Supplementary Material.

Slow Manifold Reduction by Multiple-Scale Expansion

Begin with equations (2) and (3), written in the form
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Letf = (t — t,)/e represent a fast time variable, and consider the particle position and velocity
to be functions of t and £, which are formally treated as separate variables. Thus d/dt is replaced
by e710/dt + d/0dt, where it is understood that both d/dt and @/t are to be interpreted as
particle-following derivatives (and not derivatives with position held constant). Note that the
background flow does not depend on 7, and thus the substantial derivative Du/Dt is with
respect to t alone. However, dependence on £ is introduced when the derivative is evaluated at

the position x (%, t).

Expanding both variables in a power series in ¢ leads to
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Substitution into (13) leads to
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where again, the derivatives of u are evaluated at x(®. To lowest order, we have
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Thus x(©@ = x(©(¢), and since the right-hand side of (15b) is then independent of £, it follows

that
7@ =4(xO),t) + cO(t)et. (16)

If a particle is initiated with a velocity that is differs from the local fluid velocity by more than
O(¢), then the drag on the particle brings it O(¢) close to the fluid velocity over a time scale of
O(&%). This behavior is consistent with the requirement in Fenichel theory that the background

flow is a normally attracting manifold.

At the next order of approximation [O(0) in 14a], we have
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After decay of the final term, the remaining terms on the right-hand side depend only on t and
therefore lead to secular growth in 7 of xi(l). To prevent this growth we must set these terms to

Zero:

ax( )

=u(x@(0),t) (7)



Which indicates simply that following the decay from the initial velocity, the particle follows the

flow at leading order. Solving the remaining equation for x() then gives
xM = x( (1) — cD(t)e~t (18)

Proceeding to O(¢) in (14b) then gives
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Using (16) to substitute for v(o) on the right-hand side, and keeping in mind that % represents

not a local time derivative but a time derivative with £ held constant, we have
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Using this expression as well as (18) to substitute for and xj(l) leads to, after some regrouping of

terms, to
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where
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The solution to (19) is
7D = g () — PO (D)Fet (20)

We can now write down an expression for the particle velocity on the slow manifold, obtained

by taking the limit £ - oo in (16) and (20):
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or, noting that = @ + £x{"(¢) + 0(&2) on the slow manifold:
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