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Abstract

We developed a new rule-based, cellular-automaton algorithm for predicting the hazard extent, sediment transport and
topographic change associated with the runout of a landslide. This algorithm, which we call MassWastingRunout
(MWR), is coded in Python and implemented as a component for the package Landlab. MWR combines the
functionality of simple runout algorithms used in landscape evolution and watershed sediment yield models with the
predictive details typical of runout models used for landslide inundation hazard mapping. An initial DEM, a regolith
depth map, and the location polygon of a landslide are the only inputs required to run MWR to model the entire runout
process. MWR runout incorporates rules of mass conservation, erosion and deposition, which are driven by
topography. For the purpose of facilitating rapid calibration to a site, MWR includes a calibration utility that uses a
Markov Chain Monte Carlo algorithm to automatically calibrate the model to match observed runout extent, deposition
and erosion. Output from the calibration utility can be used to inform probabilistic implementation of MWR. Here we
use a series of synthetic terrains to demonstrate basic model response to topographic convergence and slope, test
calibrated model performance relative to several observed landslides, and briefly demonstrate how MWR can be used
to develop a probabilistic runout hazard map. A calibrated runout model may allow for region-specific and more
insightful predictions of landslide impact on landscape morphology and watershed-scale sediment dynamics, and

should be further investigated in future modelling studies.
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1. Introduction

Over geologic timescales, landslides and their runout shape the topographic expression of mountain ranges and
channel networks (e.g., Campforts et al., 2022; Korup, 2006; Larsen and Montgomery, 2012; Montgomery and
Dietrich, 1988). Over more pragmatic engineering and environmental risk management timescales, landslides and
their runout can inundate and destroy infrastructure (e.g., Kean et al., 2019) but also support numerous ecosystem
benefits, including carbon and nutrient transport from hillslopes to channels and the creation of riparian habitat (Benda
et al., 2003; Bigelow et al., 2007; Goode et al., 2012). Therefore, explicit representation of landslide runout is a
necessary component of: (1) landslide inundation hazard assessments, with emphasis on inundation extent and flow
depth (e.g., Frank et al. 2015, Han et al., 2015); (2) watershed sediment yield models, with emphasis on the
mobilization, deposition and type of sediment carried by the landslide (e.g., Bathurst and Burton, 1998;
Istanbulluoglu,et al., 2005); and (3) landscape evolution models, with emphasis on topographic change prediction
(e.g., Tucker and Bras, 1998; Istanbulluoglu and Bras, 2005; Campforts et al., 2022);

Landslide runout processes can be generalized into three phases: initiation, erosion, and deposition. After a landslide
initiates, it may break apart and flow as a relatively dry debris slide, or it may mix with surface runoff to become a
debris flow. The mobility of the mass wasting material and resulting erosion/deposition pattern often varies as a
function of runout topography and initial relief and size of the landslide (lverson, 1997). Mobility may also be
impacted by substrate liquefaction (Hungr and Evans, 2004) and landslide basal cataclasis (Shaller et al. 2020). As
the runout material moves downslope, flow depth varies as a function of channel width (Kean et al, 2019), which in
turn impacts erosion rates (Schirch et al. 2011). Theoretical, field and laboratory observations indicate that erosion
rates may also depend on the moisture content of the channel bed (Iverson, 2012; McCoy et al. 2012), flow grainsize
(Egashira et al., 2001) and granular stress within the flow (Capart et al, 2015). The slope at which deposition begins
is controlled by the grain to water ratio and friction angle of the slide material (Takahashi, 2014; Major and Iverson,
1999; Zhou et al., 2019) but the friction angle of the material may vary as a function of the grains in the flow and
fluidization of the flow material (Hutter et al., 1996). Lateral levees often form along the edges of the flow (Major,
1997; Whipple and Dunne, 1992; Shaller et al., 2020) and deposition at the distal end of the flow may occur as layered
accretion (Major, 1997) or as the emplacement of a single, massive deposit (Shaller et al., 2020). If the water content
of the runout material is high enough, as the solid fraction of the distal end of the flow compresses, the water is
squeezed out and may continue as an immature debris flow (sensu Takahashi, 2014) or intense bedload (sensu Capart
& Fraccarolo, 2011), extending the runout distance (e.g., Shaller et al. 2020).

Landslide inundation hazard models aim to accurately predict the runout extent and/or flow depths of a runout event
and may include some or most of the above processes in the model. Example models include: (1) site-specific-
empirical/statistical models that use simple geometric rules and an estimate of the total moblized volume (initial
landslide + eroded volume) or a growth factor (e.g., Reid et al. 2016); (2) detailed, continuum-based mechanistic
models, which conceptualize the runout process as a single-phase or multiphase flow using the depth-integrated
Navier-Stokes equations for an incompressible, free-surface flow (i.e., shallow water equations; Frank et al, 2015;
Han et al., 2015; Iverson and Denlinger, 2001) and often (though not always) require pre-knowledge of the total

moblized volume (e.g., Barnhart et al., 2021; Han et al. 2015); (3) reduced-complexity flow-routing models that use
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rule-based abstractions of the key physical processes that control the flow (Clerici and Perego, 2000; Guthrie and
Befus, 2021; Gorr et al., 2022; Han et al., 2017, 2021; Horton et al., 2013; Liu et al, 2022) and are typically
implemented using just the initial landslide location and volume but often rely on heavy, site specific parameterization
and; (4) hybrid modelling approaches that combine mechanistic models with empirical and reduced-complexity
approaches (D’ Ambrosio et al., 2003; Iovine et al., 2005; Lancaster et al., 2003; McDougall and Hungr 2004; Medina
etal., 2008).

For landscape evolution and watershed sediment yield applications (herein referred to as watershed sediment models,
WSMs), the runout model must be scalable in both space and time, and use internally modelled landslide location and
size (e.g. Tucker and Bras, 1998; Doten et al 2006; Campforts et al. 2022). As such, computationally efficient and
parsimonious reduced complexity runout models that evolve the terrain and transfer sediment are often preferred in
WSMs, however with simplifications that can restrict model ability to accurately replicate observed inundation extent
or depositional patters. Such simplifications include omitting debris flow erosion and bulking in runout channels,
limiting flow to only a single cell in the steepest downstream direction, and assuming debris flows only occupy the
width of a single cell (e.g., Tucker and Bras, 1998; Istanbulluoglu and Bras, 2005) or link of a channel network (Benda
and Dunne, 1997).

To bridge the scalable functionality of WSMs with the predictive accuracy of landslide inundation hazard models,
without the computational overhead of a detailed mechanistic representation of the runout process, or difficult
parameterization typical of other models, we developed a new, reduced-complexity landslide runout model, called
MassWastingRunout (MWR). MWR models landslide runout starting from the source area of the landslide, making it
easily compatible with WSMs that internally determine landslide area and location. MWR tracks sediment transport
and topographic change downstream, and evolves the attributes of the transport material. MWR can be calibrated by
adjusting just two parameters and is augmented with a Markov Chain Monte Carlo (MCMC) calibration utility that
automatically parameterizes model behavior to observed runout characteristics (e.g., erosion, deposition, extent).
MWR also includes a built-in utility called MWR Probability, designed for running an ensemble of simulations to
develop probabilistic debris flow hazard maps.

In this paper, we present the conceptualization and numerical implementation of the MWR model (Section 2), describe
the calibration utility and its probabilistic implementation (Section 3) and demonstrate basic model response to
topographic convergence and slope on a series of synthetic terrains (Section 4). Event-scale applications to replicate
observed runout extent, sediment transport, and topographic change at four topographically and geologically unique
field sites are discussed (Figure 1; described in Section 5). We test MWR’s predictive ability using the
parameterization of one site to predict runout hazard at a nearby site and show a brief example of Monte Carlo model
runs to determine runout probability from a hydrologically-driven landslide hazard map or an expert-determined
potentially unstable slope (Section 6). We conclude with a short summary of MWR model performance and discuss

how a calibrated MWR can be incorporated into WSMs.
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Figure 1: Example landslides that are used to evaluate calibrated MWR performance: (a) Cascade Mountains, WA: a large debris
avalanche over steep, broadly convergent terrain (photo credit: Stephen Slaughter). (b) Black Hills, WA: large debris flows over a
broadly convergent, gently sloped valley (photo credit: Stephen Slaughter). (c) Rocky Mountains, CO: a moderate sized debris
avalanche over steep, unconfined to divergent hillslope. (d) Olympic Mountains, WA: small debris flows in steep, highly
convergent channels.

2. Description of the MassWastingRunout model

2.1 Overview of the cellular-automaton Modelling approach

MWR is coded as a discrete cellular automaton (CA) model. CA models apply a set of equations or rules (deterministic
or probabilistic) to individual cells of a grid to change the numerical or categorical value of a cell state (e.g., Codd,
1968). In earth sciences, CA models are widely used to model everything from vegetation dynamics (e.g., Nudurupati
et al., 2023) to lava flows (e.g., Barca et al., 1993) to geomorphic transport, in which gravitationally directed erosion

and depositional processes modify a digital elevation model (DEM) representation of a landscape (e.g., Chase, 1992;

4



118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

139

140
141
142
143
144
145
146
147
148
149
150
151
152
153

Crave & Davy, 2001; Murray & Paola, 1994; Tucker et al., 2018). Existing CA-based landslide runout models include
Guthrie and Befus (2021), D’ Ambrosio et al. (2003) and Han et al. (2021). In all of these models, runout behavior is
controlled by topographic slope and rules for erosion and deposition but conceptualization and implementation differ.
In MWR, mass-continuity is central to model conceptualization. Of the wide range of processes described in the
introduction that control observed runout, MWR explicitly represents erosion, deposition, and flow resistance due to
debris size and vegetation. Material exchange between the runout material and underlying terrain as well as flow
resistance determines runout extent and landscape evolution. Model rules are designed such that they can be
parameterized from field measurements. Finally, in MWR, most computations occur only at the location of moving
debris, in a manner analogous to the “mobile” cellular automaton implementation of Chase (1992).

Chase (1992) modelled precipitation-driven surface erosion by randomly placing single packets of precipitation on a
DEM, which then moved from higher elevation to lower elevation grid cells, eroding and transporting sediment as a
function of the slope between the cells. The individual packets of precipitation were referred to as precipitons. In
MWR, since we route the downslope progression of debris from a specified mass wasting source area, we refer to
these packets of debris as “debritons”. The debritons represent debris flux, here defined as a volume of debris
transferred per model iteration per grid-cell area, [m3/m?/iteration] and are equivalent to the flow depth in the cell.
The present implementation of the MWR algorithm is coded in Python and developed as a component of the Landlab
earth surface modeling toolkit (Barnhart et al., 2020; Hobley et al., 2017). MWR uses the Landlab raster model grid,
which consists of a lattice of equally sized, rectangular cells. Topographic elevation, derived topographic attributes
like slope and curvature, and other spatially varying attributes such as regolith depth and grain size, are recorded at
nodes in the center of each cell (see Figure 5 of Hobley et al., 2017). In the subsequent sections we describe the model

theory. Note that all the notations of parameters and variables used in this theory are listed in Section 10.

2.2 Mobilization of the initial mass wasting source material (Algorithm 1):

To initiate MWR, the user provides maps of initial topography, regolith depth, and the location and depth of the mass
wasting source material (e.g., landslide body). Each raster model grid node in the mass wasting source material is
designated as a debriton (Figure 2, iteration t = 0) with a magnitude equal to the mass wasting source material depth
and basal elevation equal to the initial topography minus the mass wasting source material depth. The basal elevation
can be thought to represent the rupture or slip surface of the source material and the redistribution (flux) of each
debriton to its downslope nodes (receiver nodes) is determined as a function of the slope of the slip surface. Note that
if the depth of the wasting source material is spatially variable (e.g., a rotational failure), the slope of the slip surface
will not match the slope of the initial terrain surface. At the lowest-elevation debriton of the source material, flux to
its downslope nodes is determined using the surface slope of the initial DEM (see flow direction of lowest node in
Figure 3a). This implementation helps to ensure that the lowest-elevation debriton in the mass wasting source material
moves downslope and movement of upslope debritons are impacted by the geometry of the mass wasting source
material. For example, the receiver nodes of the lowest-elevation debriton in the landslide illustrated in Figure 2
(iteration t = 0, detailed in Figure 3a) would be identified as those among the eight neighboring nodes whose initial

topographic elevation was less than the initial topographic elevation of the node while for the debriton at node 51, the
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Figure 3. (a) Three-dimensional illustration of iteration t = 0 in Figure 2, showing initial source material nodes (represented by red
cells) and flux towards downslope nodes. Except for the lowest elevation node in the mass wasting source material, all debritons
are directed downslope based on the underlying topographic slope (compare flow directions of node 51 to node 45); (b) Distribution
of qo to downslope nodes 38, 39, 40 and 44; (c) illustration of mass continuity applied to any node that receives a debriton.

2.3 Flow routing and rules for debris flow erosion, deposition and resistance (Algorithm 2)

Algorithm 2 is essentially the runout model. It determines how each debriton traverses and modifies the landscape.
After receiver nodes from the first model iteration are determined in Algorithm 1 (iteration t=0), Algorithm 2 is
repeatedly implemented until all material has deposited (i.e., there are no debritons). Each debriton moves one grid
cell per model iteration, the larger the landslide size, the more iterations necessary to evacuate the landslide. As each
debriton moves, it may erode or aggrade the landscape, impacting the movement of any upslope debritons. As is
common with other reduced complexity models, we assume that inertial effects have negligible impact on flow
behavior (i.e., the kinematic flow approximation). The downslope redistribution of a debriton or flux to each of a
node’s i-th receiver nodes (q ,) is determined as a function of topographic slope (slope of terrain under the debriton)

using the Freeman (1991) multiflow direction algorithm:

a

qr; = o S (€Y}

a
i=15i
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where q, is the total out-going flux from the node and has units of depth [m] per model iteration, Nr is the number
of receiving nodes, i is the index for each receiver node (e.g., i = 1,2 ...Nr) and S; is the underlying topographic
slope to the i-th receiver node (Figure 3b). The Freeman (1991) multiflow direction algorithm is a commonly used
approximation for two-dimensional flow, and in this implementation it is handled by a pre-existing Landlab flow-
routing component. The exponent a controls how material is distributed to downslope nodes. In a braided river
cellular-automaton model, Murray and Paola (1997) used an approximation for turbulent shallow water flow to justify
a = 0.5 (which is the exponent on the slope factor in channel friction laws). For our application, we found MWR
provided a closer fit to observed mass wasting runout if a = 1, suggesting that the material behavior is more similar
to linear-viscous shear flow than to wall-bounded turbulent shear flow. The total incoming flux (again, in units [m]
per model iteration) towards a given node (g,), is determined by summing the flux from each of the node’s donor

nodes:
qr = Z?]=d1 p; (2)

Where Nd is the number of donor nodes, and dp; is the flux from node D; (the j-th donor node, j =1,2... Nd; Figure
3h).

As noted by Tucker and Hancock (2010), the flow depths calculated from two-dimensional flow approximations like
(1) can be influenced by the grid-size used to represent the terrain and depending on the boundary conditions,
neglection of pressure and momentum forces may lead the model to underestimate or overestimate flow width in some
circumstances. Rengers et al. (2016) noted that this same issue occurs when using a kinematic wave approximation of
the shallow water equations because the kinematic wave approximation lacks a pressure term that would normally
allow the modelled water surface to spread out. For the purpose of determining flow-depth-dependent erosion rates
described later in this paper, and to provide a simplified representation of the effect of pressure forces, we constrain

flow depths to no more than a maximum flow as:

h =min (hynax, 1) 3)

Where h,,, is an effective upper limit to flow depth, that in practice can be approximated as the maximum observed
flow depth, as inferred from field indicators or assigned based on expert judgement (See Section 5) and h is the
corrected flow depth used to calculate flow shear stress. This correction allows erosion rates to vary with flux but
prevents unreasonably large values. This flow depth correction does not violate the conservation of mass and runout
mass balance, as h is only used to calculate flow shear stress.

To determine aggradation (A) at a node, we use a critical slope (S.) constraint that permits computationally-rapid
distribution of q; over multiple nodes. Critical slope constraints or rules are common to many reduced-complexity and
landscape evolution models. Chen et al. (2023) showed that when flow inertia can be ignored, S, can be approximated
from the surface slope of observed deposits. Several landscape evolution models use a S.-based nonlinear, nonlocal
aggradation scheme (e.g., Campforts et al., 2020; Carretier et al., 2016) but when this rule is implemented with the
debriton framework described above, unreasonably tall deposits result when g; is large and slope at the node (S) <<

S.. To resolve this problem, aggradation depth can be limited to A < S.Ax, (where Ax grid cell length), but we found
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that this constraint results in long deposits that parallel the underlying slope when g, is large. Instead, MWR computes
the aggradation depth at a node assuming that the aggradation will spread over N, nodes until all of g, is deposited

and that the surface slope of the overall deposit will be equal to S, as shown in Figure 4 and described as follows.

S <S
q; n c
—-— @
DEM ||__ o
Ap,Na S
S p,Na—‘l { ]
n L=< _.Ap.Na—z
Py Apn _
Sh SﬂAX {L-D.I.Va'-fil Ap,l
LN N
—— L
Ax

Figure 4. lllustration of aggradation rule used in MWR when g, is assumed to spread over 5 nodes (N, = 5). Solid
yellow box indicates deposition at node n. Dashed yellow boxes and lines indicate hypothetical deposition and
underlying topography. Dots along DEM surface are nodes.

Aggradation at a node is determined as:

{0 , §$=S8;

. 4
mm(Ap,Na,q,) , S$<S, )

Where S is the steepest slope to the node’s eight neighbouring nodes, 4, v, is a potential aggradation depth (4,)
necessary to form a deposit that: (1) begins at the node and spreads over N, consecutive nodes; (2) has a total volume
equal to g;Ax?; (3) a surface slope equal the critical slope S, and; (4) an underlying topographic slope equal to the
steepest slope at the node and assumed constant over the N, consecutive nodes of deposition (S,,). From this assumed
deposit, we can analytically define 4, v, and N, as a function of g;, S, and S, as follows:

First, q;, calculated from (2), can be used to calculate A, ; by expressing g, as the sum of the N, deposits that make

up the overall deposit as:
Q=i Ay (5)

where A, ; is the i-th deposition amount in the deposit and i = 1 is the last node of deposition (4, ;; see Figure 4).
Since we assume the deposit slope and underlying topographic slope are uniform, the deposition amount at any of the

N, nodes can be determined from 4, , as:
Api =Apq + (1 — DAx(S. — Sy) (6)

From (6) we can re-write (5) as a function of A4,, ; and rearrange to define 4, ; as a function of g;:
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! Ng-1
p1 ™ N U 2

A Ax (S, —S,) (7

Substituting (7) into (6) and solving for i = N,, we get an expression for A, y :

Ng

1 -1
Ap,Na = N_an + 2 AX(SC _Sn) (8)

Equation (8) can be rearranged into a quadratic equation and solved for N, as:

2
1 1
—Ap 1t 2Ax(Sc=Sp) j (Ap_l—EAx(SC—Sn )) +28%(Sc-Sp)q1

N, = 9

Ax(Sc—Sn)

We use (8) to solve for 4, v, and (9) to solve for N, assuming A, ; = 1/2 AxS, and rounding the positive solution to
the nearest integer. When implemented using a single debriton, released on a two-dimensional hillslope as illustrated
in Figure 4, the debriton deposits over N, nodes at a uniform slope equal to S.. When implemented on an actual three-
dimensional terrain, the interaction between multiple debritons in multiple directions creates a complex deposit whose
slope changes with S..

To determine erosion depth (E) [m/iteration], we constrain E to the lesser of a potential erosion depth, k., and local

regolith depth, h,.
E = min (h,, h,) (10)

where h, is computed as a function of the basal shear stress of the flow, = [Pa], (Equations 12 and 13) and the critical

shear stress (z,.) of the regolith at the node [Pa]:
he = k(t —1.)" (11)

The coefficient k is an erodibility parameter [m/Paf]. Stock and Dietrich (2006) showed that k encapsulates substrate
properties. If h, is used to represent erosion over geomorphic time scales, with repeated debris flow occurrences in a
single model iteration, k becomes associated with debris flow length and frequency (Perron, 2017). In our application
since we are modelling the erosion associated with a single runout event, as represented by the downslope movement
of the debritons, the coefficient k therefore needs to scale h, on the order of the average erosion depth caused by a
single debriton. Using this logic, k can be computed using the observed average erosion depth and an estimated length
of the runout material that caused the erosion. Further details on how we determine k from observed runout are
included in the Supplementary Material. The exponent f controls the non-linearity of h,. Many authors (Chen &
Zhang, 2015; Frank et al., 2015; Shen et al., 2020) use a value of 1 for f but field measurements by Schiirch et al.
(2011) (see their Figure 3) suggest that f may be less than 1 if T is assumed to vary linearly with flow depth,
particularly at flow depths greater than 3 meters.

MWR includes two options for defining z: (1) a quasi-static basal shear stress approximation or (2) a grain-size-based

shear stress approximation. The quasi-static basal shear stress approximation (e.g., Takahashi, 2014) is defined as:

T =pghsin® (12)
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where p is the density of mass wasting material (grain and water mixture) [kg/m?], g is gravity [m/s?] and h is the
adjusted flow depth described in (3) and 8 is the topographic slope (tan'}(S)) measured in degrees.

The grain-size-based shear stress approximation is defined using an empirical formula by Bagnold (1954):
T=otang (13)

Where ¢ is normal stress [Pa], ¢ is the collision angle between grains, measured from the vertical axis (See Bagnold,
1954), with a value of tan ¢ typically equal to 0.32. Stock and Dietrich (2006) defined o as:

2 (du 2
o = cos Ov,p,Dq (E) (14)
Where v, is the volumetric solids concentration, p, is density of the solids [kg/m®], u is flow velocity [m/s], z is depth
below the flow surface [m], du/dz is the shear strain rate [1/s] and D, is the representative grain size [m]. Stock and
Dietrich (2006) suggested that D, corresponds to a small percentile of the coarsest fraction of the runout material (Dgg

to Dye) and they approximated du/dz as:

du _u
— = (15)
Solely for the purpose of computing du/dz, we approximate velocity at a node using a grain-size dependent empirical

formula for debris flow velocity by Julien and Paris (2010) as:

u = 5.75u*log (D%) (16)
Where u*is shear velocity (\/W) Substituting (16), (15), (14) and (13) into (11) yields a grain-size dependent
approximation for h, that mimics the non-linear erosion response to flow depth in Schirch et al. (2011). Additionally,
this form of 7 is advantageous because it permits landslide-driven erosion rates to scale with landslide grain size,
which can vary by lithologic region (e.g., Roda-Boluda et al. 2018). As will be shown in Section 5, we obtained
reasonable model calibration at multiple sites by defining Dy from the coarser grain sizes observed in the field at
existing runout-deposits, road-cuts and tree-throw pits.

Once A [m] and E [m] have been determined, total out-going flux per iteration, q, [m] is determined as (see Figure
3c):

q:{m—A+E q = qc
oo , ar<4c

Where q. is a threshold flux for deposition. When ¢q; < q., q; deposits and q, becomes zero. The threshold flux g,

(7)

conceptually represents the flow depth below which flow resistance is large enough to cease the forward momentum
of the flow, whether in the form of internal friction or friction due to vegetation and obstructions (e.g., large clasts or
logs). The density and water content of q;, A, and E are treated as uniform and surface runoff, such as channelized
stream flow or hillslope-infiltration-excess runoff, that might mix with q; A, or E is ignored. Once q;, 4, qo and E

have been determined, change in elevation at a node (A7) is calculated as:

Ap=A-E (18)
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Attributes of the debriton and regolith are updated using a volumetric-weighted average approach. First, for each
regolith attribute being tracked by the model (e.g., grain size), the attribute value delivered to a node from its donor
nodes () is determined as:

§p = 2% (19)
1

where qp, is a vector containing all qp, sent to the node, & is a vector containing the incoming attribute values for
each o, and g, is the sum of incoming flux from donor nodes defined by (2).

Second, the attribute value sent from a node to its receiver nodes (&) is determined as:

fR — ft—1E+§D(q1 —4A) (20)
o

where &,_, is the attribute value at the node before any aggradation (i.e., the previous iteration attribute value). Finally,

the attribute value at the node, updated to account for erosion and aggradation (§) is:

_ & a(h-B)rEpA
" 1)

Regolith thickness (h,.) and topographic elevation (1) are updated at a node as:

N=Mn¢1+4n (22)
hy =hyr—q + 47 (23)

Where 1., and h,. ., are the topographic surface elevation and regolith thickness at the node from the previous
model iteration. After regolith thickness and topographic elevation have been updated for each debriton, the multi-
direction slope of the DEM, which is used for routing the debritons in the next model iteration, is recomputed from
the topographic surface.

Using the above approach, debritons may become obstructed if they encounter a topographic pit or flat topography in
the DEM. To allow a debriton to pass an obstruction, we rely on a simple work-around: upon encountering the
obstruction, the debriton is directed to itself and some portion of the debris is deposited based on (4). At the end of
the model iteration, the node elevation and slope are updated. During the next iteration, if the remaining mobile debris
is no longer obstructed, it moves to its downslope node(s). If the node is still obstructed, it is again sent to itself until
either all material has deposited or the elevation of the node exceeds that of its neighbour nodes, allowing the debriton

to move downslope.

3. Calibration and MWR probability
3.1 Calibration utility

MWR includes an adaptive Markov Chain Monte Carlo (MCMC) calibration algorithm described by Coz et al. (2014)
and Renard et al. (2006). The user provides an initial (prior) guess of the parameter values and their respective
probability distribution functions (PDF) that calibrate the model to a specific site. Then, the calibration algorithm

randomly selects a set of parameter values (A) from the prior PDFs and runs MWR using A. Once the model has
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completed the run, the algorithm evaluates the posterior likelihood of the parameter set (L(A)) as a lumped index of
model ability to replicate observed runout (described below) and the prior likelihood of the parameter set. After the
first L(A) has been determined, the algorithm selects a new set of parameters (A1) by jumping some distance from
each parameter in A space. Depending on the value of L(A;,;), the algorithm either stays at A or moves to A;,,. This
Markov process is repeated a user-specified N¢ times. Jump direction is random, but the algorithm is adaptive because
the jump distance changes depending on how often L(A.,,) > L(A). For a detailed description of the algorithm see
Coz et al. (2014).

The L(A) index is estimated as the product of the prior probability of the selected parameter values, p(A), and three

other performance metrics as:

Lo o (24)

= *
AnNg Qsg

L) = p(A) * Qg

where Qr is the Lee-Salle index (Heiser et al., 2017) for model planimetric fit; and Ang and Q. are new

dimensionless indices, proposed for this study. The indice Ang is the volumetric error of the modelled topographic
change normalized by the observed total mobilized volume (initial landslide + erosion volume). The indice Q. is the

mean-cumulative flow error along the modelled runout path normalized by the observed mean cumulative flow. Larger

values of Qr and smaller values of An and Q. indicate modelled runout more closely fits observed. Note that we
add a value of 1 to Q and use the squared- reciprocal values of Ang and Q. in (24) so that the magnitude of L(A) is

always equal to or greater than zero and increases with improved fit. The metric Q; is written as:

0p = EEY g (25)

a+f+y

where o, § and y are the areas of matching, overestimated and underestimated runout extent, respectively.

The spatial index for volumetric error, Ang, is determined as:

P L IAx212
Ang = \/Zl:o[(AUOlVZAUML)Ax] ] (26)

Where V is observed total mobilized volume and p is the number of nodes in the modelled runout extent, and An,;
and An,,; are the modelled and observed topographic change [m] at the i-th node within the runout extent.

To calculate Qs ., we first determine the cumulative debris flow volume (Qs) at each node, j, (Qs ;) along the runout

profile, in a manner similar to the flow volume/mass balance curves in Fannin and Wise (2001) and Hungr and Evans
(2004):

ws
Qsj=—4x*Y.. An; (28)

where An;; is the topographic change [m] at the i-th node located upstream of node j, and v; is the total number of all
nodes located upstream of j. Q; is computed for both the observed and modelled runout (Qso; and Qg j

respectively) and Q; ., of a runout is determined as:
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0. = J?—Z"“(Q%Q Zart) (29)
Where r is the number of nodes along the runout profile, and Qs, is the observed mean cumulative flow.

As will be detailed in Section 5, field estimates for S, and q., vary over the length of the runout path. To account for
the heterogeneity of S, and q., we estimate prior distributions of potential S, and g, values from field/remote sensing
measurements. Then, from model calibration to a DEM-of-Difference (pre-runout DEM subtracted from the post-
runout DEM; DoD using the calibration utility, we find single values of S, and g, that allow the modelled DoD to
replicate the observed DoD .

We run the calibration utility using a single Markov chain of 2000 repetitions. At most sites, the model converged
relatively quickly on a solution and we therefore didn’t consider burn-in or evaluate convergence (e.g., Gelman et al.
2021). Future implementations of the calibration utility may include multiple chains, burn-in and a check for
convergence. As a final note, many debris flow runout models are evaluated using . or variations of Q, alone (e.g,
Gorretal., 2022; Han et al., 2017) and the MWR calibration utility can also be run solely as a function of Q. However,
we found that calibration based on Q; alone results in high parameter equifinality (e.g., Beven 2006); multiple
parameter sets result in an equally calibrated model as evaluated by Q. As such, we recommend calibrating debris
flow models to an observed DoD. If repeat lidar is available, a DoD can be obtained from before and after scans of
the observed runout event. Alternatively, a DoD can be created by hiking the observed runout event and mapping
field-interpreted erosion and deposition depths. Additional details on how we prepared DoDs for multiple sites are

included in the Supplementary Material.

3.2 Mapping landslide runout hazard

MWR includes an additional utility called MWR Probability that produces landslide runout probability maps. MWR
Probability repeatedly runs MWR a user specified Np times, each repetition with a different, randomly sampled
parameter set from the posterior parameter PDFs produced by the calibration utility. MWR Probability includes three
options for specifying the initial mass wasting source material: (1) a user-provided landslide source area polygon(s)
based on field and/or remote sensing observations; (2) a user-defined hillslope susceptible to landslides (e.g.,
potentially unstable slope), where landslide area and location are randomly selected within, but no larger than the
hillslope; this option is useful when the extent of a potential landslide is unknown; and (3) a series of mapped landslide
source areas within a watershed, as determined by an externally run Monte Carlo landslide initiation model (e.g.,
Hammond et al. 1992; Strauch et al., 2018) ; this option is useful for regional runout hazard applications. If using
Option 1, modelled runout probability represents uncertainty in MWR parameterization. If using Option 2 or 3,

modelled runout probability reflects uncertainty in both MWR parameterization and landslide location and size.
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For all three run options, each model iteration begins with the same initial topography. After Np model simulations,
Np different versions of the post-runout landscape are created, and model performance for each are evaluated. After

Np model runs, probability of runout at each model node is determined as:

number_of (|4n|>0)

P(an) = mmeret (30)

where number_of (|An| > 0) is the number of times topographic elevation at a node changes as a result of erosion
or deposition from the Np model runs. Probability of erosion or aggradation can be determined by replacing the

numerator in (30) with nunmber_of (4n < 0) or number_of (4An > 0) respectively.

4, Basic model behavior

We evaluate basic model behavior using a series of virtual experiments. The virtual experiments consist of six
synthetic terrains including: (A) a planar slope that intersects a gently sloped plane (S = 0.001), (B) a planer slope
with a constriction, that intersects a gently-sloped plane, (C) a planar slope that has a bench mid-slope and then
intersects a gently-sloped plane; (D) a concave up, uniform-convergence slope; (E) a concave up, variable-
convergence slope that widens (convergence decreases) in the downslope direction; (F) a convex up, variable-
convergence slope that widens (convergence decreases) in the downslope direction. On each terrain, a 30-meter wide,
50-meter long and 3-meter deep landslide is released from the top of the terrain. All six terrains are covered by a 1-
meter thick regolith and use the same parameter values (S, = 0.03, g. = 0.2 m, k =0.01, D, = 0.2 m). Experiment

results are shown in Figure 5.
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Figure 5. Shaded, 3-D visualizations of model response to six different synthetic terrains, colored according to the
DoD of the final runout surface. Red indicates a positive change in the elevation of the terrain (aggradation) and
blue indicates a negative change (erosion). Grid size is 10 meters. 3-D representation of DoD is exaggerated by a
factor of 5 to make visible in figure.

On Terrain A, the landslide spread as it moved downslope and formed levees along the edge of the runout path. The
width of the spread was a function of the multiflow direction algorithm and resistance along lateral margins of the
runout as represented by q.. At the slope break at the base of the slope, the material deposited at an angle controlled
by S.. On Terrain B, the flow initially eroded and deposited identical to the first but near the slope break, the
topographic constriction forced flow depth to increase and exceed q., minimizing the formation of levees (because
qo > q.) and resulted in a slightly larger deposit at the base of the slope. On Terrain C, landslide runout was again
initially identical to the runout on Terrain A; however, upon intersecting the mid-slope bench, most of the runout
material deposited. A small, thinner portion did continue past the bench but eroded at a lower rate than the initial slide
upslope of the bench. Upon intersecting the flat surface at the base of the hillslope, the runout material deposited.

On Terrain D, the landslide and its runout were confined to the center of convergent terrain and only deposited once
the slope was less than S.. The slide never widened because the uniformly convergent channel shape prevented
spreading and the narrower flow width maintained a higher flow depth, which prevented the formation of levees. On
Terrain E, the landslide again deposited once slope was less than S, but because topographic convergence of Terrain
E decreases in the downslope direction, as the runout material moved downslope, the deposit spread more than on
Terrain D, which caused thinner flow and deposition along margins of the runout path. On the final terrain, Terrain F,
slope is always greater than S, so deposition was limited to levees along the edge of the flow that formed as the runout
spread in response to decreasing convergence.

MWR model behavior can be summarized as follows. The displacement and deposition of landslide material predicted
by MWR responds to topography in a reasonable manner: Flow width increases as convergence decreases (e.g, Terrain
F), which in turn reduces flow depth. Lower flow depths cause lower erosion rates and reduce aggradation extent.
Conversely, modelled flow depth increases when convergence increases (e.g., Terrain B). Where the flow encounters
broadly convergent or planer slopes, lateral levee deposits form, a common feature of landslides reported in the
literature and at sites reported here (see Section 5) that detailed mechanistic models can struggle to reproduce (e.g.,
Barnhart et al, 2021).

We did not attempt to compare MWR modelled flow with the output of shallow-water-equation based models or
observed granular flows (e.g., Medina et al, 2008; McDougall and Hungr, 2004; Iverson and Denlinger, 2001; Han
et al., 2015). The cellular automaton representation in MWR does not model the time-dependent evolution of debris
flow velocity and depth, and conceptually moves debris instantaneously at each iteration, as driven by changes in the
evolving topographic elevation field. Because of that, only the final outcome of MWR can be compared with other

models or observed runout, which we do in the next section.
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5. Model Validation:
5.1 Overview

In this section, we demonstrate the ability of a calibrated MWR to replicate observed runout extent, sediment transport
and topographic change at field sites located in the western USA and summarize model calibration results with an
evaluation of MWR calibration relative to terrain attributes of the observed runout paths. Note that simply calibrating
a model to match field data does not constitute a satisfactory test of model predictive ability (Iverson, 2003). Strategic
testing, which involves calibrating the model to one site or period of time and then running the calibrated model at a
separate site or period of time (Murray, 2013), is a better indicator. Two of our validation sites, the Cascade Mountain
and Olympic Mountain sites, include two separate landslides and subsequent runout and we test model predictive
ability at these sites in Section 6.

Calibrated model performance is demonstrated at the following field sites (see Figure 6a for locations and observed
runout extent): (1) two runout events over the same hillslope in the Cascade Mountains (Washington state [WA],
USA): a large debris avalanche in 2009 (Cascade Mountains, 2009) and a moderately-sized debris flow in 2022
(Cascade Mountains, 2022) that inundated and flowed within a first-to-second order channel until perpendicularly
intersecting a narrow river valley several hundred meters below the landslide (Figure 1a); (2) debris flows in the Black
Hills (WA) sourced from a small failure along the toe of a deep-seated landslide (Black Hills, South) and a moderately-
sized debris avalanche from a large road fill (Black Hills, North) that flowed several kilometers along a relatively
wide, broadly convergent channel before stopping (Figure 1b); (3) a single, moderately-sized debris avalanche in the
Rocky Mountains (Rocky Mountains), the majority of which flowed several hundred meters over a broadly convergent
to divergent hillslope in Colorado (Figure 1c); and (4) a 30-year chronology of small landslides and subsequent debris
flows in the Olympic Mountains (WA) in steep, highly convergent channels that flowed well over a kilometer and
coalesced into a single runout deposit in a dendritic, channelized watershed (Olympic Mountains; Figure 1d). All
landslides initiated during heavy rainfall or rain-plus-snowmelt storm events (WRCC, 2022; NRCS, 2022; Table 1)
but their runout varied in terms of erosion rate, grain size (Figure 6b), depositional behavior (Figure 6¢) and the
topographic convergence of the underlying terrain.

Table 1. Landslide and runout characteristics

Cascade Cascade Black Black Rocky Olympic
site Mountains, | Mountains, | Hills, Hills, Mountains | Mountains
09 22 south north
landslide length, £ [m] 185 55 80 75 40 45
landslide width [m] 80 50 15 65 35 15
landslide volume [m®] 110,000 22,000 1,500 18,500 4,600 400 - 2,200
2-day cumulative precipitation 120+85 140+75 205+50 205+50 193+0 100 - 220
+ snowmelt [mm] +7?
maximum grain size [m] 0.316 0.316 0.48 0.206 0.984 0.8
Slope range of positive-net 1-15 1-15 <1-10 <1-8 16 - 25 5-15
deposition [%]
average flow depth in scour 4 2 2 3 3 3
zone [m] @
average channel slope in scour 0.25 0.25 0.15 0.15 0.4 0.3
zone [m/m]
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average channel width in scour 45 20 25 35 55 10
zone [m]
length of erosion, [m] 600 340 1210 1345 360 2550
erosion area, A [m?] 28,400 6,600 22,800 52,400 20,800 28,900
erosion volume, 3 EAx? [m®] P 44,547 5,125 12,332 26,815 34,275 33,725
average erosion per unit length 0.0085 0.014 0.0068 0.0068 0.041 0.026
of landslide, £/, [m/m]

k 0.020 0.034 0.017 0.020 0.076 0.051
growth factor, [m3/m] 74.2 15.1 10.2 19.9 95.2 13.2
average observed |An| [m] 2.4 2.2 0.53 0.63 0.89 1.4
total erosion volume / total 0.29 0.19 0.89 0.59 0.88 0.97
mobilized volume ©

2 rough approximation based on landslide volume, channel width and height of scour marks in erosion zone

b excludes landslide volume
¢total moblized volume = erosion volume + landslide volume
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Figure 6 (a) Landslide locations in Washington and Colorado states. Coordinates next to each site are WGS84.
Shaded DEMs of each site are shown at the same scale. (b) Observed average erosion rate per unit landslide length
(E /¢) relative to the observed average-maximum grainsize. Error bars indicate standard deviation. (c) Underlying
topographic slope of observed deposition locations.

5.2 Model setup and field parameterization

Each model was set up on a 10-meter grid representation of the pre-event DEM. The extent of the mass wasting source
material, which in all cases was a landslide, was interpreted from a combination of lidar, air-photo and field
observations. At all locations, we use (13) to approximate shear stress. We field-surveyed each site, noting the
maximum flow thickness, typical deposition and erosion depths and the size of the largest grains in the runout deposits.
We estimated parameter values from these field and remote observations (See Table 1). A site-specific value for k
was determined as a function of the observed average erosion depth (determined as total erosion volume divided by
the erosion area, E) relative to the landslide length (£). Further details are described in the Supplementary Material.
The initial mass wasting source material (e.g., the initial landslide body) ranged in volume from 400 to 110,000 m?®
across sites. At all sites, erosion and subsequent entrainment added to the total mobilized volume (initial landslide +
erosion volume ), but the contribution was highly variable. The erosion volume divided by the total mobilized volume
was as low as 0.19 at the Cascade Mountain, 2022 landslide to as high as 0.97 at the Olympic Mountain landslides
(Table 1).

The average maximum grain size varied from 0.2 m at the Black hills sites to nearly 1 m at the Rocky Mountain Site
(Figure 6b, Table 1). Values of E/¢ ranged from 0.007 to 0.041 [m/m] with the highest rate occurring at the Rocky
Mountain landslide and the lowest at the Black Hills sites. In terms of growth factors (average volumetric erosion per
unit length of the erosion-dominated region of the runout path, Hungr et al. 1984; Reid et al., 2016) values ranged
from 10 m%/m at the Black Hills South site to 95 m3/m during the Rocky Mountain landslide (Table 1).

The median values of topographic slopes at which observed deposition occurred (i.e., An > 0) ranged between 0.3
and 0.1 across sites, while deposition was also observed in much steeper (>0.4) slopes, and much flatter slopes at some
sites (Figure 6c¢) (Table 1). The slope of channel reaches where net deposition (cumulative erosion and deposition;
e.g., Guthrie et al., 2010) was positive tended to be lowest at the Black Hills site (<1% to 10%) and highest at Rocky
Mountain site (16% to 25%).

We defined uniform prior distributions of S, and g, based on the field observations and then used the calibration utility
to find the best-fit parameter values (parameter values corresponding to the highest L(A)). Minimum and maximum
values of S, were initially estimated from the range of observed slope of areas of positive-net deposition (Table 1).
Minimum and maximum values of g, were set as 0.01 to 1.75, which roughly represents the range of minimum
observed thickness of debris flow termini in the field at all of the validation sites. For the purpose of implementing
the calibration utility, we prepared a DoD of each site. The DoD was determined either form repeat lidar or field

observations as detailed in the Supplementary Material.
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5.3 Calibration and model performance

Markov chains, colored according to the likelihood index, L(A) are plotted in the S.- g, domain, along with
histograms of sampled S, and g, values for each landslide in Figure 7. Each Markov chain includes 2000 model
iterations. The runtime for 2000 model iterations depended on model domain and landslide size but varied from
roughly 1.5 to 6 hours on a 2016 2.1 GHz Intel Core Xeon, 32 GB memory desktop. The chains show a wide array
of sampling patterns and parameter ranges but broadly speaking, at all sites, the algorithm jumped within S,.- g, space
towards higher L(A), to form bell-shaped posterior distributions for each parameter. Depending on the landslide type,
the calibration algorithm converged on different S, - q. pairs. For example, at the Cascade Mountains site, the
calibration utility converged to smaller g, and S, values for the 2009 event (Figure 7a), which permitted thinner flows
over lower slopes and effectively made the 2009 modelled runout more mobile relative to the 2022 modelled runout
(Figure 7b). At the Rocky Mountains site, a relatively high g, value helps control lateral extent of the modelled runout

that in the field was controlled by standing trees (Figure 7e).
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Figure 7. MWR calibration results for (a) Cascade Mountains, 2009; (b) Cascade Mountains, 2022, (c) Black Hills,
South; (d) Black Hills, North; (e) Rocky Mountains and; (f) Olympic Mountains. Each result shows a scatter plot of
the sampled S, and q. values, colored by their relative L(A) value. To the right of each scatter plot are histograms of
the iterated S, and q. parameters, which represent an empirical PDF of the possible S, and g, values that calibrate
MWR to the site. Note y-axis scale differs between plots.

Profile plots of modelled Q, and maps of the modelled planimetric runout extent, colored to indicate where the runout

matched (o), overestimated (B) or underestimated (y) the observed runout are shown in Figure 8. Values of Q; we

N
o
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obtained with MWR are comparable or higher than reported values of Q in the literature that used a variety of models
(Gorr et al., 2022; Barnhart et al., 2021; Note, to compare Q. values to those studies, subtract 1 from values reported
in this study). Across the sites, the volumetric error of the model, A, ranges between 6% and 15% (median 9.1%)
of the total mobilized volume from the observed DoD. An overall <10% volumetric error is reasonable considering
the low number of parameters required to calibrate MWR and that empirical estimates of total mobilized volume used
to run other runout models can vary by as much of an order of magnitude (e.g., Gartner et al., 2014: Barnhart et al.,
2021). Model performance in predicting volume flux along the runout profile was within similar error ranges. Except
for the Rocky Mountains site where MWR consistently modelled wider-than-observed flow, the cumulative flow error
along the runout profile (Q, ) were limited to 5%-19% of the mean cumulative flow determined from the observed
DoD.

MWR generally successfully replicates observed sediment transport along the runout path via model parameterizations
that are unique to each landslide. For example, the profile plots of Q. at the Cascade Mountain site (Figure 8a and 8b)
show that during the 2009 landslide, all of the runout material flowed past the first 750 meters of the runout path.
During the 2022 landslide, material began to deposit just down slope of the initial landslide scar, as both observed and
modelled Q reverse slope, indicating loss in downstream volume flux. Model comparisons in the Cascade Mountains
site were limited to the upper 750 m of the hillslope because a large portion of the runout material was lost to fluvial
erosion in the valley (see Supplementary Material).

MWR also successfully replicates the observed sediment transport patterns at the Olympic Mountains site (profile plot
of Q, in Figure 8f) and to a lesser degree, the Rocky Mountain site (Figure 8e). This finding is notable, because at the
Olympic Mountain site, observed runout extent and sediment depositional pattern were heavily impacted by woody
debris. Similarly, at the Rocky Mountains site, the width of the runout appeared to be restricted by trees. (See
Supplementary Material).

Using a fixed cell size of 10-m might have impacted model performance in some areas. MWR tended to over-estimate
the runout width for small landslides like the Olympic Mountains and Cascade Mountains, 2022 sites (yellow zones
in Figures 8f and 8b), likely because of the 10-m grid size used to represent the terrain. A 10-m DEM is generally
accepted as a good balance between model detail and computational limitations (e.g., Horton et al. 2013). However,
for small landslides, the 10-m grid is close to the size of the channels that controlled observed runout (Supplementary
Material) and may not have accurately represented the terrain. Modelled flow was less topographically-constrained
and tended to flow over a wider area of the terrain than observed in the more confined and smaller channels within
the axis of the runout valleys.

Because MWR does not have an explicit representation of flow momentum, it may show poor performance in regions
of the runout path where momentum controls runout extent. For example, at the Cascade Mountain, 2009 slide,
modelled extent misses a bench located along the east edge of the runout path (large red zone in Figure 8a). Review
of model behavior for this slide (Figure 9) shows how MWR successfully mimics diverging flow around a broad ridge
in the middle of the runout path (iteration t=28 in Figure 9), but afterword converges too rapidly into a narrow ravine

in the middle of the runout path (iteration t=40 in Figure 9). At the Rocky Mountains site, in addition to standing
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trees, the forward momentum of the runout may have also restricted lateral spread of the observed runout. Modelled
runout is consistently too wide.

Overall, calibration was best at the Cascade Mountain, 2009 landslide (values of Q. are highest and values of Ang
and Q. are lowest) and poorest at the Rocky Mountain and Olympic Mountain sites (Values of Qr are lowest Q.
and Anj are highest). At both the Rocky Mountain and Olympic Mountain sites, because we lacked repeat lidar, we
created the DoD from a map of field estimated erosion and deposition depths and estimated the pre-event DEM. The
lower calibration scores may indicate that field estimated DoDs were not as accurate as those determined via lidar
differencing. Another source of uncertainty that we have not addressed in our study is regolith thickness. Using
spatially accurate regolith thickness, rather than a uniform thickness, would likely improve MWR performance too.
Nonetheless, although imperfect, at most sites, MWR does not appear to have a strong systematic bias in modeled
output, which suggests that MWR may not have any structural weaknesses; however the consistent over-estimated
width on planar to divergent topography at the Rocky Mountain site requires further investigation at similar sites to
determine if this issue is due to calibration or the model.
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Figure 8. Calibrated model performance as indicated by modeled runout extent, profile plots of Q, and reported
values of Qr, Ang and Q.. In all maps, up is north except in (e), north is towards the left. (a) Cascade Mountains,
2009; (b) Cascade Mountains, 2022; (c) Black Hills, North; (d) Black Hills, South; () Rocky Mountains; (f)
Olympic Mountains.
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Figure 9. lllustration of modeled runout at the Cascade Mountains, 2009 landslide. At iteration t = 0, Algorithm 1
determines the direction and flux of the initial debritons over the slip surface of the landslide (all nodes located in
the landslide green-dashed polygon). Note how the landslide slip surface directs the initial flow. In later iterations,
Algorithm 2 routes the debritons down slope, updating the debritons and the terrain. By the end of the modeled
runout, a colluvial fan forms at the base of the slope. Topography lines reflect the underlying terrain, which is
updated after each iteration. MWR successfully replicates diverging flow at iteration ¢t = 28 but misses a region of
the observed runout path at iteration t = 40 where momentum likely controlled flow direction (compare to runout
scar in air photo and underestimated region on topographic bench in Figure 8a)

To understand whether the ability to calibrate MWR systematically varies with topography of the runout path, we
compared model performance with three topographic indices described by Chen & Yu (2011). The indices are
computed from the terrain in the observed runout extent and include the relief ratio (H/L), mean total curvature (k)
and the mean specific stream power index (SPI). The index H/L equals the average slope of the runout path (or relative
relief), determined as the total topographic relief of the runout (measured from the center of the landslide to the end
of the runout path) divided by the horizontal length of the runout and indicates the mobility of the runout. Index

represents topographic convergence, which is the second derivative of the terrain surface, with increasingly positive

24
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values of index k reflecting growing topographic convergence and concave-up channel profile (e.g., Istanbulluoglu et
al., 2008). The index SPI is determined as the natural log of the product of the contributing area and slope. Indices k
and SPI are computed at each node in the runout extent and the mean values are computed from all nodes in the extent.
Comparison of model performance with respect to the topographic indices in Figure 10 shows: slightly improved
model performance over runout-paths that are less convergent (SPI and x values of the observed runout path are
lower) and on steeper terrain (higher H/L) but neither trend is significant. The latter finding appears to be mostly a
result of how well modelled sediment transport and topographic change (@, and Ang) replicated observed, as there
does not appear to be a trend in Q; with H/L and the two best performing models (both Cascade Mountain landslides)
had the lowest (best) Q, . values and low Ang values. Both findings are likely impacted by the grid size we used to
represent terrain. As noted above, at all sites we used a 10-m grid, but at some sites 10-m doesn’t quite capture the
relief of channelized topography that controlled observed runout, leading to modelled runout that was considerably
wider than observed and causing low Q; value (this is especially true at the Olympic Mountains site, Figure 10a, b
and c).

In summary, using the calibration utility, we showed how the MWR can be calibrated to a range of different landslide
types and runout terrains. To a certain degree, though calibration, MWR can be parameterized to compensate for
deficiencies in the DEM or processes not explicitly represented in the model (momentum, woody debris). We were
unable to establish a clear pattern between calibration performance and topographic indices. This finding is likely
because numerous factors other than the terrain form, such as the DEM resolution, the quality of the DoD and

importance of processes not explicitly included in the model also impact performance.
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Figure 10. lllustration of model calibration, as reflected by the posterior parameter likelihood L(8) and planimetric

fit (1) relative to topographic indices. There is no strong trend between the topographic indices and calibration

performance.
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6. Discussion
6.1 Strategic testing of MWR for hazard mapping applications

Having demonstrated basic model response to topography and that MWR can be calibrated to a variety of landslides
and runout terrains, we now strategically test MWR using the Cascade Mountain and Black Hills sites. Since both of
these sites include two separate landslides, we can thus test model performance by swapping best-fit model parameters
at each site, rerunning the models and comparing results with the original, calibrated results. At the Cascade Mountain
site, the 2009 and 2022 landslides originated on the same hillslope (Figure 8a and 8b). At Black Hills site, the two
landslides occurred on different hillslopes but in adjacent east-west oriented watersheds (Figure 8c and 8d).

As shown in Figure 11, at three of the landslides (both Cascade Mountain landslides and the Black Hills, North
landslide), when the best-fit parameters from the other landslide are used to predict runout, the accuracy of modelled
runout planimetric extent drops but resultant Q. values can still be as high or higher than values reported in other
studies (compare to equivalent Q. values in Gorr et al., 2022 and Barnhart et al., 2021). In terms of modelled sediment
transport and topographic change, swapping best-fit parameters has a more substantial effect. At the Cascade
Mountain, 2009 landslide, using the 2022 best-fit parameter values causes about half of the modelled runout material
to prematurely deposit on the hillslope, reducing the amount of sediment that reaches the valley floor (Qs . increases
by a factor of nine; Figure 11). Using the Cascade Mountain, 2009 parameter values on the Cascade Mountain, 2022
landslide (Figure 11b) increases modelled runout extent and results in nearly four times the entrainment and transport
of sediment to the valley floor, causing Q. to increase by a factor of 20 and Ang by 83%. At the Black Hills site,
using the South basin best-fit model parameters at the North basin causes Qs and Anj increase by 83% and 39%
respectively (Figure 11c). Unlike the other three landslides, swapping best-fit parameters at the Black Hills, South
landslide results in both large sediment transport and runout extent error because the North basin best-fit parameters
cause modelled landslide to entrain too little and stop only a few hundred meters from the initial source area (Figure
11d).

Although the need for calibration of MWR is a limitation for its transferability across sites, this limitation holds true
for most physics-based models. Barnhart et al. (2021) compared the ability of three different detailed-mechanistic
models to replicate an observed post-wildfire debris-flow runout event in California, USA. All three models used a
shallow-water-equation-based approach that conserved both mass and momentum, representing the flow as either a
single phase or double phase fluid. All models gave comparable results in simulating the event, suggesting that there
may not be a “true” best model. Despite the high level of detail and processes explicitly included in each model, all
models were sensitive to and required an estimate of the total mobilized volume, and the ability to replicate observed

runout ultimately depended on the selection of the parameters used to characterize debris flow properties.
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Figure 11. Model performance using the neighboring landslide parameter values, as indicated by modeled runout
extent, profile plots of Qg, reported values of Qr, Ang and Q, . Compare with Figure 8. (a) Cascade Mountain,
2009; (b) Cascade Mountain, 2022; (c) Black Hills, North; (d) Black Hills, South

As landslide hazard models often forecast hazard probabilistically, an alternative test to simply swapping the best-fit
parameters is to swap parameter PDFs determined from the calibration utility and compare probability of runout at
each model node (equation 30). As shown in Figure 12, similar to the first test, at three of the landslides, using the

parameter distribution associated with the neighbouring landslide results in relatively minor changes in whether runout
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is likely to occur versus not occur (probability of runout >=50%; Figures 12a, 12b and 12d). At the Black Hills South

landslide, swapping parameter PDFs causes a large change in runout probability (Figure 12c).

(€

Runout 2
probability

20.5

Figure 12. Model tests by swapping parameter PDFs and comparing runout probability at the (a) Cascade Mountain,
2009; (b) Cascade Mountain, 2022; (c) Black Hills, South and; (d) Black Hills, North sites. (1) runout using
parameter distributions of the site and (2) runout using parameter distributions of the neighboring site.

The results of these two tests suggest that in most cases, once best-fit parameters or parameter PDFs have been
established for a landslide, those parameter/PDF values may be useful for assessing runout extent but not useful for
sediment transport and topographic change prediction at nearby sites. However, we suspect that these results are a
consequence of comparing very different landslide types and runout processes. In regions where landslide processes
are relatively uniform (like the Olympic Mountain site), calibration to one landslide might be sufficient to predict the
depositional patterns of another. At sites like the Cascade Mountain and Black Hills sites, which consisted of a diverse
range of landslide processes including small, confined debris flows to large, unconfined debris avalanches, MWR may
need to be calibrated to each type of landslide and predictive applications might involve applying the appropriate

parameter set based on landslide type.
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6.2. MassWastingRunout probability applications

In this section we briefly demonstrate how to determine runout probability from a probabilistically determined
landslide hazard map or a specific, potentially unstable slope using MWR. The first application may be appropriate
for watershed- to regional-scale runout hazard assessments. The second application is an example hazard assessment
for a potentially unstable hillslope. Both applications are demonstrated at the Olympic Mountain site where landslide
size and type tended to be relatively uniform and parameter PDFs determined through calibration may therefore

represent typical runout processes in the basin.

6.2.1. Runout probability from a landslide hazard map

To determine runout probability from a landslide hazard map, we ran MWR Probability using option 3, reading a
series of mapped landslide source areas created by an externally run Monte Carlo landslide initiation model. For the
landslide initiation model, we used LandslideProbability, an existing component in Landlab that computes landslide
probability by iteratively calculating Factor-of-Safety (FS: ratio of the resisting to the driving forces) at each node on
the raster model grid Np times from randomly selected soil (regolith) hydrology properties (e.g., soil depth, saturated
hydraulic conductivity) soil strength (friction angle, cohesion) and recharge rates (precipitation input rate minus
evapotranspiration and soil storage). Landslide probability at a node is defined as the number of times FS<1 divided
by Np.

We first ran LandslideProbability using a 50-year precipitation event (WRCC, 2017) to determine landslide
probability (Figure 13a) over the entire Olympic Mountains model domain and create the series of Np FS maps.
Details on the LandslideProbaility setup are included in the Supplementary Material. We then read the series of FS
maps into MWR Probability, treating all nodes with FS < 1 as a landslide source, and ran MWR Np times. Each
iteration, MWR read a new FS map and randomly selected a new set of parameter values from S.- q. parameter PDFs
created by the calibration utility.

Runout probability results are illustrated in Figure 13b and show that the probability of runout is high in many of the
second order channels but low at the basin outlet. As discussed in Section 3, the probability of aggradation or erosion
caused by the runout can also be determined by adjusting the numerator of (30) and the probability of deposition
greater than 1 meter is shown in Figure 13c. In this example, in addition to MWR parameter uncertainty, runout

probability reflects uncertainty in landslide size and location caused by a 50-year precipitation event.

6.2.2 Runout probability for a specific, potentially unstable slope

When field evidence or other data indicate that a specific hillslope may be potentially unstable, but the exact area of
a potential landslide on that slope is unknown, MWR can be used to generate a hazard estimate that takes into account
the uncertainty in the landslide area. For this application, MWR Probability is run using option (2), which requires a
polygon representing the extent of the potentially unstable slope. For each model repetition, a landslide area can form
anywhere within the potentially unstable slope and is at least as large as a user defined minimum size but no larger

than the potentially unstable slope.



716  Asan example application of using MWR Probability option (2), we designated a 0.6 ha, convergent hillslope in the
717 headwaters of the Olympic Mountains site as a potentially unstable slope and modelled runout probability, again using
718  Np = 1000 (Figure 13d). This example shows that, given uncertainty in the landslide size and location, and
719 uncertainty in calibrated parameterization of MWR, if a landslide were to initiate on the potentially unstable slope,
720 the probability of the runout reaching the basin outlet is less than 5%.
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Figure 13. Olymplc Mountain site: (a) Landslide probability, P(FS < 1). (b) Corresponding runout probability,
P(An). (c) Probability of deposition greater than 1 m and (d) Runout probability for the potentially unstable slope
(green-dashed polygon).
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7.0 Concluding remarks

In this study, we described, calibrated and tested MassWastingRunout (MWR), a new cellular-automata landslide
runout model that combines the functionality of simple runout algorithms used in landscape evolution and watershed
sediment yield models (WSMs) with the predictive detail typical of runout models used for landslide inundation hazard
mapping. MWR is implemented in Python as a component for the Landlab earth surface modelling toolkit and is
designed for probabilistic landslide hazard assessments, sediment transport and landscape evolution applications.
MWR includes a Markov Chain Monte Carlo calibration utility that determines the best-fit parameter values for a site
as well as empirical Probability Density Functions (PDF) of the parameter values. MWR also includes a utility called
MWR Probability that takes the PDF output from the calibration utility to model runout probability.

Results show that despite its simple conceptualization, MWR can replicate observed erosion, deposition and sediment
transport patterns. A notable finding of this paper is that MWR modeled runout did not have any strong systematic
bias in predictions (toward unrealistically short or wide flows, for example), which suggests that MWR may not have
any structural weaknesses. When compared to other models capable of replicating inundation patterns of observed
runout events, the strength of MWR lies in its potential computation efficiency, use of field-inferable parameters,
limited reliance on calibration parameters (only two, critical slope, S, and a threshold flux for deposition, g.) and its
ability to internally estimate the total mobilized volume. MWR needs only the location and geometry of an initial
source area to model the entire runout process.

MWR shows a rich set of intuitive responses to topographic curvature and slope and model performance over a range
of landslide and landscape conditions across the four sites we used for this study was sufficiently controlled with the
two calibration parameters. When calibrated to each individual site, the volumetric error of MWR, 4ng, ranged
between 6% and 15% (median 9.1%) of the observed total mobilized volume. Except for the Rocky Mountains site
where MWR consistently modelled wider-than-observed flow, the cumulative flow error along the runout profile
(Qs ) were limited to 5%-19% of the mean cumulative flow determined from the observed DoD. These are considered
acceptable levels of performance given that the total mobilized volume of many debris flow models assume an order
of magnitude range of confidence.

Once MWR is calibrated to runout observations, it can be linked to other landslide hazard models and may be useful
as a regional runout hazard mapping tool in areas with relatively uniform landslide processes. In this study we showed
how to use MWR to map debris flow hazard for an expert-defined potentially unstable slope and for a landslide hazard
map produced from an externally run Monte Carlo landslide initiation model (Figure 13).

As a component of the Landlab earth surface modelling toolkit, MWR is designed to be compatible with other models.
MWR can be readily coupled with a landslide initiation model (e.g., LandslideProbability) and geomorphic transport
laws for hillslope diffusion and fluvial incision to investigate the role of landslides and their runout on long-term
landscape evolution. We did not explore the use of MWR in landscape evolution or sediment yield models in this
study, however its ability to replicate observed topographic change and sediment transport at multiple sites shows
promise for this application. The use of a calibrated runout model in WSMs might allow for region-specific and more

insightful predictions of landslide impact on landscape morphology and watershed-scale sediment dynamics.



762

763

764
765
766
767
768
769
770

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814

8.0 Notation
qg; [m]
do [m]
Nr

S

a

a [m]
Nd

qp; [m]
h [m]
hmax [m]
A [m]
S.

S

Ax [m]
Ap|Na [m]
Ap,i [m]
Ng

E [m]
h, [m]
he [m]
0 []

T [Pa]
T, [Pa]
k

f

p [kg/m?]
o [Pa]
@

US

Ps [kg/m?]
Dy [m]
u [m/s]
z [m]
U

g [m/s]
An [m]
$p

SR

$

A

L(A)

p(A)

Qr

a [m?]
B [m?]
14 [m?]
Ang

% [m3]
p

Any; [m]
Ano; [m]

debris flux from a node to each of the node i-th receiver nodes

the total out-going debris flux

the number of receiving nodes of node n

the underlying topographic slope (tan ) to each of the node i-th receiver nodes
exponent in (1) that controls how flow is distributed to downslope nodes

The total incoming flux

number of donors nodes to a node

the flux from node D; (the j-th donor node)

flow depth at node, adjusted to be no more than h,,,,

the maximum observed flow depth

aggradation depth

critical slope

steepest slope to the node’s eight neighbouring nodes

cell length

potential aggradation depth that forms a deposit that spreads over N, consecutive nodes
i-th deposition amount in the deposit illustrated in Figure 4

number of nodes gs;, is assumed to spreads over

erosion depth

regolith depth

potential erosion depth

topographic slope used to determine shear stress, equal to tan'(S)

basal shear stress

critical shear stress of the regolith

erodibility parameter in (11)

exponent, controls the non-linearity of h, in (11)

density of runout material

normal stress at basal surface

tangent of collision angle between grains, measured from the vertical axis
volumetric solids concentration

density of solids

characteristic particle diameter

depth average flow velocity

depth below the flow surface

shear velocity

acceleration due to gravity

change in elevation at node

attribute value delivered to the node

attribute value sent to receiver nodes

attribute value at node

parameter set

likelihood of parameter set

prior probability of parameter set

omega metric, nondimensional

modelled area of matching extent (compared to observed runout extent)
modelled area of overestimated extent

modelled area of underestimated extent

volumetric error of the modelled topographic change relative to the observed total
mobilized volume, fraction.

observed total mobilized volume

the number of nodes in the modelled runout extent

the modelled topographic change [m] at the i-th node within the runout extent
the observed topographic change [m] at the i-th node within the runout extent
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Qs mean-modelled-cumulative flow error along the runout path relative to the observed
mean cumulative flow, fraction.

Qs [m3] the cumulative debris flow volume (Qy) at each node, j,

An;; [m] the topographic change [m] at the i-th node located upstream of node j

u; the total number of all nodes located upstream of j

Qso [m3] the observed mean cumulative flow

P(4n) probability of runout at a model node

Np number Monte Carlo iterations used to determine probability
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