Supplementary Material.

Slow Manifold Reduction by Multiple-Scale Expansion

Begin with equations (2) and (3), written in the form
$\frac{d x_{i}}{d t}=v_{i}$
$\varepsilon \frac{d v}{d t}=\varepsilon \frac{3 R}{2} \frac{D u}{D t}+(v-u)+\varepsilon\left(1-\frac{3 R}{2}\right) g_{r}+3 \varepsilon R \Omega \times(u-v)+2 \varepsilon\left(\frac{3 R}{2}-1\right) \Omega \times v$

Let $\tilde{t}=\left(t-t_{o}\right) / \varepsilon$ represent a fast time variable, and consider the particle position and velocity to be functions of t and \tilde{t}, which are formally treated as separate variables. Thus $d / d t$ is replaced by $\varepsilon^{-1} \partial / \partial \tilde{t}+\partial / \partial t$, where it is understood that both $\partial / \partial t$ and $\partial / \partial \tilde{t}$ are to be interpreted as particle-following derivatives (and not derivatives with position held constant). Note that the background flow does not depend on τ, and thus the substantial derivative $D \vec{u} / D t$ is with respect to t alone. However, dependence on \tilde{t} is introduced when the derivative is evaluated at the position $\vec{x}(\tilde{t}, t)$.

Expanding both variables in a power series in ε leads to

$$
\begin{aligned}
\vec{x} & =\vec{x}^{(0)}(\tilde{t}, t)+\varepsilon \vec{x}^{(1)}(\tilde{t}, t)+\cdots \\
\vec{v} & =\vec{v}^{(0)}(\tilde{t}, t)+\varepsilon \vec{v}^{(1)}(\tilde{t}, t)+\cdots
\end{aligned}
$$

Substitution into (13) leads to
$\left(\varepsilon^{-1} \frac{\partial \vec{x}^{(0)}}{\partial \tilde{t}}+\frac{\partial \vec{x}^{(0)}}{\partial t}\right)+\varepsilon\left(\varepsilon^{-1} \frac{\partial \vec{x}^{(1)}}{\partial \tilde{t}}+\frac{\partial \vec{x}^{(1)}}{\partial t}\right)+\cdots=\vec{v}^{(0)}+\varepsilon \vec{v}^{(1)}+\cdots$,
and

$$
\begin{align*}
& \varepsilon\left(\varepsilon^{-1} \frac{\partial \vec{v}^{(0)}}{\partial \tilde{t}}+\frac{\partial \vec{v}^{(0)}}{\partial t}\right)+\varepsilon^{2}\left(\varepsilon^{-1} \frac{\partial \vec{v}^{(1)}}{\partial \tilde{t}}+\frac{\partial \vec{v}^{(1)}}{\partial t}\right)+\cdots=\vec{u}\left(\vec{x}^{(0)}(\tilde{t}, t), t\right)-\vec{v}^{(0)}+\varepsilon \frac{\partial \vec{u}}{\partial x_{j}} x_{j}^{(1)} \\
& -\varepsilon v_{i}^{(1)}+\varepsilon\left[\frac{3 R}{2} \frac{D \vec{u}}{D t}+3 R \vec{\Omega} \times\left(\vec{u}-\vec{v}^{(0)}\right)+2\left(\frac{3 R}{2}-1\right) \vec{\Omega} \times \vec{v}^{(0)}+\left(1-\frac{3 R}{2}\right) \vec{g}_{r}\right]+\cdots, \tag{14b}
\end{align*}
$$

where again, the derivatives of \vec{u} are evaluated at $\vec{x}^{(0)}$. To lowest order, we have

$$
\begin{equation*}
\frac{\partial \vec{x}^{(0)}}{\partial \tilde{t}}=0 \text { and } \frac{\partial \vec{v}^{(0)}}{\partial \tilde{t}}=\vec{u}\left(\vec{x}^{(0)}(\tilde{t}, t), t\right)-\vec{v}^{(0)} . \tag{15a,b}
\end{equation*}
$$

Thus $\vec{x}^{(0)}=\vec{x}^{(0)}(t)$, and since the right-hand side of (15b) is then independent of \tilde{t}, it follows that

$$
\begin{equation*}
\vec{v}^{(0)}=\vec{u}\left(\vec{x}^{(0)}(t), t\right)+\vec{c}^{(0)}(t) e^{-\tilde{t}} \tag{16}
\end{equation*}
$$

If a particle is initiated with a velocity that is differs from the local fluid velocity by more than $\mathrm{O}(\varepsilon)$, then the drag on the particle brings it $\mathrm{O}(\varepsilon)$ close to the fluid velocity over a time scale of $\mathrm{O}\left(\varepsilon^{-1}\right)$. This behavior is consistent with the requirement in Fenichel theory that the background flow is a normally attracting manifold.

At the next order of approximation $[\mathrm{O}(0)$ in 14a], we have

$$
\frac{\partial \vec{x}^{(1)}}{\partial \tilde{t}}=-\frac{\partial \vec{x}^{(0)}}{\partial t}+\vec{v}^{(0)}=-\frac{\partial \vec{x}^{(0)}}{\partial t}+\vec{u}\left(\vec{x}^{(0)}(t), t\right)+\vec{c}^{(0)}(t) e^{-\tilde{t}}
$$

After decay of the final term, the remaining terms on the right-hand side depend only on t and therefore lead to secular growth in τ of $x_{i}^{(1)}$. To prevent this growth we must set these terms to zero:

$$
\begin{equation*}
\frac{\partial \vec{x}^{(0)}}{\partial t}=\vec{u}\left(\vec{x}^{(0)}(t), t\right) \tag{17}
\end{equation*}
$$

Which indicates simply that following the decay from the initial velocity, the particle follows the flow at leading order. Solving the remaining equation for $\vec{x}^{(1)}$ then gives

$$
\begin{equation*}
\vec{x}^{(1)}=\vec{x}_{o}^{(1)}(t)-\vec{c}^{(1)}(t) e^{-\tilde{t}} \tag{18}
\end{equation*}
$$

Proceeding to $\mathrm{O}(\varepsilon)$ in (14b) then gives

$$
\begin{aligned}
\frac{\partial \vec{v}^{(1)}}{\partial \tilde{t}}+\vec{v}^{(1)}=- & \frac{\partial \vec{v}^{(0)}}{\partial t}+\left(\frac{\partial \vec{u}}{\partial x_{j}}\right)_{x_{i}=x_{i}^{(0)}} x_{j}^{(1)}+\frac{3 R}{2} \frac{D \vec{u}}{D t}+3 R \vec{\Omega} \times\left(\vec{u}-\vec{v}^{(0)}\right) \\
& +2\left(\frac{3 R}{2}-1\right) \vec{\Omega} \times \vec{v}^{(0)}+\left(1-\frac{3 R}{2}\right) \vec{g}_{r}
\end{aligned}
$$

Using (16) to substitute for $v_{i}^{(0)}$ on the right-hand side, and keeping in mind that $\frac{\partial}{\partial t}$ represents not a local time derivative but a time derivative with \tilde{t} held constant, we have

$$
\frac{\partial \vec{v}^{(0)}}{\partial t}=\frac{\partial}{\partial t} \vec{u}\left(\vec{x}^{(0)}(t), t\right)+\frac{\partial \vec{c}^{(0)}}{\partial t} e^{-\tilde{t}}=\frac{D \vec{u}}{D t}+\frac{\partial \vec{c}^{(0)}}{\partial t} e^{-\tilde{t}}
$$

Using this expression as well as (18) to substitute for and $x_{j}^{(1)}$ leads to, after some regrouping of terms, to

$$
\begin{equation*}
\frac{\partial \vec{v}^{(1)}}{\partial \tilde{t}}+\vec{v}^{(1)}=\vec{a}^{(1)}(t)-\vec{b}^{(1)}(t) e^{-\tilde{t}} \tag{19}
\end{equation*}
$$

where

$$
\vec{a}^{(1)}(t)=\frac{\partial \vec{u}}{\partial x_{j}} x_{o, j}^{(1)}(t)+\left(\frac{3 R}{2}-1\right)\left[\frac{D \vec{u}}{D t}-\vec{g}_{r}+2 \vec{\Omega} \times \vec{u}^{(0)}\right],
$$

and

$$
\vec{b}^{(1)}(t)=\frac{\partial c_{i}^{(0)}}{\partial t}+\frac{\partial \vec{u}}{\partial x_{j}} c_{j}^{(0)}+3 R \vec{\Omega} \times \vec{c}^{(0)} .
$$

The solution to (19) is

$$
\begin{equation*}
\vec{v}^{(1)}=\vec{a}^{(1)}(t)-\vec{b}^{(1)}(t) \tilde{t} e^{-\tilde{t}} \tag{20}
\end{equation*}
$$

We can now write down an expression for the particle velocity on the slow manifold, obtained by taking the limit $\tilde{t} \rightarrow \infty$ in (16) and (20):

$$
\vec{v}^{(0)}+\varepsilon \vec{v}^{(1)}=\vec{u}\left(\vec{x}^{(0)}(t), t\right)+\varepsilon \frac{\partial \stackrel{\rightharpoonup}{u}}{\partial x_{j}} x_{o, j}^{(1)}(t)+\varepsilon\left(\frac{3 R}{2}-1\right)\left[\frac{D \vec{u}}{D t}-\vec{g}_{r}+2 \vec{\Omega} \times \vec{u}^{(0)}\right]
$$

or, noting that $\vec{x}=\vec{x}^{(0)}+\varepsilon \vec{x}_{o}^{(1)}(t)+O\left(\varepsilon^{2}\right)$ on the slow manifold:

$$
\frac{d \vec{x}}{d t}=\vec{u}(\vec{x}(t), t)+\varepsilon\left(\frac{3 R}{2}-1\right)\left[\frac{D \vec{u}}{D t}-\vec{g}_{r}+2 \vec{\Omega} \times \vec{u}^{(0)}\right]+O\left(\varepsilon^{2}\right) .
$$

