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Abstract 13 

We developed a new rule-based, cellular-automaton algorithm for predicting the hazard extent, sediment transport and 14 

topographic change associated with the runout of a landslide. This algorithm, which we call MassWastingRunout 15 

(MWR), is coded in Python and implemented as a component for the package Landlab. MWR combines the 16 

functionality of simple runout algorithms used in landscape evolution and watershed sediment yield models with the 17 

predictive details typical of runout models used for landslide inundation hazard mapping. An initial DEM, a regolith 18 

depth map, and the location polygon of the landslide source area are the only inputs required to run MWR to model 19 

the entire runout process. Runout relies on the principle of mass conservation and a set of topographic rules and 20 

empirical formulas that govern erosion and deposition. For the purpose of facilitating rapid calibration to a site, MWR 21 

includes a calibration utility that uses a Markov Chain Monte Carlo algorithm to automatically calibrate the model to 22 

match observed runout extent, deposition and erosion. Additionally, the calibration utility produces empirical 23 

probability density functions of each calibration parameter that can be used to inform probabilistic implementation of 24 

MWR. Here we use a series of synthetic terrains to demonstrate basic model response to topographic convergence and 25 

slope, test calibrated model performance relative to several observed landslides, and briefly demonstrate how MWR 26 

can be used to develop a probabilistic runout hazard map. A calibrated runout model may allow for region-specific 27 

and more insightful predictions of landslide impact on landscape morphology and watershed-scale sediment dynamics, 28 

and should be further investigated in future modelling studies. 29 

1. Introduction 30 

Over geologic timescales, landslides and their runout shape the topographic expression of mountain ranges and 31 

channel networks (e.g., Campforts et al., 2022; Korup, 2006; Larsen and Montgomery, 2012; Montgomery and 32 

Dietrich, 1988). Over more pragmatic engineering and environmental risk management timescales, landslides and 33 

their runout can inundate and destroy infrastructure (e.g., Kean et al., 2019) but also support numerous ecosystem 34 
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benefits, including carbon and nutrient transport from hillslopes to channels and the creation of riparian habitat (Benda 35 

et al., 2003; Bigelow et al., 2007; Goode et al., 2012). Therefore, explicit representation of landslide runout is a 36 

necessary component of: (1) landslide inundation hazard assessments, with emphasis on inundation extent and flow 37 

depth (e.g., Frank et al. 2015; Han et al., 2015); (2) watershed sediment yield models, with emphasis on the 38 

mobilization, deposition and type of sediment carried by the landslide (e.g., Bathurst and Burton, 1998;  39 

Istanbulluoglu,et al., 2005); and (3) landscape evolution models, with emphasis on topographic change prediction 40 

(e.g., Tucker and Bras, 1998; Istanbulluoglu and Bras, 2005; Campforts et al., 2022); 41 

Landslide runout processes can be generalized into three phases: initiation, erosion, and deposition. After a landslide 42 

initiates, it may break apart and flow as a relatively dry debris slide, or it may mix with surface runoff to become a 43 

debris flow. The mobility of the mass wasting material and resulting erosion/deposition pattern often varies as a 44 

function of runout topography and initial relief and size of the landslide (Iverson, 1997). Mobility may also be 45 

impacted by substrate liquefaction (Hungr and Evans, 2004) and landslide basal cataclasis (Shaller et al. 2020). As 46 

the runout material moves downslope, flow depth varies as a function of channel width (Kean et al, 2019), which in 47 

turn impacts erosion rates (Schürch et al. 2011). Theoretical, field and laboratory observations indicate that erosion 48 

rates may also depend on the moisture content of the channel bed (Iverson, 2012; McCoy et al. 2012), flow grainsize 49 

(Egashira et al., 2001) and granular stress within the flow (Capart et al, 2015). The slope at which deposition begins 50 

is controlled by the grain to water ratio and friction angle of the slide material (Takahashi, 2014; Major and Iverson, 51 

1999; Zhou et al., 2019) but the friction angle of the material may vary as a function of the grains in the flow and 52 

fluidization of the flow material (Hutter et al., 1996). Lateral levees often form along the edges of the flow (Major, 53 

1997; Whipple and Dunne, 1992; Shaller et al., 2020) and deposition at the distal end of the flow may occur as layered 54 

accretion (Major, 1997) or as the emplacement of a single, massive deposit (Shaller et al., 2020). If the water content 55 

of the runout material is high enough, as the solid fraction of the distal end of the flow compresses, the water is 56 

squeezed out and may continue as an immature debris flow (sensu Takahashi, 2014) or intense bedload (sensu Capart 57 

& Fraccarolo, 2011), extending the runout distance (e.g., Shaller et al. 2020).  58 

Landslide inundation hazard models aim to accurately predict the runout extent and/or flow depths of a runout event 59 

and may include some or most of the above processes in the model. Example models include: (1) site-specific-60 

empirical/statistical models that use simple geometric rules and an estimate of the total moblized volume (initial 61 

landslide + eroded volume) or a growth factor (e.g., Reid et al. 2016); (2) detailed, continuum-based mechanistic 62 

models, which conceptualize the runout process as a single-phase or multiphase flow using the depth-integrated 63 

Navier-Stokes equations for an incompressible, free-surface flow (i.e., shallow water equations; Frank et al, 2015; 64 

Han et al., 2015; Iverson and Denlinger, 2001; Medina et al., 2008) and often (though not always) require pre-65 

knowledge of the total moblized volume (e.g., Barnhart et al., 2021; Han et al. 2015); (3) reduced complexity flow-66 

routing models that use rule-based abstractions of the key physical processes that control the flow (Clerici and Perego, 67 

2000; Guthrie and Befus, 2021; Gorr et al., 2022; Han et al., 2017, 2021; Horton et al., 2013; Liu et al, 2022) and are 68 

typically implemented using just the initial landslide location and volume but often rely on heavy, site specific 69 

parameterization and; (4) hybrid modelling approaches that combine mechanistic models with empirical and reduced 70 
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complexity approaches (D’Ambrosio et al., 2003; Iovine et al., 2005; Lancaster et al., 2003; McDougall and Hungr 71 

2004). 72 

For landscape evolution and watershed sediment yield applications (herein referred to as watershed sediment models, 73 

WSMs), the runout model must be scalable in both space and time, and capable of modelling the entire runout process 74 

given an internally modelled initial landslide body (e.g. Tucker and Bras, 1998; Doten et al 2006; Campforts et al. 75 

2022). As such, computationally efficient and parsimonious reduced complexity runout models that evolve the terrain 76 

and transfer sediment are often preferred in WSMs, however with simplifications that can restrict model ability to 77 

accurately replicate observed inundation extent or depositional patters. Such simplifications include omitting debris 78 

flow erosion and bulking in runout channels, limiting flow to only a single cell in the steepest downstream direction, 79 

and assuming debris flows only occupy the width of a single cell (e.g., Tucker and Bras, 1998; Istanbulluoglu and 80 

Bras, 2005) or link of a channel network (Benda and Dunne, 1997).   81 

To bridge the scalable functionality of WSMs with the predictive accuracy of landslide inundation hazard models, 82 

without the computational overhead of a detailed mechanistic representation of the runout process, or difficult 83 

parameterization typical of other models, we developed a new, reduced complexity landslide runout model, called 84 

MassWastingRunout (MWR). MWR models landslide runout starting from the source area of the landslide, making it 85 

easily compatible with WSMs that internally determine the initial landslide body size and location. MWR tracks 86 

sediment transport and topographic change downstream, and evolves the attributes of the transport material. MWR 87 

can be calibrated by adjusting just two parameters (𝑆𝑐 and 𝑞𝑐, described in Section 2) and is augmented with a Markov 88 

Chain Monte Carlo (MCMC) calibration utility that automatically parameterizes model behavior to observed runout 89 

characteristics (e.g., erosion, deposition, extent). MWR also includes a built-in utility called MWR Probability, 90 

designed for running an ensemble of simulations to develop probabilistic landslide runout hazard maps.  91 

In this paper, we present the conceptualization and numerical implementation of the MWR model (Section 2), describe 92 

the calibration utility and its probabilistic implementation (Section 3) and demonstrate basic model response to 93 

topographic convergence and slope on a series of synthetic terrains (Section 4). Event-scale applications to replicate 94 

observed runout extent, sediment transport, and topographic change at four topographically and geologically unique 95 

field sites (see Figure 1) are discussed (Section 5). We test MWR’s predictive ability using the parameterization of 96 

one site to predict runout hazard at a nearby site and show a brief example of Monte Carlo model runs to determine 97 

runout probability from initial landslide source areas defined by an expert-determined potentially unstable slope or a 98 

hydrologically-driven landslide hazard model (Section 6). We conclude with a short summary of MWR model 99 

performance and discuss how a calibrated MWR can be incorporated into WSMs. 100 
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 101 

Figure 1: Example landslides used to evaluate calibrated MWR performance: (a) Cascade Mountains, WA: a large debris avalanche 102 
over steep, broadly convergent terrain (photo credit: Stephen Slaughter). (b) Black Hills, WA: large debris flows over a broadly 103 
convergent, gently sloped valley (photo credit: Stephen Slaughter). (c) Rocky Mountains, CO: a moderate sized debris avalanche 104 
over steep, unconfined to divergent hillslope. (d) Olympic Mountains, WA: small debris flows in steep, highly convergent channels. 105 
Image scale varies with depth, but approximate scale of the image is indicated at the location of the scale bar. 106 

2. Description of the MassWastingRunout model 107 

2.1 Overview of the cellular-automaton modelling approach 108 

MWR is coded as a discrete cellular automaton (CA) model. CA models apply a set of equations or rules (deterministic 109 

or probabilistic) to individual cells of a grid to change the numerical or categorical value of a cell state (e.g., Codd, 110 

1968). In earth sciences, CA models are widely used to model everything from vegetation dynamics (e.g., Nudurupati 111 

et al., 2023) to lava flows (e.g., Barca et al., 1993) to geomorphic transport, in which gravitationally directed erosion 112 



 

 
5 

and depositional processes modify a digital elevation model (DEM) representation of a landscape (e.g., Chase, 1992; 113 

Crave & Davy, 2001; Murray & Paola, 1994; Tucker et al., 2018). Existing CA-based landslide runout models include 114 

models by Guthrie and Befus (2021), D’Ambrosio et al. (2003) and Han et al. (2021). In all of these models, runout 115 

behavior is controlled by topographic slope and rules for erosion and deposition but conceptualization and 116 

implementation differ.  117 

In MWR, mass continuity is central to model conceptualization. Of the wide range of processes described in the 118 

introduction that control observed runout, MWR explicitly represents erosion, deposition, and flow resistance due to 119 

debris size and vegetation. Material exchange between the runout material and underlying terrain as well as flow 120 

resistance determines runout extent and landscape evolution. Model rules are designed such that they can be 121 

parameterized from field measurements. Finally, in MWR, most computations occur only at the location of moving 122 

debris, in a manner analogous to the “mobile” cellular automaton implementation of Chase (1992).  123 

Chase (1992) modelled precipitation-driven surface erosion by randomly placing single packets of precipitation on a 124 

DEM, which then moved from higher elevation to lower elevation grid cells, eroding and transporting sediment as a 125 

function of the slope between the cells. The individual packets of precipitation were referred to as precipitons. In 126 

MWR, since we route the downslope progression of debris from a specified mass wasting source area, we refer to 127 

these packets of debris as “debritons”. The debritons represent debris flux, here defined as a volume of debris 128 

transferred per model iteration per grid-cell area, [m3/m2/iteration] and are equivalent to the flow depth in the cell. 129 

The present implementation of the MWR algorithm is coded in Python and developed as a component of the Landlab 130 

earth surface modeling toolkit (Barnhart et al., 2020; Hobley et al., 2017). MWR uses the Landlab raster model grid, 131 

which consists of a lattice of equally sized, rectangular cells. Topographic elevation, derived topographic properties 132 

like slope and curvature, and other spatially varying attributes such as regolith depth and grain size, are recorded at 133 

nodes in the center of each cell (see Figure 5 of Hobley et al., 2017). In the subsequent sections we describe the model 134 

theory. All parameters and variables used in the theory are listed in the Notation section. 135 

2.2 Mobilization of the initial mass wasting source material (Algorithm 1): 136 

To initiate MWR, the user provides maps of initial topography, regolith depth, and the location and depth of the mass 137 

wasting source material (e.g., the initial landslide body). Each raster model grid node in the mass wasting source 138 

material is designated as a debriton (Figure 2, iteration 𝑡 = 0) with a magnitude equal to the mass wasting source 139 

material depth and basal elevation equal to the initial topography minus the mass wasting source material depth. The 140 

basal elevation can be thought to represent the rupture or slip surface of the source material and the redistribution 141 

(flux) of each debriton to its downslope nodes (receiver nodes) is determined as a function of the slope of the slip 142 

surface. At the lowest-elevation debriton of the source material, flux to its downslope nodes is determined using the 143 

surface slope of the initial DEM (see flow direction of lowest node in Figure 3a). This implementation helps to ensure 144 

that the lowest-elevation debriton in the mass wasting source material moves downslope and movement of upslope 145 

debritons are impacted by the geometry of the mass wasting source material. For example, the receiver nodes of the 146 

lowest-elevation debriton in the landslide illustrated in Figure 2 (iteration 𝑡 = 0, detailed in Figure 3a) would be 147 

identified as those among the eight neighboring nodes whose initial topographic elevation was less than the initial 148 
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topographic elevation of the node while for the debriton at node 51, the receiver nodes would be identified as those 149 

among the eight neighboring nodes whose topographic elevation is less than the topographic elevation of the terrain 150 

underlying the debriton (the slip surface). 151 

 152 

Figure 2. Illustration of initial mass wasting release and runout down a steep, convergent slope. Variable 𝒕 indicates model iteration 153 
(not time). Notice how the flow elongates and widens as the model progresses and the number of receiver nodes (numbers listed at 154 
bottom of each panel) and quantity of mobilized material increase. - 155 



 

 
7 

 156 

Figure 3. (a) Three-dimensional illustration of iteration 𝒕 = 0 in Figure 2, showing initial source material nodes (represented by red 157 
cells) and flux towards downslope nodes. (b) Distribution of 𝒒𝑶  to downslope nodes 38, 39, 40 and 44; (c) illustration of mass 158 
continuity applied to any node that receives a debriton.  159 

 160 

2.3 Flow routing and rules for erosion, deposition and resistance (Algorithm 2) 161 

Algorithm 2 is essentially the runout model. It determines how each debriton traverses and modifies the landscape. 162 

After receiver nodes from the first model iteration are determined in Algorithm 1 (iteration 𝑡=0), Algorithm 2 is 163 

repeatedly implemented until all material has deposited (i.e., there are no debritons). Each debriton moves one grid 164 

cell per model iteration, the larger the landslide size, the more iterations necessary to evacuate the landslide. As each 165 

debriton moves, it may erode or aggrade the landscape, impacting the movement of any upslope debritons. As is 166 

common with other reduced complexity models, we assume that inertial effects have negligible impact on flow 167 

behavior (i.e., the kinematic flow approximation). The downslope redistribution of a debriton or flux to each of a 168 

node’s 𝑖-th receiver nodes (𝑞  𝑅𝑖
) is determined as a function of topographic slope (slope of terrain under the debriton) 169 

using the Freeman (1991) multiple flow direction algorithm:  170 

𝑞𝑅𝑖
= 𝑞𝑂

𝑆𝑖
𝑎

∑ 𝑆𝑖
𝑎𝑁𝑟

𝑖=1

 (1) 171 

where 𝑞𝑂  is the total out-going flux from the node and has units of depth [m] per model iteration, 𝑁𝑟 is the number 172 

of receiving nodes, 𝑖 is the index for each receiver node (e.g.,  𝑖 = 1, 2 … 𝑁𝑟) and 𝑆𝑖 is the underlying topographic 173 
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slope to the 𝑖-th receiver node (Figure 3b). The Freeman (1991) multiple flow direction algorithm is a commonly used 174 

approximation for two-dimensional flow, and in this implementation it is handled by a pre-existing Landlab flow-175 

routing component. The exponent 𝑎 controls how material is distributed to downslope nodes, with higher values 176 

causing narrower flow (Holmgren 1994). In a braided river cellular-automaton model, Murray and Paola (1997) used 177 

an approximation for turbulent shallow water flow to justify 𝑎 = 0.5 (which is the exponent on the slope factor in 178 

channel friction laws). For our application, we found MWR provided a closer fit to observed mass wasting runout if 179 

𝑎 = 1, suggesting that the material behavior is more similar to linear-viscous shear flow than to wall-bounded turbulent 180 

shear flow (e.g., as the runout debris flows downslope, it tends to spread less than shallow turbulent water). The total 181 

incoming flux (again, in units [m] per model iteration) towards a given node (𝑞𝐼), is determined by summing the flux 182 

from each of the node’s donor nodes: 183 

𝑞𝐼 = ∑ 𝑞𝐷𝑗  
𝑁𝑑
𝑗=1  (2)  184 

Where 𝑁𝑑 is the number of donor nodes, and 𝑞𝐷𝑗 is the flux from node 𝐷𝑗  (the 𝑗-th donor node,  𝑗 = 1,2… 𝑁𝑑; Figure 185 

3b).  186 

As noted by Tucker and Hancock (2010), the flow depths calculated from two-dimensional flow approximations like 187 

(1) can be influenced by the grid-size used to represent the terrain and depending on terrain slope and convergence, 188 

neglection of pressure and momentum forces may lead the model to underestimate or overestimate flow width in some 189 

circumstances. Rengers et al. (2016) noted that this same issue occurs when using a kinematic wave approximation of 190 

the shallow water equations because the kinematic wave approximation lacks a pressure term that would normally 191 

allow the modelled water surface to spread out. We consider flow depths determined from (2) as meaningful in the 192 

sense that they vary as a function of flux but less meaningful in the sense that they are affected by the limitations noted 193 

above. Furthermore, for the purpose of determining flow-depth-dependent erosion rates described later in this paper, 194 

and to provide a simplified representation of the effect of pressure forces, we constrain flow depths to no more than a 195 

maximum flow as: 196 

ℎ = 𝑚𝑖𝑛 (ℎ𝑚𝑎𝑥 , 𝑞𝐼) (3) 197 

Where ℎ𝑚𝑎𝑥  is an effective upper limit to flow depth, that in practice can be approximated as the maximum observed 198 

flow depth, as inferred from field indicators or assigned based on expert judgement (See Section 5) and ℎ is the 199 

corrected flow depth used to calculate flow shear stress. This correction allows erosion rates to vary with flux but 200 

prevents unreasonably large values. This flow depth correction does not violate the conservation of mass and runout 201 

mass balance, as ℎ is only used to calculate flow shear stress.  202 

To determine aggradation (𝐴) at a node, we use a critical slope (𝑆𝑐) constraint that permits computationally-rapid 203 

distribution of 𝑞𝐼 over multiple nodes. Critical slope constraints or rules are common to many reduced complexity and 204 

landscape evolution models. Chen et al. (2023) showed that when flow inertia can be ignored, 𝑆𝑐 can be approximated 205 

from the surface slope of observed deposits. Several landscape evolution models use a 𝑆𝑐-based nonlinear, nonlocal 206 

aggradation scheme (e.g., Campforts et al., 2020; Carretier et al., 2016) but when this rule is implemented with the 207 

debriton framework described above, unreasonably tall deposits result when 𝑞𝐼 is large and slope at the node (𝑆) <<208 
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𝑆𝑐. To resolve this problem, aggradation depth can be limited to 𝐴 ≤ 𝑆𝑐Δ𝑥, (where Δ𝑥 grid cell length), but we found 209 

that this constraint results in long deposits that parallel the underlying slope when 𝑞𝐼 is large. Instead, MWR computes 210 

the aggradation depth at a node assuming that the aggradation will spread over 𝑁𝑎 nodes until all of 𝑞𝐼 is deposited 211 

and that the surface slope of the overall deposit will be equal to 𝑆𝑐, as shown in Figure 4 and described as follows. 212 

  213 

Figure 4. Illustration of aggradation rule used in MWR when 𝑞𝐼 is assumed to spread over 5 nodes (𝑁𝑎  = 5).  Solid 214 

yellow box indicates aggradation amount at a given node. Dashed yellow boxes and lines indicate the geometry of 215 

assumed the aggradation beyond the node. Dots along DEM surface are nodes.  216 

 Aggradation at a node is determined as: 217 

𝐴 = {
0                      ,               𝑆 ≥ 𝑆𝑐  

𝑚𝑖𝑛(𝐴𝑝,𝑁𝑎
, 𝑞𝐼)  ,        𝑆 < 𝑆𝑐  

  (4) 218 

Where 𝑆 is the steepest slope to the node’s eight neighbouring nodes, 𝐴𝑝,𝑁𝑎
 is a potential aggradation depth necessary 219 

to form a deposit that: (1) begins at the node and spreads over 𝑁𝑎 consecutive nodes; (2) has a total volume equal to 220 

𝑞𝐼Δ𝑥2; (3) a surface slope equal the critical slope 𝑆𝑐 and; (4) an underlying topographic slope equal to the steepest 221 

slope at the node and assumed constant over the 𝑁𝑎 consecutive nodes of deposition. From this assumed deposit, we 222 

can analytically define 𝐴𝑝,𝑁𝑎
 and 𝑁𝑎 as a function of 𝑞𝐼, 𝑆𝑐 and 𝑆 as follows: 223 

First, 𝑞𝐼, calculated from (2), can be used to calculate 𝐴𝑝,𝑖 by expressing 𝑞𝐼 as the sum of the 𝑁𝑎 deposits that make 224 

up the overall deposit as: 225 

𝑞𝐼 = ∑ 𝐴𝑝,𝑖
𝑁𝑎
𝑖=1   (5) 226 

where 𝐴𝑝,𝑖 is the i-th deposition amount in the deposit and 𝑖 = 1 is the last node of deposition (𝐴𝑝,1; see Figure 4). 227 

Since we assume the deposit slope and underlying topographic slope are uniform, the deposition amount at any of the 228 

𝑁𝑎 nodes can be determined from 𝐴𝑝,1 as: 229 

𝐴𝑝,𝑖 = 𝐴𝑝,1 + (𝑖 − 1)𝛥𝑥( 𝑆𝑐 − 𝑆) (6) 230 

From (6) we can re-write (5) as a function of 𝐴𝑝,1 and rearrange to define 𝐴𝑝,1 as a function of 𝑞𝐼: 231 
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𝐴𝑝,1 =  
1

𝑁𝑎
𝑞𝐼 −

𝑁𝑎−1

2
𝛥𝑥( 𝑆𝑐 − 𝑆) (7) 232 

Substituting (7) into (6) and solving for 𝑖 = 𝑁𝑎, we get an expression for 𝐴𝑝,𝑁𝑎
: 233 

𝐴𝑝,𝑁𝑎
 =  

1

𝑁𝑎
𝑞𝐼 +

𝑁𝑎−1

2
𝛥𝑥(𝑆𝑐 − 𝑆 )  (8) 234 

Equation (8) can be rearranged into a quadratic equation and solved for 𝑁𝑎 as: 235 

𝑁𝑎 =
−𝐴𝑝,1+ 

1

2
𝛥𝑥(𝑆𝑐−𝑆 )±√( 𝐴𝑝,1−

1

2
𝛥𝑥(𝑆𝑐−𝑆 ))

2
+2𝛥𝑥(𝑆𝑐−𝑆)𝑞𝐼

𝛥𝑥(𝑆𝑐−𝑆)
  (9) 236 

We use (8) to solve for 𝐴𝑝,𝑁𝑎
 and (9) to solve for 𝑁𝑎 assuming 𝐴𝑝,1 = 1 2⁄ Δ𝑥𝑆𝑐 and rounding the positive solution to 237 

the nearest integer. When implemented using a single debriton, released on a two-dimensional hillslope as illustrated 238 

in Figure 4, the debriton deposits over 𝑁𝑎 nodes at a uniform slope equal to 𝑆𝑐. When implemented on an actual three-239 

dimensional terrain, the interaction between multiple debritons in multiple directions creates a complex deposit whose 240 

slope changes with 𝑆𝑐.  241 

To determine erosion depth (𝐸) [m/iteration], we constrain 𝐸 to the lesser of a potential erosion depth, ℎ𝑒, and local 242 

regolith depth, ℎ𝑟:  243 

𝐸 = 𝑚𝑖𝑛 (ℎ𝑟 , ℎ𝑒) (10)  244 

where ℎ𝑒 is computed as a function of the basal shear stress of the flow, 𝜏 [Pa], (Equations 12 and 13) and the critical 245 

shear stress (𝜏𝑐) of the regolith at the node [Pa]: 246 

ℎ𝑒 = 𝑘(𝜏 − 𝜏𝑐)𝑓 (11)  247 

The coefficient 𝑘 is an erodibility parameter [m/Paf]. Stock and Dietrich (2006) showed that 𝑘 encapsulates substrate 248 

properties. If ℎ𝑒 is used to represent erosion over geomorphic time scales, with repeated debris flow occurrences in a 249 

single model iteration, 𝑘 becomes associated with debris flow length and frequency (Perron, 2017). In our application 250 

since we are modelling the erosion associated with a single runout event, as represented by the downslope movement 251 

of the debritons, the coefficient 𝑘 therefore needs to scale ℎ𝑒 on the order of the average erosion depth caused by a 252 

single debriton. Using this logic, 𝑘 can be computed using the observed average erosion depth and an estimated length 253 

of the runout material that caused the erosion. Further details on how we determine 𝑘 from observed runout are 254 

included in the Appendix. The exponent 𝑓 controls the non-linearity of ℎ𝑒 with shear stress. Many authors (Chen & 255 

Zhang, 2015; Frank et al., 2015; Shen et al., 2020) use a value of 1 for 𝑓 but field measurements by Schürch et al. 256 

(2011) (see their Figure 3) suggest that 𝑓  may be less than 1 if 𝜏  is assumed to vary linearly with flow depth, 257 

particularly at flow depths greater than 3 meters.  258 

MWR includes two options for defining 𝜏: (1) a quasi-static basal shear stress approximation or (2) a grain-size-based 259 

shear stress approximation.  The quasi-static basal shear stress approximation (e.g., Takahashi, 2014) is defined as:  260 

𝜏 = 𝜌𝑔ℎ 𝑠𝑖𝑛 𝜃    (12)  261 
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where 𝜌 is the density of mass wasting material (grain and water mixture) [kg/m3], 𝑔 is gravity [m/s2], ℎ is the adjusted 262 

flow depth described in (3) and 𝜃 is the topographic slope (tan-1(𝑆)) measured in degrees.  263 

The grain-size-based shear stress approximation is defined using an empirical formula by Bagnold (1954):  264 

𝜏 = 𝜎 𝑡𝑎𝑛 𝜑 (13) 265 

Where 𝜎 is normal stress [Pa], 𝜑 is the collision angle between grains, measured from the vertical axis (See Bagnold, 266 

1954), with a value of  tan 𝜑 typically equal to 0.32. Stock and Dietrich (2006) defined 𝜎 as:  267 

𝜎 =  𝑐𝑜𝑠 𝜃𝜐𝑠𝜌𝑠𝐷𝑠
2 (

𝑑𝑢

𝑑𝑧
)

2

    (14) 268 

Where 𝜐𝑠 is the volumetric solids concentration, 𝜌𝑠 is density of the solids [kg/m3], 𝑢 is flow velocity [m/s], 𝑧 is depth 269 

below the flow surface [m],  𝑑𝑢 𝑑𝑧⁄  is the shear strain rate [1/s] and 𝐷𝑠 is the representative grain size [m]. Stock and 270 

Dietrich (2006) suggested that 𝐷𝑠 corresponds to a small percentile of the coarsest fraction of the runout material (𝐷88 271 

to 𝐷96) and they approximated 𝑑𝑢 𝑑𝑧⁄  as: 272 

𝑑𝑢

𝑑𝑧
 = 

𝑢

ℎ
 (15) 273 

Solely for the purpose of computing 𝑑𝑢 𝑑𝑧⁄ , we approximate velocity at a node using a grain-size dependent empirical 274 

formula for debris flow velocity by Julien and Paris (2010) as: 275 

𝑢 = 5.75𝑢∗𝑙𝑜𝑔 (
ℎ

𝐷𝑠
) (16) 276 

Where 𝑢∗is shear velocity (√𝑔ℎ tan 𝜃). Substituting (16), (15), (14) and (13) into (11) yields a grain-size dependent 277 

approximation for ℎ𝑒 that mimics the non-linear erosion response to flow depth in Schürch et al. (2011). Additionally, 278 

this form of 𝜏 is advantageous because it permits landslide-driven erosion rates to scale with landslide grain size, 279 

which can vary by lithologic region (e.g., Roda-Boluda et al. 2018). As will be shown in Section 5, we obtained 280 

reasonable model calibration at multiple sites by defining 𝐷𝑠 from the coarser grain sizes observed in the field at 281 

existing runout-deposits, road-cuts and tree-throw pits.  282 

Once 𝐴 [m] and 𝐸 [m] have been determined, total out-going flux per iteration, 𝑞𝑂 [m] is determined as (see Figure 283 

3c): 284 

 𝑞𝑂 = {
𝑞𝐼 − 𝐴 + 𝐸,        𝑞𝐼 ≥ 𝑞𝑐

0                 ,       𝑞𝐼 < 𝑞𝑐  
 (17) 285 

Where 𝑞𝑐 is a threshold flux for deposition. When  𝑞𝐼 < 𝑞𝑐 ,  𝑞𝐼 deposits and 𝑞𝑂 becomes zero. The threshold flux 𝑞𝑐 286 

conceptually represents the flow depth below which flow resistance is large enough to cease the forward momentum 287 

of the flow, whether in the form of internal friction or friction due to vegetation and obstructions (e.g., large clasts or 288 

logs). The density and water content of 𝑞𝐼, 𝐴, and  𝐸 are treated as uniform and surface runoff, such as channelized 289 

stream flow or hillslope-infiltration-excess runoff, that might mix with 𝑞𝐼  𝐴, or 𝐸 is ignored. Once 𝑞𝐼, 𝐴, 𝑞𝑂 and 𝐸 290 

have been determined, change in elevation at a node (Δ𝜂) is calculated as:  291 

Δ𝜂 = 𝐴 − 𝐸 (18) 292 
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Attributes (e.g., grain size, organic content or any other attribute that is transferred in the flow) of the debriton and 293 

regolith are updated using a volumetric-weighted average approach. First, for each regolith attribute being tracked by 294 

the model, the attribute value delivered to a node from its donor nodes (𝜉𝐷) is determined as: 295 

𝜉𝐷 =
𝝃𝑫∙𝒒𝑫

𝑞𝐼
 (19) 296 

where 𝒒𝑫 is a vector containing all 𝑞𝐷𝑗
 sent to the node, 𝝃𝑫 is a vector containing the incoming attribute values for 297 

each 𝑞𝐷𝑗
, and 𝑞𝐼 is the sum of incoming flux from donor nodes defined by (2).  298 

Second, the attribute value sent from a node to its receiver nodes (𝜉𝑅) is determined as: 299 

𝜉𝑅 =  
𝜉𝑡−1𝐸+𝜉𝐷(𝑞𝐼 −𝐴)

𝑞𝑂
 (20) 300 

where 𝜉𝑡−1 is the attribute value at the node before any aggradation (i.e., the previous iteration attribute value). Finally, 301 

the attribute value at the node, updated to account for erosion and aggradation (𝜉) is: 302 

𝜉 =
𝜉𝑡−1(ℎ𝑟−𝐸)+𝜉𝐷𝐴

𝐴+ℎ𝑟−𝐸
 (21) 303 

Regolith thickness (ℎ𝑟) and topographic elevation (𝜂) are updated at a node as:  304 

𝜂 = 𝜂 𝑡−1 + 𝛥𝜂 (22) 305 

ℎ𝑟 = ℎ𝑟 𝑡−1 +  𝛥𝜂 (23) 306 

Where 𝜂 𝑡−1 and ℎ𝑟 𝑡−1 are the topographic surface elevation and regolith thickness at the node from the previous 307 

model iteration. After regolith thickness and topographic elevation have been updated for each debriton, the multi-308 

direction slope of the DEM, which is used for routing the debritons in the next model iteration, is recomputed from 309 

the topographic surface.  310 

Using the above approach, debritons may become obstructed if they encounter a topographic pit or flat topography in 311 

the DEM. To allow a debriton to pass an obstruction, we rely on a simple work-around: upon encountering the 312 

obstruction, the debriton is directed to itself and some portion of the debris is deposited based on (4). At the end of 313 

the model iteration, the node elevation and slope are updated. During the next iteration, if the remaining mobile debris 314 

is no longer obstructed, it moves to its downslope node(s). If the node is still obstructed, it is again sent to itself until 315 

either all material has deposited or the elevation of the node exceeds that of its neighbour nodes, allowing the debriton 316 

to move downslope. 317 

3. Calibration and MWR probability 318 

3.1 Calibration utility  319 

MWR includes an adaptive Markov Chain Monte Carlo (MCMC) calibration algorithm described by Coz et al. (2014) 320 

and Renard et al. (2006). The MCMC algorithm is implemented as a utility for MWR and identifies a single set of 321 

parameters that best match MWR output to an observed landslide runout dataset. The observed runout dataset can 322 

consist of a single or multiple landslides. Depending on user input, MWR simultaneously or sequentially models 323 
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runout from each landslide source area in one model run. To use the calibration utility, the user provides an initial 324 

(prior) guess of the parameter values and their respective probability distribution functions (PDF) that calibrate the 325 

MWR to a specific site. Then, the calibration utility randomly selects a set of trial parameter values (Λ) from the prior 326 

PDFs and runs MWR using Λ. Once the model has completed the run, the algorithm evaluates the posterior likelihood 327 

of the parameter set (𝐿(Λ)) as a lumped index of model ability to replicate observed runout (described below) and the 328 

prior likelihood of the parameter set. After the first 𝐿(Λ)  has been determined, the utility selects a new set of 329 

parameters (Λ𝑡+1) by jumping some distance (described below) from each parameter in Λ space. Depending on the 330 

value of 𝐿(Λ𝑡+1), the algorithm either stays at Λ or moves to Λ𝑡+1. This Markov process is repeated a user-specified 331 

number of times. Jump direction is random, but the algorithm is adaptive because the jump distance changes depending 332 

on if 𝐿(Λ𝑡+1) > 𝐿(Λ) occurs more than a user specified threshold value. For a detailed description of the algorithm 333 

see Coz et al. (2014). 334 

The 𝐿(Λ) index is estimated as the product of the prior probability of the selected parameter values, 𝑝(Λ), and three 335 

other performance metrics as: 336 

𝐿(Λ) =  𝑝(Λ) ∗ 𝛺𝑇 ∗
1

𝛥𝜂𝐸
2 ∗  

1

𝑄𝑠𝐸
2 

 (24) 337 

where Ω𝑇  is the Lee-Salle index (Heiser et al., 2017) for evaluating model planimetric fit and Δ𝜂𝐸 and 𝑄𝑠𝐸
 are new 338 

dimensionless indices, proposed for this study (described below). The indice Δ𝜂𝐸  is the volumetric error of the 339 

modelled topographic change over the entire model domain normalized by the observed total mobilized volume (initial 340 

landslide body + erosion volume). The indice 𝑄𝑠𝐸
 is the mean-cumulative sediment export error along the modelled 341 

runout path normalized by the observed mean cumulative flow. Larger values of Ω𝑇  and smaller values of Δ𝜂𝐸 and 342 

𝑄𝑠𝐸
 indicate modelled runout more closely fits observed. Note that we add a value of 1 to Ω𝑇  and use the squared-343 

reciprocal values of Δ𝜂𝐸 and 𝑄𝑠𝐸
 in (24) so that the magnitude of 𝐿(Λ) is always equal to or greater than zero and 344 

increases with improved fit. The metric Ω𝑇  is written as: 345 

𝛺𝑇 =  
𝛼−𝛽−𝛾

𝛼+𝛽+𝛾
 +1 (25) 346 

where α, 𝛽 and γ are the areas of matching, overestimated and underestimated runout extent, respectively.  347 

The spatial index for volumetric error, Δ𝜂𝐸, is determined as: 348 

𝛥𝜂𝐸 =  √
∑ [(𝛥𝜂𝑂𝑖 −𝛥𝜂𝑀𝑖)𝛥𝑥2]2𝑝

𝑖=0

𝑉2 
 . (26) 349 

Where 𝑉 is observed total mobilized volume and 𝑝 is the number of nodes in the area made up of the matching, 350 

overestimated and underestimated areas of runout extent and  Δ𝜂𝑀𝑖  and Δ𝜂𝑂𝑖  are the modelled and observed 351 

topographic change [m] at the i-th node within that extent.  352 

To calculate 𝑄𝑠𝐸
, we first determine the cumulative export (flow) volume (𝑄𝑠) at each node, 𝑗 along the runout profile, 353 

in a manner similar to the flow volume/mass balance curves in Fannin and Wise (2001) and Hungr and Evans (2004): 354 

𝑄𝑠 = −𝛥𝑥2 ∑ 𝛥𝜂𝑖,𝑗

𝑢𝑗

𝑖=1
 (28) 355 
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where Δ𝜂𝑖𝑗  is the topographic change [m] at the 𝑖-th node located upstream of node 𝑗, and 𝑢𝑗 is the total number of all 356 

nodes located upstream of 𝑗 . 𝑄𝑠  is computed for both the observed and modelled runout path ( 𝑄𝑠𝑂  and 𝑄𝑠𝑀 357 

respectively) and 𝑄𝑠𝐸
 of a runout is determined as:     358 

𝑄𝑠𝐸
= √

1

𝑟
∑ (𝑄𝑠𝑂−𝑄𝑠𝑀)2𝑟

𝑗=1

 𝑄𝑠𝑂̅̅ ̅̅ ̅̅ 2  (29) 359 

Where 𝑟 is the number of nodes along the center line of the runout path, and 𝑄𝑠𝑂
̅̅ ̅̅ ̅ is the observed mean cumulative 360 

flow. 361 

As will be detailed in Section 5, field estimates for 𝑆𝑐 and 𝑞𝑐, vary over the length of the runout path. To account for 362 

the heterogeneity of 𝑆𝑐 and 𝑞𝑐, we estimate prior distributions of potential 𝑆𝑐 and 𝑞𝑐 values from field/remote sensing 363 

measurements. Then, from model calibration to a DEM-of-Difference (pre-runout DEM subtracted from the post-364 

runout DEM; DoD) using the calibration utility, we find single values of 𝑆𝑐 and 𝑞𝑐 that allow the modelled DoD to 365 

replicate the observed DoD .  366 

We run the calibration utility using a single Markov chain of 2000 repetitions. At most sites, the model converged 367 

relatively quickly on a solution and we therefore didn’t consider burn-in or evaluate convergence (e.g., Gelman et al. 368 

2021) and considered 2000 repetitions adequate. Future implementations of the calibration utility may include multiple 369 

chains, burn-in and a check for convergence. As a final note, many debris flow runout models are evaluated using Ω𝑇   370 

or variations of Ω𝑇  alone (e.g, Gorr et al., 2022; Han et al., 2017) and the MWR calibration utility can also be run 371 

solely as a function of Ω𝑇 . However, we found that calibration based on Ω𝑇  (i.e., runout extent) alone results in high 372 

parameter equifinality (e.g., Beven 2006); multiple parameter sets result in an equally calibrated model as evaluated 373 

by Ω𝑇 . As such, we recommend calibrating debris flow/ landslide runout models to an observed DoD. If repeated lidar 374 

is available, a DoD can be obtained from before and after scans of the observed runout event. Alternatively, a DoD 375 

can be created by hiking the observed runout event and mapping field-interpreted erosion and deposition depths. 376 

Additional details on how we prepared DoDs for multiple sites are included in the Supplementary Material. 377 

 378 

3.2 Mapping landslide runout hazard  379 

MWR includes an additional utility called MWR Probability that produces landslide runout probability maps. MWR 380 

Probability repeatedly runs MWR a user specified 𝑁𝑝 times, each repetition with a different, randomly sampled 381 

parameter set from the posterior parameter PDFs produced by the calibration utility. MWR Probability includes three 382 

options for specifying the initial mass wasting source material: (1) a user-provided landslide source area polygon(s) 383 

based on field and/or remote sensing observations; (2) a user-defined hillslope susceptible to landslides (e.g., 384 

potentially unstable slope), where landslide area and location are randomly selected within, but no larger than the 385 

hillslope; this option is useful when the extent of a potential landslide is unknown; and (3) a series of mapped landslide 386 

source areas within a watershed, as determined by an externally run Monte Carlo landslide initiation model (e.g., 387 

Hammond et al. 1992; Strauch et al., 2018) ; this option is useful for regional runout hazard applications. If using 388 
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Option 1, modelled runout probability represents uncertainty in MWR parameterization. If using Option 2 or 3, 389 

modelled runout probability reflects uncertainty in both MWR parameterization and landslide location and size. 390 

For all three run options, each model iteration begins with the same initial topography. After 𝑁𝑝 model simulations, 391 

𝑁𝑝 different versions of the post-runout landscape are created and, probability of runout at each node is determined 392 

as: 393 

𝑃(𝛥𝜂) =
#(|𝛥𝜂|>0)

𝑁𝑝
 (30) 394 

where #(|Δ𝜂| > 0) is the number of times topographic elevation at a node changes as a result of erosion or deposition 395 

from the 𝑁𝑝 model runs. Probability of erosion or aggradation can be determined by replacing the numerator in (30) 396 

with #(𝛥𝜂 < 0) or #(𝛥𝜂 > 0) respectively.  397 

4. Basic model behavior 398 

We evaluate basic model behavior using a series of virtual experiments. The virtual experiments consist of six 399 

synthetic terrains including: (A) a planar slope that intersects a gently sloped plane (S = 0.001), (B) a planer slope 400 

with a constriction, that intersects a gently-sloped plane, (C) a planar slope that has a bench mid-slope and then 401 

intersects a gently-sloped plane; (D) a concave up, uniform-convergence slope; (E) a concave up, variable-402 

convergence slope that widens (convergence decreases) in the downslope direction; (F) a convex up, variable-403 

convergence slope that widens (convergence decreases) in the downslope direction. On each terrain, a 30-meter wide, 404 

50-meter long and 3-meter deep landslide is released from the top of the terrain. All six terrains are covered by a 1-405 

meter thick regolith and use the same parameter values (𝑆𝑐  = 0.03, 𝑞𝑐 = 0.2 m,  𝑘 = 0.01, 𝐷𝑠 = 0.2 m). Each terrain is 406 

represented using a 10-m grid. Experiment results are shown in Figure 5. 407 
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  408 

Figure 5. Shaded, 3-D visualizations of model response to six different synthetic terrains, colored according to the 409 

DoD of the final runout surface. Shading is to scale. Red indicates a positive change in the elevation of the terrain 410 

(aggradation) and blue indicates a negative change (erosion). The 3-D visualization of the DoD is exaggerated by a 411 

factor of 5 to make visible in figure. Grid size is 10 meters. 412 

On Terrain A, the landslide spread as it moved downslope and formed levees along the edge of the runout path. The 413 

width of the spread was a function of the multiple flow direction algorithm and resistance along lateral margins of the 414 

runout as represented by 𝑞𝑐. At the slope break at the base of the slope, the material deposited at an angle controlled 415 

by 𝑆𝑐 . On Terrain B, the flow initially eroded and deposited identical to the first but near the slope break, the 416 

topographic constriction forced flow depth to increase and exceed 𝑞𝑐, minimizing the formation of levees (because 417 

𝑞𝑂 > 𝑞𝑐)  and resulted in a slightly larger deposit at the base of the slope. On Terrain C, landslide runout was again 418 

initially identical to the runout on Terrain A; however, upon intersecting the mid-slope bench, most of the runout 419 

material deposited. A small, thinner portion did continue past the bench but eroded at a lower rate than the initial slide 420 

upslope of the bench. Upon intersecting the flat surface at the base of the hillslope, the runout material deposited.  421 

On Terrain D, the landslide and its runout were confined to the center of convergent terrain and only deposited once 422 

the slope was less than 𝑆𝑐 . The slide never widened because the uniformly convergent channel shape prevented 423 

spreading and the narrower flow width maintained a higher flow depth, which prevented the formation of levees. On 424 

Terrain E, the landslide again deposited once slope was less than 𝑆𝑐 but because topographic convergence of Terrain 425 

E decreases in the downslope direction, as the runout material moved downslope, the deposit spread more than on 426 

Terrain D, which caused thinner flow and deposition along margins of the runout path. On the final terrain, Terrain F, 427 
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slope is always greater than 𝑆𝑐 so deposition was limited to levees along the edge of the flow that formed as the runout 428 

spread in response to decreasing convergence.  429 

MWR model behavior can be summarized as follows. The displacement and deposition of landslide material predicted 430 

by MWR responds to topography in a reasonable manner: Flow width increases as convergence decreases (e.g, Terrain 431 

F), which in turn reduces flow depth. Lower flow depths cause lower erosion rates and reduce aggradation extent. 432 

Conversely, modelled flow depth increases when convergence increases (e.g., Terrain B). Where the flow encounters 433 

broadly convergent or planer slopes, lateral levee deposits form, a common feature of landslides reported in the 434 

literature and at sites reported here (see Section 5) that detailed mechanistic models can struggle to reproduce (e.g., 435 

Barnhart et al, 2021).  436 

We did not attempt to compare MWR modelled flow with the output of shallow-water-equation based models or 437 

observed granular flows  (e.g., Medina et al, 2008; McDougall and Hungr, 2004;  Iverson and Denlinger, 2001; Han 438 

et al., 2015). The cellular automaton representation in MWR does not model the time-dependent evolution of debris 439 

flow velocity and depth, and conceptually moves debris instantaneously at each iteration, as driven by changes in the 440 

evolving topographic elevation field. Because of that, only the final outcome (modelled runout extent, sediment 441 

transport and topographic change) of MWR can be compared with other models or observed runout, which we do in 442 

the next section.  Also, as described in Section 2.3, behaviour of the multiple flow direction algorithm does vary with 443 

grid size. Using a coarser or finer grid, without adjusting model parametrization, could potentially change how wide 444 

the landslide spreads. 445 

5. Model Validation: 446 

5.1 Overview 447 

In this section, we demonstrate the ability of a calibrated MWR to replicate observed runout extent, sediment transport 448 

and topographic change at field sites located in the western USA and summarize model calibration results with an 449 

evaluation of MWR calibration relative to terrain attributes of the observed runout paths. Note that simply calibrating 450 

a model to match field data does not constitute a satisfactory test of model predictive ability (Iverson, 2003). Strategic 451 

testing, which involves calibrating the model to one site or period of time and then running the calibrated model at a 452 

separate site or period of time (Murray, 2013), is a better indicator. Two of our validation sites, the Cascade Mountain 453 

and Olympic Mountain sites, include two separate landslides and subsequent runout and we test model predictive 454 

ability at these sites in Section 6.  455 

Calibrated model performance is demonstrated at the following field sites (see Figure 6a for locations and observed 456 

runout extent): (1) two runout events over the same hillslope in the Cascade Mountains (Washington state [WA], 457 

USA): a large debris avalanche in 2009 (Cascade Mountains, 2009) and a moderately-sized debris flow in 2022 458 

(Cascade Mountains, 2022) that inundated and flowed within a first-to-second order channel until perpendicularly 459 

intersecting a narrow river valley several hundred meters below the landslide (Figure 1a); (2) debris flows in the Black 460 

Hills (WA) sourced from a small failure along the toe of a deep-seated landslide (Black Hills, South) and a moderately-461 

sized debris avalanche from a large road fill (Black Hills, North) that flowed several kilometers along a relatively 462 
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wide, broadly convergent channel before stopping (Figure 1b); (3) a single, moderately-sized debris avalanche in the 463 

Rocky Mountains (Rocky Mountains), the majority of which flowed several hundred meters over a broadly convergent 464 

to divergent hillslope in Colorado (Figure 1c); and (4) a 30-year chronology of small landslides and subsequent debris 465 

flows in the Olympic Mountains (WA) in steep, highly convergent channels that flowed well over a kilometer and 466 

coalesced into a single runout deposit in a dendritic, channelized watershed (Olympic Mountains; Figure 1d). All 467 

landslides initiated during heavy rainfall or rain-plus-snowmelt storm events (WRCC, 2022; NRCS, 2022; Table 1) 468 

but their runout varied in terms of erosion rate, grain size (Figure 6b), depositional behavior (Figure 6c) and the 469 

topographic convergence of the underlying terrain. 470 

Table 1. Landslide and runout characteristics 471 

 

site 

Cascade 

Mountai

ns, 09 

Cascade 

Mountains, 

22 

Black 

Hills, 

south 

Black 

Hills, 

north 

Rocky 

Mountains 

Olympic 

Mountains 

initial landslide body length [m] 185 55 80 75 40 45 

initial landslide body width [m] 80 50 15 65 35 15 

initial landslide body volume [m3] 110,000 22,000 1,500 18,500 4,600 400 - 2,200 

2-day cumulative precipitation + 

snowmelt [mm] 

120+85 140+75 205+50 205+50 193+0 100 - 220 

+ ? 

maximum grain size [m] 0.316 0.316 0.48 0.206 0.984 0.8 

slope range of positive-net 

deposition [%] 

1 - 15 1 - 15 <1 - 10 <1 - 8 16 - 25 5 - 15 

average flow depth in scour zone 

[m] a 

4 2 2 3 3 3 

average channel slope in scour 

zone [m/m] 

0.25 0.25 0.15 0.15 0.4 0.3 

average channel width in scour 

zone [m] 

45 20 25 35 55 10 

length of erosion, [m] 600 340 1210 1345 360 2550 

erosion area, 𝔸 [m2] 28,400 6,600 22,800 52,400 20,800 28,900 

erosion volume, ∑ 𝐸Δ𝑥2 [m3] b  44,547 5,125 12,332 26,815 34,275 33,725 

average erosion per unit length of 

runout debris, 𝐸̅/ℓ, [m/m] 

0.0085 0.014 0.0068 0.0068 0.041 0.026 

𝑘 0.020 0.034 0.017 0.020 0.076 0.051 

growth factor, [m3/m] 74.2 15.1 10.2 19.9 95.2 13.2 

average observed |Δ𝜂| [m] 2.4 2.2 0.53 0.63 0.89 1.4 

total erosion volume / total 

mobilized volume c 

0.29 0.19 0.89 0.59 0.88 0.97 

a rough approximation based on landslide volume, channel width and height of scour marks in erosion zone 472 
b excludes landslide volume  473 
c total moblized volume = initial landslide body + erosion volume  474 

 475 
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     476 

Figure 6 (a) Landslide locations in Washington and Colorado states. Coordinates next to each site are WGS84. 477 

Shaded DEMs of each site are shown at the same scale. (b) Observed average erosion rate per unit landslide length 478 

(𝐸̅/ℓ) relative to the observed average-maximum grainsize. Error bars indicate standard deviation. (c) Underlying 479 

topographic slope of observed deposition.  480 

5.2 Model setup and field parameterization  481 

Each model was set up on a 10-meter grid representation of the pre-event DEM. The extent of the initial mass wasting 482 

source material (e.g., the initial landslide body)  was interpreted from a combination of lidar, air-photo and field 483 

observations. At all locations, we use Equation (13) to approximate shear stress. We field-surveyed each site, noting 484 

the maximum flow thickness, typical deposition and erosion depths and the size of the largest grains in the runout 485 

deposits.  486 
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We estimated parameter values from these field and remote observations (See Table 1). A site-specific value for 𝑘 487 

was determined as a function of the observed average erosion depth (determined as total erosion volume divided by 488 

the erosion area, 𝐸̅) relative to the length of the runout debris, which we approximated as the length of the initial 489 

landslide body(ℓ). Further details are described in the Appendix.  490 

The volume of the initial landslide body ranged in volume from 400 to 110,000 m3 across sites. At all sites, erosion 491 

and subsequent entrainment added to the total mobilized volume (initial landslide body + erosion volume), but the 492 

contribution was highly variable. The erosion volume divided by the total mobilized volume was as low as 0.19 at the 493 

Cascade Mountain, 2022 landslide to as high as 0.97 at the Olympic Mountain landslides (Table 1).    494 

The average maximum grain size varied from 0.2 m at the Black hills sites to nearly 1 m at the Rocky Mountain Site 495 

(Figure 6b, Table 1).  Values of 𝐸̅/ℓ  ranged from 0.007 to 0.041 [m/m] with the highest rate occurring at the Rocky 496 

Mountain landslide and the lowest at the Black Hills sites. Details on grain-size samples and data collected in the field 497 

are described in the Supplementary Material. In terms of growth factors (average volumetric erosion per unit length 498 

of the erosion-dominated region of the runout path, Hungr et al. 1984; Reid et al., 2016) values ranged from 10 m3/m 499 

at the Black Hills South site to 95 m3/m during the Rocky Mountain landslide (Table 1). 500 

The median values of topographic slopes at which observed deposition occurred (i.e., Δ𝜂 > 0) ranged between 0.1 501 

and 0.3 across sites, while deposition was also observed in much steeper (>0.4) slopes, and much flatter slopes at some 502 

sites (Figure 6c) (Table 1). The slope of channel reaches where net deposition (cumulative erosion and deposition; 503 

e.g., Guthrie et al., 2010) was positive tended to be lowest at the Black Hills site (<1% to 10%) and highest at Rocky 504 

Mountain site (16% to 25%).   505 

We defined uniform prior distributions of 𝑆𝑐 and 𝑞𝑐 and then used the calibration utility to find the best-fit parameter 506 

values (parameter values corresponding to the highest 𝐿(Λ)). Minimum and maximum values of 𝑆𝑐  were initially 507 

estimated from the range of observed slope of areas of positive-net deposition (Table 1). Minimum and maximum 508 

values of 𝑞𝑐 were set as 0.01 to 1.75, which roughly represents the range of minimum observed thickness of debris 509 

flow termini in the field at all of the validation sites. For the purpose of implementing the calibration utility, we 510 

prepared a DoD of each site. The DoD was determined either form repeated lidar or field observations as detailed in 511 

the Supplementary Material.  512 

5.3 Calibration and model performance 513 

Markov chains, colored according to the likelihood index, 𝐿(Λ)  are plotted in the 𝑆𝑐 - 𝑞𝑐  domain, along with 514 

histograms of sampled 𝑆𝑐 and  𝑞𝑐 values for each landslide in Figure 7. Each Markov chain includes 2000 model 515 

iterations. The runtime for 2000 model iterations depended on model domain,  landslide size and number of landslides 516 

modeled but varied from roughly 1.5 for the Cascade, 2022 landslide to 6 hours for the Olympic Mountain landslides 517 

on a 2016 2.1 GHz Intel Core Xeon, 32 GB memory desktop.  The chains show a wide array of sampling patterns and 518 

parameter ranges but broadly speaking, at all sites, the algorithm jumped within 𝑆𝑐- 𝑞𝑐 space towards higher 𝐿(Λ), to 519 

form bell-shaped posterior distributions for each parameter. Depending on the landslide type, the calibration algorithm 520 

converged on different 𝑆𝑐- 𝑞𝑐 pairs. For example, at the Cascade Mountains site, the calibration utility converged to 521 

smaller 𝑞𝑐  and 𝑆𝑐  values for the 2009 event (Figure 7a), which permitted thinner flows over lower slopes and 522 
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effectively made the 2009 modelled runout more mobile relative to the 2022 modelled runout (Figure 7b). At the 523 

Rocky Mountains site (Figure 7e), a relatively high 𝑞𝑐 value helps control lateral extent of the modelled runout that in 524 

the field was controlled by standing trees (see Supplementary Material).  525 

 526 
Figure 7. MWR calibration results for (a) Cascade Mountains, 2009; (b) Cascade Mountains, 2022, (c) Black Hills, 527 

South; (d) Black Hills, North; (e) Rocky Mountains and; (f) Olympic Mountains. Each result shows a scatter plot of 528 

the sampled 𝑆𝑐 and 𝑞𝑐 values, colored by their relative 𝐿(Λ) value. Note y-axis scale differs between plots. To the 529 

right of each scatter plot are histograms of the iterated 𝑆𝑐 and 𝑞𝑐 parameters, which can be normalized to represent 530 

an empirical PDF of the possible 𝑆𝑐 and 𝑞𝑐 values that calibrate MWR to the site.  Histogram y-axis is count and x-531 

axis is 𝑆𝑐 or 𝑞𝑐, as indicated on the histogram. 532 

 533 

Profile plots of modelled 𝑄𝑠 and maps of the modelled planimetric runout extent, colored to indicate where the runout 534 

matched (α), overestimated (𝛽) or underestimated (γ) the observed runout are shown in Figure 8. Values of Ω𝑇  we 535 

obtained with MWR are comparable or higher than reported values of Ω𝑇  in the literature that used a variety of models 536 

(Gorr et al., 2022; Barnhart et al., 2021; Note, to compare Ω𝑇  values to those studies, subtract 1 from values reported 537 

in this study). Across the sites, the volumetric error of the model, 𝛥𝜂𝐸, ranges between 6% and 15% (median 9.1%) 538 

of the total mobilized volume from the observed DoD. An overall <10% volumetric error is reasonable considering 539 

the low number of parameters required to calibrate MWR and that empirical estimates of total mobilized volume used 540 

to run other runout models can vary by as much of an order of magnitude (e.g., Gartner et al., 2014: Barnhart et al., 541 

2021). Model performance in predicting volume flux along the runout profile was within similar error ranges. Except 542 

for the Rocky Mountains site where MWR consistently modelled wider-than-observed flow, the cumulative flow error 543 
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along the runout profile (𝑄𝑠𝐸
) were limited to 5%-19% of the mean cumulative flow determined from the observed 544 

DoD.  545 

MWR generally successfully replicates observed sediment transport along the runout path via model parameterizations 546 

that are unique to each landslide. For example, the profile plots of 𝑄𝑠 at the Cascade Mountain site (Figure 8a and 8b) 547 

show that during the 2009 landslide, all of the runout material flowed past the first 750 meters of the runout path. 548 

During the 2022 landslide, material began to deposit just down slope of the initial landslide scar, as both observed and 549 

modelled 𝑄𝑠 reverse slope, indicating loss in downstream volume flux. Model comparisons in the Cascade Mountains 550 

site were limited to the upper 750 m of the hillslope because a large portion of the runout material was lost to fluvial 551 

erosion in the valley (see Supplementary Material).  552 

MWR also successfully replicates the observed sediment transport patterns at the Olympic Mountains site (profile plot 553 

of 𝑄𝑠 in Figure 8f) and to a lesser degree, the Rocky Mountain site (Figure 8e). This finding is notable, because at the 554 

Olympic Mountain site, observed runout extent and sediment depositional pattern were heavily impacted by woody 555 

debris. Similarly, at the Rocky Mountains site, the width of the runout appeared to be restricted by trees. (See 556 

Supplementary Material).  557 

Using a fixed cell size of 10-m might have impacted model performance in some areas. MWR tended to over-estimate 558 

the runout width for small landslides like the Olympic Mountains and Cascade Mountains, 2022 sites (yellow zones 559 

in Figures 8f and 8b), likely because of the 10-m grid size used to represent the terrain. A 10-m DEM is generally 560 

accepted as a good balance between model detail and computational limitations (e.g., Horton et al. 2013). However, 561 

for small landslides, the 10-m grid is close to the size of the channels that controlled observed runout (Supplementary 562 

Material) and may not have accurately represented the terrain. Modelled flow was less topographically-constrained 563 

and tended to flow over a wider area of the terrain than observed in the more confined and smaller channels within 564 

the axis of the runout valleys.  565 

Because MWR does not have an explicit representation of flow momentum, it may show poor performance in regions 566 

of the runout path where flow momentum is the primary control on runout extent. For example, at the Cascade 567 

Mountain, 2009 slide, MWR underestimates the slope-perpendicular flow over a bench (large red zone in Figure 8a). 568 

Review of model behavior for this slide (Figure 9) shows how MWR successfully mimics diverging flow around a 569 

broad ridge upslope of the bench (iteration 𝑡=28 in Figure 9), but afterwards continues to follow topographic slope 570 

and converges too rapidly into a narrow ravine along the west edge of the bench (iteration 𝑡=40 in Figure 9; compare 571 

to runout scar in air photo and underestimated region on topographic bench in Figure 8a). At the Rocky Mountains 572 

site, in addition to standing trees, the forward momentum of the runout may have also restricted lateral spread of the 573 

observed runout. Modelled runout is consistently too wide. 574 

Overall, calibration was best at the Cascade Mountain, 2009 landslide (values of Ω𝑇  are highest and values of Δ𝜂𝐸 575 

and 𝑄𝑠𝐸
 are lowest) and poorest at the Rocky Mountain and Olympic Mountain sites (Values of  Ω𝑇  are lowest 𝑄𝑠𝐸

 576 

and Δ𝜂𝐸 are highest). At both the Rocky Mountain and Olympic Mountain sites, because we lacked repeat lidar, we 577 

created the DoD from a map of field estimated erosion and deposition depths and estimated the pre-event DEM. The 578 

lower calibration scores may indicate that field estimated DoDs were not as accurate as those determined via lidar 579 

differencing. Another source of uncertainty that we have not addressed in our study is regolith thickness. Using 580 
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spatially accurate regolith thickness, rather than a uniform thickness, would likely improve MWR performance too. 581 

Nonetheless, although imperfect, at most sites, MWR does not appear to have a strong systematic bias in modeled 582 

output, which suggests that MWR may not have any structural weaknesses; however the consistent over-estimated 583 

width on planar to divergent topography at the Rocky Mountain site requires further investigation at similar sites to 584 

determine if this issue is due to calibration or the model. 585 

 586 

   Figure 8.  Calibrated model performance as indicated by maps of modeled runout extent, profile plots of observed 587 

and modeled cumulative sediment transport along the centerline of the runout path (𝑄𝑠, see equation 28) and 588 
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reported values of Ω𝑇 , Δ𝜂𝐸 and 𝑄𝑠𝐸
. Y-axis label for profile plots of 𝑄𝑠 indicated on plot. In all maps, up is north 589 

except in (e), north is towards the left. (a) Cascade Mountains, 2009; (b) Cascade Mountains, 2022; (c) Black Hills, 590 

North; (d) Black Hills, South; (e) Rocky Mountains; (f) Olympic Mountains.  591 

 592 

 593 

 594 

 595 

Figure 9. Illustration of modeled runout of the Cascade Mountains, 2009 landslide beginning from the initial 596 

movement of the landslide body to final deposition in the river valley that demonstrates MWR response to 597 

topography. Note how the landslide slip surface directs the initial flow. Topography lines reflect the underlying 598 

terrain, which is updated after each iteration. Air photo in last panel shows observed runout extent. Note that upper 599 

road is not part of the observed landslide runout path.  600 

To understand whether the ability to calibrate MWR systematically varies with topography of the runout path, we 601 

compared model performance with three topographic indices described by Chen & Yu (2011). The indices are 602 

computed from the terrain in the observed runout extent and include the relief ratio (𝐻/𝐿), mean total curvature (𝜅) 603 

and the mean specific stream power index (𝑆𝑃𝐼). The index 𝐻/𝐿 equals the average slope of the runout path (or 604 
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relative relief), determined as the total topographic relief of the runout (measured from the center of the landslide to 605 

the end of the runout path) divided by the horizontal length of the runout and indicates the mobility of the runout. 606 

Index 𝜅 represents topographic convergence, which is the second derivative of the terrain surface, with increasingly 607 

positive values of index 𝜅  reflecting growing topographic convergence and concave-up channel profile (e.g., 608 

Istanbulluoglu et al., 2008).  The index 𝑆𝑃𝐼 is determined as the natural log of the product of the contributing area and 609 

slope. Indices 𝜅 and 𝑆𝑃𝐼 are computed at each node in the runout extent and model performance is compared to the 610 

mean value.   611 

Comparison of model performance with respect to the topographic indices in Figure 10 shows: slightly improved 612 

model performance over runout paths that are less convergent (lower 𝑆𝑃𝐼 and 𝜅 values) and on steeper terrain (higher 613 

𝐻/𝐿) but neither trend is significant. The latter finding appears to be mostly a result of how well modelled sediment 614 

transport and topographic change (𝑄𝑠𝐸
 and Δ𝜂𝐸) replicated observed, as there does not appear to be a trend in Ω𝑇  with 615 

𝐻/𝐿 and the two best performing models (both Cascade Mountain landslides) had the lowest (best) 𝑄𝑠𝐸
 values and 616 

low Δ𝜂𝐸 values. Both findings are likely impacted by the grid size we used to represent terrain. As noted above, at all 617 

sites we used a 10-m grid, but at some sites 10-m doesn’t quite capture the relief of channelized topography that 618 

controlled observed runout, leading to modelled runout that was considerably wider than observed and causing low 619 

Ω𝑇  value (this is especially true at the Olympic Mountains site, Figure 10a, b and c). Also, it is important to note that 620 

these indices were calculated for the extent of the observed debris flows and may not represent the topographic form 621 

that controlled the model. 622 

In summary, using the calibration utility, we showed how MWR can be calibrated to a range of different landslide 623 

types and runout terrains. To a certain degree, though calibration, MWR can be parameterized to compensate for 624 

deficiencies in the DEM or processes not explicitly represented in the model (momentum, woody debris). A 625 

relationship between model performance and topography was not eminent. This finding is likely a result of the 626 

contributions of numerous factors other than the terrain form, such as the DEM resolution, the quality of the DoD and 627 

importance of processes not explicitly included in the model that also impact performance.  628 

 629 
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  630 
Figure 10. Illustration of model calibration, as reflected by the posterior parameter likelihood 𝐿(𝜃) and planimetric 631 

fit (Ω𝑇) relative to topographic indices. There is no strong trend between the topographic indices and calibration 632 

performance. Note, curvature values are scaled by a factor of 100. 633 

6. Discussion 634 

6.1 Strategic testing of MWR for hazard mapping applications 635 

Having demonstrated basic model response to topography and that MWR can be calibrated to a variety of landslides 636 

and runout terrains, we now strategically test MWR using the Cascade Mountain and Black Hills sites. Since both of 637 

these sites include two separate landslides, we can thus test model performance by swapping best-fit model parameters 638 

at each site, rerunning the models and comparing results with the original, calibrated results. At the Cascade Mountain 639 

site, the 2009 and 2022 landslides originated on the same hillslope (Figure 8a and 8b). At Black Hills site, the two 640 

landslides occurred on different hillslopes but in adjacent east-west oriented watersheds (Figure 8c and 8d).  641 

As shown in Figure 11, at three of the landslides (both Cascade Mountain landslides and the Black Hills, North 642 

landslide), when the best-fit parameters from the other landslide are used to predict runout, the accuracy of modelled 643 

runout planimetric extent drops but resultant Ω𝑇  values can still be as high or higher than values reported in other 644 

studies (compare to equivalent Ω𝑇  values in Gorr et al., 2022 and Barnhart et al., 2021). In terms of modelled sediment 645 

transport and topographic change, swapping best-fit parameters has a more substantial effect. At the Cascade 646 

Mountain, 2009 landslide, using the 2022 best-fit parameter values causes about half of the modelled runout material 647 

to prematurely deposit on the hillslope, reducing the amount of sediment that reaches the valley floor (𝑄𝑠𝐸
 increases 648 

by a factor of nine; Figure 11). Using the Cascade Mountain, 2009 parameter values on the Cascade Mountain, 2022 649 

landslide (Figure 11b) increases modelled runout extent and results in nearly four times the entrainment and transport 650 

of sediment to the valley floor, causing 𝑄𝑠𝐸
 to increase by a factor of 20 and Δ𝜂𝐸 by 83%. At the Black Hills site, 651 
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using the South basin best-fit model parameters at the North basin causes 𝑄𝑠𝐸
 and Δ𝜂𝐸 increase by 83% and 39% 652 

respectively (Figure 11c). Unlike the other three landslides, swapping best-fit parameters at the Black Hills, South 653 

landslide results in both large sediment transport and runout extent error because the North basin best-fit parameters 654 

cause modelled landslide to entrain too little and stop only a few hundred meters from the initial source area (Figure 655 

11d). 656 

Although the need for calibration of MWR is a limitation for its transferability across sites, this limitation holds true 657 

for most physics-based models. Barnhart et al. (2021) compared the ability of three different detailed-mechanistic 658 

models to replicate an observed post-wildfire debris-flow runout event in California, USA. All three models used a 659 

shallow-water-equation-based approach that conserved both mass and momentum, representing the flow as either a 660 

single phase or double phase fluid. All models gave comparable results in simulating the event, suggesting that there 661 

may not be a “true” best model. Despite the high level of detail and processes explicitly included in each model, all 662 

models were sensitive to and required an estimate of the total mobilized volume, and the ability to replicate observed 663 

runout ultimately depended on calibration of the parameters used to characterize debris flow properties.  664 

 665 

 666 
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  667 

Figure 11.  Model performance using the neighboring landslide parameter values, as indicated by modeled runout 668 

extent, profile plots of 𝑄𝑠, reported values of Ω𝑇 , Δ𝜂𝐸 and 𝑄𝑠𝐸
 . Compare with Figure 8. (a) Cascade Mountain, 669 

2009; (b) Cascade Mountain, 2022; (c) Black Hills, North; (d) Black Hills, South 670 
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 671 

As landslide hazard models often forecast hazard probabilistically, an alternative test to simply swapping the best-fit 672 

parameters is to swap parameter PDFs determined from the calibration utility and compare probability of runout at 673 

each model node (equation 30). As shown in Figure 12, similar to the first test, at three of the landslides, using the 674 

parameter distribution associated with the neighbouring landslide results in relatively minor changes in whether runout 675 

is likely to occur versus not occur (probability of runout ≥50%; Figures 12a, 12b and 12d). At the Black Hills South 676 

landslide, swapping parameter PDFs causes a large change in runout probability (Figure 12c).  677 

 678 

 679 
Figure 12. Model tests by swapping parameter PDFs and comparing runout probability at the (a) Cascade Mountain, 680 

2009; (b) Cascade Mountain, 2022; (c) Black Hills, South and; (d) Black Hills, North sites. (1) runout using 681 

parameter distributions of the site and (2) runout using parameter distributions of the neighboring site. 682 

 683 

The results of these two tests suggest that site-specific calibration may be needed when the user aims to apply MWR 684 

to sediment budget analyses; however, we suspect that this finding is a consequence of testing the model at a site with 685 

very different landslide types and runout processes. At sites like the Cascade Mountain and Black Hills sites, which 686 

consisted of a diverse range of landslide processes including small, confined debris flows to large, unconfined debris 687 

avalanches, MWR may need to be calibrated to each type of landslide and predictive applications might involve 688 
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applying the appropriate parameter set based on landslide type. In regions where landslide processes are relatively 689 

uniform (like the Olympic Mountain site), calibration to one landslide might be sufficient to predict the depositional 690 

patterns and sediment transport at another. Finally, as noted in Section 3.1, we found numerous parameter 691 

combinations allowed MWR to match observed runout extent. This finding suggests that if the project aim is limited 692 

to an evaluation of runout extent, model calibration to the site may not be as critical and parameter values from 693 

calibration to nearby landslides or even globally-available repeated DEMs and airphotos that show the slope of past 694 

landslide deposits (for 𝑆𝑐) and how thick their frontal lobes are at the point of deposition (for 𝑞𝑐), might be sufficient.   695 

6.2. MassWastingRunout probability applications 696 

In this section we briefly demonstrate how to determine runout probability from a probabilistically determined 697 

landslide hazard map or a specific, potentially unstable slope using MWR. The first application may be appropriate 698 

for watershed- to regional-scale runout hazard assessments. The second application is an example hazard assessment 699 

for a potentially unstable hillslope. Both applications are demonstrated at the Olympic Mountain site where landslide 700 

size and type tended to be relatively uniform and parameter PDFs determined through calibration may therefore 701 

represent typical runout processes in the basin. 702 

6.2.1. Runout probability from a landslide hazard map 703 

To determine runout probability from a landslide hazard map, we ran MWR Probability using Option 3, reading a 704 

series of mapped landslide source areas created by an externally run Monte Carlo landslide initiation model. For the 705 

landslide initiation model, we used LandslideProbability, an existing component in Landlab that computes landslide 706 

probability by iteratively calculating Factor-of-Safety (𝐹𝑆: ratio of the resisting to the driving forces) at each node on 707 

the raster model grid 𝑁𝑝 times from randomly selected soil (regolith) hydrology properties (e.g., soil depth, saturated 708 

hydraulic conductivity) soil strength (friction angle, cohesion) and recharge rates (precipitation input rate minus 709 

evapotranspiration and soil storage). Landslide probability at a node is defined as the number of times 𝐹𝑆<1 divided 710 

by 𝑁𝑝.  711 

We first ran LandslideProbability using a 50-year precipitation event (WRCC, 2017) to determine landslide 712 

probability (Figure 13a) over the entire Olympic Mountains model domain and create the series of 𝑁𝑝 FS maps. 713 

Details on the LandslideProbaility setup are included in the Supplementary Material. We then read the series of FS 714 

maps into MWR Probability, treating all nodes with 𝐹𝑆 < 1 as a landslide source, and ran MWR 𝑁𝑝 times. Each 715 

iteration, MWR read a new 𝐹𝑆 map and randomly selected a new set of parameter values from 𝑆𝑐- 𝑞𝑐 parameter PDFs 716 

created by the calibration utility.  717 

Runout probability results are illustrated in Figure 13b and show that the probability of runout is high in many of the 718 

second order channels but low at the basin outlet. As discussed in Section 3, the probability of aggradation or erosion 719 

caused by the runout can also be determined by adjusting the numerator of Eq. (30) and the probability of deposition 720 

greater than 1 meter is shown in Figure 13c. In this example, in addition to MWR parameter uncertainty, runout 721 

probability reflects uncertainty in landslide size and location caused by a 50-year precipitation event. 722 
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6.2.2 Runout probability for a specific, potentially unstable slope 723 

When field evidence or other data indicate that a specific hillslope may be potentially unstable, but the exact area of 724 

a potential landslide on that slope is unknown, MWR can be used to generate a hazard estimate that takes into account 725 

the uncertainty in the landslide area. For this application, MWR Probability is run using Option (2), which requires a 726 

polygon representing the extent of the potentially unstable slope. We designated a 0.6 ha, convergent hillslope in the 727 

headwaters of the Olympic Mountains site as a potentially unstable slope (Figure 13d). For each model repetition, a 728 

landslide area can form anywhere within the potentially unstable slope and is at least as large as a user defined 729 

minimum size but no larger than the potentially unstable slope. This example shows that, given uncertainty in the 730 

landslide size and location, and uncertainty in MWR parameterization, if a landslide were to initiate on the potentially 731 

unstable slope, the probability of the runout reaching the basin outlet is less than 5%.  732 
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 733 
Figure 13. Olympic Mountain site: (a) Landslide probability, 𝑃(𝐹𝑆 ≤ 1). (b) Corresponding runout probability, 734 

𝑃(Δ𝜂). (c) Probability of deposition greater than 1 m and (d) Runout probability for the potentially unstable slope 735 

(green-dashed polygon).  736 



 

 
33 

7.0 Concluding remarks 737 

In this study, we described, calibrated and tested MassWastingRunout (MWR), a new cellular-automaton landslide 738 

runout model that combines the functionality of simple runout algorithms used in landscape evolution and watershed 739 

sediment yield models (WSMs) with the predictive detail typical of runout models used for landslide inundation hazard 740 

mapping. MWR is implemented in Python as a component for the Landlab earth surface modelling toolkit and is 741 

designed for probabilistic landslide hazard assessments, sediment transport and landscape evolution applications. 742 

MWR includes a Markov Chain Monte Carlo calibration utility that determines the best-fit parameter values for a site 743 

as well as empirical Probability Density Functions (PDF) of the parameter values.  MWR also includes a utility called 744 

MWR Probability that takes the PDF output from the calibration utility to determine runout probability.  745 

Results indicate that despite its simple conceptualization, MWR shows skill in modeling the final runout extent, 746 

sediment transport and topographic change associated with a landslide. MWR needs only the location and geometry 747 

of an initial landslide source area to model the entire runout process. When compared to other models capable of 748 

replicating observed landslide inundation patterns, the strength of MWR lies in its use of field-inferable parameters, 749 

its ability to internally estimate the total mobilized volume (initial landslide body + erosion volume ) and its relatively 750 

parsimonious model design.  751 

MWR can be calibrated to a site using just two parameters (critical slope, 𝑆𝑐, and a threshold flux for deposition, 𝑞𝑐) 752 

and the MWR calibration utility enables the user to calibrate the model for a watershed within several hours on a 753 

standard desktop (Section 5.3). Although the predictive power of MWR hinges on calibration—a common requirement 754 

for mechanistic models—its reliance on two calibration parameters serves to constrain model uncertainty. Site-specific 755 

calibration may be needed when MWR is used for sediment budget analysis, but if the aim is limited to mapping 756 

runout extent, it may be possible to infer parameterization from nearby landslides or possibly from globally available 757 

repeated DEMs and air photos that show where past mass-wasting flows have stopped (for 𝑆𝑐) and how thick their 758 

frontal lobes are at the point of deposition (for 𝑞𝑐). Nonetheless, as a rules-based, cellular-automaton model, MWR is 759 

not designed to accurately simulate flow depth. For accurate flow depths or debris flow impact forces, a detailed-760 

mechanistic modeling approach should be used.  761 

MWR shows a rich set of intuitive responses to topographic curvature and slope. When calibrated to the runout of six 762 

different observed landslides, the volumetric error of MWR, 𝛥𝜂𝐸, ranged between 6% and 15% (median 9.1%) of the 763 

observed total mobilized volume. Except for the Rocky Mountains site where MWR consistently modelled wider-764 

than-observed flow, the cumulative flow error along the runout profile (𝑄𝑠𝐸
) were limited to 5%-19% of the mean 765 

cumulative flow determined from the observed DEM-of-Difference (DoD). These are considered acceptable levels of 766 

performance given that the total mobilized volume of many debris flow models assume an order of magnitude range 767 

of confidence. A notable finding of this paper is that MWR modeled runout did not have any strong systematic bias 768 

in predictions (toward unrealistically short or wide flows, for example), which suggests that MWR is structurally 769 

sound. However, MWR may underperform compared to mechanistic models when flow momentum is the primary 770 

driver of runout extent. (e.g., in areas of slope-perpendicular flow). 771 

As a component of the Landlab earth surface modelling toolkit, MWR is designed to be compatible with other models. 772 

MWR can be readily coupled with a landslide initiation model (e.g., LandslideProbability) and geomorphic transport 773 
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laws for hillslope diffusion and fluvial incision to investigate the role of landslides and their runout on long-term 774 

landscape evolution. In this study we showed how to couple MWR with LandslideProbability to map debris flow 775 

hazard when landslide initiation location is uncertain. Future studies will explore large-scale application in landscape 776 

evolution or sediment yield models, and characterize model parameters for different geologic and hydroclimatic 777 

conditions. The use of a calibrated runout model in WSMs might allow for region-specific and more insightful 778 

predictions of landslide impact on landscape morphology and watershed-scale sediment dynamics. 779 

 780 

Appendix A - Determination of 𝑘 781 

The average erosion depth caused by the observed runout (𝐸̅) can be determined from the DoD as the total erosion 782 

volume (∑ 𝐸Δ𝑥2) divided by the erosion area (𝔸) in the DoD: 783 

𝐸̅ =
∑ 𝐸𝛥𝑥2

𝔸
 (A1) 784 

where ∑ 𝐸Δ𝑥2 and 𝔸 exclude the initial landslide body volume and area, areas of deposition (Δ𝜂 > 0) and areas 785 

with no change in elevation (Δ𝜂 = 0). In terms of the debriton conceptualization used in MWR, 𝐸̅ can also be 786 

written as a function of the mean number of times a debriton would need to pass over a grid cell (𝑛̅) multiplied by an 787 

average erosion depth per debriton (ℎ̅𝑒) to equal 𝐸̅ as: 788 

𝐸̅ = 𝑛̅ℎ̅𝑒 (A2) 789 

An estimate for 𝑛̅ can be determined from the average length of the runout material, which we approximate simply 790 

as the mapped landslide length (ℓ) divided by the cell width: 791 

𝑛̅ =  
ℓ

𝛥𝑥
 (A3) 792 

Note that if the observed runout formed as a result of multiple landslides (as was the case at the Olympic Mountain 793 

site, see Supplementary Material), then ℓ was determined as the sum of the initial landslide body lengths. Also, as 794 

the debritons move down slopes in excess of 𝑆𝑐, they entrain material, split, and spread, and the runout material 795 

tends to lengthen. Using the initial landslide length to represent the runout length thus represents a minimum value 796 

for 𝑛̅ and if needed, (A2) can be multiplied by a coefficient to scale ℓ into a more representative runout length. 797 

Combining (A2) and (A3), ℎ̅𝑒 can be defined as the average erosion rate per unit length of runout debris (𝐸̅/ℓ) times 798 

the cell width: 799 

 ℎ̅𝑒 = 
𝐸̅ 𝛥𝑥

ℓ
 (A4) 800 

Rewriting equation (11) as a function of the average shear stress in the erosion-dominated reaches of the runout path 801 

(𝜏̅) and assuming 𝜏𝑐 ≅ 0, debris flow erodibility parameter 𝑘 can be estimated as:  802 

 𝑘 =  
ℎ̅𝑒

𝜏̅𝑓 (A5) 803 
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To solve for 𝑘, we estimated 𝜏̅  from field-approximated debris flow depth and channel slope measurements in the 804 

erosion-dominated reaches of the runout path. To estimate flow depth, we used the height of scour marks on the 805 

channel wall or tree trunks, above the channel bed (Table 1). We used (13) to define 𝜏̅. For 𝐷𝑠, we used the average 806 

maximum grain size observed over the whole runout path. If 𝜏 is defined as a function of grain-collision dependent 807 

shear stress approach (13) and 𝑘 is determined as a function of 𝑓, as in (A5), the impact of 𝑓 on model behavior is 808 

relatively small.  809 

Notation 810 

𝑞𝑅𝑖
  [m]   debris flux from a node to each of the node 𝑖-th receiver nodes 811 

𝑞𝑂  [m]   the total out-going debris flux 812 

𝑁𝑟    the number of receiving nodes of node 𝑛 813 

𝑆𝑖    the underlying topographic slope (tan 𝜃) to each of the node 𝑖-th receiver nodes 814 

𝑎    exponent in (1) that controls how flow is distributed to downslope nodes 815 

𝑞𝐼  [m]  The total incoming flux  816 

𝑁𝑑    number of donors nodes to a node 817 

𝑞𝐷𝑗   [m]  the flux from node 𝐷𝑗  (the 𝑗-th donor node) 818 

ℎ  [m]  flow depth at node, adjusted to be no more than ℎ𝑚𝑎𝑥 819 

ℎ𝑚𝑎𝑥   [m]   the maximum observed flow depth 820 

𝐴  [m]  aggradation depth 821 

𝑆𝑐    critical slope 822 

𝑆   steepest slope to the node’s eight neighbouring nodes 823 

Δ𝑥 [m]  cell length 824 

𝐴𝑝|𝑁𝑎
  [m]  potential aggradation depth that forms a deposit that spreads over 𝑁𝑎 consecutive nodes 825 

𝐴𝑝,𝑖 [m]  i-th deposition amount in the deposit illustrated in Figure 4 826 

𝑁𝑎    number of nodes 𝑞𝑠𝑛
𝐼  is assumed to spreads over 827 

𝐸  [m]  erosion depth 828 

ℎ𝑟  [m]   regolith depth 829 

ℎ𝑒 [m]   potential erosion depth 830 

𝜃  [°]  topographic slope used to determine shear stress, equal to tan-1(𝑆) 831 

𝜏 [Pa]  basal shear stress 832 

𝜏𝑐  [Pa]  critical shear stress of the regolith 833 

𝑘   erodibility parameter in (11) 834 

𝑓   exponent, controls the non-linearity of ℎ𝑒 in (11) 835 

𝜌 [kg/m3] density of runout material 836 

𝜎 [Pa] normal stress at basal surface 837 

𝜑  tangent of collision angle between grains, measured from the vertical axis 838 

𝜐𝑠  volumetric solids concentration 839 

𝜌𝑠 [kg/m3] density of solids 840 

𝐷𝑠 [m] characteristic particle diameter 841 

𝑢 [m/s] depth average flow velocity 842 

𝑧 [m] depth below the flow surface 843 

𝑢∗  shear velocity 844 

𝑔 [m/s] acceleration due to gravity 845 

Δ𝜂 [m] change in elevation at node 846 

𝒒𝑫   a vector containing all 𝑞𝐷𝑗
 sent to the node 847 

𝝃𝑫   a vector containing the incoming attribute values for each 𝑞𝐷𝑗
 848 

𝜉𝐷  attribute value delivered to the node 849 

𝜉𝑅  attribute value sent to receiver nodes 850 
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𝜉  attribute value at node 851 

𝜂 [m] topographic elevation 852 

Λ  parameter set 853 

𝐿(Λ)  likelihood of parameter set 854 

𝑝(Λ)  prior probability of parameter set 855 

𝛺𝑇  the Lee-Salle index for evaluating model planimetric fit   856 

𝛼 [m2] modelled area of matching extent (compared to observed runout extent) 857 

𝛽 [m2] modelled area of overestimated extent 858 

𝛾 [m2]  modelled area of underestimated extent 859 

Δ𝜂𝐸  volumetric error of the modelled topographic change relative to the observed total 860 

mobilized volume, fraction.  861 

𝑉 [m3] observed total mobilized volume 862 

𝑝  the number of nodes in the modelled runout extent 863 

Δ𝜂𝑀𝑖  [m] the modelled topographic change [m] at the i-th node within the runout extent 864 

Δ𝜂𝑂𝑖  [m] the observed topographic change [m] at the i-th node within the runout extent 865 

 866 

𝑄𝑠𝐸
   mean-modelled-cumulative flow error along the runout path relative to the observed 867 

mean cumulative flow, fraction. 868 

𝑗  index used to represent each node along a profile of the runout path. 869 

Δ𝜂𝑖𝑗  [m] topographic change [m] at the 𝑖-th node located upstream of node 𝑗 870 

𝑢𝑗  totalnumber of all nodes located upstream of node 𝑗 871 

𝑟  the number of nodes along the center line of the runout path 872 

𝑄𝑠 [m3]  the cumulative debris flow volume at each node, 𝑗 along the center line of the runout path 873 

𝑄𝑠𝑂  [m3] the observed cumulative debris flow volume (𝑄𝑠) at each node, 𝑗 874 

𝑄𝑠𝑀 [m3] the modeled cumulative debris flow volume (𝑄𝑠) at each node, 𝑗 875 

Δ𝜂𝑖𝑗  [m] the topographic change [m] at the 𝑖-th node located upstream of node 𝑗 876 

𝑢𝑗  the total number of all nodes located upstream of 𝑗 877 

𝑄𝑠𝑂
̅̅ ̅̅ ̅ [m3] the observed mean cumulative flow 878 

𝑃(𝛥𝜂)   879 

𝐸̅/ℓ  [m/m] average erosion per unit length of runout debris 880 

𝑃(𝛥𝜂)  probability of runout, expressed as the probability that the elevation of a node changes 881 

#  number of 882 

𝑁𝑝  number Monte Carlo iterations used to determine probability 883 

𝔸  [m2] erosion area of the observed or modeled runout 884 

𝐸̅ [m] average erosion depth caused by the runout 885 

∑ 𝐸Δ𝑥2 [m3] the total erosion volume 886 

𝑛̅  mean number of times a debriton would need to pass over a grid cell multiplied by an 887 

average erosion depth per debriton to equal 𝐸̅ 888 

ℎ̅𝑒 [m] average erosion depth per debriton 889 

ℓ  [m] length of runout debris, approximated as the length of the initial landslide body 890 

𝐻/𝐿  the total topographic relief of the runout (measured from the center of the landslide to the 891 

end of the runout path) divided by the horizontal length of the runout 892 

𝜅  [1/m] mean total curvature 893 

𝑆𝑃𝐼  mean specific stream power index 894 

𝐹𝑆  Factor-of-Safety, ratio of the resisting to the driving forces acting on a hillslope  895 

 896 

Code availability 897 

MassWastingRunout and several tutorial notebooks area available at: https://github.com/landlab/landlab 898 

https://github.com/landlab/landlab
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