6%

1980-2013 1728-2842 21.00 Silverhorn Creek - CA

CA_0002517 51.99 -115.43 ET: 51.3%; Dfc: 48.7% GRA: 34.4%; ENF:

30.9%; WSA: 22.3%

1980-1992 1365-3136 1340.00 Clearwater River - CA

CA_0002527 52.37 -115.42 Dfc: 66.5%; ET: 33.5% ENF: 61.2%; GRA:

20.2%; WSA: 16%

1980-2013 1083-2986 1853.60 Ram River - CA

CA_0002531 52.28 -116.00 Dfc: 60.9%; ET: 39.1% ENF: 67.9%; GRA:

21.3%; WSA: 10.2%

1980-2013 1463-2596 347.30 North Ram River - CA

CA_0002536 52.76 -116.36 Dfc: 98.4%; ET: 1.6% ENF: 87.7%; WSA:

12%; SAV: 0.3%

1980-2013 1316-2149 218.70 Brown Creek - CA

CA_0002539 52.87 -116.60 Dfc: 59.6%; ET: 40.4% ENF: 61.3%; GRA:

18.1%; WSA: 14.2%

1980-1990 1341-2682 495.00 Cardinal River - CA

CA_0002950 52.60 -101.04 Dfc: 91.5%; Dfb: 8.5% WSA: 44.9%; MF:

29.2%; ENF: 18.5%

1980-1993 316-762 170.00 Bell River - CA
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CA_0003014 50.48 -99.48 Dfb: 85.7%; Dfc: 14.3% DBF: 44.4%; CRO:

16.7%; WSA: 16.7%

1980-2014 469-704 9.20 Pelican Creek - CA

CA_0003558 52.86 -118.11 ET: 61.1%; Dfc: 38.9% ENF: 39.4%; GRA:

32.5%; WSA: 16%

1980-2012 1051-2769 628.50 Miette River - CA

CA_0003561 52.93 -118.03 ET: 73.9%; Dfc: 26.1% GRA: 47.1%; ENF:

21.7%; BSV: 16.3%

1980-1997 1032-3151 908.00 Maligne River - CA

CA_0003562 52.22 -117.23 ET: 100% SNO: 57.4%; BSV:

42.6%

1980-2012 1943-3390 29.30 Sunwapta River - CA

CA_0003564 52.72 -117.92 ET: 63.1%; Dfc: 36.9% GRA: 31.9%; BSV: 29%;

WSA: 14.9%

1980-1996 1148-3094 598.00 Whirlpool River - CA

CA_0003566 53.16 -118.03 ET: 68.1%; Dfc: 31.9% GRA: 43.3%; ENF:

28.5%; WSA: 17.5%

1980-1993 1118-2752 1580.00 Snake Indian River - CA

CA_0003567 53.52 -117.95 Dfc: 56.8%; ET: 43.2% ENF: 70.4%; WSA:

16.6%; GRA: 12.4%

1980-2013 1270-2512 959.80 Wildhay River - CA

CA_0003574 53.68 -118.24 Dfc: 54.9%; ET: 45.1% ENF: 55.8%; WSA:

23.1%; GRA: 19.9%

1980-2012 1414-2415 93.00 Little Berland River - CA

CA_0003590 53.16 -117.26 Dfc: 100% ENF: 100% 1980-2014 1289-1627 25.90 Wampus Creek - CA

CA_0003591 53.16 -117.24 Dfc: 100% ENF: 100% 1980-1990 1280-1616 14.00 Deerlick Creek - CA

CA_0003592 53.15 -117.23 Dfc: 100% ENF: 100% 1980-1992 1309-1636 17.10 Eunice Creek - CA

CA_0003598 53.08 -117.20 ET: 60%; Dfc: 40% ENF: 42.5%; GRA:

36.4%; WSA: 13.9%

1980-2012 1415-2611 329.60 Mcleod River - CA

CA_0003600 53.25 -117.36 Dfc: 83.4%; ET: 16.6% ENF: 79.6%; WSA:

10.5%; GRA: 9.6%

1980-2012 1235-2366 384.00 Gregg River - CA

CA_0003619 53.00 -116.66 Dfc: 100% WSA: 92.6%; ENF:

7.4%

1980-2013 1338-1555 102.70 Lovett River - CA

CA_0003647 55.42 -114.81 Dfc: 100% WSA: 88.9%; WET:

11.1%

1980-2012 590-595 23.70 Lily Creek - CA

CA_0003651 54.80 -115.47 Dfc: 100% ENF: 52.9%; WSA:

43.3%; MF: 3.8%

1980-2014 973-1348 155.10 Swan River - CA

CA_0003714 57.19 -124.90 ET: 58.4%; Dfc: 27.5%;

Dsc: 14.1%

ENF: 35.3%; GRA:

27.9%; WSA: 27.1%

1980-2012 766-2661 1690.00 Akie River - CA

CA_0003720 56.13 -124.80 Dfc: 59.7%; ET: 35.2%;

Dsc: 5.1%

WSA: 48.6%; ENF:

30.4%; GRA: 18.8%

1980-2013 809-2274 1950.00 Osilinka River - CA

CA_0003728 54.53 -122.61 Dfc: 100% ENF: 47.3%; MF:

37.5%; DBF: 7.5%

1980-2012 760-1267 310.00 Chuchinka Creek - CA

CA_0003732 55.95 -122.66 Dfc: 90.3%; ET: 9.7% ENF: 79.8%; WSA:

12.6%; GRA: 7.5%

1980-2013 769-1936 741.00 Carbon Creek - CA

CA_0003742 55.54 -121.60 Dfc: 100% ENF: 51%; DBF: 20.4%;

MF: 20.4%

1980-2014 650-1602 82.40 Dickebusch Creek - CA

CA_0003743 55.15 -120.92 Dfc: 100% ENF: 86.2%; MF: 6.9%;

WSA: 6.9%

1980-2001 946-1254 29.50 Quality Creek - CA

CA_0003747 55.09 -120.94 Dfc: 97.8%; ET: 2.2% ENF: 87.1%; WSA:

6.7%; GRA: 3%

1980-2012 865-1922 486.00 Flatbed Creek - CA

CA_0003749 55.70 -121.63 Dfc: 100% ENF: 33.3%; MF: 31%;

WSA: 31%

1980-1998 747-1295 22.90 Windrem Creek - CA

CA_0003753 56.27 -120.95 Dfc: 100% WSA: 47.8%; SAV:

16.6%; GRA: 12.7%

1980-1992 689-866 298.00 Stoddart Creek - CA

CA_0003773 56.17 -117.60 Dfc: 100% CRO: 100% 1980-2011 589-653 8.10 Na - CA

CA_0003779 53.93 -118.82 Dfc: 73.3%; ET: 26.7% ENF: 62.5%; WSA:

25.2%; GRA: 11.3%

1980-2014 1151-2581 702.90 Muskeg River - CA
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CA_0003780 54.52 -118.96 Dfc: 100% ENF: 53.4%; WSA:

28.4%; MF: 17.4%

1980-2013 825-1599 842.20 Cutbank River - CA

CA_0003784 54.84 -119.39 Dfc: 100% MF: 72.5%; WSA:

16.4%; ENF: 6.7%

1980-2011 720-1285 493.80 Pinto Creek - CA

CA_0003927 61.19 -136.98 Dfc: 66.7%; Dsc: 33.3% WSA: 85.7%; SAV:

14.3%

1980-2014 945-1044 190.00 Giltana Creek - CA

CA_0003932 60.11 -136.93 ET: 81.5%; Dsc: 18.5% GRA: 65.7%; OSH:

18.6%; WSA: 10.9%

1980-2014 726-1934 375.00 Takhanne River - CA

CA_0003933 60.12 -137.08 ET: 72.2%; Dsc: 27.8% GRA: 54.6%; OSH:

12.8%; BSV: 10.7%

1980-2014 592-2035 1750.00 Tatshenshini River - CA

CA_0003943 57.22 -129.11 ET: 96.5%; Dsc: 3.5% GRA: 40.4%; BSV:

23.4%; SNO: 21.3%

1980-1996 1212-2015 29.20 Unnamed Creek - CA

CA_0003944 57.25 -129.05 ET: 100% GRA: 72.7%; BSV:

27.3%

1980-1996 1499-1982 16.60 Klappan River - CA

CA_0003951 57.53 -130.18 ET: 63.8%; Dsc: 36.2% GRA: 39.2%; ENF:

36.3%; WSA: 14.1%

1980-1996 821-2330 1250.00 Iskut River - CA

CA_0003953 57.04 -130.40 ET: 69.5%; Dsc: 20.4%;

Dfc: 10.1%

GRA: 37%; SNO:

25.5%; BSV: 17.2%

1980-1995 427-2284 844.00 More Creek - CA

CA_0003954 56.92 -130.72 ET: 69.5%; Dfc: 30.5% SNO: 64.8%; GRA:

15.4%; ENF: 10.1%

1980-1994 486-2060 311.00 Forrest Kerr Creek - CA

CA_0003956 56.11 -129.48 ET: 50.2%; Dfc: 49.1%;

Dsc: 0.7%

GRA: 46.9%; SNO:

20.6%; BSV: 11.9%

1980-2012 342-2314 218.00 Surprise Creek - CA

CA_0003960 56.97 -129.47 ET: 87.1%; Dsc: 12.9% GRA: 58.5%; WSA:

15.2%; ENF: 14.7%

1980-1996 991-1984 118.00 Craven Creek - CA

CA_0003963 56.29 -129.23 Dsc: 70%; Dfc: 15%; ET:

15%

ENF: 75%; GRA: 25% 1980-2011 532-1473 8.64 Kelly Creek - CA

CA_0003978 56.04 -129.93 ET: 53%; Dfc: 46.5%;

Dfb: 0.5%

SNO: 43.2%; GRA:

24.3%; ENF: 21.2%

1980-1999 87-2317 350.00 Bear River - CA

CA_0003979 56.35 -130.69 ET: 50.6%; Dfc: 46.4%;

Dsc: 2.2%

SNO: 28.1%; ENF:

27.8%; GRA: 26%

1980-1996 123-2366 1480.00 Unuk River - CA

CA_0003982 55.43 -127.72 Dsc: 78.3%; ET: 12.3%;

Dsb: 5.6%

ENF: 72.6%; GRA:

11.6%; MF: 10.4%

1980-2014 286-1839 1880.00 Kispiox River - CA

CA_0003984 55.46 -127.85 Dsc: 81.1%; ET: 18.9% ENF: 79.4%; GRA:

17.6%; BSV: 2.9%

1980-2014 579-1717 19.10 Compass Creek - CA

CA_0003987 54.41 -125.43 Dsc: 82%; Dfc: 18% ENF: 61.3%; WSA:

34.2%; GRA: 4.2%

1980-2013 863-1574 808.00 Pinkut Creek - CA

CA_0003993 53.93 -127.45 Dfc: 65.8%; ET: 34.2%;

Dsc: 0.1%

ENF: 43.7%; GRA:

23.1%; WSA: 15.1%

1980-2013 912-2243 732.00 Nanika River - CA

CA_0003994 54.12 -127.43 Dfc: 59.9%; ET: 33.9%;

Dsc: 6.2%

ENF: 40.6%; GRA:

23.3%; WSA: 17.5%

1980-2013 761-2469 1900.00 Morice River - CA

CA_0004004 54.65 -127.12 Dsc: 72.5%; ET: 27.5% ENF: 66.7%; GRA:

11.7%; WSA: 11.3%

1980-2012 674-2116 125.00 Goathorn Creek - CA

CA_0004007 54.81 -127.20 Dsc: 64.5%; ET: 35.5% ENF: 40.7%; GRA:

29.6%; BSV: 18.5%

1980-2012 560-2114 13.20 Simpson Creek - CA

CA_0004008 54.40 -126.65 Dsc: 86.3%; Dfc: 12.4%;

ET: 1.4%

ENF: 54.2%; WSA:

41.7%; GRA: 2.4%

1980-2015 611-1550 565.00 Buck Creek - CA

CA_0004009 54.80 -127.11 Dsc: 71.1%; ET: 16.5%;

Dfc: 12.4%

ENF: 66.7%; WSA:

23.2%; GRA: 6%

1980-1996 540-1859 256.00 Canyon Creek - CA

CA_0004015 54.61 -127.50 ET: 45.5%; Dsc: 42.9%;

Dfc: 11.6%

ENF: 52.3%; GRA:

20.4%; WSA: 10.1%

1980-2014 710-2355 367.00 Telkwa River - CA
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CA_0004020 55.30 -127.62 Dsc: 91.2%; Dfc: 5.9%;

Dsb: 2.9%

ENF: 89.3%; MF: 10.7% 1980-2014 438-1418 21.20 Two Mile Creek - CA

CA_0004022 55.23 -127.57 Dsc: 59.1%; ET: 40.9% GRA: 47.1%; ENF:

35.3%; BSV: 17.6%

1980-1996 473-1949 10.80 Station Creek - CA

CA_0004027 54.78 -127.47 Dsc: 66.7%; ET: 33.3% ENF: 52.9%; WSA:

41.2%; GRA: 5.9%

1980-2013 954-1721 9.97 M3 Creek - CA

CA_0004042 54.99 -128.81 Dfc: 87.5%; Dsc: 6.2%;

ET: 6.2%

ENF: 78.6%; WSA:

14.3%; GRA: 7.1%

1980-2013 563-1534 7.16 Clarence Creek - CA

CA_0004058 52.36 -126.81 Dfc: 65.1%; ET: 25.3%;

Dfb: 9.6%

ENF: 58.2%; GRA:

19.2%; SNO: 8.9%

1980-1996 186-1984 92.50 Clayton Falls Creek - CA

CA_0004069 53.56 -127.95 Dfc: 56.3%; ET: 35.3%;

Dfb: 8.4%

GRA: 34.9%; ENF:

23.9%; SNO: 22.1%

1980-2013 68-2144 556.00 Kemano River - CA

CA_0004074 54.22 -128.22 Dfc: 95.8%; Dfb: 4.2% ENF: 57.9%; GRA:

26.3%; WSA: 15.8%

1980-2009 404-1495 12.70 Kilometre 189 Creek -

CA

CA_0004101 49.45 -123.11 Dfc: 50.3%; Dfb: 45.5%;

Cfb: 4.2%

ENF: 96.9%; WSA:

2.3%; GRA: 0.8%

1980-2003 310-1501 69.90 Capilano River - CA

CA_0004102 49.45 -123.10 Dfb: 51.3%; Dfc: 46.1%;

Cfb: 2.6%

ENF: 98.5%; WSA:

1.5%

1980-2003 364-1503 41.40 Eastcap Creek - CA

CA_0004135 50.11 -123.43 Dfc: 57.4%; ET: 29.1%;

Dfb: 13.5%

SNO: 26%; GRA:

25.3%; ENF: 25.2%

1980-2014 283-2640 1200.00 Elaho River - CA

CA_0004136 50.08 -123.04 Dfc: 64.1%; ET: 28.7%;

Dfb: 4.4%

ENF: 38.1%; GRA:

23.2%; BSV: 21.5%

1980-2012 694-2499 297.00 Cheakamus River - CA

CA_0004139 49.52 -123.00 Dfc: 57%; Dfb: 41.3%;

Cfb: 1.7%

ENF: 94.1%; GRA:

2.9%; WSA: 2.9%

1980-2011 271-1471 63.00 Seymour River - CA

CA_0004141 49.50 -122.97 Dfc: 51.7%; Dfb: 43%;

Cfb: 5.3%

ENF: 95.4%; GRA:

2.3%; WSA: 2.3%

1980-2012 233-1471 82.90 Seymour River - CA

CA_0004149 49.79 -123.42 Dfc: 73.5%; Dfb: 21.8%;

Cfb: 3.1%

ENF: 48.2%; GRA:

25.9%; BSV: 13.6%

1980-2013 74-2301 147.00 Clowhom River - CA

CA_0004159 51.37 -124.76 ET: 45.9%; Dsc: 33.5%;

Dfc: 18.5%

ENF: 31.2%; BSV:

24.2%; WSA: 19.2%

1980-1995 632-3051 1960.00 Homathko River - CA

CA_0004161 51.41 -124.93 ET: 57.8%; Dfc: 20.2%;

Dsc: 16.8%

BSV: 28.2%; GRA: 27%;

ENF: 24.5%

1980-1995 704-3659 1550.00 Mosley Creek - CA

CA_0004162 51.67 -124.41 Dsc: 45.5%; Dfc: 28.6%;

ET: 20.4%

WSA: 56.8%; ENF:

31%; BSV: 7.9%

1980-2014 854-2615 486.00 Homathko River - CA

CA_0004163 51.42 -124.51 ET: 42.5%; Dsc: 37%;

Dfc: 18.1%

ENF: 34.1%; WSA:

22.7%; BSV: 22.6%

1980-1995 817-3051 1550.00 Homathko River - CA

CA_0004169 51.07 -126.36 Dfc: 78.6%; Dfb: 15.3%;

Cfb: 5.1%

ENF: 47%; GRA: 27.7%;

WSA: 12%

1980-2010 158-1669 54.30 Kippan Creek - CA

CA_0004219 48.64 -124.29 Cfb: 100% ENF: 100% 1980-2012 394-842 8.12 Renfrew Creek - CA

CA_0004220 48.72 -124.23 Cfb: 58.2%; Csb: 40%;

Dfc: 1.8%

ENF: 100% 1980-2012 299-986 28.00 Harris Creek - CA

CA_0004227 49.29 -124.58 Dfc: 47.6%; Csb: 32.3%;

Dsc: 7.7%

ENF: 91%; WSA: 6.2%;

GRA: 2.8%

1980-2001 185-1603 135.00 Little Qualicum River -

CA

CA_0004257 49.02 -124.19 Csb: 36.9%; Dfc: 27.2%;

Dsb: 18.4%

ENF: 100% 1980-2014 344-1328 62.20 Jump Creek - CA

CA_0004284 49.25 -125.58 Cfb: 54.3%; Cfc: 24.3%;

Dfc: 21.4%

ENF: 98.3%; GRA: 1.7% 1980-2013 75-1174 38.60 Tofino Creek - CA

CA_0004289 49.06 -124.13 Csb: 31.4%; Dsb: 30.4%;

Dfc: 15.7%

ENF: 100% 1980-2014 283-1346 211.00 South Nanaimo River -

CA
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CA_0004301 49.82 -125.99 Dfc: 71.6%; Cfb: 25.7%;

Cfc: 2.7%

ENF: 100% 1980-2013 220-1419 60.00 Heber River - CA

CA_0004324 49.86 -125.81 Dfc: 75.4%; Cfb: 16%;

ET: 6.4%

ENF: 71.7%; WSA:

16.4%; GRA: 11.9%

1980-2013 301-1845 132.00 Elk River - CA

CA_0004326 49.93 -125.51 Cfb: 44.2%; Dfb: 29.2%;

Dfc: 26.6%

ENF: 83%; WSA:

14.8%; GRA: 2.2%

1980-2013 311-1513 84.20 Quinsam River - CA

CA_0004331 49.75 -125.34 Dfc: 100% ENF: 100% 1980-2005 1007-1337 8.37 Piggott Creek - CA

CA_0004339 50.14 -126.17 Dfc: 74.1%; ET: 14.8%;

Dfb: 11.1%

ENF: 68%; WSA: 24%;

GRA: 8%

1980-2012 577-1630 14.60 Zeballos River - CA

CA_0004345 50.44 -126.58 Dfc: 58%; Cfb: 28.1%;

Cfc: 10.7%

ENF: 98.8%; GRA:

0.6%; WSA: 0.4%

1980-2012 109-1539 365.00 Tsitika River - CA

CA_0004349 50.42 -126.58 Dfc: 76.1%; Cfc: 9.1%;

Cfb: 8%

ENF: 97.5%; WSA:

2.5%

1980-1999 206-1448 46.10 Catherine Creek - CA

CA_0004351 50.73 -127.88 Cfc: 74.5%; Cfb: 25.5% ENF: 97.6%; EBF: 2.4% 1980-2012 236-503 22.30 Pugh Creek - CA

CA_0004364 53.26 -125.41 Dfc: 81.7%; Dsc: 12.3%;

ET: 6%

WSA: 78.8%; ENF:

19.3%; GRA: 1.9%

1980-2006 1022-1826 150.00 Van Tine Creek - CA

CA_0004365 53.65 -127.54 ET: 62.2%; Dfc: 37.8% GRA: 50.4%; ENF:

26.6%; WSA: 10.1%

1980-2013 880-2026 86.50 Laventie Creek - CA

CA_0004366 53.80 -126.36 ET: 56.7%; Dsc: 43.3% GRA: 35.6%; WSA:

34.5%; ENF: 28.7%

1980-1995 896-2078 53.40 Macivor Creek - CA

CA_0004375 53.66 -126.99 Dfc: 73.3%; ET: 26.7% ENF: 57.1%; GRA:

28.6%; WSA: 14.3%

1980-2013 1001-1637 7.72 Whitesail Middle Creek -

CA

CA_0004380 53.90 -126.95 Dfc: 84%; ET: 12.6%;

Dsc: 3.4%

ENF: 49.5%; WSA:

38.1%; GRA: 7.9%

1980-2015 927-2147 369.00 Nadina River - CA

CA_0004381 54.18 -125.49 Dsc: 96.8%; Dfc: 3.2% WSA: 61.1%; ENF:

33.9%; GRA: 2.4%

1980-2004 697-1415 771.00 Endako River - CA

CA_0004397 55.98 -126.68 Dfc: 65.8%; ET: 19.8%;

Dsc: 14.4%

ENF: 71.6%; WSA:

14.6%; GRA: 12%

1980-2012 779-2083 403.00 Driftwood River - CA

CA_0004402 53.31 -120.25 ET: 64.5%; Dfc: 35.5% WSA: 31.3%; GRA:

27.3%; BSV: 25.2%

1980-2013 782-2722 409.00 Dore River - CA

CA_0004406 52.99 -119.01 ET: 61.4%; Dfc: 38.6% GRA: 40%; WSA:

20.3%; ENF: 18.5%

1980-2013 1030-3108 1710.00 Fraser River - CA

CA_0004407 52.92 -118.80 ET: 66.9%; Dfc: 33.1% GRA: 46.4%; BSV:

23.4%; WSA: 16%

1980-1995 1082-2985 458.00 Moose River - CA

CA_0004408 53.44 -120.22 ET: 61.6%; Dfc: 38.4% GRA: 43%; WSA:

26.8%; ENF: 25.4%

1980-2013 983-2296 253.00 Mckale River - CA

CA_0004411 52.84 -119.27 ET: 62.8%; Dfc: 36.8%;

Dfb: 0.4%

GRA: 56.6%; WSA:

20.5%; ENF: 17.8%

1980-1998 806-2339 132.00 Swift Creek - CA

CA_0004412 53.68 -120.59 Dfc: 55.1%; ET: 44.9% WSA: 38.3%; GRA:

32.8%; ENF: 25.4%

1980-2013 704-2360 1260.00 Morkill River - CA

CA_0004416 54.30 -120.98 Dfc: 87%; ET: 13% WSA: 45%; GRA:

27.2%; ENF: 22.2%

1980-2013 954-2194 103.00 Muller Creek - CA

CA_0004419 54.61 -123.24 Dfc: 98.5%; Dsc: 1.5% WSA: 62.2%; ENF:

34%; GRA: 3.9%

1980-1998 811-1059 303.00 Muskeg River - CA

CA_0004420 53.26 -121.41 Dfc: 87.4%; ET: 12.6% ENF: 64.3%; WSA:

26.1%; GRA: 9.5%

1980-1995 909-2150 458.00 Bowron River - CA

CA_0004433 53.16 -122.48 Dfc: 95.7%; Dfb: 3.4%;

ET: 0.9%

WSA: 49.8%; ENF:

41.3%; MF: 8.4%

1980-1999 589-1862 1910.00 Cottonwood River - CA

CA_0004436 52.97 -122.51 Dfc: 95.2%; Dfb: 4.8% WSA: 81.9%; ENF:

12.6%; GRA: 3.4%

1980-2013 483-1471 1550.00 Baker Creek - CA
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CA_0004443 52.91 -121.77 Dfc: 93.5%; ET: 6.5% WSA: 64.8%; ENF:

35.2%

1980-2013 1088-1955 127.00 Little Swift River - CA

CA_0004451 53.86 -122.57 Dfc: 97.5%; Dfb: 2.5% MF: 51%; ENF: 34.3%;

WSA: 14.7%

1980-1999 681-1203 60.20 Tabor Creek - CA

CA_0004452 52.64 -122.41 Dfc: 73.7%; Dfb: 26.3% ENF: 59.5%; WSA:

40.5%

1980-1995 823-1394 37.30 Alix Creek - CA

CA_0004453 52.83 -122.54 Dfc: 91.8%; Dfb: 8.2% WSA: 68.8%; ENF:

24.2%; MF: 6.4%

1980-1993 796-1401 99.10 Deserters Creek - CA

CA_0004459 52.99 -123.80 Dfc: 98.8%; ET: 1.2% WSA: 86.1%; ENF:

10.8%; GRA: 3.1%

1980-1995 964-1706 992.00 Baezaeko River - CA

CA_0004469 52.29 -121.07 Dfc: 80.5%; ET: 19.5% ENF: 52.7%; WSA:

25.9%; GRA: 16.7%

1980-2013 889-2400 790.00 Horsefly River - CA

CA_0004474 52.32 -121.41 Dfc: 97.7%; Dfb: 1.3%;

ET: 1%

WSA: 74.7%; ENF:

17.4%; GRA: 8%

1980-2012 803-2064 548.00 Moffat Creek - CA

CA_0004475 52.28 -121.00 Dfc: 95.6%; Dfb: 2.4%;

ET: 2.1%

ENF: 75.1%; WSA:

21.2%; MF: 1.9%

1980-2014 863-2098 431.00 Mckinley Creek - CA

CA_0004478 52.95 -122.40 Dfb: 100% WSA: 42.9%; ENF:

28.6%; GRA: 14.3%

1980-1994 617-834 7.25 Dragon Creek - CA

CA_0004480 52.37 -121.36 Dfc: 60.1%; Dfb: 38.3%;

ET: 1.6%

ENF: 74.5%; WSA:

17.4%; MF: 6.1%

1980-1990 783-2121 416.00 Little Horsefly River -

CA

CA_0004501 51.61 -121.23 Dfc: 99.1%; Dfb: 0.9% WSA: 69.5%; ENF:

29.5%; GRA: 0.7%

1980-1997 991-1614 912.00 Bridge Creek - CA

CA_0004502 51.73 -120.01 Dfc: 69.4%; ET: 28.1%;

Dfb: 2.5%

ENF: 64%; WSA: 19%;

GRA: 15%

1980-1994 847-2431 52.50 Spahats Creek - CA

CA_0004509 51.62 -120.67 Dfc: 100% ENF: 60%; WSA: 40% 1980-2011 1175-1861 79.40 Windy Creek - CA

CA_0004521 50.72 -120.03 Dfb: 54%; Dfc: 44.4%;

BSk: 1.6%

WSA: 50%; ENF:

44.4%; GRA: 2.8%

1980-2009 870-1438 55.70 Paul Creek - CA

CA_0004527 51.18 -120.13 Dfc: 69%; Dfb: 28.1%;

ET: 2.3%

ENF: 64.7%; WSA:

29.8%; GRA: 4.8%

1980-2014 381-2217 1140.00 Barriere River - CA

CA_0004531 51.12 -120.21 Dfc: 80.5%; Dfb: 19.5% WSA: 74.4%; ENF:

20.5%; GRA: 5.1%

1980-2013 617-1623 135.00 Fishtrap Creek - CA

CA_0004541 52.12 -119.30 Dfc: 81.1%; ET: 13.5%;

Dfb: 5.4%

WSA: 38.1%; ENF:

30.4%; GRA: 25.4%

1980-2013 685-2331 272.00 Blue River - CA

CA_0004567 51.25 -119.94 Dfc: 79.6%; Dfb: 16.1%;

ET: 4.4%

ENF: 58.1%; WSA:

33.7%; GRA: 7.8%

1980-2013 571-2217 624.00 Barriere River - CA

CA_0004570 51.13 -120.12 Dfc: 70.7%; Dfb: 29.3% ENF: 54.6%; WSA:

40.5%; MF: 2.7%

1980-1996 388-2075 515.00 Louis Creek - CA

CA_0004572 51.35 -119.88 Dfc: 88.5%; ET: 8.6%;

Dfb: 3%

ENF: 59.2%; WSA:

29.2%; GRA: 10.9%

1980-2013 803-2217 166.00 Harper Creek - CA

CA_0004574 51.43 -120.20 Dfc: 85.7%; Dfb: 14.3% ENF: 50.6%; WSA:

45.8%; MF: 3.4%

1980-2013 399-1679 443.00 Lemieux Creek - CA

CA_0004579 50.30 -118.82 Dfc: 70.2%; Dfb: 26%;

ET: 3.8%

ENF: 67.4%; WSA:

19.9%; GRA: 10.5%

1980-2013 455-2687 2000.00 Shuswap River - CA

CA_0004590 50.35 -118.55 Dfc: 75.1%; Dfb: 18.7%;

ET: 6.2%

ENF: 60.3%; WSA:

19.3%; GRA: 17.1%

1980-2013 600-2687 1130.00 Shuswap River - CA

CA_0004608 50.30 -118.86 Dfc: 56.9%; Dfb: 43.1% ENF: 58.3%; WSA:

33.9%; GRA: 6.4%

1980-2013 483-1934 769.00 Bessette Creek - CA

CA_0004609 50.28 -118.95 Dfb: 62.3%; Dfc: 37.7% ENF: 76.7%; WSA:

17.2%; MF: 5.2%

1980-2013 505-1844 70.90 Vance Creek - CA
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CA_0004610 50.25 -118.96 Dfc: 65.2%; Dfb: 34.8% ENF: 57.2%; WSA:

35.6%; GRA: 6.2%

1980-2011 495-1934 632.00 Bessette Creek - CA

CA_0004613 50.26 -118.63 Dfc: 74.2%; Dfb: 24.8%;

ET: 1.1%

ENF: 80.1%; WSA:

15%; GRA: 3.8%

1980-1990 525-2352 503.00 Cherry Creek - CA

CA_0004614 50.53 -118.97 Dfb: 63.6%; Dfc: 36.4% ENF: 86.9%; WSA:

9.5%; SAV: 2.5%

1980-1990 431-1760 191.00 Trinity Creek - CA

CA_0004616 50.89 -119.73 Dfc: 78%; Dfb: 22% ENF: 92.6%; WSA:

7.4%

1980-2002 634-1765 69.70 Hiuihill Creek - CA

CA_0004620 51.43 -119.47 Dfc: 81.1%; Dfb: 18.9% ENF: 85.7%; WSA:

14.3%

1980-1998 422-1580 14.70 Fisher Creek - CA

CA_0004640 50.50 -119.56 Dfc: 56%; BSk: 25.5%;

Dfb: 18.5%

WSA: 53.7%; ENF:

34.4%; GRA: 10.3%

1980-2013 588-1914 1030.00 Salmon River - CA

CA_0004641 50.69 -119.33 Dfc: 47.7%; Dfb: 34.7%;

BSk: 17.6%

WSA: 46.7%; ENF:

40.6%; GRA: 10.6%

1980-2011 353-1914 1550.00 Salmon River - CA

CA_0004644 50.94 -118.80 Dfc: 68.1%; Dfb: 25.9%;

ET: 6%

ENF: 55.6%; WSA:

20.4%; GRA: 18.5%

1980-2014 367-2708 932.00 Eagle River - CA

CA_0004647 51.26 -118.95 Dfc: 66.2%; Dfb: 24.4%;

ET: 9.4%

ENF: 57.4%; WSA:

19.4%; GRA: 15.8%

1980-2013 365-2568 805.00 Seymour River - CA

CA_0004687 50.29 -119.96 Dfc: 85%; Dfb: 8.6%;

BSk: 6.4%

WSA: 70.8%; ENF:

22.9%; GRA: 6.2%

1980-2002 1000-1914 143.00 Salmon River - CA

CA_0004688 50.91 -119.53 Dfc: 60%; Dfb: 40% ENF: 94.1%; WSA:

5.9%

1980-2010 400-1719 26.20 Corning Creek - CA

CA_0004707 50.52 -119.85 Dfc: 73.4%; BSk: 14.5%;

Dfb: 12.1%

WSA: 61.3%; ENF:

28.3%; SAV: 7.5%

1980-1994 708-1705 64.30 Monte Creek - CA

CA_0004710 50.93 -118.47 Dfc: 58%; Dfb: 38%; ET:

4%

ENF: 90%; DBF: 5%;

GRA: 2.5%

1980-1994 556-2189 30.20 South Pass Creek - CA

CA_0004712 50.70 -119.20 Dfb: 73.7%; Dfc: 26.3% ENF: 100% 1980-2014 626-1299 20.80 East Canoe Creek - CA

CA_0004714 50.82 -119.68 Dfc: 64.9%; Dfb: 35.1% ENF: 59%; WSA:

36.1%; MF: 3.3%

1980-2013 384-1777 297.00 Chase Creek - CA

CA_0004721 50.88 -120.97 Dfc: 75.5%; Dfb: 17%;

BSk: 7.6%

WSA: 66.4%; ENF:

28.9%; GRA: 4.7%

1980-2014 546-1855 479.00 Criss Creek - CA

CA_0004728 50.88 -121.42 Dfc: 70.1%; Dfb: 17.3%;

BSk: 10%

WSA: 52.4%; ENF:

35.8%; GRA: 10.9%

1980-1994 591-2254 658.00 Hat Creek - CA

CA_0004739 50.90 -120.98 Dfc: 80.4%; Dfb: 14.5%;

BSk: 5.1%

WSA: 77.5%; ENF:

14.5%; GRA: 7.9%

1980-2014 554-1741 878.00 Deadman River - CA

CA_0004771 51.04 -121.44 Dfc: 67.8%; Dfb: 22.4%;

BSk: 9.7%

WSA: 67.4%; ENF:

29.6%; GRA: 2.7%

1980-1996 728-1697 479.00 Loon Creek - CA

CA_0004773 51.26 -121.68 Dfc: 89.6%; ET: 10.4% WSA: 69.2%; GRA:

16.9%; ENF: 12.3%

1980-1996 1143-2168 36.40 Fiftynine Creek - CA

CA_0004774 50.74 -121.58 Dfc: 90.6%; Dfb: 9.4% WSA: 66.7%; GRA:

18.8%; ENF: 14.6%

1980-1998 1131-1914 32.90 Ambusten Creek - CA

CA_0004777 50.73 -121.64 Dfc: 91.9%; ET: 8.1% ENF: 73.1%; WSA:

19.2%; GRA: 3.8%

1980-1998 1193-2110 31.90 Anderson Creek - CA

CA_0004778 50.68 -120.57 Dfc: 53%; BSk: 47% WSA: 62.5%; ENF:

20%; GRA: 17.5%

1980-1996 628-1860 143.00 Cherry Creek - CA

CA_0004780 50.98 -121.40 Dfc: 91.7%; Dfb: 4.3%;

BSk: 4%

WSA: 68.2%; GRA:

18.4%; ENF: 13.5%

1980-1994 885-1749 141.00 Scottie Creek - CA

CA_0004782 51.01 -120.75 Dfc: 100% WSA: 93.8%; GRA:

6.2%

1980-1994 1120-1855 46.60 Heller Creek - CA
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CA_0004785 51.15 -120.86 Dfc: 100% WSA: 85.5%; GRA:

13.9%; ENF: 0.6%

1980-2015 1078-1525 98.90 Joe Ross Creek - CA

CA_0004786 51.43 -120.62 Dfc: 100% WSA: 83.9%; ENF:

16.1%

1980-1994 1149-1489 20.40 Mcdonald Creek - CA

CA_0004789 50.84 -121.24 Dfc: 80.2%; Dfb: 10.5%;

BSk: 9.3%

WSA: 67.6%; ENF:

27%; GRA: 5.4%

1980-2013 770-1661 50.50 Arrowstone Creek - CA

CA_0004790 50.84 -121.15 Dfc: 78.9%; Dfb: 10.5%;

BSk: 10.5%

WSA: 70.6%; ENF:

23.5%; GRA: 5.9%

1980-2011 943-1628 10.60 Dairy Creek - CA

CA_0004798 50.14 -121.03 Dsc: 73.1%; Dsb: 24.4%;

BSk: 1.8%

ENF: 64.8%; WSA:

32.4%; GRA: 2.7%

1980-2014 542-2150 775.00 Spius Creek - CA

CA_0004799 50.49 -120.86 Dfc: 100% WSA: 66.5%; GRA:

30.2%; BSV: 1.7%

1980-1996 1120-1829 139.00 Witches Brook - CA

CA_0004800 50.11 -120.80 Dsc: 51.4%; Dsb: 35.1%;

BSk: 6.4%

ENF: 48.9%; WSA:

47.6%; GRA: 3%

1980-2014 598-1989 917.00 Coldwater River - CA

CA_0004805 49.96 -120.13 Dfc: 100% WSA: 72.3%; ENF:

22.3%; GRA: 5.4%

1980-2013 1458-1929 87.60 Pennask Creek - CA

CA_0004824 50.36 -120.81 Dfc: 95.1%; BSk: 4.4%;

Dfb: 0.5%

WSA: 73.5%; GRA:

17.8%; ENF: 8%

1980-2014 955-1907 871.00 Guichon Creek - CA

CA_0004829 49.85 -120.91 Dsc: 83.7%; Dsb: 13.3%;

Dfc: 2.7%

ENF: 66.5%; WSA:

30.3%; GRA: 2.9%

1980-2014 919-1989 316.00 Coldwater River - CA

CA_0004830 50.18 -120.38 Dfc: 58.4%; BSk: 30%;

Dfb: 11.6%

WSA: 50.4%; GRA:

36.5%; ENF: 12.3%

1980-2014 736-1929 1500.00 Nicola River - CA

CA_0004836 50.61 -120.91 Dfc: 100% WSA: 81.9%; GRA:

17.4%; ENF: 0.6%

1980-2014 1189-1931 78.20 Guichon Creek - CA

CA_0004840 50.14 -120.28 Dfc: 60%; BSk: 33.5%;

Dfb: 6.6%

WSA: 52.3%; GRA:

34.4%; ENF: 11.4%

1980-1996 826-1929 241.00 Spahomin Creek - CA

CA_0004843 50.11 -119.98 Dfc: 97.1%; BSk: 2.9% WSA: 81.8%; GRA:

9.5%; ENF: 8.8%

1980-2001 1110-1820 85.00 Beak Creek - CA

CA_0004845 50.33 -120.92 Dfc: 100% GRA: 77.8%; WSA:

22.2%

1980-1998 1313-1719 32.20 Chataway Creek - CA

CA_0004846 50.15 -120.88 Dfc: 86.5%; BSk: 9.3%;

Dfb: 4.2%

WSA: 74.3%; GRA:

16.5%; ENF: 8.6%

1980-2015 580-1907 1230.00 Guichon Creek - CA

CA_0004847 49.95 -121.10 Dsc: 87.9%; Dsb: 12.1% ENF: 69.2%; WSA:

27.7%; GRA: 3.1%

1980-2011 932-2019 178.00 Spius Creek - CA

CA_0004850 51.38 -123.63 ET: 66%; Dfc: 34% BSV: 32.6%; ENF:

24.5%; GRA: 21.4%

1980-2013 1323-2929 1520.00 Taseko River - CA

CA_0004851 51.67 -124.15 ET: 45.1%; Dsc: 44.5%;

Dfc: 10.4%

ENF: 62.7%; WSA:

22.9%; GRA: 12.4%

1980-2014 1256-2140 98.80 Lingfield Creek - CA

CA_0004859 51.25 -123.10 ET: 91.2%; Dfc: 8.8% GRA: 48.9%; WSA:

26.5%; BSV: 23%

1980-2013 1702-2737 232.00 Big Creek - CA

CA_0004894 52.11 -121.94 Dfc: 71.7%; Dfb: 28.3% WSA: 66.5%; ENF:

25.5%; GRA: 8%

1980-2010 736-1081 192.00 Borland Creek - CA

CA_0004895 52.08 -121.99 Dfb: 56.7%; Dfc: 43.3% ENF: 60.5%; WSA:

36.1%; GRA: 3.2%

1980-2013 615-1609 1990.00 San Jose River - CA

CA_0004898 52.15 -122.56 Dfc: 100% WSA: 52.3%; ENF:

46.5%; SAV: 1.3%

1980-1994 990-1280 82.70 Meldrum Creek - CA

CA_0004900 52.43 -122.29 Dfc: 85.6%; Dfb: 14.4% WSA: 55%; ENF: 45% 1980-2014 725-1312 99.00 Sheridan Creek - CA

CA_0004925 50.91 -121.72 Dfc: 98.5%; ET: 1.5% ENF: 83.9%; WSA:

16.1%

1980-1998 1326-2020 37.10 Pavilion Creek - CA

CA_0004929 50.84 -121.90 Dfc: 89.4%; Dfb: 10.6% ENF: 50%; WSA: 50% 1980-1994 904-1919 36.30 Lee Creek - CA
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CA_0004933 50.67 -121.97 ET: 42.1%; Dsc: 34.6%;

Dfc: 17.5%

GRA: 32%; WSA:

30.6%; ENF: 24.7%

1980-2014 275-2712 885.00 Cayoosh Creek - CA

CA_0004934 50.67 -121.97 Dsc: 32.7%; Dsb: 24.9%;

ET: 23%

ENF: 37.1%; WSA:

29.2%; GRA: 24.1%

1980-2013 244-2668 1020.00 Seton River - CA

CA_0004947 50.86 -123.45 ET: 63.1%; Dfc: 36.9% SNO: 64%; GRA:

18.4%; BSV: 14.6%

1980-2013 1381-2815 144.00 Bridge River - CA

CA_0004949 50.91 -122.24 Dfc: 43.2%; ET: 40%;

Dsc: 14.5%

WSA: 49.2%; GRA:

20.9%; ENF: 14.9%

1980-2013 795-2711 581.00 Yalakom River - CA

CA_0004950 50.96 -122.30 Dfc: 93.2%; ET: 4.3%;

Dsc: 2.5%

WSA: 53.9%; ENF:

25.5%; GRA: 20.6%

1980-1994 1013-2101 86.40 Junction Creek - CA

CA_0004951 50.73 -122.94 ET: 46.6%; Dsc: 40.4%;

Dfc: 13%

GRA: 38.4%; BSV:

25.2%; ENF: 17.3%

1980-2013 1029-2621 312.00 Hurley River - CA

CA_0004952 50.82 -123.20 ET: 61.1%; Dfc: 38%;

Dfb: 0.8%

GRA: 28.6%; SNO:

26.6%; BSV: 24.9%

1980-2011 763-2815 708.00 Bridge River - CA

CA_0004991 49.54 -121.12 Dsc: 78%; Dfc: 14.3%;

Dsb: 7.7%

ENF: 52.3%; WSA:

29.5%; GRA: 16.8%

1980-2014 881-1886 85.50 Coquihalla River - CA

CA_0004993 49.95 -121.86 Dsc: 43.9%; Dfc: 28.4%;

Dsb: 17.1%

ENF: 36%; GRA: 32.3%;

WSA: 20%

1980-2014 322-2559 712.00 Nahatlatch River - CA

CA_0005014 50.12 -122.95 Dfc: 49.4%; ET: 28.8%;

Dsc: 11.2%

ENF: 40.4%; GRA:

24.5%; BSV: 14.6%

1980-2012 657-2536 89.70 Fitzsimmons Creek - CA

CA_0005027 49.08 -121.46 Dfc: 76.3%; Dfb: 19.7%;

Dsb: 2.5%

ENF: 64.4%; GRA:

15.9%; WSA: 6.9%

1980-2014 619-2384 335.00 Chilliwack River - CA

CA_0005044 49.07 -121.70 Dfc: 75.8%; Dfb: 22.1%;

Cfb: 2.1%

ENF: 66%; GRA: 20.1%;

SAV: 5.7%

1980-2014 312-2079 160.00 Slesse Creek - CA

CA_0005045 49.19 -122.16 Dfb: 82%; Cfb: 10.2%;

Dfc: 7.8%

ENF: 98.3%; MF: 1.7% 1980-2007 78-1261 117.00 Norrish Creek - CA

CA_0005070 49.10 -121.66 Dfc: 74.6%; Dfb: 23%;

Dsb: 1.3%

ENF: 67.1%; GRA:

15.8%; WSA: 5.8%

1980-2013 357-2384 650.00 Chilliwack River - CA

CA_0005083 49.49 -122.79 Dfc: 67%; Dfb: 33% ENF: 73.8%; GRA:

16.2%; WSA: 7.5%

1980-2012 335-1723 52.50 Coquitlam River - CA

CA_0005086 49.56 -122.32 Dfc: 73.7%; Dfb: 23.6%;

ET: 2.7%

ENF: 37%; GRA: 29.7%;

WSA: 13.8%

1980-2011 194-2097 290.00 Stave River - CA

CA_0005087 49.24 -122.13 Dfb: 89.9%; Dfc: 8.6%;

Cfb: 1.4%

ENF: 100% 1980-2006 350-1261 78.20 Norrish Creek - CA

CA_0005101 51.30 -116.97 Dfc: 56.5%; ET: 43.1%;

Dfb: 0.4%

ENF: 30.3%; GRA:

27.7%; WSA: 20.2%

1980-2014 787-3161 1850.00 Kicking Horse River -

CA

CA_0005106 50.90 -116.41 Dfc: 54.2%; ET: 43.6%;

Dfb: 2.2%

WSA: 29%; GRA:

28.5%; ENF: 24.9%

1980-2014 804-2968 1460.00 Spillimacheen River -

CA

CA_0005128 51.14 -116.74 Dfc: 62.5%; ET: 25%;

Dfb: 12.5%

ENF: 35.7%; WSA:

35.7%; SAV: 21.4%

1980-1998 914-2272 8.03 Carbonate Creek - CA

CA_0005134 50.32 -115.86 Dfc: 56.1%; ET: 27.2%;

Dfb: 16.7%

WSA: 45.4%; ENF:

25.8%; GRA: 22.2%

1980-1996 807-2837 891.00 Columbia River - CA

CA_0005142 51.44 -116.37 ET: 72.5%; Dfc: 27.5% GRA: 37%; BSV: 37%;

WSA: 13.2%

1980-1996 1610-3161 119.00 Kicking Horse River -

CA

CA_0005163 51.48 -116.97 ET: 51.4%; Dfc: 48.2%;

Dfb: 0.4%

GRA: 32.1%; WSA:

19.9%; BSV: 19.5%

1980-2015 914-3030 587.00 Blaeberry River - CA

CA_0005164 51.61 -117.74 ET: 63.7%; Dfc: 36.3% GRA: 30.8%; BSV:

26.5%; SNO: 17.1%

1980-1995 1112-3225 135.00 Gold River - CA

CA_0005165 51.68 -117.72 ET: 58.5%; Dfc: 41.3%;

Dfb: 0.1%

GRA: 34.3%; BSV: 20%;

ENF: 15.9%

1980-2013 837-3225 429.00 Gold River - CA
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CA_0005166 51.65 -116.74 ET: 64.1%; Dfc: 35.9% GRA: 29.9%; BSV: 27%;

WSA: 25.1%

1980-1996 1154-2944 230.00 Blaeberry River - CA

CA_0005167 51.53 -116.90 ET: 51.6%; Dfc: 48.4% GRA: 43.2%; WSA:

22%; ENF: 20.5%

1980-2014 1035-2641 80.50 Split Creek - CA

CA_0005169 51.51 -117.47 Dfc: 57.2%; ET: 41.2%;

Dfb: 1.6%

ENF: 30.4%; GRA:

29.8%; BSV: 16.2%

1980-2014 796-3105 1150.00 Beaver River - CA

CA_0005173 52.73 -119.38 ET: 57.8%; Dfc: 42.2% GRA: 29.4%; SNO:

22.9%; WSA: 18.8%

1980-2013 975-2952 305.00 Canoe River - CA

CA_0005184 51.67 -118.60 Dfc: 66.2%; ET: 24.8%;

Dfb: 9%

ENF: 34.7%; WSA:

26%; GRA: 24.9%

1980-2014 622-2745 934.00 Goldstream River - CA

CA_0005185 51.01 -118.09 Dfc: 65.1%; ET: 27.7%;

Dfb: 7.3%

ENF: 34.2%; GRA:

27.6%; WSA: 19.5%

1980-2014 511-2921 1150.00 Illecillewaet River - CA

CA_0005189 51.66 -118.10 ET: 54.4%; Dfc: 45.6% GRA: 43%; BSV: 24.2%;

SNO: 13.4%

1980-1998 1028-2745 139.00 Stitt Creek - CA

CA_0005190 51.64 -118.67 Dfc: 77.7%; ET: 16.6%;

Dfb: 5.7%

ENF: 42%; GRA: 26%;

WSA: 16.6%

1980-2005 744-2253 112.00 Kirbyville Creek - CA

CA_0005195 50.77 -117.68 Dfc: 57.4%; ET: 32.1%;

Dfb: 10.6%

GRA: 35.2%; ENF:

18.7%; WSA: 17.1%

1980-1996 474-3045 1020.00 Incomappleux River -

CA

CA_0005199 50.28 -117.73 Dfc: 91.9%; Dfb: 6.7%;

ET: 1.4%

GRA: 34.1%; ENF:

32.9%; WSA: 30.1%

1980-2013 737-2416 330.00 Kuskanax Creek - CA

CA_0005201 50.73 -117.73 Dfc: 59.7%; Dfb: 40.3% ENF: 87.3%; WSA:

11.1%; SAV: 1.6%

1980-2013 545-2138 96.70 Beaton Creek - CA

CA_0005226 49.01 -117.95 Dfc: 53.9%; Dfb: 35.1%;

Dsb: 8.3%

ENF: 60.8%; WSA:

38.3%; MF: 0.8%

1980-2015 687-2224 347.00 Big Sheep Creek - CA

CA_0005255 49.05 -117.29 Dfc: 59.5%; Dfb: 29.3%;

Dsc: 6.5%

ENF: 59.9%; WSA:

32.7%; GRA: 4.2%

1980-2014 609-2234 1240.00 Salmo River - CA

CA_0005258 49.91 -118.13 Dfc: 81.8%; Dfb: 18.2% ENF: 79.3%; WSA:

16.3%; GRA: 1.8%

1980-2013 623-2052 204.00 Barnes Creek - CA

CA_0005265 49.45 -118.04 Dfc: 58.7%; Dfb: 41.3% ENF: 72.1%; WSA:

27%; GRA: 0.9%

1980-2015 720-2130 81.60 Deer Creek - CA

CA_0005281 49.90 -118.19 Dfc: 82.3%; Dfb: 17.7% ENF: 53.2%; WSA:

42.5%; GRA: 3.8%

1980-2013 555-2167 298.00 Inonoaklin Creek - CA

CA_0005285 49.23 -117.24 Dfc: 82.7%; Dfb: 17.3% ENF: 62.9%; WSA:

25.8%; GRA: 5.6%

1980-2013 898-2048 56.70 Hidden Creek - CA

CA_0005288 50.34 -117.52 Dfc: 97%; ET: 3% GRA: 56.6%; WSA:

24.9%; ENF: 17.9%

1980-1996 1088-2425 113.00 Kuskanax Creek - CA

CA_0005293 50.79 -118.08 Dfc: 77.9%; ET: 17.9%;

Dfb: 4.2%

GRA: 26.4%; ENF:

23.3%; WSA: 22.1%

1980-2011 818-2674 99.60 Cranberry Creek - CA

CA_0005299 50.89 -116.05 Dfc: 70.4%; ET: 29.6% ENF: 36%; WSA:

31.4%; GRA: 25.1%

1980-2014 1179-2862 416.00 Kootenay River - CA

CA_0005303 50.66 -115.53 Dfc: 55.1%; ET: 44.9% GRA: 38.5%; WSA:

29.4%; ENF: 14.7%

1980-1999 1330-2909 69.70 Albert River - CA

CA_0005304 50.53 -115.62 Dfc: 61.7%; ET: 38.3% GRA: 33.6%; WSA:

28.2%; ENF: 25.4%

1980-1995 1104-3204 653.00 Palliser River - CA

CA_0005306 49.49 -115.37 Dfc: 84.3%; ET: 12.2%;

Dfb: 3.5%

WSA: 37.2%; ENF:

33.4%; GRA: 19.1%

1980-2014 894-3043 1520.00 Bull River - CA

CA_0005345 49.61 -116.17 Dfc: 80.2%; ET: 16.1%;

Dfb: 3.7%

WSA: 37.2%; ENF:

31.3%; GRA: 26.4%

1980-1995 972-2759 1480.00 St Mary River - CA

CA_0005369 49.71 -115.90 Dfc: 83.5%; ET: 8.7%;

Dfb: 7.9%

WSA: 73.7%; GRA:

12.7%; SAV: 7%

1980-2014 1048-2516 135.00 Mather Creek - CA
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CA_0005370 49.74 -116.44 Dfc: 88.8%; ET: 11.2% WSA: 36.2%; GRA:

31%; ENF: 27.7%

1980-2014 1155-2530 208.00 St Mary River - CA

CA_0005371 49.19 -115.44 Dfc: 81%; Dfb: 19% ENF: 71.1%; WSA:

25.9%; GRA: 2.3%

1980-1995 1041-2085 313.00 Caven Creek - CA

CA_0005376 49.70 -116.03 Dfc: 90.7%; ET: 9.3% WSA: 51%; ENF:

30.2%; SAV: 12.8%

1980-1999 1360-2421 102.00 Mark Creek - CA

CA_0005377 49.66 -116.07 Dfc: 82.5%; ET: 17.5% WSA: 46.7%; ENF:

25.8%; GRA: 14%

1980-1998 1234-2539 148.00 Matthew Creek - CA

CA_0005383 49.09 -116.46 Dfc: 75.4%; Dfb: 24.3%;

ET: 0.3%

ENF: 55.7%; WSA:

37.6%; GRA: 4.5%

1980-1995 643-2412 1180.00 Goat River - CA

CA_0005384 49.91 -116.95 Dfc: 79.6%; ET: 11.9%;

Dfb: 8.5%

ENF: 41.3%; WSA:

28.1%; GRA: 24.4%

1980-2014 739-2684 442.00 Kaslo River - CA

CA_0005385 49.00 -116.18 Dfc: 73.8%; Dfb: 25.8%;

Dsc: 0.4%

ENF: 56.7%; WSA:

38.6%; GRA: 3.7%

1980-2013 822-2284 1480.00 Moyie River - CA

CA_0005386 50.26 -116.97 Dfc: 73.3%; ET: 13.6%;

Dfb: 13.1%

ENF: 40.3%; GRA:

31.8%; WSA: 20%

1980-2014 564-2692 1640.00 Lardeau River - CA

CA_0005395 49.20 -116.53 Dfc: 78.5%; Dfb: 21.5% ENF: 59.5%; WSA:

36.7%; MF: 2.5%

1980-2014 825-2082 57.00 Duck Creek - CA

CA_0005400 49.00 -116.57 Dfc: 78.6%; Dfb: 19.8%;

Dsc: 0.9%

ENF: 85.4%; WSA:

10.5%; GRA: 2.2%

1980-2013 539-1967 242.00 Boundary Creek - CA

CA_0005444 49.16 -116.45 Dfc: 80.9%; Dfb: 19.1% ENF: 83.8%; WSA:

16.2%

1980-2014 846-2040 78.30 Arrow Creek - CA

CA_0005450 49.70 -116.92 Dfc: 71.7%; ET: 9.4%;

Dsb: 8.8%

WSA: 34.8%; ENF:

26.5%; GRA: 25.8%

1980-1992 759-2602 87.30 Coffee Creek - CA

CA_0005460 49.10 -116.44 Dfc: 58.3%; Dfb: 41.7% ENF: 90%; SAV: 10% 1980-2014 811-1794 6.22 Sullivan Creek - CA

CA_0005462 49.34 -116.71 Dfc: 73.9%; Dfb: 26.1% ENF: 61.1%; WSA:

38.9%

1980-1999 767-1978 12.70 Twin Bays Creek - CA

CA_0005464 50.64 -117.05 Dfc: 58.1%; ET: 38%;

Dfb: 3.8%

GRA: 36.6%; WSA:

19.9%; BSV: 19.8%

1980-2014 597-3124 1310.00 Duncan River - CA

CA_0005465 49.42 -115.94 Dfc: 99.6%; Dfb: 0.2%;

ET: 0.2%

ENF: 53.6%; WSA:

42.4%; GRA: 3.6%

1980-2014 1189-2284 239.00 Moyie River - CA

CA_0005472 50.08 -116.78 Dfc: 63.2%; ET: 35.9%;

Dfb: 0.9%

GRA: 40.6%; WSA:

29.6%; ENF: 15%

1980-2014 887-2978 585.00 Fry Creek - CA

CA_0005473 50.16 -116.58 ET: 50.2%; Dfc: 49.8% GRA: 37.4%; BSV:

26.2%; WSA: 23%

1980-2004 1371-2906 119.00 Carney Creek - CA

CA_0005474 49.87 -117.12 Dfc: 75.8%; ET: 24.2% GRA: 44.9%; ENF:

25.4%; WSA: 24.6%

1980-2014 1242-2684 92.30 Keen Creek - CA

CA_0005477 50.63 -117.54 Dfc: 83.3%; ET: 11.1%;

Dfb: 5.6%

ENF: 38.5%; WSA:

30.8%; GRA: 23.1%

1980-2013 1006-2503 8.84 Humphries Creek - CA

CA_0005496 49.64 -117.00 Dfc: 85.2%; Dfb: 14.8% ENF: 43.5%; WSA:

43.5%; GRA: 13%

1980-2000 747-2136 15.00 Laird Creek - CA

CA_0005502 49.59 -117.24 Dfc: 77.8%; Dsc: 11.1%;

Dfb: 10.1%

WSA: 57.1%; ENF:

38.1%; GRA: 4.8%

1980-2014 803-2106 52.90 Duhamel Creek - CA

CA_0005503 49.59 -117.06 Dfc: 84.2%; Dfb: 11.8%;

Dsc: 3.9%

ENF: 60.3%; WSA:

39.7%

1980-1994 672-2183 42.20 Harrop Creek - CA

CA_0005534 49.62 -117.06 Dfc: 93.6%; Dfb: 6.4% WSA: 70.7%; ENF:

26.8%; GRA: 2.4%

1980-2014 897-2175 27.20 Redfish Creek - CA

CA_0005571 49.57 -117.65 Dfc: 53.8%; Dfb: 46.2% ENF: 81.8%; WSA:

18.2%

1980-1994 523-1933 5.70 Mcfayden Creek - CA

CA_0005573 49.50 -117.26 Dfc: 70.6%; Dfb: 29.4% ENF: 75%; WSA: 25% 1980-2015 968-1794 9.07 Anderson Creek - CA
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CA_0005598 49.70 -117.45 Dfc: 86.7%; Dfb: 9.6%;

ET: 3.7%

ENF: 47.9%; WSA:

36.4%; GRA: 14%

1980-2014 782-2462 181.00 Lemon Creek - CA

CA_0005600 49.47 -117.52 Dfb: 62.5%; Dfc: 37.5% WSA: 57.1%; ENF:

42.9%

1980-1993 848-1637 5.59 Smoky Creek - CA

CA_0005602 50.11 -117.49 Dfc: 84.6%; Dfb: 15.4% ENF: 76.9%; WSA:

23.1%

1980-1998 1074-1948 6.70 Cadden Creek - CA

CA_0005605 49.48 -117.36 Dfc: 73.7%; Dfb: 26.3% ENF: 87.5%; WSA:

12.5%

1980-1998 1002-1890 11.10 Sandy Creek - CA

CA_0005606 49.52 -117.21 Dfc: 100% ENF: 45.7%; WSA:

42.9%; GRA: 11.4%

1980-2014 1283-2180 47.70 Five Mile Creek - CA

CA_0005622 49.87 -114.87 Dfc: 72.7%; ET: 27.3% WSA: 42%; GRA:

28.6%; ENF: 21.4%

1980-2015 1202-3040 1840.00 Elk River - CA

CA_0005624 49.89 -114.87 Dfc: 76.5%; ET: 23.5% WSA: 49.2%; GRA:

25.7%; ENF: 15.7%

1980-2014 1235-2813 621.00 Fording River - CA

CA_0005625 49.84 -114.86 Dfc: 97.5%; ET: 2.5% WSA: 42.5%; ENF:

39.6%; GRA: 8.2%

1980-1999 1214-2337 83.90 Grave Creek - CA

CA_0005626 49.73 -114.86 Dfc: 96%; ET: 3.9%;

Dfb: 0.1%

WSA: 44.8%; ENF:

33.8%; GRA: 15.2%

1980-1996 1151-2509 637.00 Michel Creek - CA

CA_0005627 50.20 -114.88 Dfc: 61.1%; ET: 38.9% WSA: 46%; GRA:

35.4%; ENF: 10.6%

1980-1995 1688-2813 104.00 Fording River - CA

CA_0005628 49.89 -114.83 Dfc: 78.3%; ET: 21.7% WSA: 39%; GRA:

33.3%; ENF: 22.1%

1980-2014 1290-2725 138.00 Line Creek - CA

CA_0005630 49.58 -114.95 Dfc: 100% ENF: 88.9%; WSA:

11.1%

1980-2014 1531-2036 6.40 Hosmer Creek - CA

CA_0005631 50.38 -114.92 Dfc: 56.2%; ET: 43.8% GRA: 35.9%; ENF:

26.7%; WSA: 21.8%

1980-1996 1566-3040 334.00 Elk River - CA

CA_0005632 49.51 -114.68 Dfc: 100% ENF: 51%; GRA: 21.6%;

WSA: 19.6%

1980-1995 1532-2270 35.90 Michel Creek - CA

CA_0005633 50.17 -114.86 Dfc: 61.4%; ET: 38.6% BSV: 36.1%; WSA:

31.9%; GRA: 27.8%

1980-1995 1630-2602 43.00 Kilmarnock Creek - CA

CA_0005635 49.21 -119.99 Dfc: 62.2%; Dsc: 17.1%;

ET: 14.3%

WSA: 39%; ENF:

37.1%; GRA: 23%

1980-2013 488-2542 1050.00 Ashnola River - CA

CA_0005638 49.46 -120.50 Dsc: 76.7%; Dsb: 11.6%;

Dfc: 9.4%

ENF: 52.1%; WSA:

29.8%; GRA: 15.9%

1980-2013 645-2390 1810.00 Similkameen River - CA

CA_0005653 49.46 -120.52 Dsc: 59.5%; Dsb: 23%;

Dfc: 9.8%

WSA: 48%; ENF:

45.8%; GRA: 5.9%

1980-2013 660-2085 1780.00 Tulameen River - CA

CA_0005658 49.37 -120.57 Dsc: 74.1%; Dsb: 22.5%;

Dfc: 3.4%

ENF: 61.8%; WSA:

34%; GRA: 3.6%

1980-1998 882-1917 185.00 Whipsaw Creek - CA

CA_0005661 49.66 -120.34 Dfc: 79.6%; Dsc: 11.2%;

BSk: 9.2%

WSA: 67.2%; GRA:

21.6%; ENF: 11.2%

1980-2013 947-1759 263.00 Siwash Creek - CA

CA_0005666 49.26 -119.83 BSk: 54.5%; Dfc: 40.5%;

Dfb: 5%

WSA: 69.3%; ENF:

25.1%; GRA: 5%

1980-2013 514-2156 181.00 Keremeos Creek - CA

CA_0005668 49.36 -120.07 Dfc: 87.1%; BSk: 12.9% WSA: 51.5%; ENF:

41.9%; GRA: 6.6%

1980-2013 676-2105 388.00 Hedley Creek - CA

CA_0005678 49.10 -120.58 Dsc: 92%; ET: 3.4%;

Dfc: 2.8%

GRA: 38.1%; WSA:

29.7%; ENF: 29.2%

1980-2013 1128-2390 566.00 Pasayten River - CA

CA_0005679 49.09 -120.67 Dsc: 97.7%; Dsb: 1.6%;

Dfc: 0.4%

ENF: 74.9%; WSA:

15.6%; GRA: 6.2%

1980-2013 1116-2254 408.00 Similkameen River - CA

CA_0005680 49.47 -120.98 Dsc: 88.8%; Dfc: 11.2% ENF: 86.1%; WSA:

11.3%; GRA: 2.1%

1980-2011 1141-2085 253.00 Tulameen River - CA
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CA_0005703 50.30 -119.21 Dfb: 57.4%; Dfc: 42.6% ENF: 62.4%; WSA:

31.8%; GRA: 3.5%

1980-1999 638-1831 55.70 Bx Creek - CA

CA_0005705 50.04 -119.24 Dfc: 100% WSA: 74.7%; ENF:

20.7%; GRA: 4.6%

1980-1996 1346-1620 62.40 Vernon Creek - CA

CA_0005719 49.43 -119.75 Dfc: 57.6%; BSk: 41.9%;

Dfb: 0.6%

ENF: 64.4%; WSA:

33.6%; GRA: 2.1%

1980-2013 817-2079 101.00 Shatford Creek - CA

CA_0005723 49.83 -119.79 Dfc: 64.4%; BSk: 20.1%;

Dfb: 15.5%

ENF: 50.8%; WSA:

45.8%; GRA: 3.4%

1980-2011 631-1860 182.00 Trepanier Creek - CA

CA_0005733 49.89 -119.42 Dfc: 49.9%; BSk: 26.8%;

Dfb: 23.3%

ENF: 37.3%; WSA:

30.5%; GRA: 20.2%

1980-1996 386-1650 221.00 Kelowna Creek - CA

CA_0005743 50.24 -119.27 Dfb: 39.8%; Dfc: 36.1%;

BSk: 24.1%

WSA: 44.3%; ENF:

34.3%; GRA: 13.1%

1980-2013 392-1620 569.00 Vernon Creek - CA

CA_0005754 49.88 -119.41 Dfc: 76.3%; Dfb: 19.1%;

BSk: 4.5%

ENF: 52.4%; WSA:

41.9%; GRA: 4.5%

1980-2013 387-2060 795.00 Mission Creek - CA

CA_0005768 49.71 -120.01 Dfc: 87.7%; BSk: 7.7%;

Dfb: 4.6%

ENF: 58.9%; WSA:

41.1%

1980-2014 1065-1841 34.60 Camp Creek - CA

CA_0005772 50.07 -119.67 Dfc: 100% WSA: 59.2%; ENF:

40.8%

1980-1994 1363-1677 31.30 Terrace Creek - CA

CA_0005776 50.26 -119.08 Dfb: 65.2%; Dfc: 34.8% ENF: 67%; WSA:

25.8%; MF: 7.2%

1980-2011 690-1620 60.60 Coldstream Creek - CA

CA_0005777 50.01 -119.25 Dfc: 100% WSA: 45%; ENF: 30%;

GRA: 25%

1980-2004 1314-1456 12.70 Bulman Creek - CA

CA_0005780 49.34 -119.58 Dfc: 71.3%; BSk: 18%;

Dfb: 10.7%

ENF: 48.7%; WSA:

43.3%; GRA: 6.7%

1980-2010 373-1814 89.90 Shuttleworth Creek - CA

CA_0005791 50.26 -119.31 Dfb: 43.9%; Dfc: 31.7%;

BSk: 24.3%

WSA: 39.8%; ENF:

33.8%; GRA: 15.3%

1980-1999 360-1771 751.00 Vernon Creek - CA

CA_0005795 49.99 -119.61 Dfc: 84.4%; BSk: 15.6% ENF: 68.7%; WSA:

31.3%

1980-1996 922-1822 76.10 Lambly Creek - CA

CA_0005798 49.62 -119.42 Dfc: 100% WSA: 61.2%; ENF:

38.8%

1980-1999 1571-1957 35.50 Penticton Creek - CA

CA_0005800 49.25 -119.32 Dfc: 99.5%; BSk: 0.5% ENF: 66.1%; WSA:

33.9%

1980-2014 1277-2166 117.00 Vaseux Creek - CA

CA_0005802 49.79 -119.85 Dfc: 57.5%; BSk: 39.7%;

Dfb: 2.7%

ENF: 83.1%; WSA:

16.9%

1980-2011 956-1645 40.70 Greata Creek - CA

CA_0005803 50.21 -119.54 Dfc: 89.2%; Dfb: 9.8%;

BSk: 1%

ENF: 74.4%; WSA:

23.9%; GRA: 1.7%

1980-2013 735-1984 114.00 Whiteman Creek - CA

CA_0005815 49.08 -119.50 Dfc: 46.1%; BSk: 32.3%;

Dfb: 21.6%

WSA: 53.3%; ENF:

37.1%; GRA: 7.6%

1980-2015 302-2134 227.00 Inkaneep Creek - CA

CA_0005826 49.99 -118.87 Dfc: 100% WSA: 65.4%; ENF:

34.6%

1980-1998 1831-2060 16.10 Loch Katrine Creek - CA

CA_0005827 50.00 -119.07 Dfc: 100% WSA: 67%; ENF:

28.2%; GRA: 4.9%

1980-2010 1276-1823 70.70 Belgo Creek - CA

CA_0005839 49.17 -118.98 Dfc: 69.4%; Dfb: 23.3%;

BSk: 7.3%

ENF: 51.4%; WSA:

47.7%; GRA: 0.9%

1980-2014 646-2181 1890.00 West Kettle River - CA

CA_0005851 49.70 -119.09 Dfc: 98.6%; Dfb: 0.9%;

ET: 0.5%

WSA: 56.4%; ENF:

41.4%; GRA: 2.2%

1980-2013 1043-2181 233.00 West Kettle River - CA

CA_0005854 49.57 -119.05 Dfc: 78.3%; Dfb: 21.7% ENF: 69.7%; WSA:

25.4%; GRA: 4.8%

1980-2013 934-2170 145.00 Trapping Creek - CA

CA_0005857 49.48 -119.11 Dfc: 81.4%; Dfb: 16.7%;

BSk: 1.8%

ENF: 53.8%; WSA:

44.8%; GRA: 1.4%

1980-1996 827-2181 1170.00 West Kettle River - CA

95



Continuation of Table A5

Station Lat Lon Climate Biome Period Elev Area River

CA_0005858 49.59 -118.31 Dfc: 81.3%; Dfb: 18.7% ENF: 58.6%; WSA:

39.7%; GRA: 1.7%

1980-2012 924-2166 221.00 Burrell Creek - CA

CA_0005861 49.37 -118.85 Dfc: 60.4%; Dfb: 39.6% ENF: 65%; WSA: 35% 1980-2011 808-2085 28.50 Lost Horse Creek - CA

CA_0005862 49.00 -114.48 Dfc: 99.3%; Dfb: 0.4%;

ET: 0.3%

ENF: 37.7%; WSA:

32%; GRA: 22.3%

1980-2013 1219-2427 1110.00 Flathead River - CA

CA_0005863 49.03 -114.58 Dfc: 100% ENF: 44.3%; WSA:

31%; GRA: 14.6%

1980-1992 1403-2175 118.00 Couldrey Creek - CA

CA_0005864 49.09 -114.54 Dfc: 98.8%; ET: 1.2% GRA: 47.3%; ENF: 25%;

WSA: 24.1%

1980-1996 1320-2336 145.00 Howell Creek - CA

CA_0005865 49.09 -114.55 Dfc: 100% ENF: 54.7%; GRA:

29.5%; WSA: 12.9%

1980-2014 1338-2236 92.80 Cabin Creek - CA

CA_0005880 60.08 -133.86 Dsc: 93.6%; ET: 4.7%;

BSk: 1.7%

WSA: 79%; ENF:

17.3%; GRA: 2.4%

1980-1993 645-1866 1770.00 Lubbock River - CA

CA_0005883 59.84 -135.01 ET: 53.8%; Dsc: 46.2% GRA: 42.8%; SNO:

30.8%; WSA: 9.9%

1980-1993 669-1944 240.00 Lindeman Creek - CA

CA_0005885 60.13 -134.88 ET: 61.6%; Dsc: 38.4% GRA: 48.9%; BSV:

17.4%; WSA: 10.9%

1980-2014 640-2139 864.00 Wheaton River - CA

CA_0005886 59.95 -134.33 ET: 56%; Dsc: 44% GRA: 43.7%; WSA:

18.7%; BSV: 12.9%

1980-2014 715-1986 989.00 Tutshi River - CA

CA_0005887 59.59 -134.39 ET: 70.2%; Dsc: 29.8% GRA: 26.9%; SNO:

25.7%; BSV: 22.5%

1980-1993 697-2103 717.00 Fantail River - CA

CA_0005888 59.43 -134.21 ET: 83.2%; Dsc: 16.8% GRA: 56.4%; ENF:

16.8%; WSA: 14.9%

1980-1993 808-1931 269.00 Wann River - CA

CA_0005891 60.61 -134.46 Dsc: 59.8%; ET: 19.5%;

BSk: 19.1%

WSA: 66.3%; ENF:

24%; GRA: 5.8%

1980-1995 656-1844 1700.00 Mclintock River - CA

CA_0005895 60.73 -135.49 ET: 68.3%; Dsc: 31.7% GRA: 44.4%; WSA:

29.5%; OSH: 22.5%

1980-2014 859-2024 648.00 Ibex River - CA

CA_0005900 59.91 -132.91 Dsc: 54.2%; ET: 45.8% WSA: 43.2%; GRA:

30.5%; ENF: 19.5%

1980-1993 872-1934 1910.00 Gladys River - CA

CA_0005901 60.01 -132.14 Dsc: 96.7%; Dfc: 3.3% ENF: 52%; WSA: 48% 1980-2014 812-1238 1580.00 Morely River - CA

CA_0005904 61.39 -134.37 ET: 51.6%; Dsc: 39.7%;

Dfc: 8.7%

WSA: 60.3%; GRA:

25.6%; OSH: 9.3%

1980-1996 780-1965 515.00 South Big Salmon River -

CA

CA_0005906 62.57 -137.01 Dfc: 88%; ET: 12% WSA: 47.6%; SAV:

34.1%; OSH: 17.1%

1980-2014 506-1876 1800.00 Big Creek - CA

CA_0005908 62.20 -134.39 Dsc: 53.7%; ET: 30.8%;

Dfc: 15.5%

WSA: 66.4%; ENF:

11.1%; GRA: 10.4%

1980-2009 633-1934 552.00 Drury Creek - CA

CA_0005911 62.92 -130.54 ET: 60.9%; Dfc: 36.2%;

Dsc: 2.9%

SAV: 38.3%; GRA:

22.3%; OSH: 18%

1980-1996 939-2290 997.00 South Macmillan River -

CA

CA_0005920 61.35 -139.17 ET: 95.1%; Dfc: 4.9% GRA: 41.1%; BSV:

37.9%; OSH: 8.7%

1980-2014 901-2916 654.00 Duke River - CA

CA_0005935 64.00 -137.57 Dfc: 89.7%; ET: 9.6%;

Dsc: 0.6%

WSA: 52.1%; SAV:

32.3%; OSH: 13.4%

1980-1994 658-1736 860.00 Little South Klondike

River - CA

CA_0005950 60.29 -129.02 Dfc: 99.6%; ET: 0.4% ENF: 75.8%; WSA:

24.2%

1980-1993 725-1529 435.00 Tom Creek - CA

CA_0005957 59.76 -129.13 Dsc: 58.4%; ET: 38.6%;

Dfc: 2.9%

ENF: 37.6%; GRA:

29.6%; WSA: 27.5%

1980-1995 719-2101 1700.00 Blue River - CA

CA_0005958 59.12 -129.83 ET: 58.6%; Dsc: 41.4% GRA: 47.8%; WSA:

34.5%; ENF: 5.3%

1980-2013 815-1998 882.00 Cottonwood River - CA

CA_0005972 59.34 -125.94 ET: 48%; Dfc: 47.9%;

Dsc: 4.1%

WSA: 41.7%; GRA:

34.7%; ENF: 15.7%

1980-2014 541-2142 1170.00 Trout River - CA
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CA_0005973 59.60 -126.67 Dfc: 100% WSA: 79.6%; ENF:

19.7%; MF: 0.7%

1980-1996 568-1176 77.80 Geddes Creek - CA

CA_0005974 59.45 -126.23 Dfc: 100% MF: 45.9%; ENF:

35.9%; WSA: 17%

1980-2014 475-1473 209.00 Teeter Creek - CA

CA_0005976 59.37 -125.07 Dfc: 98.9%; ET: 1.1% ENF: 67.7%; WSA:

18.9%; MF: 9.2%

1980-1995 390-1685 1780.00 Grayling River - CA

CA_0005986 58.03 -122.72 Dfc: 100% ENF: 78.5%; MF:

19.8%; DBF: 1.6%

1980-2012 529-1093 335.00 Bougie Creek - CA

CA_0005987 58.11 -122.72 Dfc: 100% ENF: 73.2%; MF:

23.5%; DBF: 2.3%

1980-2014 552-1077 109.00 Adsett Creek - CA

CA_0005994 62.21 -128.76 ET: 84%; Dfc: 16% GRA: 41.2%; OSH:

34.3%; SAV: 20.8%

1980-1992 1020-2138 216.00 Mac Creek - CA

CA_0005995 62.37 -128.68 ET: 98.9%; Dfc: 1.1% GRA: 46.2%; BSV: 30%;

SAV: 11.2%

1980-1992 1210-2089 34.30 Lened Creek - CA

CA_0005997 61.56 -124.81 Dfc: 54.1%; ET: 45.9% GRA: 61.2%; SAV:

19.8%; OSH: 17.3%

1980-2014 896-1840 495.00 Prairie Creek - CA

CA_0006022 63.30 -129.79 ET: 100% OSH: 43.1%; GRA:

40.6%; BSV: 15.9%

1980-1992 1247-2121 219.00 Tsichu River - CA

CA_0006027 62.77 -126.69 ET: 90.2%; Dfc: 9.8% GRA: 42.4%; BSV:

38.4%; OSH: 16.6%

1980-1990 901-2413 1420.00 Silverberry River - CA

CA_0006072 64.90 -138.28 ET: 57.1%; Dfc: 41.5%;

Dsc: 1.4%

OSH: 71.1%; GRA:

25.6%; BSV: 3.1%

1980-2014 940-2108 1180.00 Blackstone River - CA

CA_0006242 49.65 -110.01 Dfc: 100% GRA: 48.2%; ENF:

32.7%; CRO: 12.5%

1980-2014 1186-1436 111.00 Battle Creek - CA

US_0000044 45.23 -70.20 Dfb: 96.3%; Dfc: 3.7% MF: 56.2%; DBF:

41.7%; ENF: 1.4%

1980-2016 344-1192 516.00 Dead River - US

US_0000045 45.31 -70.24 Dfb: 94.9%; Dfc: 5.1% MF: 66.5%; DBF:

32.1%; WSA: 1.3%

1980-2016 326-1024 193.00 Spencer Stream - US

US_0000051 44.86 -70.49 Dfb: 100% DBF: 69.8%; MF: 30.2% 1980-2016 310-900 25.30 Sandy River - US

US_0000057 44.88 -71.06 Dfb: 98.3%; Dfc: 1.7% DBF: 83%; MF: 17% 1980-2016 412-1004 152.00 Diamond River - US

US_0000058 44.78 -71.13 Dfb: 96.9%; Dfc: 3.1% DBF: 50%; MF: 45.6%;

ENF: 3.7%

1980-2016 378-1092 1046.00 Androscoggin River - US

US_0000059 44.67 -71.18 Dfb: 97.2%; Dfc: 2.8% DBF: 53.1%; MF:

42.8%; ENF: 3.3%

1980-2016 363-1092 1177.00 Androscoggin River Be-

low Bog Brook - US

US_0000060 44.44 -71.19 Dfb: 97.5%; Dfc: 2.5% DBF: 54.9%; MF:

40.5%; ENF: 2.8%

1980-2016 275-1101 1361.00 Androscoggin River - US

US_0000314 42.08 -73.07 Dfb: 100% DBF: 80.8%; MF: 19.2% 1980-2016 250-582 91.70 West Branch Farmington

River - US

US_0000338 42.47 -73.20 Dfb: 100% DBF: 79%; WSA:

12.7%; MF: 4.9%

1980-2016 321-672 57.60 East Branch Housatonic

River - US

US_0000433 42.32 -74.44 Dfb: 100% DBF: 86.1%; WSA: 9%;

MF: 4.9%

1980-2016 359-1167 237.00 Schoharie Creek - US

US_0000437 42.41 -74.45 Dfb: 100% DBF: 72.5%; MF: 15%;

WSA: 12.5%

1980-2016 387-668 10.90 Platter Kill - US

US_0000438 42.43 -74.47 Dfb: 100% DBF: 91.8%; WSA:

6.6%; MF: 1.6%

1980-2016 369-796 16.20 Mine Kill - US

US_0000458 41.87 -74.49 Dfb: 100% DBF: 100% 1980-2016 328-1084 38.30 Rondout Creek - US

US_0000585 42.14 -74.65 Dfb: 100% DBF: 95.8%; WSA:

4.2%

1980-2016 405-1084 163.00 East Branch Delaware

River - US

US_0000587 42.11 -74.73 Dfb: 100% DBF: 100% 1980-2016 437-1018 25.20 Mill Brook - US
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US_0000588 42.12 -74.82 Dfb: 100% DBF: 92.3%; WSA:

7.7%

1980-2016 421-942 33.20 Tremper Kill - US

US_0000827 42.39 -77.36 Dfb: 100% WSA: 51.6%; DBF:

38.2%; SAV: 4.1%

1980-1995 367-656 66.80 Fivemile Creek - US

US_0000987 39.27 -79.26 Dfb: 100% DBF: 60.5%; WSA:

33.3%; GRA: 5.6%

1980-2010 804-1236 48.70 Stony River - US

US_0000988 39.37 -79.18 Dfb: 100% DBF: 71.1%; WSA:

28.1%; SAV: 0.7%

1980-2016 620-1015 42.60 Abram Creek - US

US_0001004 38.98 -79.23 Dfb: 92.9%; Dfa: 7.1% DBF: 91.7%; WSA:

5.5%; SAV: 1.8%

1980-2016 378-1444 310.00 N F South Branch Po-

tomac River - US

US_0001005 38.99 -79.18 Dfb: 88%; Dfa: 12% DBF: 85.1%; WSA:

7.2%; SAV: 4.4%

1980-2016 308-1444 651.00 South Branch Potomac

River - US

US_0001007 39.01 -78.96 Dfb: 55.2%; Dfa: 44.8% DBF: 88.3%; WSA: 7%;

SAV: 4.4%

1980-2016 273-1213 277.00 S F South Branch Po-

tomac River - US

US_0001568 34.81 -83.31 Cfa: 74.7%; Cfb: 24.4%;

Dfb: 0.9%

MF: 58.4%; DBF:

39.6%; WSA: 2%

1980-2016 410-1361 207.00 Chattooga River - US

US_0001569 34.89 -83.53 Cfa: 65.9%; Cfb: 27.3%;

Dfb: 6.8%

DBF: 86.8%; MF:

12.7%; WSA: 0.5%

1980-2016 607-1571 58.40 Tallulah River - US

US_0001570 34.73 -83.38 Cfa: 85.9%; Cfb: 11.6%;

Dfb: 2.5%

DBF: 68%; MF: 27.6%;

WSA: 4.2%

1980-2016 448-1571 184.40 Tallulah River - US

US_0001942 34.70 -83.73 Cfa: 90.2%; Cfb: 9.8% DBF: 55.3%; MF:

43.3%; WSA: 1.4%

1980-2016 461-1135 44.70 Chattahoochee River -

US

US_0002093 34.57 -84.47 Cfa: 100% DBF: 83.3%; WSA:

16.7%

1980-2015 432-755 9.99 Fausett Creek - US

US_0002122 34.26 -84.60 Cfa: 100% DBF: 67.6%; WSA:

29.8%; SAV: 1.6%

1980-2016 291-674 56.50 Shoal Creek - US

US_0002372 38.81 -79.88 Dfb: 100% DBF: 91%; GRA: 4.3%;

WSA: 4.2%

1980-2016 596-1406 185.00 Tygart Valley River - US

US_0002373 38.92 -79.88 Dfb: 100% DBF: 86.3%; WSA:

7.5%; GRA: 4.7%

1980-2004 583-1406 271.00 Tygart Valley River - US

US_0002374 39.03 -79.94 Dfb: 100% DBF: 83.3%; WSA:

11.6%; GRA: 3.9%

1980-2016 522-1406 406.00 Tygart Valley River - US

US_0002375 39.04 -80.07 Dfb: 98.2%; Dfa: 1.8% DBF: 98.6%; WSA:

1.4%

1980-2016 554-1104 148.00 Middle Fork River - US

US_0002390 39.07 -79.62 Dfb: 100% DBF: 88.8%; WSA:

6.5%; MF: 2.7%

1980-2016 587-1422 349.00 Dry Fork - US

US_0002391 39.14 -79.42 Dfb: 100% DBF: 62.4%; WSA:

31.4%; MF: 3.1%

1980-2016 958-1298 54.70 Blackwater River - US

US_0002392 39.13 -79.47 Dfb: 100% DBF: 55.2%; WSA:

39.3%; MF: 3.1%

1980-2016 942-1298 85.90 Blackwater River - US

US_0002395 39.10 -79.68 Dfb: 99.9%; Dfa: 0.1% DBF: 86.1%; MF: 13%;

WSA: 0.9%

1980-1993 503-1436 213.00 Shavers Fork - US

US_0002396 39.12 -79.68 Dfb: 99.8%; Dfa: 0.2% DBF: 81.8%; WSA:

10.1%; MF: 6.7%

1980-2016 493-1436 722.00 Cheat River - US

US_0002397 39.35 -79.67 Dfb: 98.5%; Dfa: 1.5% DBF: 84.8%; WSA:

9.1%; MF: 5.1%

1980-1996 443-1436 939.00 Cheat River - US

US_0002548 38.54 -79.83 Dfb: 100% DBF: 96.7%; MF: 1.5%;

GRA: 0.9%

1980-2015 838-1337 133.00 Greenbrier River - US

US_0002549 38.19 -80.13 Dfb: 100% DBF: 92.7%; WSA:

3.4%; SAV: 2.2%

1980-2016 645-1448 540.00 Greenbrier River - US
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US_0002550 37.68 -80.46 Dfb: 73.2%; Dfa: 26.8% DBF: 69%; WSA:

13.1%; GRA: 10.1%

1980-1998 572-1078 80.80 Second Creek - US

US_0002556 38.38 -80.48 Dfb: 100% DBF: 93.7%; MF: 5.3%;

GRA: 0.7%

1980-2016 696-1374 128.00 Williams River - US

US_0002558 38.30 -80.53 Dfb: 100% DBF: 90.2%; MF: 9.8% 1980-2016 735-1369 80.40 Cranberry River - US

US_0002560 38.29 -80.64 Dfb: 100% DBF: 95%; MF: 2.9%;

WSA: 1.2%

1980-2016 619-1374 529.00 Gauley River - US

US_0002561 38.22 -80.89 Dfb: 92.9%; Dfa: 7.1% DBF: 91.8%; WSA:

4.5%; MF: 1.9%

1980-2003 479-1374 806.00 Gauley River - US

US_0002564 38.26 -81.02 Dfa: 88.6%; Dfb: 11.4% DBF: 90.9%; WSA:

7.7%; GRA: 0.7%

1980-2016 387-727 40.20 Peters Creek - US

US_0002565 38.23 -81.18 Dfb: 79.5%; Dfa: 20.5% DBF: 90.4%; WSA:

6.3%; GRA: 1.7%

1980-2016 257-1374 1317.00 Gauley River - US

US_0002567 38.60 -80.49 Dfb: 93.1%; Dfa: 6.9% DBF: 99.3%; WSA:

0.4%; MF: 0.2%

1980-2016 370-1434 266.00 Elk River - US

US_0002573 37.97 -81.52 Dfa: 77.3%; Dfb: 22.7% DBF: 89.8%; GRA:

9.3%; WSA: 0.9%

1980-2016 321-902 62.80 Clear Fork - US

US_0002593 37.43 -82.35 Cfa: 100% DBF: 100% 1980-2016 329-580 6.20 Grapevine Creek - US

US_0003020 36.75 -83.26 Cfa: 92.7%; Dfb: 7.3% DBF: 98.9%; WSA:

1.1%

1980-2004 406-984 55.80 Martins Fork - US

US_0003103 35.96 -83.17 Dfb: 39.1%; Cfa: 33%;

Cfb: 27.9%

DBF: 79.4%; WSA:

10.2%; SAV: 6.5%

1980-2016 330-1883 666.00 Pigeon River - US

US_0003106 36.18 -82.46 Dfb: 46.4%; Cfa: 34%;

Cfb: 19.5%

DBF: 87.7%; WSA:

9.1%; SAV: 1.8%

1980-2016 483-1938 805.00 Nolichucky River - US

US_0003165 36.43 -83.40 Cfa: 65.5%; Dfb: 18.3%;

Dfa: 16.2%

DBF: 70.8%; WSA:

16.3%; SAV: 10.9%

1980-2016 352-1386 1474.00 Clinch River - US

US_0003169 36.54 -83.63 Cfa: 87.3%; Dfb: 7.9%;

Dfa: 4.8%

DBF: 53.5%; WSA:

31.2%; SAV: 12%

1980-2016 350-1137 685.00 Powell River - US

US_0003181 34.88 -83.72 Cfa: 78.4%; Cfb: 21.6% DBF: 76.8%; MF:

19.2%; WSA: 4%

1980-2016 613-1223 39.50 Hiwassee River - US

US_0003186 34.84 -83.94 Cfa: 91%; Cfb: 8.6%;

Dfb: 0.3%

DBF: 64.1%; MF:

19.2%; WSA: 16.3%

1980-2016 573-1319 74.80 Nottely River - US

US_0004649 44.08 -104.06 Dfb: 93.3%; Dfc: 6.7% WSA: 52.6%; GRA:

23.7%; SAV: 23.7%

1980-2016 1918-2117 10.20 Beaver Creek - US

US_0004650 43.86 -104.11 Dfb: 98.1%; Dfc: 1.7%;

BSk: 0.2%

GRA: 53.4%; SAV:

23.9%; WSA: 18.8%

1980-2016 1377-2117 110.00 Stockade Beaver Creek -

US

US_0004657 43.43 -103.48 Dfb: 49.5%; BSk: 49.5%;

Dfa: 1.1%

GRA: 97.7%; URB:

0.8%; SAV: 0.8%

1980-2016 1070-1720 136.00 Fall River - US

US_0004658 43.58 -103.48 Dfb: 100% GRA: 77.6%; ENF:

9.4%; SAV: 8.8%

1980-2015 1301-1819 45.60 Beaver Creek - US

US_0004659 43.47 -103.31 Dfb: 64.4%; BSk: 30.8%;

Dfa: 4.9%

GRA: 90.3%; ENF:

4.5%; SAV: 3.2%

1980-2016 973-1819 127.00 Beaver Creek - US

US_0004661 43.72 -103.37 Dfb: 100% GRA: 78%; WSA:

11.7%; SAV: 6%

1980-2016 1244-2075 105.00 French Creek - US

US_0004663 43.87 -103.34 Dfb: 89.5%; Dwb: 10.5% WSA: 59.3%; GRA:

34%; ENF: 6.6%

1980-2016 1177-2008 58.50 Battle Creek - US

US_0004664 43.76 -103.36 Dfb: 100% GRA: 54.3%; WSA:

39%; ENF: 6.7%

1980-2016 1270-1731 26.80 Grace Coolidge Creek -

US

US_0004667 43.98 -103.35 Dfb: 88.9%; Dwb:

10.6%; Dfc: 0.4%

WSA: 75.5%; GRA:

20.9%; ENF: 2.5%

1980-2016 1224-2162 163.00 Spring Creek - US
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US_0004670 44.13 -103.86 Dfb: 70.6%; Dfc: 29.4% WSA: 100% 1980-2016 1937-2159 7.84 Rhoads Fork - US

US_0004673 44.08 -103.58 Dfb: 89.1%; Dfc: 10.9% WSA: 81.4%; GRA:

17%; SAV: 1.1%

1980-2016 1466-2166 293.00 Rapid Creek Above

Pactola Reservoir - US

US_0004674 44.08 -103.48 Dfb: 89.6%; Dfc: 9.9%;

Dwb: 0.4%

WSA: 82.4%; GRA:

15.5%; SAV: 1%

1980-2016 1398-2166 321.00 Rapid Creek - US

US_0004675 44.05 -103.31 Dfb: 79.9%; Dwb:

11.2%; Dfc: 8.6%

WSA: 82.3%; GRA:

15.4%; SAV: 0.9%

1980-2016 1077-2166 374.00 Rapid Creek - US

US_0004679 44.14 -103.45 Dfb: 100% WSA: 82.5%; ENF:

9.8%; GRA: 7.7%

1980-2016 1358-1955 94.20 Boxelder Creek - US

US_0004680 44.13 -103.30 Dfb: 84.5%; Dwb:

13.3%; Dwa: 2.2%

WSA: 77%; GRA:

11.6%; ENF: 11.4%

1980-2009 1063-1955 127.00 Boxelder Creek - US

US_0004693 44.52 -104.08 Dfb: 94.7%; Dfa: 3.4%;

Dfc: 1.9%

WSA: 61.1%; GRA:

35%; ENF: 2.2%

1980-2016 1108-2138 274.00 Sand Creek - US

US_0004696 44.30 -103.87 Dfb: 94.7%; Dfc: 5.3% WSA: 93%; GRA: 6.6%;

ENF: 0.4%

1980-2016 1656-2157 64.80 Spearfish Creek - US

US_0004698 44.35 -103.94 Dfb: 100% WSA: 97.1%; GRA:

2.9%

1980-2016 1626-2063 27.80 Little Spearfish Creek -

US

US_0004699 44.40 -103.89 Dfb: 97.5%; Dfc: 2.5% WSA: 94.2%; GRA:

5.4%; ENF: 0.4%

1980-2009 1407-2157 143.00 Spearfish Creek - US

US_0004700 44.48 -103.86 Dfb: 95.2%; Dfa: 2.6%;

Dfc: 2.2%

WSA: 91%; GRA: 7.9%;

ENF: 0.7%

1980-2016 1141-2157 165.00 Spearfish Creek - US

US_0004705 44.44 -103.63 Dfb: 100% WSA: 65.7%; GRA:

28.2%; URB: 2.8%

1980-2016 1127-2080 56.50 Whitewood Creek - US

US_0004711 44.34 -103.64 Dfb: 100% WSA: 85%; GRA: 15% 1980-2016 1524-1820 15.70 Bear Butte Creek - US

US_0004887 39.16 -105.31 Dfc: 51.7%; BSk: 31.9%;

Dfb: 8.9%

GRA: 86.6%; WSA:

7.5%; SAV: 5%

1980-2016 2177-4227 1615.10 South Platte River - US

US_0004889 39.21 -105.27 Dfc: 52.1%; BSk: 29.6%;

Dfb: 11.2%

GRA: 84.1%; WSA:

9.5%; SAV: 5.4%

1980-2007 2086-4227 1740.10 South Platte River - US

US_0004890 39.17 -105.12 Dfb: 66.2%; Dfc: 33.8% GRA: 44.8%; WSA:

36.2%; SAV: 15%

1980-2016 2307-3089 106.00 Trout Creek - US

US_0004905 39.65 -105.17 Dfb: 54.9%; Dfc: 38.7%;

ET: 5.5%

WSA: 60.4%; GRA:

21.4%; ENF: 12%

1980-2016 1740-4009 176.00 Bear Creek - US

US_0005681 36.68 -104.79 Dfb: 58.4%; BSk: 24.6%;

Dfc: 16.6%

GRA: 68.8%; SAV:

27.1%; WSA: 3.7%

1980-2016 1978-3818 301.00 Vermejo River - US

US_0005682 36.55 -105.27 Dfc: 51.8%; Dfb: 48.2% GRA: 83.6%; WSA:

15.6%; ENF: 0.8%

1980-2010 2512-3647 73.80 Moreno Creek - US

US_0005683 36.49 -105.27 Dfb: 89.7%; Dfc: 10.3% GRA: 59.2%; WSA:

40.3%; SAV: 0.4%

1980-2010 2512-3360 56.00 Cieneguilla Creek - US

US_0005684 36.52 -105.28 Dfc: 67.3%; Dfb: 32.7% WSA: 76.2%; GRA:

23.8%

1980-2010 2512-3578 10.50 Sixmile Creek - US

US_0005685 36.53 -105.23 Dfb: 68.8%; Dfc: 31.2% GRA: 68%; WSA:

31.4%; ENF: 0.3%

1980-2016 2497-3647 167.00 Cimarron River - US

US_0005686 36.52 -104.98 Dfb: 68.1%; Dfc: 28.9%;

BSk: 3%

GRA: 62.3%; WSA:

35.9%; SAV: 1.3%

1980-2016 2038-3663 294.00 Cimarron River - US

US_0005687 36.57 -104.95 Dfb: 65.3%; Dfc: 21.4%;

BSk: 13.4%

GRA: 78.8%; SAV:

12.4%; WSA: 8.8%

1980-2016 2081-3671 171.00 Ponil Creek - US

US_0005694 35.92 -105.16 Dfb: 90.7%; Dfc: 6.8%;

BSk: 2.5%

GRA: 73.1%; WSA:

26.4%; ENF: 0.4%

1980-2016 2090-3303 215.00 Coyote Creek - US

US_0006466 38.22 -106.09 Dfc: 75.1%; BSk: 18.6%;

ET: 6.2%

GRA: 63.8%; WSA:

28.9%; SAV: 7.2%

1980-2007 2662-3781 45.40 Kerber Creek - US
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US_0006486 36.90 -105.25 Dfc: 98.9%; ET: 1.1% GRA: 48%; SAV: 26.7%;

WSA: 22.7%

1980-2016 2889-3864 25.10 Costilla Creek - US

US_0006487 36.90 -105.26 Dfc: 78.5%; ET: 21.5% GRA: 58.2%; SAV:

28.4%; WSA: 13.4%

1980-2016 2905-3832 16.60 Casias Creek - US

US_0006489 36.87 -105.28 Dfc: 91.6%; ET: 8.4% GRA: 54.2%; SAV:

25.3%; WSA: 19.5%

1980-2016 2868-3832 54.60 Costilla Creek - US

US_0006490 36.97 -105.51 Dfc: 74.1%; Dfb: 17.9%;

BSk: 5.1%

GRA: 57.5%; SAV:

22.3%; WSA: 18.5%

1980-2016 2458-3865 195.00 Costilla Creek - US

US_0006494 36.70 -105.57 Dfc: 72%; Dfb: 25.3%;

BSk: 1.9%

WSA: 43.4%; GRA:

38.1%; ENF: 9.8%

1980-2016 2338-3877 113.00 Red River - US

US_0006496 36.68 -105.65 Dfc: 61.3%; Dfb: 22%;

BSk: 16.2%

GRA: 45.2%; WSA:

39.9%; SAV: 7.3%

1980-2016 2219-3877 185.00 Red River - US

US_0006498 36.54 -105.56 Dfc: 84.8%; Dfb: 15.2% WSA: 63.3%; GRA:

25.8%; ENF: 7%

1980-2016 2477-3795 36.20 River Hondo - US

US_0006501 36.44 -105.50 Dfb: 51.8%; Dfc: 46.6%;

BSk: 1.6%

WSA: 79.8%; GRA:

10.8%; ENF: 8.9%

1980-2016 2337-3693 66.60 River Pueblo De Taos -

US

US_0006502 36.51 -105.53 Dfc: 82.1%; Dfb: 14.9%;

ET: 3%

WSA: 48.3%; GRA:

36.2%; SAV: 8.6%

1980-2016 2577-3829 16.60 River Lucero - US

US_0006504 36.30 -105.58 Dfb: 66.4%; Dfc: 26.2%;

BSk: 7.4%

WSA: 80%; ENF: 11%;

GRA: 8.6%

1980-2016 2229-3568 83.00 River Grande Del Ran-

cho - US

US_0006508 36.17 -105.60 Dfb: 53.6%; Dfc: 46.4% WSA: 72.1%; GRA:

14.4%; ENF: 13.5%

1980-2016 2470-3732 101.00 River Pueblo - US

US_0006509 36.21 -105.91 Dfb: 43.3%; BSk: 28.9%;

Dfc: 27.7%

WSA: 55.7%; GRA:

28.7%; ENF: 7.6%

1980-2016 1823-3828 305.00 Embudo Creek - US

US_0006515 36.32 -106.60 Dfb: 46.7%; BSk: 37%;

Dfc: 16.1%

GRA: 76.4%; SAV:

15.1%; WSA: 7.5%

1980-2016 1928-3723 1500.00 River Chama - US

US_0006517 36.35 -106.04 Dfb: 45.2%; BSk: 42.1%;

Dfc: 12.6%

GRA: 67.2%; SAV:

16.6%; WSA: 16.1%

1980-2016 1953-3241 419.00 River Ojo Caliente - US

US_0006519 35.96 -105.90 Dfb: 42.7%; Dfc: 33.2%;

BSk: 24.1%

GRA: 50.2%; WSA:

26.1%; ENF: 12.4%

1980-2016 2031-3674 86.00 Santa Cruz River - US

US_0006520 35.85 -105.89 Dfb: 62.4%; Dfc: 30.4%;

BSk: 7.2%

GRA: 73.8%; WSA:

15.9%; ENF: 5.6%

1980-2012 2141-3686 25.00 River Nambe - US

US_0006521 35.85 -105.91 Dfb: 60.2%; Dfc: 27.8%;

BSk: 12%

GRA: 69.6%; WSA:

14.8%; SAV: 10.4%

1980-2016 2043-3686 34.10 River Nambe - US

US_0006522 35.74 -105.90 Dfb: 73.3%; Dfc: 15.6%;

BSk: 11.1%

GRA: 42.5%; ENF: 20%;

WSA: 20%

1980-2016 2203-3495 11.70 Tesuque Creek - US

US_0006523 35.73 -105.91 Dfb: 86.7%; BSk: 13.3% GRA: 60.9%; WSA:

39.1%

1980-2009 2251-3101 7.61 Little Tesuque Creek -

US

US_0006526 35.69 -105.82 Dfb: 58.5%; Dfc: 41.5% GRA: 70.2%; ENF:

12.8%; WSA: 8.5%

1980-2016 2525-3578 13.50 Santa Fe River - US

US_0006527 35.69 -105.84 Dfb: 69.9%; Dfc: 30.1% GRA: 78.5%; ENF:

9.2%; WSA: 6.2%

1980-2016 2426-3578 18.20 Santa Fe River - US

US_0006528 35.55 -106.23 BSk: 82.9%; Dfb: 14.7%;

Dfc: 2.5%

GRA: 83.6%; SAV:

7.7%; URB: 5.6%

1980-2016 1697-3578 231.00 Santa Fe River - US

US_0006534 35.73 -106.76 Dfb: 78.5%; BSk: 13.5%;

Dfc: 8.1%

WSA: 55.1%; GRA:

43.9%; SAV: 0.7%

1980-1996 1900-3208 235.00 River Guadalupe - US

US_0006560 35.78 -105.66 Dfc: 79%; Dfb: 21% WSA: 76.9%; GRA:

13.6%; ENF: 9.5%

1980-2016 2515-3634 53.20 River Mora - US

US_0006561 35.71 -105.68 Dfc: 69.9%; Dfb: 30.1% WSA: 72%; GRA:

19.7%; ENF: 8.3%

1980-2016 2344-3695 189.00 Pecos River - US
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US_0006563 35.65 -105.32 Dfb: 82.2%; Dfc: 17.8% WSA: 75.3%; GRA:

23.9%; ENF: 0.8%

1980-2016 2174-3494 84.00 Gallinas Creek - US

US_0006575 33.34 -105.73 Dfb: 100% GRA: 58.6%; WSA:

39.7%; ENF: 1.7%

1980-2016 2254-3391 18.30 River Ruidoso - US

US_0006576 33.33 -105.63 Cfb: 62.9%; Dfb: 31.8%;

BSk: 5.3%

GRA: 52.6%; WSA:

35.5%; SAV: 5%

1980-2016 1992-3391 120.00 River Ruidoso - US

US_0006577 33.39 -105.72 Dfb: 100% GRA: 92%; CSH: 8% 1980-2016 2385-3192 8.14 Eagle Creek - US

US_0006602 32.85 -107.97 BSk: 70.9%; Dsb: 29.1% SAV: 43.5%; GRA:

23.3%; CSH: 19%

1980-2016 1813-3049 184.00 Mimbres River - US

US_0006603 33.14 -105.90 Cfb: 35.7%; Dfb: 31.1%;

BSk: 24.5%

WSA: 45%; GRA:

36.9%; SAV: 12.5%

1980-2016 1681-2709 120.00 Tularosa Creek - US

US_0006610 39.85 -105.75 Dfc: 57.5%; ET: 42.5% GRA: 69.7%; WSA:

21.2%; SAV: 9.1%

1980-2016 2993-3839 10.50 Fraser River - US

US_0006661 39.55 -106.40 Dfc: 76.7%; ET: 23.1%;

Dfb: 0.1%

WSA: 43.3%; GRA:

33.9%; SAV: 12.1%

1980-2016 2478-4016 186.00 Eagle River - US

US_0006683 39.21 -106.80 Dfc: 68.9%; ET: 31.1% WSA: 38.4%; SAV: 29%;

GRA: 26.8%

1980-2016 2682-3845 41.70 Hunter Creek - US

US_0006709 38.66 -106.85 Dfc: 82.7%; ET: 13.3%;

Dfb: 3.6%

GRA: 47.1%; WSA:

25.9%; SAV: 24.3%

1980-2016 2465-3973 289.00 East River - US

US_0006735 38.18 -107.75 Dfc: 42.5%; Dfb: 26.5%;

BSk: 15.6%

SAV: 45.5%; GRA: 40%;

WSA: 7.8%

1980-2016 2119-3968 149.00 Uncompahgre River - US

US_0006855 40.13 -111.02 Dfb: 67.9%; Dfc: 32.1% SAV: 58.7%; GRA:

41.3%

1980-1994 2371-2938 43.00 Strawberry River - US

US_0006948 37.04 -107.88 Dfc: 39%; Dfb: 34.6%;

BSk: 15.3%

WSA: 41%; GRA:

36.8%; SAV: 20.2%

1980-2016 1844-4088 1090.00 Animas River - US

US_0006955 36.74 -108.25 BSk: 66.4%; Dfb: 23.9%;

Dfc: 4.5%

GRA: 85.6%; SAV:

7.7%; OSH: 4.6%

1980-2015 1605-3804 583.00 La Plata River - US

US_0006973 34.02 -109.46 Dsb: 53.1%; Dsc: 34.7%;

Dfb: 12.2%

GRA: 45.6%; WSA:

42.2%; ENF: 12.2%

1980-2016 2555-3328 29.10 Little Colorado River -

US

US_0006984 35.28 -108.55 BSk: 88.8%; Dfb: 11.2% GRA: 97%; SAV: 3% 1980-2016 2170-2624 71.40 River Nutria - US

US_0006995 34.67 -111.01 Dsb: 93.3%; BSk: 6.7% WSA: 54.1%; SAV:

33.4%; ENF: 10.7%

1980-1993 1927-2404 317.00 Clear Creek - US

US_0007035 36.71 -114.70 BWh: 100% GRA: 100% 1980-2016 528-549 40.00 Muddy River - US

US_0007048 36.12 -114.90 BWk: 44.2%; BWh:

43.4%; BSk: 11.1%

OSH: 41.5%; BSV:

28.3%; URB: 22.2%

1980-2016 414-3379 1586.00 Lv Wash - US

US_0007051 34.54 -113.45 BSk: 86.4%; BWh:

10.1%; BSh: 3.3%

GRA: 40.6%; OSH:

35.6%; SAV: 22.3%

1980-2016 609-2128 601.00 Burro Creek - US

US_0007053 34.31 -113.35 BSk: 67.3%; BWh: 19%;

BSh: 12.4%

OSH: 54.6%; GRA:

20.9%; SAV: 20.5%

1980-2016 435-2113 1129.00 Santa Maria River - US

US_0007056 33.06 -108.54 BSk: 80.3%; Dsb:

17.9%; Dfb: 1.6%

SAV: 46.8%; GRA:

37.3%; WSA: 6.7%

1980-2016 1454-3174 1864.00 Gila River - US

US_0007057 33.17 -108.65 Dsb: 57%; BSk: 43% SAV: 70.1%; GRA:

25.6%; CSH: 2.1%

1980-2016 1755-3131 69.00 Mogollon Creek - US

US_0007068 33.06 -109.44 BSk: 88%; Csb: 8.9%;

Dsb: 3%

SAV: 35.1%; GRA:

24.1%; OSH: 19.9%

1980-2016 1171-2839 622.00 Eagle Creek - US

US_0007076 33.00 -110.77 BSk: 66.9%; BWk:

14.9%; Dsb: 6.5%

OSH: 44.7%; GRA:

24.5%; SAV: 21%

1980-2004 617-3227 382.00 Gila River - US

US_0007084 32.84 -110.63 BSk: 86.8%; BSh:

13.1%; Csa: 0.1%

OSH: 69.3%; GRA:

20.2%; SAV: 10.3%

1980-2016 732-2293 537.00 Aravaipa Creek - US
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US_0007152 34.32 -112.06 BSk: 88.9%; Csa: 7%;

Csb: 4.1%

GRA: 53.9%; SAV: 20%;

OSH: 13.4%

1980-2016 1070-2277 585.00 Agua Fria River - US

US_0007153 34.02 -112.17 BSk: 76.2%; BSh:

12.1%; Csa: 7.4%

GRA: 49.2%; OSH:

24.7%; SAV: 17.2%

1980-2016 564-2281 1111.00 Agua Fria River - US

US_0007488 42.79 -118.87 BSk: 75.5%; Dsb:

12.9%; Dsc: 11.6%

GRA: 100% 1980-2016 1371-2875 200.00 Donner Und Blitzen

River - US

US_0008472 48.42 -116.50 Dsb: 63.3%; Dsc: 35.8%;

Dfc: 0.9%

ENF: 46.8%; WSA:

34.7%; GRA: 14.1%

1980-2016 647-2131 124.00 Pack River - US

US_0008473 48.45 -116.90 Dsb: 58%; Dsc: 18.3%;

Dfc: 12.8%

ENF: 78.4%; WSA:

14.8%; GRA: 4.7%

1980-2006 727-2128 611.00 Priest River - US

US_0008474 48.22 -116.91 Dsb: 70.5%; Dsc: 13.9%;

Dfc: 8.4%

ENF: 77.3%; WSA:

16.2%; GRA: 3.3%

1980-2016 643-2128 902.00 Priest River - US

US_0008483 47.71 -115.98 Dsb: 98.8%; Dsc: 1.2% ENF: 97.2%; WSA:

2.4%; MF: 0.4%

1980-2016 830-1775 335.00 Nf Coeur D Alene River

- US

US_0008484 47.57 -116.25 Dsb: 97.1%; Dsc: 2.9% ENF: 96.2%; WSA:

3.2%; GRA: 0.2%

1980-2016 665-1975 895.00 Nf Coeur D Alene River

- US

US_0008528 47.74 -120.37 Dsb: 54.8%; Dsc: 45.2% ENF: 45.9%; GRA:

33.9%; WSA: 14.4%

1980-2016 426-1946 92.40 Mad River - US

US_0008570 43.86 -110.59 Dfc: 99.6%; ET: 0.4% GRA: 39.4%; WSA:

31.2%; SAV: 24.9%

1980-2016 2060-3450 807.00 Snake River - US

US_0008583 43.14 -110.98 Dfc: 83.7%; Dfb: 16.3% GRA: 49.6%; WSA:

26.2%; SAV: 24.1%

1980-2016 1837-3319 448.00 Greys River - US

US_0008606 43.44 -111.73 Dfb: 84.5%; BSk: 14.8%;

Dfc: 0.6%

GRA: 84.4%; SAV:

8.9%; WSA: 4.1%

1980-2016 1619-2821 568.00 Willow Creek - US

US_0008652 43.49 -114.06 Dsb: 24.8%; Dfc: 24.2%;

Dfb: 20.2%

GRA: 86.2%; SAV:

12.4%; BSV: 1%

1980-2016 1652-3415 248.00 Little Wood River - US

US_0008672 43.50 -115.31 Dsb: 56%; Dsc: 44% GRA: 61%; SAV: 35.9%;

WSA: 2.1%

1980-2016 1302-2988 635.00 Sf Boise River - US

US_0008685 43.57 -118.21 BSk: 75%; Dsb: 22.6%;

Dsc: 2.4%

GRA: 81.7%; WSA:

15%; SAV: 1.9%

1980-2016 1032-2412 1100.00 Malheur River - US

US_0008687 43.91 -118.15 BSk: 60%; Dsb: 31.6%;

Dsc: 8.4%

GRA: 75.7%; WSA:

17.1%; SAV: 4.3%

1980-2016 1000-2329 440.00 North Fork Malheur

River - US

US_0008696 44.91 -116.00 Dsc: 99.6%; Dsb: 0.4% WSA: 42.3%; SAV:

34.5%; GRA: 22.2%

1980-2016 1619-2557 48.90 Lake Fork Payette River -

US

US_0008698 44.52 -116.05 Dsb: 53.9%; Dsc: 46.1% WSA: 48.1%; GRA:

32.9%; SAV: 16.6%

1980-2015 1469-2557 616.00 Nf Payette River - US

US_0008710 44.29 -116.78 Dsa: 54%; Dsb: 25.7%;

BSk: 20.3%

GRA: 99.2%; BSV:

0.6%; CRO: 0.2%

1980-2016 696-1547 288.00 Crane Creek - US

US_0008720 44.95 -116.87 Dsb: 51.2%; Dsa: 21.9%;

Dsc: 18.5%

GRA: 52.8%; SAV: 20%;

WSA: 17.8%

1980-1996 621-2717 230.00 Pine Creek - US

US_0008723 44.22 -114.93 Dsc: 83.7%; Dfc: 16.3% GRA: 56.3%; WSA:

24.7%; SAV: 17.3%

1980-2016 1905-2993 147.00 Valley Creek - US

US_0008726 44.30 -114.48 Dfc: 96.6%; Dfb: 3.4% SAV: 57.7%; GRA:

19.2%; WSA: 15.4%

1980-2016 1936-2626 6.29 Bruno Creek - US

US_0008766 46.37 -116.16 Dsb: 100% ENF: 74.8%; WSA:

11.9%; GRA: 10.1%

1980-2016 467-1782 243.00 Lolo Creek - US
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