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Abstract 19 

Although the movement and aggregation of microplastics at the ocean surface has been well 20 

studied, less is known about the subsurface. Within the Maxey-Riley framework governing the 21 

movement of small rigid spheres with high drag in fluid, aggregation of buoyant particles is 22 

encouraged in vorticity-dominated regions. We explore this process in an idealized model that is 23 

qualitatively reminiscent of a three-dimensional eddy with an azimuthal and overturning 24 

circulation. In the axially symmetric state, buoyant spherical particles that do not accumulate at 25 

the top boundary are attracted to a loop consisting of periodic orbits. Such a loop exists when 26 

drag on the particle is sufficiently strong. For small slightly-buoyant particles, this loop is located 27 

close to the periodic fluid parcel trajectory. If the symmetric flow is perturbed by a symmetry-28 

breaking disturbance, additional attractors for small rigid slightly-buoyant particles may arise 29 

near periodic orbits of fluid parcels within the resonance zones created by the disturbance. 30 

Disturbances with periodic or quasi-periodic time dependence may produce even more attractors, 31 

with a shape and location that recurs periodically. However, not all such loops attract, and rigid 32 

particles released in the vicinity of one loop may instead be attracted to a nearby attractor. 33 

Examples are presented along with mappings of the respective basins of attraction.   34 
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Significance statement  40 

This paper investigates the phenomenon of aggregation of small, spherical, slightly buoyant, 41 

finite size, rigid particles in a simple analytically-prescribed three-dimensional vortex flow. Our 42 

goal was to gain insights into the behaviour of slightly buoyant marine microplastic particles in a 43 

flow that qualitatively resembles ocean eddies. Attractors are mapped out for the steady 44 

axisymmetric, steady asymmetric, and non-steady asymmetric vortices over a range of flow and 45 

particle parameters. Simple theoretical arguments are used to interpret the results. 46 

 47 
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I. Introduction  58 

Marine microplastic pollution has been a rising concern for the ocean environmental and for 59 

human health.  Microplastics (scales < 5mm) and nanoplastics (scales < 1 m) have been found 60 

in the tissues of marine animals, some of which are consumed by humans (Landrigan, et al. 61 

2023). This comes at a time when global production of plastics is projected to increase.  62 

Observations of marine microplastics have been conventionally carried out using net tows and 63 

mostly occurred at or near the sea surface (van Sebille et al., 2015). However, the density of 64 

many types of microplastic particles, including high-density polyethylene, is sufficiently close to 65 

that of sea water that suspension within the water column for long periods of time is feasible. For 66 

the near-surface microplastics, Kukulka et al. (2010) and Kooi et al. (2016) present observational 67 

evidence for the fast decay in concentrations with depth over the top 5 – 20 m of the water 68 

column, with the vertical penetration of plastic particles dependent on the wind speed. 69 

Pabortsava and Lampitt (2020), on the other hand, show observational evidence for much deeper, 70 

below-the-mixed-layer subsurface peaks for three common types of microplastics in the Atlantic 71 

Ocean. Processes such as biofouling and bio-geo-chemical or photo degradation might increase 72 

the density of the plastic particles and eventually lead to the sinking of microplastics from the 73 

surface into the deeper part of the water column (Kaiser et al., 2017; Kreczak et al., 2021; Kvale 74 

et al., 2020). Consumption by biomass with the subsequent downward vertical transport is 75 

another vehicle for redistributing microplastics from the surface down. For example, Choy et al. 76 

(2019) suggest that this mechanism, specifically, consumption by pelagic red crabs and giant 77 

larvaceans, was responsible for the subsurface peaks in plastic particles concentrations observed 78 

at depths near 250 m in Monterey Bay. Thus, microplastics have been found well beneath the 79 
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ocean surface, but less is known regarding their spatio-temporal and size/density distributions 80 

(Shamskhany et al., 2021). 81 

A potentially important aspect of the movement of plastics and microplastics is aggregation, a 82 

process that occurs at the surface over large scales near the centers of the five major subtropical 83 

gyres and has been attributed to Ekman drift, windage and inertia (Beron-Vera, 2021).   Many 84 

early models concentrated on the ocean surface, but Wichmann et al. (2019) has highlighted the 85 

importance of resolving the full three dimensional circulation.  If aggregation also occurs below 86 

the surface, well beneath the direct influence of Ekman layers, the dynamics is likely to be 87 

different.  Indeed, modeling results by Wichmann et al. (2019), based on a framework created by 88 

Lange and van Sebille (2017) and Delandmeter and van Sebille (2019), suggests that the large 89 

scale accumulation associated with the garbage patches disappears below 60m depth.  90 

To avoid confusion, we will refer to infinitesimal fluid elements as “fluid parcels”, and to rigid 91 

plastic particles of finite size as “rigid particles”. Typically the position 𝑥𝑝(𝑡) of a rigid particle 92 

is tracked according to  93 

  𝑥𝑝(𝑡 + ∆𝑡) = 𝑥𝑝(𝑡) + ∫ 𝑢𝑑𝑡 + 𝑑𝑥𝑏
𝑡+∆𝑡

𝑡
, 94 

where u is the fluid velocity and dxb is an extra displacement due the non-fluid nature of the rigid 95 

particle. The user can introduce custom schemes for calculating contributions to dxb due to 96 

factors such as windage and inertia (e.g. Beron-Vera et al., 2016), turbulent diffusion (e.g. 97 

Kulkulka, 2012), wave induced Stokes drift (Onink et al., 2019), etc. Eulerian schemes in which 98 

plastic particles are treated as concentrations, are rare, but Mountford and Morales Maqueda 99 

(2019) developed an Eulerian model in which concentrations are advected by the fluid and are 100 

subject to parameterized turbulence as well as sinking or rising according to a simple law 101 
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involving buoyancy and friction. In a similar fashion, Kvale et al. (2020) propose an Eulerian 102 

model for the biological uptake and the resulting re-distribution of microplastics. 103 

An alternative approach would be to use the Maxey-Riley equation (discussed below) to solve 104 

for the rigid particle velocity, v, and then use the latter to compute the trajectory of that rigid 105 

particle, i.e., 𝑥𝑝(𝑡 + ∆𝑡) = 𝑥𝑝(𝑡) + ∫ 𝑣𝑑𝑡
𝑡+∆𝑡

𝑡
. This equation would account for the non-fluid-106 

following effects in a deductive way, however the resulting 6
th

-order system (for the three 107 

components of velocity and position) would be computationally challenging.  To better 108 

understand the implications of the use of this approach while avoiding the computational burden 109 

and complexity, we have elected to analyze the movement and aggregation of individual rigid 110 

particles using a Maxey-Riley framework in connection with an idealized, analytically-111 

prescribed, 3D vortex flow that qualitatively resembles the geometry of the circulation in an 112 

ocean eddy but is not a solution to any dynamical oceanographic equations of motion. As shown 113 

by Pratt (2014) and Rypina et al. (2015), kinematic models that reproduce the correct geometry 114 

are able to also reproduce the important Lagrangian features of the flow. Even in our simple 115 

flow, aggregation is non-trivial, often with multiple attractors present and lack of attraction in 116 

some circumstances. Thus, we wanted to thoroughly explore this simple example before 117 

investigating more realistic oceanic flows. We note that other idealized studies have been carried 118 

out in connection with 2D wave fields and vortex flows (e.g. DiBenedetto 2018a,b and Kelly et 119 

al., 2021). 120 

Aggregation can be attributed to the presence of an attractor: here, an object with a dimension 121 

less than three that is somehow set up by the fluid circulation patterns and towards which rigid 122 

particle trajectories attract. As long as the fluid is incompressible, fluid parcels will not 123 

experience attraction and will not aggregate, but plastic particles with inertia, added mass, and 124 
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drag may do so. Note also that because each attractor is generally associated with its 125 

corresponding basin of attraction, if rigid particles are introduced outside of the basin of 126 

attraction, they will not be attracted and will not aggregate towards this attractor.  127 

In order to reach a better understanding of what leads to attraction and attractors in 3D flows, we 128 

explore a simple canonical example in geophysical fluid dynamics, namely the flow in a rotating 129 

cylinder. This flow resembles some of the characteristics of ocean eddies, including a horizontal 130 

swirl and an overturning component in the vertical, but is much less complex than any realistic 131 

oceanic eddy. Specifically, we use a simple analytically-prescribed phenomenological velocity 132 

introduced by Rypina et al. 2015. The Lagrangian properties of this circulation have been 133 

previously studied (Fountain, et al. 2000; Pratt et al. 2014; Rypina et al. 2015) allowing us to 134 

begin to investigate inertial rigid particles from an established base of knowledge. A prior theory 135 

(Haller and Sapsis, 2008) governing the movement of rigid particles with high drag indicates that 136 

accumulation is favored for slightly buoyant particles in flows dominated by vorticity, and this 137 

also motivates our choice of background flow. Identification of the attractors that can arise in this 138 

flow field, evaluating their reach and domains of attraction, and clarifying the circumstances that 139 

lead to their formation are the primary objectives of this work. Although motivated by the 140 

problem of marine microplastics, this study is, for now, mainly a curiosity-driven research 141 

aiming to develop a basic understanding of the mechanisms that might lead to aggregation of 142 

rigid particles in 3D flows. The hope is that with such basic understanding in hand, one could 143 

later start investigating aggregation phenomena in more complex and more realistic ocean 144 

mesoscale and submesoscale eddying flows. 145 

II. Methods  146 
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The physics of the motion of a small, rigid sphere that moves with velocity �⃑�(𝑡) through a fluid 147 

with pre-existing velocity distribution �⃑⃑�(�⃑�, 𝑡) has been the subject of investigation by Stokes 148 

(1851),  Basset (1888), Boussinesq (1903), Faxen (1922), Oseen (1927), Tchen (1947) and many 149 

others, and was put in a unifying framework by Maxey and Riley (1983).  More recent 150 

theoretical extensions include Beron-Vera et al. (2019) and Beron-Vera (2021). We will use a 151 

form of the Maxey-Riley equation that has been extended to include constant frame rotation with 152 

angular velocity Ω⃑⃑⃑∗: 153 

𝑑�⃑⃑�

𝑑𝑡
=

𝜌𝑓

𝜌𝑝

𝐷�⃑⃑⃑�

𝐷𝑡
+

𝜌𝑓 

2𝜌𝑝
(

𝐷�⃑⃑⃑�

𝐷𝑡
−

𝑑�⃑⃑�

𝑑𝑡
) −

9𝜈𝜌𝑓

2𝜌𝑝𝑑2
(�⃑� − �⃑⃑�) + (1 −

𝜌𝑓

𝜌𝑝
) �⃑� +

𝜌𝑓 

𝜌𝑝
Ω⃑⃑⃑∗ × (�⃑⃑� − �⃑�)      154 

+
𝜌𝑓 

𝜌𝑝
2Ω⃑⃑⃑∗ × �⃑⃑� − 2Ω⃑⃑⃑∗ × �⃑� + (

𝜌𝑓

𝜌𝑝
− 1) Ω⃑⃑⃑∗ × Ω⃑⃑⃑∗ × �⃗� .                                                                     (1) 155 

The frame rotation was introduced into the non-rotating Maxey-Riley equation by replacing 156 

 𝑣𝑠⃑⃑⃑⃑ = 𝑣𝑟⃑⃑ ⃑⃑ + Ω⃗⃑⃑ × 𝑥𝑟⃑⃑⃑⃑⃗, 𝑢𝑠⃑⃑⃑⃑⃑ = 𝑢𝑟⃑⃑⃑⃑⃑ + Ω⃗⃑⃑ × 𝑥𝑟⃑⃑⃑⃑⃗,   157 

𝐷𝑠𝑢𝑠⃑⃑ ⃑⃑ ⃑

𝐷𝑡
=

𝐷𝑟�⃑⃑⃑�𝑟

𝐷𝑡
+ 2 Ω⃑⃗⃑ × �⃑⃑�𝑟 + Ω⃗⃑⃑ × Ω⃗⃑⃑ × 𝑥𝑟⃑⃑⃑⃑⃗,

𝑑𝑠𝑣𝑠⃑⃑⃑⃑⃑

𝐷𝑡
=

𝑑𝑟�⃑⃑�𝑟

𝐷𝑡
+ 2 Ω⃗⃑⃑ × �⃑�𝑟 + Ω⃗⃑⃑ × Ω⃗⃑⃑ × �⃗�𝑟, 158 

where subscript “s” denotes stationary frame and subscript “r” – rotating frame.  Alternatively, 159 

transformation into a rotating frame can be done following the variational method of Ripa 160 

(1987). The subscripts “r” have then been dropped in Eq. (1) and all subsequent equations since 161 

all variables are now in the rotating frame. For non-spherical rigid particles,  adjustments to the 162 

coefficients within the Maxey-Riley equations can be made to account for elliptical shapes (see, 163 

for example, DiBenedetto et al, 2018a,b and references therein) but at the cost of adding a third 164 

vector equation for the orientation of the ellipsoid. However, real microplastics often have 165 
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complex tangled-filament-like shapes which are poorly represented by an ellipsoid, and no 166 

corrections for tangled filaments are currently available.  167 

In Eq. (1), which is a statement of Newton’s second law for the rigid particle, the right-hand side 168 

represents, in order, the effects of inertia, added mass, drag, buoyancy, Coriolis acceleration 169 

associated with the added mass, the Coriolis acceleration associated with the particle mass, 170 

Coriolis acceleration associated with the fluid motion, and centrifugal acceleration. A similar 171 

equation has been previously derived by Beron-Vera et al. (2019), though the centrifugal 172 

acceleration does not appear there explicitly, having been combined with the acceleration due to 173 

gravity in order to define an effective gravity and corresponding geopotential. Coordinates are 174 

then imagined to be aligned with geopotential surfaces, though standard spherical or Cartesian 175 

coordinates are usually used in practice (Vallis, 2006). Our explicit retention of the centrifugal 176 

acceleration will later allow absolute vorticity to arise naturally as a quantity of central 177 

importance. We have omitted the lift force, the Basset history force, and the Faxen corrections 178 

(Gatignol, 1983). Faxen corrections account for the variation of the flow across the rigid particle 179 

and are proportional to 𝑎2Δ𝑢. For a particle size that is much smaller than the typical length scale 180 

of the flow, these corrections are small and typically neglected (Haller and Sapsis, 2008; Beron-181 

Vera et al., 2019). The history term, which is an integral along a particle path, accounts for the 182 

boundary layer effects that a particle leaves behind. It is typically ignored under the assumption 183 

that the chances of other particles crossing that localized boundary layer before it decays are 184 

small (Beron-Vera et al., 2019; see also Langlois et al., 2015 and Daitche and Tel., 2011 for 185 

more info on the influence of the history term on the behavior of rigid particles). Finally, the lift 186 

force arises when a particle rotates in a horizontally sheared flow. As shown in Beron-Vera 187 

2019, the inclusion of the lift force leads to the next-order, 𝑂(𝜖̃2) correction in the slow-188 
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manifold approximation, and thus can also be neglected for small 𝜖̃. In Eq. (1), 𝜌𝑝 and 𝜌𝑓 are 189 

densities of the rigid particle and the fluid, 𝑑 is the particle radius, 𝜈 is viscosity of the fluid, �⃑� is 190 

the gravity vector, and 
𝐷�⃑⃑⃑�

𝐷𝑡
=

𝜕�⃑⃑⃑�

𝜕𝑡
+ �⃑⃑� ⋅ ∇�⃑⃑� is the fluid material derivative, evaluated for 191 

undisturbed fluid velocity at the position of the center of the rigid particle. The position 𝑥(𝑡) of a 192 

particle is determined by     193 

𝑑�⃗�

𝑑𝑡
= �⃑�(�⃗�, 𝑡),                                                                                  (2) 194 

and together Eqs. (1) and (2) compose a coupled, 6
th

-order system for computation of the particle 195 

position and velocity as functions of time.  196 

If the velocities and lengths are nondimensionalized using characteristic scales 𝑈 and 𝐿 for the 197 

background fluid flow, and 𝐿/𝑈 is used as a time scale, then Eq. (2) remains formally unchanged 198 

while the nondimensional form of Eq. (1) is 199 

  
𝑑�⃑⃑�

𝑑𝑡
=

3𝑅

2

𝐷�⃑⃑⃑�

𝐷𝑡
+ 𝜀̃−1(�⃑� − �⃑⃑�) + (1 −

3𝑅

2
) �⃑�𝑟 + 3𝑅Ω⃑⃑⃑ × (�⃑⃑� − �⃑�) + 2 (

3𝑅

2
− 1) Ω⃑⃑⃑ × �⃑�,                     (3)     200 

where =
2𝜌𝑓

𝜌𝑓+2𝜌𝑝
 , �⃑�𝑟 = (�⃗� − Ω⃑⃑⃑∗ × Ω⃑⃑⃑∗ × �⃑�)/(

𝑈2

𝐿
) , Ω⃑⃑⃑ =

Ω⃑⃑⃑∗𝐿

𝑈
 and  𝜀̃ =

2

9
(

𝑑

𝐿
)

2 𝑈𝐿

𝜈

1

R
 is the Stokes 201 

number, the ratio of the adjustment time scale of a particle (due to drag) to the time scale of the 202 

background flow. For  𝜀̃ ≪ 1, viscous drag is the dominant force acting on the particle, implying 203 

that a particle with an initial velocity differing by an amount > O(𝜀̃) from the local fluid velocity 204 

will be rapidly accelerated over a time scale 𝜀̃  to a velocity proximal to that of the fluid. 205 

Thereafter the particle will undergo a slow evolution in which the weaker forces due to inertia, 206 

added mass, and buoyancy cause slight departures from the movement of the fluid itself.   207 
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The limit 𝜀̃ → 0 constitutes a singular perturbation of Eq. (3), a problem that can be addressed 208 

using an approach due to Fenichel (1979) that was originally formally developed for a steady 209 

background flow, but that has been extended by Haller and Sapsis (2008) to include a time-210 

varying background flow. In either case, it can be shown that following the initial viscous 211 

adjustment, the particle position and velocity tend toward a subspace or “slow manifold” on 212 

which the particle velocity is determined directly by the fluid velocity through an “inertial” 213 

equation, here extended to include frame rotation:  214 

�⃑� = �⃑⃑� + 𝜀̃   (
3𝑅

2
− 1) [

𝐷�⃑⃑⃑�

𝐷𝑡
+ 2Ω⃑⃑⃑ × �⃑⃑� − �⃑�𝑟] + 𝑂(𝜀̃ 2).           (4) 215 

This result is the same as obtained by  Beron-Vera et al. 2019, provided that their gravity vector 216 

is interpreted as our �⃑�𝑟. The same authors also present more general cases, including those with 217 

the lift force and on the sphere. In Supplementary Material we present a simple derivation of Eq. 218 

(4) based on a multiple-scale expansion. It provides a quick, though less rigorous, alternative to 219 

the Fenichel approach. 220 

A chief advantage of the slow manifold reduction is that the 6
th

 order system given by Eqs. (2) 221 

and (3), in which particle velocity needs to be solved for, is reduced to a 3
rd

 order system given 222 

by Eqs. (2) and (4), where the particle velocity is explicitly written as a function of fluid velocity 223 

and flow and particle parameters (and thus is known). The bracketed expression in Eq. (4), which 224 

determines the velocity of the rigid particle relative to the fluid, is nothing more than 
𝜕

𝜕𝑥𝑗
𝜏𝑖𝑗, 225 

where 𝜏𝑖𝑗 is the stress tensor for the fluid. Thus the relative velocity of a rigid particle on the 226 

slow manifold is in the same direction as the net force that would act on a fluid parcel occupying 227 

the same space.  Ordinarily, for a fluid parcel, that force would equate with an acceleration, but 228 

on the slow time scale, the relative particle velocity points in the same direction as the net fluid 229 
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force and its magnitude is proportional to 𝜀̃ (
3𝑅

2
− 1) =

2

9

𝑑2

𝐿2

𝑈𝐿

𝜈

(𝜌𝑓−𝜌𝑝)

𝜌𝑓
.  Since the aggregation of 230 

rigid particles requires departures of the particle velocity from the (divergence free) velocity 231 

field of the fluid, one can expect that aggregation will occur more slowly if  d and (𝜌𝑓 − 𝜌𝑝)/𝜌𝑓 232 

are small, or if 𝜈 is large. At the same time, the existence of attractors internal to the fluid may 233 

depend on (𝜌𝑓 − 𝜌𝑝)/𝜌𝑓 being small: for example, a large density difference may mean that 234 

rigid particles simply sink to the bottom or rise to the surface (and are thus attracted to attractors 235 

external to the fluid interior).  236 

As pointed out by Haller and Sapsis (2008) (also see Beron-Vera et al. 2019), we can consider a 237 

continuous concentration of rigid particles with similar properties, and with smoothly varying 238 

velocity given by Eq. (4).  The aggregation of such a concentration would appear to require that 239 

the divergence of that velocity be negative (though see an apparent counterexample in Fig 1c, 240 

presented later).   Following Haller and Sapsis (2008), consider the evolution of a material 241 

volume of rigid particles. The time rate of change of this volume is 242 

𝑑𝑉

𝑑𝑡
= ∯ �⃑� ∙ �⃑⃑� 𝑑𝐴𝑉 = ∭(∇ ∙ �⃑�)dV = ∭ ∇ ∙ [�⃑⃑� + 𝜀̃ (

3𝑅

2
− 1) (

𝐷�⃑⃑⃑�

𝐷𝑡
+ 2Ω⃑⃑⃑ × �⃑⃑� − �⃑�𝑟)] d𝑉              (5) 243 

where ∇ ∙ �⃑⃑� = 0 for an incompressible fluid. Shrinking 𝑉 to an infinitesimal size allows the right-244 

hand side to be approximated by 𝑉  times the local value in the integrand, and the result may be 245 

integrated in time, yielding  246 

𝑉(𝑡) = 𝑉0 exp (𝜀̃   (
3𝑅

2
− 1) ∫ 𝛻 ⋅ (

𝐷�⃑⃑⃑�

𝐷𝑡
+ 2Ω⃑⃑⃑ × �⃑⃑� − �⃑�𝑟) 𝑑𝑠

𝑡

𝑡0
)  247 

         = 𝑉0𝑒𝑥𝑝 (−2𝜀̃   (
3𝑅

2
− 1) ∫ [𝑄𝑟(𝑥(𝑠), 𝑠) + Ω⃑⃑⃑ ∙ 𝜁𝑟 + |Ω⃑⃑⃑|

2
]

𝑡

𝑡0
𝑑𝑠)   248 



13 
 

         = 𝑉0𝑒𝑥𝑝 (−2𝜀̃   (
3𝑅

2
− 1) ∫ 𝑄𝑎(𝑥(𝑠), 𝑠)𝑑𝑠

𝑡

𝑡0
) .                        (6)                     249 

Here 𝑄𝑟 =
1

2
(

1

2
|𝜁𝑟|

2
− |𝑆|2)   is the three-dimensional Okubo-Weiss parameter (Okubo, 1970; 250 

Weiss, 1991),  𝜁𝑟  represents the relative vorticity vector for the fluid, 𝑆 = 1/2(∇�⃑⃑� + (∇�⃑⃑�)𝑇) is 251 

the strain tensor, and |𝑆| is its Frobenius norm.  The final step in Eq. (6) follows from 252 

introduction of the absolute vorticity vector  253 

𝜁𝑎 = 𝜁𝑟 + 2Ω⃑⃑⃑⃑⃑⃑                    (7) 254 

and the corresponding function 𝑄𝑎 =
1

2
(

1

2
|𝜁𝑎|

2
− |𝑆|2).  We note that for a volume V of any 255 

size: 256 

𝑑𝑉

𝑑𝑡
= 2𝜀̃   (

3𝑅

2
− 1) ∭ 𝑄𝑎 dV = 𝜀̃   (

3𝑅

2
− 1) ∭

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝜏𝑖𝑗 dV =

2

9

𝑑2

𝐿2

𝑈𝐿

𝜈

(𝜌𝑓−𝜌𝑝)

𝜌𝑓
∯

𝜕

𝜕𝑥𝑗
𝜏𝑖𝑗𝑛𝑖 𝑑𝐴𝑉 ,   257 

(8) 258 

where 𝑛𝑗  denote the components of the outward unit vector normal to the bounding surface 𝐴𝑉 . 259 

The first equality in Eq. (8) is a modest modification of Eq. (31) from Haller and Sapsis (2008), 260 

and one could probably have guessed that our more general result could be obtained by replacing 261 

𝑄 with 𝑄𝑎. The remainder of the equation expresses volume changes in terms of the fluid 262 

stresses. Thus for buoyant particles, a volume 𝑉(𝑡) of any size will contract if the force normal 263 

to 𝐴𝑉 due to the fluid stresses, integrated around  𝐴𝑉, is inward. In many cases, including 264 

quasigeostrophic eddies and gyres, internal waves,  and the surface gravity waves considered by 265 

DiBenedetto et al. (2018a,b) and all inviscid flows, the stress tensor is dominated by pressure, 266 

i.e., 
𝜕

𝜕𝑥𝑗
𝜏𝑖𝑗 ≅ −

1

𝜌𝑓
∇𝑝, so the tendency to aggregate is determined entirely by the pressure field.  267 
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In general, 𝑄𝑎 can change sign along a particle trajectory, making it hard to predict whether the 268 

surrounding volume shrinks or expands with time. If a buoyant particle is trapped in a region in 269 

which 𝑄𝑎 is predominatly positive, then this region is a good candidate for aggregation.  270 

Persistent ocean eddies and other vortical structures are possibilities, not only because vorticity 271 

tends to dominate over strain, but also because such features have the ability to trap fluid for long 272 

periods of time. For dense particles, contraction occurs in areas dominated by strain, and it has 273 

been shown that aggregation of heavy particles can occur in strain-dominated filaments that arise 274 

in particle-laden turbulent flows, though the considered particle-to-fluid density differences tend 275 

to be quite large (see Brandt and Coletti, 2022 for a review). In our study, we will focus on 276 

vortex flows reminiscent of ocean eddies, and on lower dimension objects within such flows that 277 

can act as attractors for buoyant particles.  278 

A simple example of aggregation is given by Haller and Sapsis (2006), who argue that the 279 

elliptical center of a steady, non-divergent 2d eddy, with �⃑� = |Ω⃑⃑⃑|=0, acts as an attractor for 280 

buoyant particles. Here 𝑄𝑎 (now =𝑄𝑟), is ostensibly positive near the elliptical center of the 281 

eddy, corresponding to contraction of the phase space (which in our case coincides with the 282 

physical space) of the rigid particle motion. Since the central fixed point of the velocity field of 283 

the eddy is also a fixed point of the slow manifold particle velocity (Eq. (4)), buoyant particles 284 

initiated about the center should migrate towards the center. If the eddy is inviscid and its 285 

streamlines are circular, then the pressure and azimuthal velocity are related by the cyclostrophic 286 

balance 
1

𝜌𝑓

𝜕𝑝

𝜕𝑟
=

𝑢𝜃
2

𝑟
 so that 2𝑄𝑟 =

1

𝜌𝑓
(

1

𝑟

𝜕𝑝

𝜕𝑟
+

𝜕2𝑝

𝜕𝑟2), and for an eddy in solid body rotation (𝑢𝜃 =287 

Γ𝑠𝑟),  2𝑄𝑟 =
1

𝜌𝑓
(

1

𝑟

𝜕𝑝

𝜕𝑟
+

𝜕2𝑝

𝜕𝑟2) = 2Γ𝑠
2.  As suggested in Figure 1a, a small concentration of rigid 288 

particles indicated by the cross hatched area shrinks as it moves towards the center of the eddy. 289 
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The contraction is partially due to the geometric effect of movement towards smaller radius 290 

(term 
1

𝑟

𝜕𝑝

𝜕𝑟
) but also due to the fact that the pressure gradient decreases to zero as the center is 291 

approached and thus the inner edge of the path moves more slowly inward than the outer part 292 

(term 
𝜕2𝑝

𝜕𝑟2).  In the case of solid body rotation the two terms contribute equally.  A second 293 

example (Fig. 1b) is of an eddy with an azimuthal velocity given by 𝑢𝜃 = Γ𝐶𝑟1/2. Here 
𝜕2𝑝

𝜕𝑟2 = 0  294 

and 2𝑄𝑟 =
1

𝜌𝑓
(

1

𝑟

𝜕𝑝

𝜕𝑟
) = Γ𝐶

2/ 𝑟 > 0, so the contraction of the patch is entirely due to the geometric 295 

effect of its movement towards smaller radius.  The most curious case is that of a point vortex: 296 

𝑢𝜃 = Γ𝑃𝑟−1, for which 2𝑄𝑟 =
1

𝜌𝑓
(

1

𝑟

𝜕𝑝

𝜕𝑟
+

𝜕2𝑝

𝜕𝑟2) =
Γ𝑃

2

𝑟4 −
3Γ𝑃

2

𝑟4 <0. Here the vorticity is zero away from 297 

the eddy center and the velocity field is dominated by strain.  The pressure gradient increases as 298 

the center of the vortex is approached, meaning that the inner part of the patch moves towards 299 

the center more rapidly than the outer portion (Fig. 1c) and this tendency (quantified by the 300 

factor −
3𝛤𝑃

2

𝑟4 ) surpasses the tendency towards geometrical contraction (quantified by the factor 301 

Γ𝑃
2

𝑟4).  The area of the patch thus expands as rigid particles are drawn towards the center of the 302 

vortex.  Note, however, that a patch surrounding the center of the vortex can only shrink. This 303 

behavior is made possible by the singularity at the center, and although this feature is artificial,  304 

point vortices are often used in idealized models of fluid flow and will act as sinks or “black 305 

holes” for buoyant particles even though 2𝑄𝑟<0.   306 

The sign of 𝑄𝑎 is clearly not the whole story and does not encompass the effects of boundaries.  307 

For example, consider the fate of heavy (𝜌𝑓 < 𝜌𝑝) particles in the eddy show in Fig. 1a.  The 308 

particles will migrate outward in each case, and no interior attraction will occur unless the eddy 309 

is surrounded by a boundary, which would then act as an attractor.   310 
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In the next section, we will consider a more general, 3D, eddy-like circulation: one that has both 311 

vertical and horizontal components of vorticity, time dependence, and a variety of vortical 312 

structures that act as candidates for attraction. Our model is based on the incompressible flow in 313 

a rotating cylinder (Greenspan, 1986), which has been studied in many configurations by 314 

numerous authors as a model of ocean circulation (Hart and Kittelman, 1996; Pedlosky & Spall, 315 

2005), ocean eddies (Pratt et al., 2014; Rypina et all., 2015), or industrial processes and 316 

engeneering applications (Lopez & Marques, 2010 and references therein), and can be easily set 317 

up in the laboratory setting (Fountain et al., 2000; Lackey and Sotiropoulos (2006)).  It its 318 

original configuration the cylinder rotates about a vertical axis at a constant (positive) angular 319 

velocity (Ω⃑⃑⃑ = Ω𝑘)⃑⃑⃑⃑⃑, and the lid, which is in contact with the fluid, rotates with a slightly greater 320 

angular speed. The differential rotation sets up an azimuthal circulation in the horizontal and an 321 

overturning circulation in the vertical. (Overturning is observed in ocean eddies as well and 322 

Ledwell et al. (2008) present an example.)  The steady, axially symmetric state of the rotating 323 

cylinder flow that is established will be our first object of investigation.  A steady but 324 

asymmetrically-perturbed variant can be established by moving the axis of rotation of the lid 325 

away from the axis of rotation of the cylinder, and this offset can also be varied in order to 326 

induce time dependence.  Fountain et al. (2000) set a similar situation up in a laboratory cylinder 327 

using a submerged impeller that can be tilted, rather than the differentially rotating lid that can be 328 

shifted, to establish an asymmetric disturbance flow. The authors discussed the Lagrangian 329 

characteristics of the undisturbed flow and demonstrated the existence of secondary vortical 330 

structures generated when the flow is perturbed.  Pratt et al. (2014) reproduced similar structures 331 

using a primitive equation simulation and explored the rich assembly of chaotic regions and non-332 

chaotic vortical structures as functions of the Ekman and Rossby numbers of the flow. The time-333 
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dependent version of the rotating cylinder flow and a theory describing the resulting vortical 334 

structures were discussed by Rypina et al. (2015), who based their examples on a 335 

phenomenological model that reproduced many of the qualitative features of the numerically-336 

obtained velocity field. In dimensionless Cartesian coordinates, the model velocity field is given 337 

by  338 

  𝑢(𝑥) = −𝑏𝑥(1 − 2𝑧)
𝑟𝑜−𝑟

3
− 𝑎𝑦(𝑐 + 𝑧2) + 𝜀 [𝑦(𝑦 − 𝑦𝑜 + 𝛾𝑐𝑜𝑠(𝜎𝑡)) −

𝑟𝑜
2−𝑟2

2
] (1 − 𝛽𝑧) ,     (9a) 339 

  𝑢(𝑦) = −𝑏𝑦(1 − 2𝑧)
𝑟𝑜−𝑟

3
+ 𝑎𝑥(𝑐 + 𝑧2) − 𝜀𝑥(𝑦 − 𝑦𝑜 + 𝛾𝑐𝑜𝑠(𝜎𝑡))(1 − 𝛽𝑧),       (9b) 340 

  𝑢(𝑧) = 𝑏𝑧(1 − 𝑧)
2𝑟𝑜−3𝑟

3
,               (9c) 341 

in which 𝑟 = (𝑥2 + 𝑦2)1/2 and 𝑟𝑜 is the cylinder radius.  The velocity field consists of a steady, 342 

axially symmetric flow of strength 𝑎 with an overturning circulation of strength 𝑏. To this 343 

symmetric state one can add an asymmetric, possibly unsteady and depth dependent, perturbation 344 

of amplitude 𝜀 (not to be confused with the Stokes number 𝜀̃).  The perturbation is quantified by 345 

an offset parameter 𝑦𝑜 that introduces axial asymmetry in the velocity field, a frequency , and 346 

an amplitude   for linear depth dependence and an amplitude  for the time dependence.  For the 347 

case of axially symmetric, steady flow (𝜀 = 0) the horizontal velocity field, in cylindrical 348 

coordinates, becomes 349 

 𝑢(𝑟) = −𝑏𝑟(1 − 2𝑧)
𝑟𝑜−𝑟

3
                      (10a) 350 

and 351 

 𝑢(𝜃) = 𝑎𝑟(𝑐 + 𝑧2),                      (10b) 352 
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where 𝜃 is the azimuthal angle.  Table 1 lists the parameter values used for each numerical 353 

experiment.  354 

We now review the main features of the Lagrangian circulation in the rotating cylinder flow. In 355 

the steady, symmetric configuration, each fluid trajectory is confined to the surface of a torus as 356 

it winds around the cylinder. The typical torus is associated with quasi-periodic trajectories and 357 

any such trajectory, followed for a sufficient length of time so that it completes many 358 

overturning and azimuthal rotations around the cylinder, will sketch out the torus in 3D. Fig. 2b 359 

contains several examples of such tori and Fig. 2a shows the corresponding Poincare map, made 360 

by marking the crossing points of trajectories through a vertical slice through the cylinder. After 361 

a large number of crossings each quasi-periodic trajectory traces out the cross section of the torus 362 

on which it lives. The tori are nested within each another, with a single, horizontal, periodic 363 

trajectory located at the center of the nest.  Certain tori contain periodic trajectories, and these 364 

will show up as a finite number of dots on the Poincare map.  Because of this geometry, the 365 

motion of fluid parcels is most naturally described in terms of action-angle-angle variables, 366 

where the action, 𝐼, acts a label for a particular torus and is constant following each trajectory, 367 

and the two angle variables, �̃�  and 𝜙, define the location of a parcel on the torus. Here �̃�  is an 368 

azimuthal angle that differs from the above cylindrical coordinate 𝜃 in how its origin is defined, 369 

while the ‘poloidal’ angle 𝜙 wraps around the cross-section of each torus.  The coordinates are 370 

non-orthogonal but are defined in such a way that the angular velocities, Ω�̃� and Ω𝜙, are also 371 

constant following a trajectory. The explicit transformations to the action-angle-angle variables 372 

are given in Mezic and Wiggins (1994).  373 
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When the symmetric RC flow is perturbed by a small, steady, symmetry-breaking perturbation, 374 

as controlled by the parameters  and yo in Eq. (9),  the tori that are populated by periodic orbits 375 

potentially become resonant and break up, resulting in chaotic motion of fluid parcels in the 376 

vicinity (Fig. 2d-i). Tori with quasiperiodic orbits deform but stay intact. Examples are discussed 377 

by Fountain et al. (2000) and Pratt et al. (2013), and the latter found that chaos generally 378 

dominates in a large region that includes the central axis of the cylinder and extends around the 379 

boundaries of the cylinder. Away from this region the space is occupied by tori that have 380 

survived the perturbation, and these are sandwiched between tori that have broken up and created 381 

braided regions of chaos. The breakup of a torus also gives rise to new tori that appear as islands 382 

in the Poincare maps (Fig. 3d and 3g) and these contain non-chaotic trajectories. The number of 383 

islands can be predicted by a theory that decomposes the symmetry-breaking perturbation into 384 

Fourier modes, written in the (I, �̃�,𝜙) coordinates, with wave numbers n and m in the �̃� and 𝜙 385 

direction. If the angular velocities Ω�̃� and Ω𝜙  characterizing the trajectories on a particular torus 386 

satisfy the resonance condition 𝑛Ω�̃� + 𝑚Ω𝜙 = 0 for some 𝑛 and 𝑚, equivalent to the trajectories 387 

on that torus being periodic, then that torus will break up and a new set of invariant tori (islands) 388 

will form. Running through the center of the islands will be a periodic trajectory that will execute 389 

𝑛 azimuthal cycles to every 𝑚 poloidal (overturning) cycles. In the case shown in Fig. 3a, 390 

𝑛 = 𝑚 = 1, so the periodic trajectory circles the cylinder horizontally once for each overturning 391 

cycle: a so-called 1: 1 resonance.   392 

If the symmetry breaking perturbation is quasi-periodic in time, with underlying frequencies 𝜎𝑖, 393 

the resonance condition for the breakup of a torus becomes 𝑛Ω�̃� + 𝑚Ω𝜙 + 𝑙𝑖𝜎𝑖 = 0, where 𝑙𝑖’s 394 

are integers (Rypina, et al. 2015). Unlike the resonance condition for the steady perturbation, 395 

which is only satisfied on tori foliated by periodic trajectories, this new resonant condition may 396 
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be satisfied on tori that have quasi-periodic orbits, and the resonant islands that form will have a 397 

shape and location that vary in time. An example (Fig. 2g,h) of the case of a resonance with a 398 

single-frequency (i.e., time-periodic) perturbation shows a number of resonant islands. These 399 

features vary in time, recovering their shape and location periodically, and the snapshots shown 400 

are obtained by strobing the trajectories in 3D and at the forcing frequency. The green and blue 401 

islands in Fig. 2h have resulted from the breakup of tori with quasiperiodic trajectories, and 402 

center of the island corresponds to a closed material curve that is populated with quasiperiodic 403 

trajectories.   404 

Note that the resonance condition above and our results in general are applicable to quasi-405 

periodic disturbances with finite number of frequencies, rather than only periodic disturbances. 406 

(We only show numerical simulations for the time-periodic case for simplicity.) Because any 407 

broad-spectrum function can be arbitrary closely represented by a quasi-periodic function with a 408 

finite number of frequencies, this could be applicable to some oceanic flows, especially those 409 

with pronounced peaks in the spectrum. However, for flows with truly broadband spectrum, this 410 

approach is probably poorly applicable and/or at least impractical because of the very large 411 

number of discrete frequencies needed. This is similar in its utility/applicability to other 412 

Kolmogorov-Arnold-Moser—based and resonance—based arguments used in prior papers by 413 

many authors (including both us and the reviewer), see, for example, Rypina et al., 2007 and 414 

Beron et al., 2008; 2010.   415 

III. Results 416 

Aggregation of rigid particles will occur in presence of an attractor, an object with a dimension 417 

< 3 to which particles tend asymptotically in time. We are most interested in attractors that 418 
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occur in the interior of the rotating cylinder, and are set up by the background circulation, as 419 

opposed to the physical boundaries of cylinder.   We will see that a closed material contour 420 

consisting of periodic orbits near the core of the nested tori in the steady symmetric case act as 421 

an attractor for slightly buoyant particles, and that similar material contours consisting of 422 

periodic or quasiperiodic orbits near the centers of the resonant islands in the asymmetric cases 423 

can play the same role. We will explore three cases in increasing complexity, beginning with 424 

steady flows with axial symmetry, and proceeding to steady, asymmetric flows and finally 425 

unsteady asymmetric flows.  426 

The search for attractors is motivated by the hypothesis that for cases of strong drag, where the 427 

rigid particle velocity lies close to the fluid velocity, a periodic orbit for the rigid particle motion 428 

will exist in the vicinity of a periodic trajectory for the fluid parcel motion, and that if 𝑄𝑎 > 0 in 429 

a region surrounding the latter, that it should attract buoyant particles. For the time-dependent 430 

case, we extend the search to included closed loops that contain recirculating rigid particles and 431 

that vary periodically in time.     432 

(a) steady, axially-symmetric 3D flows 433 

The fluid velocity field for this case is given by Eqs. (9c) and (10), and these indicate that the 434 

location of the horizontal, periodic fluid parcel trajectory living at the center of the nested tori, is 435 

given by 𝑟 = 2𝑟𝑜/3 and 𝑧 =
1

2
.  It is natural to ask whether a periodic trajectory for rigid particles 436 

also exists nearby.  In the slow-manifold approximation, the steady radial, azimuthal and vertical 437 

particle velocities are obtained by writing Eq. (4) in cylindrical coordinates, leading to 438 

  𝑣(𝑟) = 𝑢(𝑟) + 𝜀̃ (
3𝑅

2
− 1) [(𝑢(𝑟) 𝜕

𝜕𝑟
+ 𝑢(𝑧) 𝜕

𝜕𝑧
) 𝑢(𝑟) − 𝑢(𝜃) (2Ω +

𝑢(𝜃)

𝑟
) − Ω2𝑟]      (11a) 439 
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  𝑣(𝜃) = 𝑢(𝜃) + 𝜀̃ (
3𝑅

2
− 1) [(𝑢(𝑟) 𝜕

𝜕𝑟
+ 𝑢(𝑧) 𝜕

𝜕𝑧
) 𝑢(𝜃) + 𝑢(𝑟) (2Ω +

𝑢(𝜃)

𝑟
)]       (11b) 440 

  𝑣(𝑧) = 𝑢(𝑧) + 𝜀̃ (
3𝑅

2
− 1) [(𝑢(𝑟) 𝜕

𝜕𝑟
+ 𝑢(𝑧) 𝜕

𝜕𝑧
) 𝑢(𝑧) + g]        (11c) 441 

Position of attracting periodic orbit; approximate analytical expression on a slow manifold  442 

Searching for points 𝑟 = 𝑟𝑐 and 𝑧 = 𝑧𝑐 for which 𝑣(𝑟) = 𝑣(𝑧) = 0, and that lie in the proximity of 443 

the horizontal trajectory of the flow, we introduce   444 

  𝑟𝑐 =
2𝑟𝑜

3
+ 𝜀̃ (

3𝑅

2
− 1) �̃� and 𝑧𝑐 =

1

2
+ 𝜀̃ (

3𝑅

2
− 1) �̃�. 445 

Substituting into the right-hand sides of (11a,c) and setting both to zero results, after neglect of 446 

𝑂(𝜀̃2) terms, in  447 

         𝑟𝑐 =
2𝑟𝑜

3
+ 𝜀̃ (

3𝑅

2
− 1)

𝑔

𝑏
𝑟𝑜                                  (12a) 448 

and 449 

         𝑧𝑐 =
1

2
+

9

2𝑏𝑟𝑜
𝜀̃ (

3𝑅

2
− 1) [Ω2 + 𝑎 (𝑐 +

1

4
) (2Ω + 𝑎 (𝑐 +

1

4
))].                             (12b) 450 

For the parameters 𝑎 > 0 and 𝑏 > 0, circulation is cyclonic with upwelling in the center of the 451 

cylinder, and (3𝑅/2) − 1 > 0 for buoyant particles, so the 𝑂(𝜀̃) corrections are positive and the 452 

periodic particle orbit lies at larger radius and elevation than the periodic fluid orbit. Note also 453 

from Eq. (11b) that the azimuthal velocity component of the rigid particle on the periodic orbit is 454 

equal to that of the fluid.  455 

An explanatory sketch (Fig. 3) shows the position of the periodic orbit of the rigid particle 456 

relative to that of the periodic orbit of the fluid. Since the rigid particle is buoyant, it can 457 
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maintain its level 𝑧 only if it is situated in a region where the vertical fluid velocity is < 0, here 458 

to the right of the fluid periodic orbit. Also, the horizontal pressure gradients associated with the 459 

centripetal acceleration associated with the frame rotation (term Ω2𝑟), the Coriolis acceleration 460 

(term 2Ω𝑢(𝜃)), and the centripetal acceleration due to the azimuthal velocity 𝑢(𝜃)2
/2𝑟 are all 461 

positive for this flow, so that low pressure exists at r=0 and the rigid particle is forced 462 

horizontally inward. To remain stationary the particle must sit in a region where the radial 463 

velocity of the fluid is outward. In this manner, the periodic trajectory exists at a location where 464 

the forces of inertia, buoyancy and added mass can be countered by the drag due to the 465 

background flow. If we fix all other parameters and increase Ω through positive values, the term 466 

multiplying 𝜀̃ in Eq. (12b) will become dominated by the Ω2 term and will grow without bound 467 

and the periodic trajectory may cease to exist. At the same time, a periodic orbit for the rigid 468 

particle can always be found close to that of the fluid,  regardless of the magnitudes of the 469 

parameters  Ω, 𝑎, 𝑏 etc., provided that the relative particle size 𝑑/𝐿 (and thus 𝜀̃), and/or the 470 

relative density difference 
(𝜌𝑓−𝜌𝑝)

𝜌𝑓
  (and thus 

3𝑅

2
− 1) are made sufficiently small.  471 

Position of attracting periodic orbit; conditions for the loss of periodic orbit  472 

We have suggested that periodic orbits for rigid particles are encouraged when the  𝜀̃  (
3𝑅

2
−473 

1)  << 1, and in the case of Run 1 the value is 0.0066. A cross-sectional plot of the radial and 474 

vertical components of the slow manifold particle velocity in a vertical section through the 475 

cylinder (Fig. 4a) shows that the periodic orbit lies at 𝑟 = 0.369 and 𝑧 = 0.504 (as compared to 476 

the values 𝑟𝑐 = 0.338 and 𝑧𝑐 = 0.502 predicted by Eq. (12).  (The convergence of the 477 

surrounding velocity field is too weak to be seen in the graphic.)  If 𝜀̃  (
3𝑅

2
− 1) is raised to the 478 

moderately small value 0.02, the position of periodic trajectory migrates towards larger radius 479 
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(Fig. 4b), the reason being that the greater buoyancy (larger value of  
3𝑅

2
− 1) or smaller drag 480 

(larger 𝜀̃) requires a larger downward fluid velocity for equilibrium. Since the maximum 481 

downward fluid velocity occurs at the outer cylinder wall (see Eq. (9c)) the position of the 482 

periodic orbit continues to migrate outward and is lost (Fig. 4c) when  𝜀̃  (
3𝑅

2
− 1) exceeds a 483 

value close to 0.3.   484 

Position of periodic orbit in numerical simulations: 485 

The slow-manifold reduction yields to the prediction (Eq. (12)) of the position of the attracting 486 

material contour, or loop, for slightly buoyant particles. We can compare this prediction to what 487 

is observed in numerical simulations using the Maxey-Riley Eqs. (1) and (2) over a range of 488 

particle size 𝑑 (and thus 𝜀̃) and frame rotation Ω. As shown in Fig. 5, qualitative agreement with 489 

the slow-manifold prediction, and the sketch in Fig. 3, holds for a very small 𝑑 (when 𝜀̃ is small).  490 

Here the attractor in Fig. 5 is located close to the central periodic fluid parcel trajectory that lives 491 

at mid-depth, 𝑧 = 0.5 and 𝑟 =
2𝑅

3
≈ 0.33. As 𝑑 (and 𝜀̃) increases, the attractor moves 492 

increasingly up and outward, and although the theory captures the trends, quantitative agreement 493 

with the numerical results worsens. Also, when frame rotation Ω is increased (panel c), the 494 

attractor responds by shifting up from mid-depth, again in qualitative but not quantitative 495 

agreement with the slow-manifold prediction in Eq. (12b).  496 

Geometry of rigid particle trajectories and evidence of attraction in numerical simulations: 497 

If in the neighborhood of the periodic rigid particle trajectory 𝑄𝑎 > 0, the phase space for 498 

buoyant particles will contract and the periodic trajectory becomes a candidate for an attractor of 499 

such particles. An example of the attraction towards the periodic orbit is shown in Figure 2c, 500 

where a set of slightly buoyant particles (
𝜌𝑝

𝜌𝑓
= 0.97) has been initialized over the volume of the 501 
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cylinder, and Eqs. (1) and (2) have been integrated forward in time to determine their subsequent 502 

trajectories. Each trajectory is shown using a unique color. It can be seen that the particles 503 

aggregate within a ring-like structure of decreasing thickness in the general vicinity of the 504 

periodic orbit of the fluid flow.   505 

Basin of attraction – relationship to 𝑄𝑎: 506 

To map out the basin of attraction for the particle periodic orbit, we first consider the region over 507 

which phase space contraction for the buoyant particles (i.e. 𝑄𝑎 > 0) occurs.  This region is 508 

shown in Fig. 6a for the current example, along with the streamlines of the fluid overturning 509 

stream function.  Much of the fluid flow recirculates entirely within the region of positive 𝑄𝑎, 510 

whereas some of the outer streamlines cross the boundary (thick contour) between positive and 511 

negative 𝑄𝑎. If it were the case that rigid particles exactly followed streamlines of the fluid 512 

overturning circulation, then net contraction or expansion of phase space along a rigid particle 513 

trajectory would depend on the sign of the time-integrated value of 𝑄𝑎 along streamlines. The  514 

𝑄𝑎 = 0 contour, shown by a bold contour in each frame of Fig. 6, might then approximately 515 

delineate the basin of attraction for buoyant rigid particles.  In the slow-manifold approximation, 516 

where rigid particle velocities lie close to the fluid velocities, the 𝑄𝑎 = 0 contour might continue 517 

to do so.   518 

To test this conjecture, we locate the basin of attraction in the numerical simulations by releasing 519 

buoyant particles at various locations in the cross-section 0 < 𝑥 < 𝑟𝑜 and 0 < 𝑧 < 1, integrating 520 

the subsequent trajectories over many overturning cycles, and recording the position (𝑥𝑓𝑖𝑛𝑎𝑙 and 521 

𝑧𝑓𝑖𝑛𝑎𝑙) of each particle where it crosses the same plane the final time (i.e., recording final 522 

crossing with the Poincare section). We use the variable-step 4-th order Runge-Kutta integration 523 
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scheme, which we implemented in Matlab via the built-in function “ode45”. In our simulations, the 524 

relative and absolute tolerances are set to the value of 10−9 to integrate particle trajectories (Eqs. 525 

(2) and (3)) (our results were not sensitive to the further decrease in tolerance values). Since the 526 

flow (Eqs. (9a,b,c)) is prescribed analytically and has no normal flow component at the perimeter 527 

and top and bottom of the cylinder, no interpolation scheme is needed and no extra boundary 528 

conditions are enforced during the integration. Integration of a trajectory is stopped when a 529 

particle got within one particle radius from the cylinder walls or top/bottom. The values of 𝑧𝑓𝑖𝑛𝑎𝑙  530 

as a function of initial particle position are mapped in Fig. 7a, where the large green area 531 

corresponding to 𝑧𝑓𝑖𝑛𝑎𝑙 ≅ 0.5 indicates the region from which particles are attracted. Only 532 

particles initiated near the central axis of the cylinder, and close to the cylinder boundaries lie 533 

outside this region, and these rise to the surface of the cylinder, contact the upper lid, and are no 534 

longer followed. It can be seen that the green area in Fig. 7a has an oval shape that somewhat 535 

resembles the overturning streamlines at small 𝑥 in the central part of the cylinder, but extends to 536 

near the top, bottom and outer cylinder boundaries at larger 𝑥. Thus the 𝑄𝑎 = 0 contour provides 537 

a rough indication of the size and shape of the basin of attraction, but misses some important 538 

details. 539 

Basin of attraction – dependence on Ω 540 

We have seen that the location of the periodic orbit that acts as an attractor for buoyant particles 541 

shifts up and out in response to increasing frame rotation Ω (Fig. 5c). In Fig. 8 we indicate the 542 

corresponding changes in the extent of the basin of attraction with respect to changing Ω by re-543 

computing Fig. 8a with Ω = 0.3, 1, and 10. The two smaller Ω values (0.3 and 1) correspond 544 

roughly to Rossby numbers 𝑎/2Ω of about 1 and 0.2, i.e., are representative of the ocean 545 

submesoscale and mesoscale flows. The 𝑄𝑎-functions for these cases are plotted in Fig. 6b-c. 546 
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Most submesoscale eddies are going to tend to have 𝑢(𝜃)/𝑟 about the same magnitude as Ω 547 

(except on the equator) and mesoscale eddies will have 𝑢(𝜃)/𝑟 ≪ Ω.  The results in Fig. 8 548 

suggest that, while the basin of attraction does shrink slightly with increasing Ω, this dependence 549 

is weak. The main difference between the three numerical runs in Fig. 8 is in the associated 550 

attraction time, which gets significantly shorter for larger values of Ω. This is explored in more 551 

detail below. 552 

Attraction time: 553 

It follows from Eq. (6) that the attraction time towards the periodic orbit should scale as  𝑇𝑎 =554 

[2𝜀̃   (
3𝑅

2
− 1) 𝑄𝑎]

−1

 where 𝑄𝑎 =
1

2
(

1

2
|𝜁𝑎|

2
− |𝑆|2) with 𝜁𝑎 = 𝜁𝑟 + 2Ω⃑⃑⃑⃑⃑⃑ . Thus, for 𝜁𝑟 ≥ 0, as in 555 

most of our numerical runs (except Experiment 1e), attraction time decreases with increasing Ω 556 

for positive Ω ≥ 0. For negative 𝜁𝑟, which corresponds to the reversed direction of the flow in 557 

our simulations (Experiment 1e), an increase in Ω will initially slow the attraction by decreasing 558 

the magnitude of 𝜁𝑎 all the way to 0, at which point the periodic orbit will lose its attraction 559 

properties, but then will speed up the attraction as Ω is further increased. This trend is confirmed 560 

numerically in Fig. 9, where for the flow parameters corresponding to the “reversed flow” run in 561 

Table 1 (Experiment 1e, with 𝜁𝑟 < 0), we release a sample trajectory within the basin of 562 

attraction and plot its 𝑧-coordinate as it winds around the can and eventually approaches the 563 

attracting periodic orbit. As anticipated, the attraction time initially increases as Ω is increased 564 

from 0 to 0.6, but then decreases as Ω is further increased to 2. 565 

Disappearance of the subsurface attractor when 𝜀̃ becomes too large: 566 

Finally, to illustrate the disappearance of the subsurface attractor when 𝜀̃ becomes too large, in 567 

Fig. 10, we contrast 2 numerical simulations with the same flow parameters (corresponding to 568 
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the “slow overturn” run 1c in Table 1) but different particle diameters, 𝑑 = 10−3  vs 𝑑 = 5 ×569 

10−4. For larger 𝑑, the subsurface periodic orbit for rigid particles is no longer present within the 570 

can, leading to all particles rising up to the surface (Fig. 10b). For smaller 𝑑, the periodic orbit is 571 

still present and acts as an attractor for buoyant rigid particles over a significant portion of the 572 

can (green region in Fig. 10a). We note that this run would be more qualitatively similar to the 573 

oceanic mesoscale or submesoscale eddies, where the overturning component of circulation is 574 

weak in comparison to the horizontal swirl.    575 

    (b) steady non-symmetrically perturbed case 576 

We now consider a case in which the axial symmetry of the steady flow has been broken, here 577 

through a change in the perturbation amplitude parameter  from zero to 0.25, and in the offset 578 

parameter 𝑦𝑜 from 0 to −0.2 in the Eqs. (9a,b).  The fluid velocity field now contains something 579 

like a stationary, “mode-1” azimuthal wave in the horizontal velocity field.  580 

The resulting Lagrangian structure (Fig. 2d and e) has a sea of chaos that covers the near-axial 581 

and outer regions of the cylinder, where no unbroken tori survive. Within this chaotic sea is a 582 

region containing a nest of unbroken tori that surround a central periodic orbit. This orbit has 583 

evolved from the central periodic orbit of the symmetry case and is now tilted. Within the nest of 584 

unbroken tori there exist resonant layers, in which new tori have arisen, and the most prominent 585 

is the “island” that is centered near 𝑥 = 0.4 and 𝑧 = 0.2 in the right-half (and near 𝑥 = 0.4 and 586 

𝑧 = 0.2 in the right half) of Fig. (2d). We further note that this center lies within the region of 587 

positive 𝑄𝑎 (Fig. 6b). The island corresponds to the yellow tori in Fig. 3e and is produced by a 588 

1: 1 resonance, so that the periodic trajectory running through its center executes one complete 589 

azimuthal cycle and one overturning cycle before connecting back onto itself. Thus, in this 590 

steady asymmetric configuration, we now have 2 periodic orbits of the fluid flow – the central 591 
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slightly-tilted periodic orbit near mid-depth (that evolved from the central horizontal periodic 592 

orbit of the axisymmetric flow) and a new periodic orbit running through the center of the 593 

resonant island (resulting from the break-up of the resonant torus satisfying Ω�̃� + Ω𝜙 = 0). 594 

We speculate that for sufficiently small 𝜀̃ a periodic orbit for the rigid particle motion exists in 595 

the vicinity of each of the 2 periodic orbits of the fluid flow. This conjecture is difficult to prove 596 

due to a complex geometry, leading to centrifugal forces that act in different directions at 597 

different locations along the particle path. For now we simply search for the supposed attractors 598 

by releasing particles and following their trajectories.   599 

As shown in Fig. 2f, separate attractors arise in the vicinity of two periodic orbits. The first 600 

appears as a ring-like structure (purple core) lying near the center of the original nested tori and 601 

the second is a similar feature with a red core near the center of the resonant island. The two are 602 

chained together and each has its own basin of attraction (Fig. 7c): the first consisting of a 603 

roughly elliptical patch (inner green region) in the x-z-plane, which corresponds of a slice 604 

through a tube-like structure in 3D, and the second consisting on an annular (blue) region that 605 

surrounds the green region and that occupies a relatively larger volume.  606 

In order to check that attraction of slightly-buoyant rigid particles towards periodic orbits located 607 

near the centers of the resonant islands in the perturbed flow is not limited to the case of the 1: 1 608 

resonance, in an additional simulation (Fig. 11, experiment 2c in Table 1), we adjusted the 609 

background flow parameter 𝑏 in Eqs. (9), which is responsible for the overturning strength, to 610 

create a 2: 1 resonance instead of a 1: 1 resonance, as in the original run. In this case, the 611 

resonant torus breaks down giving rise to a 2-island chain on the corresponding Poincare section 612 

(Fig. 11a), and the fluid periodic orbit that goes through the centers of both islands completes 2 613 



30 
 

full cycles in azimuth and 1 complete cycle in vertical before connecting onto itself. Also, as in 614 

the original run, a second slightly-tilted periodic orbit still exists near mid-depth of the can. 615 

When buoyant particles are released into this flow, two attractors arise, corresponding to the 2 616 

periodic orbits of rigid particles – one near mid-depth (purple core in Fig. 11c) and another in red 617 

near the center of the 2: 1 resonant island. 618 

Shift in position of the periodic orbit associated with a resonant island as a function of flow and 619 

particle parameters, and frame rotation 620 

The position of the attracting periodic orbit for rigid particles that is located within the resonant 621 

islands (we will refer to it as the resonant periodic orbit) in the asymmetrically-perturbed flow 622 

depends both on the perturbation strength (via 𝜀), on the flow and particle parameters (via 𝜀̃), and 623 

on the frame rotation Ω. Specifically, this resonant periodic orbit for the rigid particles will shift 624 

away from the corresponding periodic trajectory of the fluid flow as 𝜀̃ and Ω are increased. The 625 

same is true for the slightly-tilted central attracting periodic orbit near mid-depth. This is 626 

qualitatively similar to the shifting of the central periodic orbit up and out from 𝑧 = 0.5, 627 

𝑟 = 0.34 in the axisymmetric flow in response to changing 𝜀̃ and Ω, which we explored in detail 628 

the previous section both analytically (Eqs. (12)) and numerically (Fig. 3-5).  629 

In order to numerically illustrate the shift in the position of the attracting periodic orbits, we 630 

present (Figs. 12 and 13) numerical simulations in the steady perturbed flow configuration for 3 631 

values of 𝑑 (and thus 𝜀̃) and 3 values of Ω. As both parameters increase, the attractors move 632 

away from the corresponding periodic orbits of the fluid flow. This shift is evident from the 633 

change in the color of the attraction basins in (a,d,g) and from the location of the yellow cloud of 634 

dots in (c,f,i) in Figs. 12-13. Increases in 𝜀̃ and Ω also lead to the shrinkage of the attraction 635 
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basins for both attractors and to a faster convergence rate, as is evident from the tighter cloud of 636 

yellow dots in (c,f,i), as discussed in more detail below. The basin of attraction for the central 637 

attractor – the green region in Fig. 12 – seems to shrink faster than the basin of attraction for the 638 

resonant attractor (the blue-ish region) as 𝑑 increases, so when 𝑑 is increased from  2 ×  10−3 to 639 

3×  10−3, the central attractor vanishes, whereas the resonant attractor is still present (Fig. 12g). 640 

On the other hand, the increase in Ω (Fig. 13) causes a faster shrinkage of the basin of attraction 641 

for the resonant attractor than for the central attractor, so when Ω is increased from 2 to 5 in Fig. 642 

13g, the resonant attractor disappears, whereas the central attractor is still present. Figs. 12g,h,i 643 

(and Fig. 13g,h,i) show cases where this threshold has been exceeded, and one of the attractors 644 

has been lost, whereas the other is still present.  645 

Attraction time: 646 

Similar to the unperturbed flow, the attraction time for attractors in the steady, perturbed flow 647 

may still scale as 𝑇𝑎 = [2𝜀̃   (
3𝑅

2
− 1) 𝑄𝑎]

−1

, provided that  𝑄𝑎 is regarded as a typical value 648 

within the corresponding basin of attraction. The predicted decrease in attraction time with 649 

increasing 𝜀̃ and 𝑄𝑎 is evident from the numerical simulations in Figs. 12-13, where in (c,f,i) we 650 

color-coded trajectory crossings with the x-z Poincare plain by time, with blue/yellow 651 

corresponding to initial/final time. For smaller values of 𝜀̃ and Ω, we observe a wider and more 652 

diffuse cloud of dots (because trajectories wind around the can many times before approaching 653 

the attractor), whereas as 𝜀̃ and Ω increase, the clouds at comparable times become denser and 654 

more compact around the attractors.   655 

Basin of attraction  656 



32 
 

For the slightly-tilted central periodic orbit located within the central non-chaotic region near 657 

mid-depth in Fig. 2f, we observe that the basin of attraction – green region in Fig. 7b – extends 658 

roughly from the location of the periodic orbit to the edge of the central non-chaotic region (that 659 

is foliated by discretely sampled closed curves in Fig. 2d). Note that as 𝜀̃ increases, the attracting 660 

periodic orbit moves away from the center of this non-chaotic region towards its edge, leading to 661 

the shrinkage and eventual disappearance of the corresponding basin of attraction, shown by the 662 

green regions in Fig. 12a,d,g).  663 

Similarly, in all of our numerical simulations, we observe that for the resonant attracting periodic 664 

orbit running through the resonant islands, the basin of attraction seems to cover the region 665 

between the orbit and the edge of the corresponding resonant island. An analytical expression for 666 

the width of the (non-degenerate) resonant island in the fluid flow (Pratt et al., 2014) predicts 667 

that Δ𝐼 =
√

𝜖𝐹𝑛𝑚
0 (𝐼0)

(𝑛
𝑑𝑗Ω𝜙

𝑑𝐼𝑗 +𝑚
𝑑𝑗Ω𝜃

𝑑𝐼𝑗 )
𝐼0

, where Δ𝐼 is the deviation in the action coordinate away from 𝐼0, the 668 

value of action at the resonant torus (i.e., at the center of the island). This width depends on the 669 

strength of the perturbation 𝜖, the order of the resonance (via 𝑛 and 𝑚 in the resonance 670 

condition), the background flow (via 
𝑑𝑗Ω𝜙/ 𝜃]

𝑑𝐼𝑗
), and the structure of the perturbation (via 𝐹𝑛𝑚

0 (𝐼0)). 671 

This expression could be used as an upper limit on the extent of the basin of attraction. However, 672 

because the attracting periodic orbit will move away from the center of the island towards its 673 

edge as 𝜀̃ and Ω increase, the basin of attraction for the resonant attractor (blue region in Figs. 674 

12a,d and 13a,d) becomes increasingly smaller than Δ𝐼. One might speculate, then, that the 675 

attractor will completely disappear when the attracting periodic orbit reaches the edge of the 676 

resonant island. This is the case in Figs. 13g where the resonant attractor is no longer present. 677 
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    (c) non-steady, non-symmetrically perturbed case  678 

The final case that we will consider is one in which the perturbation is asymmetric and varies 679 

periodically in time. The chosen perturbation frequency, 𝜎 = 2𝜋/9.1, causes 2 strong additional 680 

resonances (compared to the steady perturbed case) – one with 𝑛 = 0, 𝑚 = 1, and 𝑙 = 1 (i.e., 681 

with a torus whose overturning frequency is equal to the perturbation frequency) that is shown in 682 

blue in Fig. 2g,h and is located near the outer edge of the central non-chaotic region, and another 683 

resonance, shown in green in Fig. 2g,h, with 𝑛 = 1, 𝑚 = 1, and 𝑙 = 1, which is located between 684 

the central non-chaotic region and the larger 𝑛 = 1, 𝑚 = 1 resonant island (that was present in 685 

the steady case as well). Both of these new resonant structures are time dependent, their shape 686 

and position recurring periodically. For example, the blue island, which looks like a crescent 687 

moon pointing upward on the Poincare section at 𝑡 = 0, becomes a crescent moon pointing 688 

downward at time 4.55. The movement of the green island is more complex, as it turns both in 689 

azimuth and vertical, making one complete loop over 9.1 time units.  Because of the time-690 

dependence, trajectories must be strobed at the forcing frequency  in order to capture 691 

‘snapshots’ of their forms as they recur at a particular phase in the time cycle. At the center of 692 

each feature is a closed material curve that also varies periodically. Where the island has 693 

emerged from the breakup of a torus with quasiperiodic orbits, the individual trajectories that 694 

populate the material curves are themselves quasiperiodic.  695 

Particle trajectory computations in this case confirm that the purple, red and green islands give 696 

rise to attractors (Fig. 3i), whereas the blue island does not. In fact, slightly-buoyant rigid 697 

particles that are released in the blue region converge towards the attractor that lies near the 698 

purple region. This is also indicated by the basin of attraction of the central attractor extending 699 

across the space occupied by the blue resonant island in Fig. 7c. 700 
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IV. Discussion 701 

We have considered attraction phenomena for small, finite size, spherical, buoyant, rigid 702 

particles in a three-dimensional rotating cylinder flow with azimuthal rotation and overturning, 703 

and both with or without time dependence. The aim has been to gain insights into the behavior of 704 

slightly buoyant microplastic particles in 3D vortex flows that qualitatively resemble ocean 705 

eddies. The rigid particle motion is governed by a simplified version of the Maxey-Riley 706 

equations (accounting for inertia, buoyancy and simplified quantification of drag and added 707 

mass), and, approximately, by the slow-manifold reduction of these equations. We have 708 

illustrated the possibility of aggregation of slightly-buoyant rigid particles in 3D vortex flows 709 

towards closed loop attractors located subsurface within the interior of the flow. Even in our 710 

idealized flow and for spherical particles with fixed radius and buoyancy, aggregation is non-711 

trivial, often with multiple attractors present and/or the lack of attraction in some circumstances.  712 

Our rotating cylinder model is much less complex than any real ocean eddy in many respects, 713 

including the assumed quasiperiodic time dependence and the absence of decay and interaction 714 

with the surroundings. Understanding aggregation in a simple periodic flow seems like a 715 

reasonable first step towards understanding aperiodic, interacting, and decaying oceanic eddies. 716 

This approach is common in applications of dynamical systems theory to oceanography and 717 

meteorology. For example, arguments relating to the increased stability of jets due to the strong 718 

Kolmogorov-Arnold-Moser stability near shearless trajectories have first been developed for 719 

spatially-periodic and time-quasiperiodic flows and tested using idealized toy models, before 720 

exploring these ideas in more realistic oceanic and atmospheric settings (see Rypina et al., 2007 721 

and Beron et al., 2008; 2010). Note also that our results are applicable to quasi-periodic 722 

disturbances with finite number of frequencies rather than just periodic disturbances (we only 723 
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show numerical simulations for the time-periodic case for simplicity), and a quasiperiodic 724 

function might potentially be useful for approximating temporal variability in some oceanic 725 

flows, especially those with pronounced peaks in the spectrum. 726 

We have explored a steady axisymmetric rotating cylinder flow and a steady flow with its axial 727 

symmetry broken. In all cases, we have observed emergence of subsurface attracting structures 728 

that lead to the aggregation of buoyant particles towards them. We have linked these attractors to 729 

the periodic orbits of rigid particles that exist in a region of net contraction of the phase space of 730 

the particle motion. The slow manifold equations suggest that periodic orbits for rigid particles 731 

exist near periodic orbits of the underlying fluid flow, provided the drag is sufficiently strong 732 

(Stokes number << 1).   733 

We have also explored one case of an axially asymmetric and time-periodic flow, with focus on 734 

the resonant “islands” that arise due to the time-dependence. At the center of such islands are 735 

closed material contours, or loops, composed of quasi-periodic orbits of the fluid flow. One such 736 

structure has a nearby attractor, also a closed loop of quasiperiodic orbits for rigid particles, 737 

while a second example does not. A detailed explanation awaits formulation of a quantitative 738 

theory, something that is beyond the scope of the present paper and that will be presented in a 739 

future work.  740 

We have observed that the disappearance of an attractor, which can occur as the result of 741 

increasing rigid particle size or frame rotation, coincides roughly with the displacement of the 742 

position of the attractor to the outer edge of the resonant island from which it sprang. Whether 743 

this purely geometric observation forms the basis for a general criterion for the loss of attraction 744 

is unknown, as a dynamical justification is needed.   745 
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Marine microplastics can have complex non-spherical tangled-filament shapes, change their 746 

physical and chemical properties in time due to aging and photo- or chemical-decay processes 747 

(Andrady 2011), are subject to biofouling (see recent relevant work by Kreczak et al., 2021), and 748 

may interact leading to the formation of clusters. None of these effects were considered in this 749 

paper, and all will need to be taken into account for the realistic prediction of marine 750 

microplastic evolution and re-distribution in the ocean. Real ocean eddies are also decaying in 751 

time and are usually moving (translating) rather than stationary. Translation with a constant 752 

velocity can be handled by considering the flow in a moving frame of reference, but decay and 753 

interactions will likely change the geometry of the circulation and make the flow truly aperiodic. 754 

Our simplified model cannot account for these effects, which will need to be explored separately 755 

later.         756 
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Experiment 𝑎 𝑏  yo    Ω d 

1 – steady symmetric 0.62 7.5 0 0 0 0 0 0 10−3 

1a (small Ω) 0.62 7.5 0 0 0 0 0 0.3 10−3 

1b (large Ω) 0.62 7.5 0 0 0 0 0 1 10−3 

1c (slow overturn) 0.62 0.25 0 0 0 0 0 1 10−3 𝑣𝑠.  

5 × 10−4 

1d (𝑧𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑜𝑟   vs Ω) 0.62 7.5 0 0 0 0 0 Sweep 0 

to 10 

10−3 

1e (reversed flow) -0.62 -7.5 0 0 0 0 0 0, 0.6, 2 10−3 

2 – steady asymmetric 0.62 7.5 0.25 -0.2 0 0 0 0 10−3 

2a (small Ω) 0.62 7.5 0.25 -0.2 0 0 0 0.3 10−3 

2b (large Ω) 0.62 7.5 0.25 -0.2 0 0 0 1 10−3 

2c (2:1 resonance) 0.62 3.8 0.25 -0.2 0 0 0 0 10−3 

3 - non-steady asymmetric 0.62 7.5 0.25 -0.2 2𝜋

9.1
 

0.2 1 0 10−3 

Table 1: Dimensionless parameter values for numerical experiments. Fixed parameters in the 891 

kinematic model (Eqs. 9a-c) are 𝑐 = 0.69, and 𝑟0 = 1/2 in all cases.  Parameters that appear in 892 

the nondimensional Maxey-Riley Eq. (3) are also nondimensional, with 𝐿, 𝑈, 𝐿/𝑈 as length, 893 

velocity and time scales. Fixed parameter values based on 𝐿 = 1m and 𝑈 = 1m/s include 894 

𝜌𝑝

𝜌𝑓
= 0.97, 𝑅 =

2𝜌𝑓

𝜌𝑓+2𝜌𝑝
= 0.680 , 

3𝑅

2
− 1 = .020 �⃑�𝑟 =

𝑔𝐿

𝑈2 = 10.0  , 𝜀̃ =
2

9
(

𝑑

𝐿
)

2 𝑈𝐿

𝜈

1

R
= 0.33, and 895 

𝜀̃ (
3𝑅

2
− 1) = 0.0067.  Note that  Ω⃑⃑⃑ = Ω�⃑⃑� =

Ω⃑⃑⃑∗𝐿

𝑈
.  896 
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 897 

Figure 1. Three types of two-dimensional eddies with zero frame rotation and for which gravity 898 

is imagined to be zero: solid body rotation (a), constant pressure gradient (b), and point vortex 899 

(c). In each case, the cross hatched area represents a concentration of rigid particles with area 900 

𝐴(𝑡).  901 
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 910 

Figure 2. (left) Poincare section, (middle) fluid parcels trajectories in 3D, (right) buoyant particle 911 

trajectories in 3D for a steady symmetric fluid flow (top row), steady asymmetric flow (middle 912 

row), and non-steady, asymmetric flow. Parameter setting are listed under Experiments 1, 2 and 913 

3 in Table 1. Colors in the left column of panels match the corresponding panel in the middle 914 

column, but the colors in the right column indicated time after release of the particles. Note the 915 

attraction of buoyant particles to a single attractor at mid-depth in panel (c), to 2 attractors in 916 

panel (f), and to 3 attractors in panel (i). Particles are released along a vertical line 𝑥 = 0.334, 917 

𝑦 = 0, 0 < 𝑧 ≤ 0.6 with initial velocity equal to that of the co-located fluid parcels.  918 

 919 

 920 

 921 
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 922 

Figure 3. Sketch showing the position in a vertical section of the periodic orbit (red dot) of the 923 

rigid particle relative to the periodic orbit (blue dot) of the fluid flow. The viewer sees one half 924 

of a vertical slide though the cylinder, with the azimuthal flow directed away from the viewer 925 

and the cylinder center at the left edge. 926 
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 934 

Figure 4. The slow-manifold radial and vertical velocity components for the rigid particles, 935 

plotted in the (𝑟, 𝑧) plane for (a) 𝜀̃  (
3𝑅

2
− 1) = 0.0067, (b) = 0.02, and (c) = 0.03.  Other 936 

parameters are as listed for Experiment 1a in Table 1.  937 
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 948 

Figure 5. For the steady symmetric rotating cylinder flow, the coordinates of the periodic orbit 949 

that acts as an attractor for buoyant particles as a function of particle diameter (a-b) and frame 950 

rotation (c). Flow parameters are listed in Table 1 and correspond to Experiment 1 for (a-b) and 951 

Experiment 1d for (c-d). 952 
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 958 

Figure 6. (a): The 𝑄𝑎 function for the steady, axisymmetric, cylinder flow with the same 959 

parameter setting (see Experiment 1a) as for Figure 3a-c, and plotted in (x,z) along with the 960 

streamlines of the overturning circulation. The thick rigid curve corresponds to 𝑄𝑎 = 0.  (b): The 961 

same parameter settings, except Ω has been raised from 0 to 0.3 (Rossby number ≅ 1)   (c): 962 

Ω = 1.0. (Rossby number ≅ 0.2). 963 
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 973 

Figure 7. Domain of attraction for the attractors in (a) steady symmetric (Experiment 1 in Table 974 

1), (b) steady asymmetric (Experiment 2 in Table 1), and (c) time-periodic asymmetric rotating 975 

cylinder flow (Experiment 3 in Table 1). (These are the same 3 experiments that were used to 976 

produce Fig. 2.) The color indicates the height (i.e., value of z-coordinate) of the final crossing of 977 

a trajectory with the Poincare section, as a function of particle’s release location. Particles 978 

attracted to the same attractor thus correspond to same color. 979 
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 987 

Figure 8. Same as in Fig. 7a but with frame rotation. 988 
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 999 

Figure 9. For the “reversed flow” experiment (Experiment 1e in Table 1), z-position of a sample 1000 

particle trajectory as function of time for 3 values of Ω: 0 (top), 0.6 (middle), and 2 (bottom).  1001 

Time 𝑡 is in dimensionless units (but since our scaling coefficient for time is equal to 1 sec, the 1002 

numbers on the x-axis can also be read as dimensional time in sec.) 1003 
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 1013 

Figure 10. For the “slow overturn” Experiment 1c from Table 1, color indicates the final z-1014 

coordinate of a particle’s trajectory at the end of integration time as a function of particle’s 1015 

release location for 2 values of d: (a) 5 × 10−4 and (b) 10−3. Yellow corresponds to particles 1016 

rising up to the top, whereas green indicates the basin of attraction of the subsurface attracting 1017 

periodic orbit. The insets at the left side of each frame show a sample trajectory whose release 1018 

location is indicated by the black dot. 1019 
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 1028 

 1029 

Figure 11. Same as Fig. 2(d-f) but with 𝑏 = 3.8. 1030 
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 1043 

Figure 12. For the steady perturbed system (Experiment 2 in Table 1), changes in the location of 1044 

the attracting periodic orbits, basins of attractions, and time of attraction as a function of particle 1045 

diameter 𝑑 (and thus 𝜀̃). (a,d,g) show z-coordinate of the last crossing of trajectory with the x-z 1046 

Poincare plane as a function of release location; flat regions are basins of attraction for the 2 1047 

attactors. (b,e,h) show 20 trajectories in 3d released along a vertical line at 𝑦 = 0, 𝑥 = 0.334, 1048 

0.05 < 𝑧 < 0.95; denser cores indicate attractors. (c,f,i) show crossing of the same select 20 1049 

trajectories with the x-z Poincare plane, color coded by time; blue corresponds to release 1050 

location, yellow corresponds to final positions.  1051 
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 1055 

Figure 13. For the steady perturbed system (Experiment 2 in Table 1), changes in the location of 1056 

the attracting periodic orbits, basins of attractions, and time of attraction as a function of frame 1057 

rotation Ω. (a,d,g) show z-coordinate of the last crossing of trajectory with the x-z Poincare plane 1058 

as a function of release location; flat regions are basins of attraction for the 2 attactors. (b,e,h) 1059 

show 20 select trajectories in 3d released along a vertical line at 𝑦 = 0, 𝑥 = 0.334, 0.05 < 𝑧 <1060 

0.95; denser cores indicate attractors. (c,f,i) show crossing of the same 20 trajectories with the x-1061 

z Poincare plane, color coded by time; blue corresponds to release location, yellow corresponds 1062 

to final positions.  1063 
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