
Supplementary Material.  

Slow Manifold Reduction by Multiple-Scale Expansion 

Begin with equations (2) and (3), written in the form 

𝑑𝑥𝑖

𝑑𝑡
= 𝑣𝑖           (13a)  

𝜀
𝑑𝑣

𝑑𝑡
= 𝜀

3𝑅

2

𝐷𝑢

𝐷𝑡
+ (𝑣 − 𝑢) + 𝜀 (1 −

3𝑅

2
)𝑔𝑟 + 3𝜀𝑅Ω × (𝑢 − 𝑣) + 2𝜀 (

3𝑅

2
− 1)Ω × 𝑣    (13b)  

Let 𝑡̃ = (𝑡 − 𝑡𝑜)/𝜀 represent a fast time variable, and consider the particle position and velocity 

to be functions of t and 𝑡̃, which are formally treated as separate variables. Thus 𝑑/𝑑𝑡 is replaced 

by 𝜀−1𝜕/𝜕𝑡̃ + 𝜕/𝜕𝑡, where it is understood that both  𝜕/𝜕𝑡 and 𝜕/𝜕𝑡̃ are to be interpreted as 

particle-following derivatives (and not derivatives with position held constant).  Note that the 

background flow does not depend on 𝜏, and thus the substantial derivative 𝐷𝑢⃑ /𝐷𝑡 is with 

respect to t alone.  However, dependence on 𝑡̃ is introduced when the derivative is evaluated at 

the position 𝑥 (𝑡̃, 𝑡). 

Expanding both variables in a power series in 𝜀 leads to  

 𝑥 = 𝑥 (0)(𝑡̃, 𝑡) + 𝜀𝑥 (1)(𝑡̃, 𝑡) +∙∙∙ 

 𝑣 = 𝑣 (0)(𝑡̃, 𝑡) + 𝜀𝑣 (1)(𝑡̃, 𝑡) +∙∙∙ 

Substitution into (13) leads to 

(𝜀−1 𝜕𝑥 (0)

𝜕𝑡̃
+

𝜕𝑥 (0)

𝜕𝑡
) + 𝜀 (𝜀−1 𝜕𝑥 (1)

𝜕𝑡̃
+

𝜕𝑥 (1)

𝜕𝑡
) +∙∙∙= 𝑣 (0) + 𝜀𝑣 (1) +∙∙∙,       (14a)  

and 



𝜀 (𝜀−1
𝜕𝑣 (0)
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) +∙∙∙= 𝑢⃑ (𝑥 (0)(𝑡̃, 𝑡), 𝑡) − 𝑣 (0) + 𝜀

𝜕𝑢⃑ 

𝜕𝑥𝑗
𝑥𝑗
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−𝜀𝑣𝑖
(1)

+ 𝜀[
3𝑅

2

𝐷𝑢⃑⃑ 

𝐷𝑡
+ 3𝑅Ω⃑⃑ × (𝑢⃑ − 𝑣 (0)) + 2 (

3𝑅

2
− 1) Ω⃑⃑ × 𝑣 (0) + (1 −

3𝑅

2
) 𝑔 𝑟] +∙∙∙ ,    (14b)  

where again, the derivatives of 𝑢⃑  are evaluated at 𝑥 (0).   To lowest order, we have 

 
𝜕𝑥 (0)

𝜕𝑡̃
= 0  and  

𝜕𝑣⃑ (0)

𝜕𝑡̃
= 𝑢⃑ (𝑥 (0)(𝑡̃, 𝑡), 𝑡) − 𝑣 (0).                  (15a,b)  

Thus 𝑥 (0) = 𝑥 (0)(𝑡), and since the right-hand side of (15b) is then independent of 𝑡̃, it follows 

that 

 𝑣 (0) = 𝑢⃑ (𝑥 (0)(𝑡), 𝑡) + 𝑐 (0)(𝑡)𝑒−𝑡̃.            (16)  

If a particle is initiated with a velocity that is differs from the local fluid velocity by more than 

O(), then the drag on the particle brings it O() close to the fluid velocity over a time scale of 

O(-1
).  This behavior is consistent with the requirement in Fenichel theory that the background 

flow is a normally attracting manifold.  

At the next order of approximation [O(0) in 14a], we have 

     
𝜕𝑥 (1)

𝜕𝑡̃
= −

𝜕𝑥 (0)

𝜕𝑡
+ 𝑣 (0) = −

𝜕𝑥 (0)

𝜕𝑡
+ 𝑢⃑ (𝑥 (0)(𝑡), 𝑡) + 𝑐 (0)(𝑡)𝑒−𝑡̃   

After decay of the final term, the remaining terms on the right-hand side depend only on t and 

therefore lead to secular growth in  of 𝑥𝑖
(1)

.  To prevent this growth we must set these terms to 

zero: 

  
𝜕𝑥 (0)

𝜕𝑡
= 𝑢⃑ (𝑥 (0)(𝑡), 𝑡)        (17)  



Which indicates simply that following the decay from the initial velocity, the particle follows the 

flow at leading order. Solving the remaining equation for 𝑥 (1) then gives 

 𝑥 (1) = 𝑥 𝑜
(1)

(𝑡) − 𝑐 (1)(𝑡)𝑒−𝑡̃        (18)  

Proceeding to O() in (14b) then gives  

    
𝜕𝑣⃑ (1)

𝜕𝑡̃
+ 𝑣 (1) = −

𝜕𝑣⃑ (0)

𝜕𝑡
+ (

𝜕𝑢⃑⃑ 

𝜕𝑥𝑗
)
𝑥𝑖=𝑥𝑖

(0)
𝑥𝑗

(1)
+

3𝑅

2

𝐷𝑢⃑⃑ 

𝐷𝑡
+ 3𝑅Ω⃑⃑ × (𝑢⃑ − 𝑣 (0)) 

                                        +2 (
3𝑅

2
− 1) Ω⃑⃑ × 𝑣 (0)+(1 −

3𝑅

2
) 𝑔 𝑟 

Using (16) to substitute for 𝑣𝑖
(0)

 on the right-hand side, and keeping in mind that 
𝜕

𝜕𝑡
 represents 

not a local time derivative but a time derivative with 𝑡̃ held constant, we have 

 
𝜕𝑣⃑ (0)

𝜕𝑡
=

𝜕

𝜕𝑡
𝑢⃑ (𝑥 (0)(𝑡), 𝑡) +

𝜕𝑐 (0)

𝜕𝑡
𝑒−𝑡̃ =

𝐷𝑢⃑⃑ 

𝐷𝑡
+

𝜕𝑐 (0)

𝜕𝑡
𝑒−𝑡̃  

Using this expression as well as (18) to substitute for and 𝑥𝑗
(1)

 leads to, after some regrouping of 

terms, to 

 
𝜕𝑣⃑ (1)

𝜕𝑡̃
+ 𝑣 (1) = 𝑎 (1)(𝑡) − 𝑏⃑ (1)(𝑡)𝑒−𝑡̃,       (19)  

where 

 𝑎 (1)(𝑡) =
𝜕𝑢⃑⃑ 

𝜕𝑥𝑗
𝑥𝑜,𝑗

(1)
(𝑡) + (

3𝑅

2
− 1) [

𝐷𝑢⃑⃑ 

𝐷𝑡
− 𝑔 𝑟 + 2Ω⃑⃑ × 𝑢⃑ (0)], 

and 

 𝑏⃑ (1)(𝑡) =
𝜕𝐶𝑖

(0)

𝜕𝑡
+

𝜕𝑢⃑⃑ 

𝜕𝑥𝑗
𝑐𝑗
(0)

+ 3𝑅Ω⃑⃑ × 𝑐 (0). 



The solution to (19) is 

 𝑣 (1) = 𝑎 (1)(𝑡) − 𝑏⃑ (1)(𝑡)𝑡̃𝑒−𝑡̃        (20)  

We can now write down an expression for the particle velocity on the slow manifold, obtained 

by taking the limit 𝑡̃ → ∞ in (16) and (20): 

        𝑣 (0) + 𝜀𝑣 (1) = 𝑢⃑ (𝑥 (0)(𝑡), 𝑡) + 𝜀
𝜕𝑢⃑⃑ 

𝜕𝑥𝑗
𝑥𝑜,𝑗

(1)
(𝑡) + 𝜀 (

3𝑅

2
− 1) [

𝐷𝑢⃑⃑ 

𝐷𝑡
− 𝑔 𝑟 + 2Ω⃑⃑ × 𝑢⃑ (0)] 

or, noting that 𝑥 = 𝑥 (0) + 𝜀𝑥 𝑜
(1)

(𝑡) + 𝑂(𝜀2) on the slow manifold:  

                  
𝑑𝑥 

𝑑𝑡
= 𝑢⃑ (𝑥 (𝑡), 𝑡) + 𝜀 (

3𝑅

2
− 1) [

𝐷𝑢⃑⃑ 

𝐷𝑡
− 𝑔 𝑟 + 2Ω⃑⃑ × 𝑢⃑ (0)] + 𝑂(𝜀2).   (2 


