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Abstract 18 

We developed a new rule-based, cellular-automaton algorithm for predicting the hazard extent, sediment transport and 19 

topographic change associated with the runout of a landslide. This algorithm, which we call MassWastingRunout 20 

(MWR), is coded in Python and implemented as a component for the package Landlab. MWR combines the 21 

functionality of simple runout algorithms used in landscape evolution and watershed sediment yield models with the 22 

predictive details typical of runout models used for landslide inundation hazard mapping. An initial DEM, a regolith 23 

depth map, and the location polygon of a landslide are the only inputs required to run MWR to model the entire runout 24 

process. MWR runout incorporates rules of mass conservation, erosion and deposition, which are driven by 25 

topography. For the purpose of facilitating rapid calibration to a site, MWR includes a calibration utility that uses a 26 

Markov Chain Monte Carlo algorithm to automatically calibrate the model to match observed runout extent, deposition 27 

and erosion. Output from the calibration utility can be used to inform probabilistic implementation of MWR. Here we 28 

use a series of synthetic terrains to demonstrate basic model response to topographic convergence and slope, test 29 

calibrated model performance relative to several observed landslides, and briefly demonstrate how MWR can be used 30 

to develop a probabilistic runout hazard map. A calibrated runout model may allow for region-specific and more 31 

insightful predictions of landslide impact on landscape morphology and watershed-scale sediment dynamics, and 32 

should be further investigated in future modelling studies. 33 
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1. Introduction 34 

Over geologic timescales, landslides and their runout shape the topographic expression of mountain ranges and 35 

channel networks (e.g., Campforts et al., 2022; Korup, 2006; Larsen and Montgomery, 2012; Montgomery and 36 

Dietrich, 1988). Over more pragmatic engineering and environmental risk management timescales, landslides and 37 

their runout can inundate and destroy infrastructure (e.g., Kean et al., 2019) but also support numerous ecosystem 38 

benefits, including carbon and nutrient transport from hillslopes to channels and the creation of riparian habitat (Benda 39 

et al., 2003; Bigelow et al., 2007; Goode et al., 2012). Therefore, explicit representation of landslide runout is a 40 

necessary component of: (1) landslide inundation hazard assessments, with emphasis on inundation extent and flow 41 

depth (e.g., Frank et al. 2015, Han et al., 2015); (2) watershed sediment yield models, with emphasis on the 42 

mobilization, deposition and type of sediment carried by the landslide (e.g., Bathurst and Burton, 1998;  43 

Istanbulluoglu,et al., 2005); and (3) landscape evolution models, with emphasis on topographic change prediction 44 

(e.g., Tucker and Bras, 1998; Istanbulluoglu and Bras, 2005; Campforts et al., 2022); 45 

Landslide runout processes can be generalized into three phases: initiation, erosion, and deposition. After a landslide 46 

initiates, it may break apart and flow as a relatively dry debris slide, or it may mix with surface runoff to become a 47 

debris flow. The mobility of the mass wasting material and resulting erosion/deposition pattern often varies as a 48 

function of runout topography and initial relief and size of the landslide (Iverson, 1997). Mobility may also be 49 

impacted by substrate liquefaction (Hungr and Evans, 2004) and landslide basal cataclasis (Shaller et al. 2020). As 50 

the runout material moves downslope, flow depth varies as a function of channel width (Kean et al, 2019), which in 51 

turn impacts erosion rates (Schürch et al. 2011). Theoretical, field and laboratory observations indicate that erosion 52 

rates may also depend on the moisture content of the channel bed (Iverson, 2012; McCoy et al. 2012), flow grainsize 53 

(Egashira et al., 2001) and granular stress within the flow (Capart et al, 2015). The slope at which deposition begins 54 

is controlled by the grain to water ratio and friction angle of the slide material (Takahashi, 2014; Major and Iverson, 55 

1999; Zhou et al., 2019) but the friction angle of the material may vary as a function of the grains in the flow and 56 

fluidization of the flow material (Hutter et al., 1996). Lateral levees often form along the edges of the flow (Major, 57 

1997; Whipple and Dunne, 1992; Shaller et al., 2020) and deposition at the distal end of the flow may occur as layered 58 

accretion (Major, 1997) or as the emplacement of a single, massive deposit (Shaller et al., 2020). If the water content 59 

of the runout material is high enough, as the solid fraction of the distal end of the flow compresses, the water is 60 

squeezed out and may continue as an immature debris flow (sensu Takahashi, 2014) or intense bedload (sensu Capart 61 

& Fraccarolo, 2011), extending the runout distance (e.g., Shaller et al. 2020).  62 

Landslide inundation hazard models aim to accurately predict the runout extent and/or flow depths of a runout event 63 

and may include some or most of the above processes in the model. Example models include: (1) site-specific-64 

empirical/statistical models that use simple geometric rules and an estimate of the total moblized volume (initial 65 

landslide + eroded volume) or a growth factor (e.g., Reid et al. 2016); (2) detailed, continuum-based mechanistic 66 

models, which conceptualize the runout process as a single-phase or multiphase flow using the depth-integrated 67 

Navier-Stokes equations for an incompressible, free-surface flow (i.e., shallow water equations; Frank et al, 2015; 68 

Han et al., 2015; Iverson and Denlinger, 2001) and often (though not always) require pre-knowledge of the total 69 

moblized volume (e.g., Barnhart et al., 2021; Han et al. 2015); (3) reduced-complexity flow-routing models that use 70 
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rule-based abstractions of the key physical processes that control the flow (Clerici and Perego, 2000; Guthrie and 71 

Befus, 2021; Gorr et al., 2022; Han et al., 2017, 2021; Horton et al., 2013; Liu et al, 2022) and are typically 72 

implemented using just the initial landslide location and volume but often rely on heavy, site specific parameterization 73 

and; (4) hybrid modelling approaches that combine mechanistic models with empirical and reduced-complexity 74 

approaches (D’Ambrosio et al., 2003; Iovine et al., 2005; Lancaster et al., 2003; McDougall and Hungr 2004; Medina 75 

et al., 2008). 76 

For landscape evolution and watershed sediment yield applications (herein referred to as watershed sediment models, 77 

WSMs), the runout model must be scalable in both space and time, and use internally modelled landslide location and 78 

size (e.g. Tucker and Bras, 1998; Doten et al 2006; Campforts et al. 2022). As such, computationally efficient and 79 

parsimonious reduced complexity runout models that evolve the terrain and transfer sediment are often preferred in 80 

WSMs, however with simplifications that can restrict model ability to accurately replicate observed inundation extent 81 

or depositional patters. Such simplifications include omitting debris flow erosion and bulking in runout channels, 82 

limiting flow to only a single cell in the steepest downstream direction, and assuming debris flows only occupy the 83 

width of a single cell (e.g., Tucker and Bras, 1998; Istanbulluoglu and Bras, 2005) or link of a channel network (Benda 84 

and Dunne, 1997).   85 

To bridge the scalable functionality of WSMs with the predictive accuracy of landslide inundation hazard models, 86 

without the computational overhead of a detailed mechanistic representation of the runout process, or difficult 87 

parameterization typical of other models, we developed a new, reduced-complexity landslide runout model, called 88 

MassWastingRunout (MWR). MWR models landslide runout starting from the source area of the landslide, making it 89 

easily compatible with WSMs that internally determine landslide area and location. MWR tracks sediment transport 90 

and topographic change downstream, and evolves the attributes of the transport material. MWR can be calibrated by 91 

adjusting just two parameters and is augmented with a Markov Chain Monte Carlo (MCMC) calibration utility that 92 

automatically parameterizes model behavior to observed runout characteristics (e.g., erosion, deposition, extent). 93 

MWR also includes a built-in utility called MWR Probability, designed for running an ensemble of simulations to 94 

develop probabilistic debris flow hazard maps.  95 

In this paper, we present the conceptualization and numerical implementation of the MWR model (Section 2), describe 96 

the calibration utility and its probabilistic implementation (Section 3) and demonstrate basic model response to 97 

topographic convergence and slope on a series of synthetic terrains (Section 4). Event-scale applications to replicate 98 

observed runout extent, sediment transport, and topographic change at four topographically and geologically unique 99 

field sites are discussed (Figure 1; described in Section 5). We test MWR’s predictive ability using the 100 

parameterization of one site to predict runout hazard at a nearby site and show a brief example of Monte Carlo model 101 

runs to determine runout probability from a hydrologically-driven landslide hazard map or an expert-determined 102 

potentially unstable slope (Section 6). We conclude with a short summary of MWR model performance and discuss 103 

how a calibrated MWR can be incorporated into WSMs. 104 
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 105 

Figure 1: Example landslides that are used to evaluate calibrated MWR performance: (a) Cascade Mountains, WA: a large debris 106 
avalanche over steep, broadly convergent terrain (photo credit: Stephen Slaughter). (b) Black Hills, WA: large debris flows over a 107 
broadly convergent, gently sloped valley (photo credit: Stephen Slaughter). (c) Rocky Mountains, CO: a moderate sized debris 108 
avalanche over steep, unconfined to divergent hillslope. (d) Olympic Mountains, WA: small debris flows in steep, highly 109 
convergent channels. 110 

2. Description of the MassWastingRunout model 111 

2.1 Overview of the cellular-automaton Modelling approach 112 

MWR is coded as a discrete cellular automaton (CA) model. CA models apply a set of equations or rules (deterministic 113 

or probabilistic) to individual cells of a grid to change the numerical or categorical value of a cell state (e.g., Codd, 114 

1968). In earth sciences, CA models are widely used to model everything from vegetation dynamics (e.g., Nudurupati 115 

et al., 2023) to lava flows (e.g., Barca et al., 1993) to geomorphic transport, in which gravitationally directed erosion 116 

and depositional processes modify a digital elevation model (DEM) representation of a landscape (e.g., Chase, 1992; 117 
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Crave & Davy, 2001; Murray & Paola, 1994; Tucker et al., 2018). Existing CA-based landslide runout models include 118 

Guthrie and Befus (2021), D’Ambrosio et al. (2003) and Han et al. (2021). In all of these models, runout behavior is 119 

controlled by topographic slope and rules for erosion and deposition but conceptualization and implementation differ.  120 

In MWR, mass-continuity is central to model conceptualization. Of the wide range of processes described in the 121 

introduction that control observed runout, MWR explicitly represents erosion, deposition, and flow resistance due to 122 

debris size and vegetation. Material exchange between the runout material and underlying terrain as well as flow 123 

resistance determines runout extent and landscape evolution. Model rules are designed such that they can be 124 

parameterized from field measurements. Finally, in MWR, most computations occur only at the location of moving 125 

debris, in a manner analogous to the “mobile” cellular automaton implementation of Chase (1992).  126 

Chase (1992) modelled precipitation-driven surface erosion by randomly placing single packets of precipitation on a 127 

DEM, which then moved from higher elevation to lower elevation grid cells, eroding and transporting sediment as a 128 

function of the slope between the cells. The individual packets of precipitation were referred to as precipitons. In 129 

MWR, since we route the downslope progression of debris from a specified mass wasting source area, we refer to 130 

these packets of debris as “debritons”. The debritons represent debris flux, here defined as a volume of debris 131 

transferred per model iteration per grid-cell area, [m3/m2/iteration] and are equivalent to the flow depth in the cell. 132 

The present implementation of the MWR algorithm is coded in Python and developed as a component of the Landlab 133 

earth surface modeling toolkit (Barnhart et al., 2020; Hobley et al., 2017). MWR uses the Landlab raster model grid, 134 

which consists of a lattice of equally sized, rectangular cells. Topographic elevation, derived topographic attributes 135 

like slope and curvature, and other spatially varying attributes such as regolith depth and grain size, are recorded at 136 

nodes in the center of each cell (see Figure 5 of Hobley et al., 2017). In the subsequent sections we describe the model 137 

theory. Note that all the notations of parameters and variables used in this theory are listed in Section 10. 138 

2.2 Mobilization of the initial mass wasting source material (Algorithm 1): 139 

To initiate MWR, the user provides maps of initial topography, regolith depth, and the location and depth of the mass 140 

wasting source material (e.g., landslide body). Each raster model grid node in the mass wasting source material is 141 

designated as a debriton (Figure 2, iteration 𝑡 = 0) with a magnitude equal to the mass wasting source material depth 142 

and basal elevation equal to the initial topography minus the mass wasting source material depth. The basal elevation 143 

can be thought to represent the rupture or slip surface of the source material and the redistribution (flux) of each 144 

debriton to its downslope nodes (receiver nodes) is determined as a function of the slope of the slip surface. Note that 145 

if the depth of the wasting source material is spatially variable (e.g., a rotational failure), the slope of the slip surface 146 

will not match the slope of the initial terrain surface. At the lowest-elevation debriton of the source material, flux to 147 

its downslope nodes is determined using the surface slope of the initial DEM (see flow direction of lowest node in 148 

Figure 3a). This implementation helps to ensure that the lowest-elevation debriton in the mass wasting source material 149 

moves downslope and movement of upslope debritons are impacted by the geometry of the mass wasting source 150 

material. For example, the receiver nodes of the lowest-elevation debriton in the landslide illustrated in Figure 2 151 

(iteration 𝑡 = 0, detailed in Figure 3a) would be identified as those among the eight neighboring nodes whose initial 152 

topographic elevation was less than the initial topographic elevation of the node while for the debriton at node 51, the 153 
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receiver nodes would be identified as those among the eight neighboring nodes whose topographic elevation is less 154 

than the topographic elevation of the terrain underlying the debriton (the slip surface). 155 

 156 

Figure 2. Illustration of initial mass wasting release (t = 0) and runout. Notice how the list of receiver nodes changes with each 157 
iteration. The flow elongates and widens as the number of receiver nodes increase and stops when the number of receiver nodes is 158 
zero. If the incoming flux (sum of all incoming debritons) to a node is less than 𝒒𝒄, the material stops, causing aggradation. 159 
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 160 

Figure 3. (a) Three-dimensional illustration of iteration t = 0 in Figure 2, showing initial source material nodes (represented by red 161 
cells) and flux towards downslope nodes. Except for the lowest elevation node in the mass wasting source material, all debritons 162 
are directed downslope based on the underlying topographic slope (compare flow directions of node 51 to node 45); (b) Distribution 163 
of 𝒒𝑶  to downslope nodes 38, 39, 40 and 44; (c) illustration of mass continuity applied to any node that receives a debriton.  164 

 165 

2.3 Flow routing and rules for debris flow erosion, deposition and resistance (Algorithm 2) 166 

Algorithm 2 is essentially the runout model. It determines how each debriton traverses and modifies the landscape. 167 

After receiver nodes from the first model iteration are determined in Algorithm 1 (iteration t=0), Algorithm 2 is 168 

repeatedly implemented until all material has deposited (i.e., there are no debritons). Each debriton moves one grid 169 

cell per model iteration, the larger the landslide size, the more iterations necessary to evacuate the landslide. As each 170 

debriton moves, it may erode or aggrade the landscape, impacting the movement of any upslope debritons. As is 171 

common with other reduced complexity models, we assume that inertial effects have negligible impact on flow 172 

behavior (i.e., the kinematic flow approximation). The downslope redistribution of a debriton or flux to each of a 173 

node’s 𝑖-th receiver nodes (𝑞,𝑅𝑖
) is determined as a function of topographic slope (slope of terrain under the debriton) 174 

using the Freeman (1991) multiflow direction algorithm:  175 

𝑞𝑅𝑖
= 𝑞𝑂

𝑆𝑖
𝑎

∑ 𝑆𝑖
𝑎𝑁𝑟

𝑖=1

 (1) 176 
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where 𝑞𝑂  is the total out-going flux from the node and has units of depth [m] per model iteration, 𝑁𝑟 is the number 177 

of receiving nodes, 𝑖 is the index for each receiver node (e.g.,  𝑖 = 1, 2 … 𝑁𝑟) and 𝑆𝑖 is the underlying topographic 178 

slope to the 𝑖-th receiver node (Figure 3b). The Freeman (1991) multiflow direction algorithm is a commonly used 179 

approximation for two-dimensional flow, and in this implementation it is handled by a pre-existing Landlab flow-180 

routing component. The exponent 𝑎 controls how material is distributed to downslope nodes. In a braided river 181 

cellular-automaton model, Murray and Paola (1997) used an approximation for turbulent shallow water flow to justify 182 

𝑎 = 0.5 (which is the exponent on the slope factor in channel friction laws). For our application, we found MWR 183 

provided a closer fit to observed mass wasting runout if 𝑎 = 1, suggesting that the material behavior is more similar 184 

to linear-viscous shear flow than to wall-bounded turbulent shear flow. The total incoming flux (again, in units [m] 185 

per model iteration) towards a given node (𝑞𝐼), is determined by summing the flux from each of the node’s donor 186 

nodes: 187 

𝑞𝐼 = ∑ 𝑞𝐷𝑗  
𝑁𝑑
𝑗=1  (2)  188 

Where 𝑁𝑑 is the number of donor nodes, and 𝑞𝐷𝑗 is the flux from node 𝐷𝑗  (the 𝑗-th donor node,  𝑗 = 1,2… 𝑁𝑑; Figure 189 

3b).  190 

As noted by Tucker and Hancock (2010), the flow depths calculated from two-dimensional flow approximations like 191 

(1) can be influenced by the grid-size used to represent the terrain and depending on the boundary conditions, 192 

neglection of pressure and momentum forces may lead the model to underestimate or overestimate flow width in some 193 

circumstances. Rengers et al. (2016) noted that this same issue occurs when using a kinematic wave approximation of 194 

the shallow water equations because the kinematic wave approximation lacks a pressure term that would normally 195 

allow the modelled water surface to spread out. For the purpose of determining flow-depth-dependent erosion rates 196 

described later in this paper, and to provide a simplified representation of the effect of pressure forces, we constrain 197 

flow depths to no more than a maximum flow as: 198 

ℎ = 𝑚𝑖𝑛 (ℎ𝑚𝑎𝑥 , 𝑞𝐼) (3) 199 

Where ℎ𝑚𝑎𝑥  is an effective upper limit to flow depth, that in practice can be approximated as the maximum observed 200 

flow depth, as inferred from field indicators or assigned based on expert judgement (See Section 5) and ℎ is the 201 

corrected flow depth used to calculate flow shear stress. This correction allows erosion rates to vary with flux but 202 

prevents unreasonably large values. This flow depth correction does not violate the conservation of mass and runout 203 

mass balance, as ℎ is only used to calculate flow shear stress. 204 

To determine aggradation (𝐴) at a node, we use a critical slope (𝑆𝑐) constraint that permits computationally-rapid 205 

distribution of 𝑞𝐼 over multiple nodes. Critical slope constraints or rules are common to many reduced-complexity and 206 

landscape evolution models. Chen et al. (2023) showed that when flow inertia can be ignored, 𝑆𝑐 can be approximated 207 

from the surface slope of observed deposits. Several landscape evolution models use a 𝑆𝑐-based nonlinear, nonlocal 208 

aggradation scheme (e.g., Campforts et al., 2020; Carretier et al., 2016) but when this rule is implemented with the 209 

debriton framework described above, unreasonably tall deposits result when 𝑞𝐼 is large and slope at the node (𝑆) <<210 

𝑆𝑐. To resolve this problem, aggradation depth can be limited to 𝐴 ≤ 𝑆𝑐Δ𝑥, (where Δ𝑥 grid cell length), but we found 211 
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that this constraint results in long deposits that parallel the underlying slope when 𝑞𝐼 is large. Instead, MWR computes 212 

the aggradation depth at a node assuming that the aggradation will spread over 𝑁𝑎 nodes until all of 𝑞𝐼 is deposited 213 

and that the surface slope of the overall deposit will be equal to 𝑆𝑐, as shown in Figure 4 and described as follows. 214 

  215 

Figure 4. Illustration of aggradation rule used in MWR when 𝑞𝐼 is assumed to spread over 5 nodes (𝑁𝑎  = 5).  Solid 216 

yellow box indicates deposition at node 𝑛. Dashed yellow boxes and lines indicate hypothetical deposition and 217 

underlying topography. Dots along DEM surface are nodes.  218 

 Aggradation at a node is determined as: 219 

𝐴 = {
0                      ,               𝑆 ≥ 𝑆𝑐  

𝑚𝑖𝑛(𝐴𝑝,𝑁𝑎
, 𝑞𝐼)  ,        𝑆 < 𝑆𝑐  

  (4) 220 

Where 𝑆 is the steepest slope to the node’s eight neighbouring nodes, 𝐴𝑝,𝑁𝑎
 is a potential aggradation depth (𝐴𝑝) 221 

necessary to form a deposit that: (1) begins at the node and spreads over 𝑁𝑎 consecutive nodes; (2) has a total volume 222 

equal to 𝑞𝐼Δ𝑥2; (3) a surface slope equal the critical slope 𝑆𝑐 and; (4) an underlying topographic slope equal to the 223 

steepest slope at the node and assumed constant over the 𝑁𝑎 consecutive nodes of deposition (𝑆𝑛). From this assumed 224 

deposit, we can analytically define 𝐴𝑝,𝑁𝑎
 and 𝑁𝑎 as a function of 𝑞𝐼, 𝑆𝑐 and 𝑆𝑛 as follows: 225 

First, 𝑞𝐼, calculated from (2), can be used to calculate 𝐴𝑝,𝑖 by expressing 𝑞𝐼 as the sum of the 𝑁𝑎 deposits that make 226 

up the overall deposit as: 227 

𝑞𝐼 = ∑ 𝐴𝑝,𝑖
𝑁𝑎
𝑖=1   (5) 228 

where 𝐴𝑝,𝑖 is the i-th deposition amount in the deposit and 𝑖 = 1 is the last node of deposition (𝐴𝑝,1; see Figure 4). 229 

Since we assume the deposit slope and underlying topographic slope are uniform, the deposition amount at any of the 230 

𝑁𝑎 nodes can be determined from 𝐴𝑝,1 as: 231 

𝐴𝑝,𝑖 = 𝐴𝑝,1 + (𝑖 − 1)𝛥𝑥( 𝑆𝑐 − 𝑆𝑛) (6) 232 

From (6) we can re-write (5) as a function of 𝐴𝑝,1 and rearrange to define 𝐴𝑝,1 as a function of 𝑞𝐼: 233 
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𝐴𝑝,1 =  
1

𝑁𝑎
𝑞𝐼 −

𝑁𝑎−1

2
𝛥𝑥( 𝑆𝑐 − 𝑆𝑛) (7) 234 

Substituting (7) into (6) and solving for 𝑖 = 𝑁𝑎, we get an expression for 𝐴𝑝,𝑁𝑎
: 235 

𝐴𝑝,𝑁𝑎
 =  

1

𝑁𝑎
𝑞𝐼 +

𝑁𝑎−1

2
𝛥𝑥(𝑆𝑐 − 𝑆𝑛 )  (8) 236 

Equation (8) can be rearranged into a quadratic equation and solved for 𝑁𝑎 as: 237 

𝑁𝑎 =
−𝐴𝑝,1+ 

1

2
𝛥𝑥(𝑆𝑐−𝑆𝑛 )±√( 𝐴𝑝,1−

1

2
𝛥𝑥(𝑆𝑐−𝑆𝑛 ))

2
+2𝛥𝑥(𝑆𝑐−𝑆𝑛)𝑞𝐼

𝛥𝑥(𝑆𝑐−𝑆𝑛)
  (9) 238 

We use (8) to solve for 𝐴𝑝,𝑁𝑎
 and (9) to solve for 𝑁𝑎 assuming 𝐴𝑝,1 = 1 2⁄ Δ𝑥𝑆𝑐 and rounding the positive solution to 239 

the nearest integer. When implemented using a single debriton, released on a two-dimensional hillslope as illustrated 240 

in Figure 4, the debriton deposits over 𝑁𝑎 nodes at a uniform slope equal to 𝑆𝑐. When implemented on an actual three-241 

dimensional terrain, the interaction between multiple debritons in multiple directions creates a complex deposit whose 242 

slope changes with 𝑆𝑐.  243 

To determine erosion depth (𝐸) [m/iteration], we constrain 𝐸 to the lesser of a potential erosion depth, ℎ𝑒, and local 244 

regolith depth, ℎ𝑟:  245 

𝐸 = 𝑚𝑖𝑛 (ℎ𝑟 , ℎ𝑒) (10)  246 

where ℎ𝑒 is computed as a function of the basal shear stress of the flow, 𝜏 [Pa], (Equations 12 and 13) and the critical 247 

shear stress (𝜏𝑐) of the regolith at the node [Pa]: 248 

ℎ𝑒 = 𝑘(𝜏 − 𝜏𝑐)𝑓 (11)  249 

The coefficient 𝑘 is an erodibility parameter [m/Paf]. Stock and Dietrich (2006) showed that 𝑘 encapsulates substrate 250 

properties. If ℎ𝑒 is used to represent erosion over geomorphic time scales, with repeated debris flow occurrences in a 251 

single model iteration, 𝑘 becomes associated with debris flow length and frequency (Perron, 2017). In our application 252 

since we are modelling the erosion associated with a single runout event, as represented by the downslope movement 253 

of the debritons, the coefficient 𝑘 therefore needs to scale ℎ𝑒 on the order of the average erosion depth caused by a 254 

single debriton. Using this logic, 𝑘 can be computed using the observed average erosion depth and an estimated length 255 

of the runout material that caused the erosion. Further details on how we determine 𝑘 from observed runout are 256 

included in the Supplementary Material. The exponent 𝑓 controls the non-linearity of ℎ𝑒 . Many authors (Chen & 257 

Zhang, 2015; Frank et al., 2015; Shen et al., 2020) use a value of 1 for 𝑓 but field measurements by Schürch et al. 258 

(2011) (see their Figure 3) suggest that 𝑓  may be less than 1 if 𝜏  is assumed to vary linearly with flow depth, 259 

particularly at flow depths greater than 3 meters.  260 

MWR includes two options for defining 𝜏: (1) a quasi-static basal shear stress approximation or (2) a grain-size-based 261 

shear stress approximation.  The quasi-static basal shear stress approximation (e.g., Takahashi, 2014) is defined as:  262 

𝜏 = 𝜌𝑔ℎ 𝑠𝑖𝑛 𝜃    (12)  263 
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where 𝜌 is the density of mass wasting material (grain and water mixture) [kg/m3], 𝑔 is gravity [m/s2] and ℎ is the 264 

adjusted flow depth described in (3) and 𝜃 is the topographic slope (tan-1(𝑆)) measured in degrees.  265 

The grain-size-based shear stress approximation is defined using an empirical formula by Bagnold (1954):  266 

𝜏 = 𝜎 𝑡𝑎𝑛 𝜑 (13) 267 

Where 𝜎 is normal stress [Pa], 𝜑 is the collision angle between grains, measured from the vertical axis (See Bagnold, 268 

1954), with a value of  tan 𝜑 typically equal to 0.32. Stock and Dietrich (2006) defined 𝜎 as:  269 

𝜎 =  𝑐𝑜𝑠 𝜃𝜐𝑠𝜌𝑠𝐷𝑠
2 (

𝑑𝑢

𝑑𝑧
)

2

    (14) 270 

Where 𝜐𝑠 is the volumetric solids concentration, 𝜌𝑠 is density of the solids [kg/m3], 𝑢 is flow velocity [m/s], 𝑧 is depth 271 

below the flow surface [m],  𝑑𝑢 𝑑𝑧⁄  is the shear strain rate [1/s] and 𝐷𝑠 is the representative grain size [m]. Stock and 272 

Dietrich (2006) suggested that 𝐷𝑠 corresponds to a small percentile of the coarsest fraction of the runout material (𝐷88 273 

to 𝐷96) and they approximated 𝑑𝑢 𝑑𝑧⁄  as: 274 

𝑑𝑢

𝑑𝑧
 = 

𝑢

ℎ
 (15) 275 

Solely for the purpose of computing 𝑑𝑢 𝑑𝑧⁄ , we approximate velocity at a node using a grain-size dependent empirical 276 

formula for debris flow velocity by Julien and Paris (2010) as: 277 

𝑢 = 5.75𝑢∗𝑙𝑜𝑔 (
ℎ

𝐷𝑠
) (16) 278 

Where 𝑢∗is shear velocity (√𝑔ℎ tan 𝜃). Substituting (16), (15), (14) and (13) into (11) yields a grain-size dependent 279 

approximation for ℎ𝑒 that mimics the non-linear erosion response to flow depth in Schürch et al. (2011). Additionally, 280 

this form of 𝜏 is advantageous because it permits landslide-driven erosion rates to scale with landslide grain size, 281 

which can vary by lithologic region (e.g., Roda-Boluda et al. 2018). As will be shown in Section 5, we obtained 282 

reasonable model calibration at multiple sites by defining 𝐷𝑠 from the coarser grain sizes observed in the field at 283 

existing runout-deposits, road-cuts and tree-throw pits.  284 

Once 𝐴 [m] and 𝐸 [m] have been determined, total out-going flux per iteration, 𝑞𝑂 [m] is determined as (see Figure 285 

3c): 286 

 𝑞𝑂 = {
𝑞𝐼 − 𝐴 + 𝐸,        𝑞𝐼 ≥ 𝑞𝑐

0                 ,       𝑞𝐼 < 𝑞𝑐  
 (17) 287 

Where 𝑞𝑐 is a threshold flux for deposition. When  𝑞𝐼 < 𝑞𝑐 ,  𝑞𝐼 deposits and 𝑞𝑂 becomes zero. The threshold flux 𝑞𝑐 288 

conceptually represents the flow depth below which flow resistance is large enough to cease the forward momentum 289 

of the flow, whether in the form of internal friction or friction due to vegetation and obstructions (e.g., large clasts or 290 

logs). The density and water content of 𝑞𝐼, 𝐴, and  𝐸 are treated as uniform and surface runoff, such as channelized 291 

stream flow or hillslope-infiltration-excess runoff, that might mix with 𝑞𝐼  𝐴, or 𝐸 is ignored. Once 𝑞𝐼, 𝐴, 𝑞𝑂 and 𝐸 292 

have been determined, change in elevation at a node (Δ𝜂) is calculated as:  293 

Δ𝜂 = 𝐴 − 𝐸 (18) 294 



 

 
12 

Attributes of the debriton and regolith are updated using a volumetric-weighted average approach. First, for each 295 

regolith attribute being tracked by the model (e.g., grain size), the attribute value delivered to a node from its donor 296 

nodes (𝜉𝐷) is determined as: 297 

𝜉𝐷 =
𝝃𝑫∙𝒒𝑫

𝑞𝐼
 (19) 298 

where 𝒒𝑫 is a vector containing all 𝑞𝐷𝑗
 sent to the node, 𝝃𝑫 is a vector containing the incoming attribute values for 299 

each 𝑞𝐷𝑗
, and 𝑞𝐼 is the sum of incoming flux from donor nodes defined by (2).  300 

Second, the attribute value sent from a node to its receiver nodes (𝜉𝑅) is determined as: 301 

𝜉𝑅 =  
𝜉𝑡−1𝐸+𝜉𝐷(𝑞𝐼 −𝐴)

𝑞𝑂
 (20) 302 

where 𝜉𝑡−1 is the attribute value at the node before any aggradation (i.e., the previous iteration attribute value). Finally, 303 

the attribute value at the node, updated to account for erosion and aggradation (𝜉) is: 304 

𝜉 =
𝜉𝑡−1(ℎ𝑟−𝐸)+𝜉𝐷𝐴

𝐴+ℎ𝑟−𝐸
 (21) 305 

Regolith thickness (ℎ𝑟) and topographic elevation (𝜂) are updated at a node as:  306 

𝜂 = 𝜂 𝑡−1 + 𝛥𝜂 (22) 307 

ℎ𝑟 = ℎ𝑟 𝑡−1 +  𝛥𝜂 (23) 308 

Where 𝜂 𝑡−1 and ℎ𝑟 𝑡−1 are the topographic surface elevation and regolith thickness at the node from the previous 309 

model iteration. After regolith thickness and topographic elevation have been updated for each debriton, the multi-310 

direction slope of the DEM, which is used for routing the debritons in the next model iteration, is recomputed from 311 

the topographic surface.  312 

Using the above approach, debritons may become obstructed if they encounter a topographic pit or flat topography in 313 

the DEM. To allow a debriton to pass an obstruction, we rely on a simple work-around: upon encountering the 314 

obstruction, the debriton is directed to itself and some portion of the debris is deposited based on (4). At the end of 315 

the model iteration, the node elevation and slope are updated. During the next iteration, if the remaining mobile debris 316 

is no longer obstructed, it moves to its downslope node(s). If the node is still obstructed, it is again sent to itself until 317 

either all material has deposited or the elevation of the node exceeds that of its neighbour nodes, allowing the debriton 318 

to move downslope. 319 

3. Calibration and MWR probability 320 

3.1 Calibration utility  321 

MWR includes an adaptive Markov Chain Monte Carlo (MCMC) calibration algorithm described by Coz et al. (2014) 322 

and Renard et al. (2006). The user provides an initial (prior) guess of the parameter values and their respective 323 

probability distribution functions (PDF) that calibrate the model to a specific site. Then, the calibration algorithm 324 

randomly selects a set of parameter values (Λ) from the prior PDFs and runs MWR using Λ. Once the model has 325 
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completed the run, the algorithm evaluates the posterior likelihood of the parameter set (𝐿(Λ)) as a lumped index of 326 

model ability to replicate observed runout (described below) and the prior likelihood of the parameter set. After the 327 

first 𝐿(Λ) has been determined, the algorithm selects a new set of parameters (Λ𝑡+1) by jumping some distance from 328 

each parameter in Λ space. Depending on the value of 𝐿(Λ𝑡+1), the algorithm either stays at Λ or moves to Λ𝑡+1. This 329 

Markov process is repeated a user-specified 𝑁𝑐 times. Jump direction is random, but the algorithm is adaptive because 330 

the jump distance changes depending on how often 𝐿(Λ𝑡+1) > 𝐿(Λ). For a detailed description of the algorithm see 331 

Coz et al. (2014). 332 

The 𝐿(Λ) index is estimated as the product of the prior probability of the selected parameter values, 𝑝(Λ), and three 333 

other performance metrics as: 334 

𝐿(Λ) =  𝑝(Λ) ∗ 𝛺𝑇 ∗
1

𝛥𝜂𝐸
2 ∗  

1

𝑄𝑠𝐸
2 

 (24) 335 

where Ω𝑇  is the Lee-Salle index (Heiser et al., 2017) for model planimetric fit; and Δ𝜂𝐸  and 𝑄𝑠𝐸
 are new 336 

dimensionless indices, proposed for this study. The indice Δ𝜂𝐸 is the volumetric error of the modelled topographic 337 

change normalized by the observed total mobilized volume (initial landslide + erosion volume). The indice 𝑄𝑠𝐸
 is the 338 

mean-cumulative flow error along the modelled runout path normalized by the observed mean cumulative flow. Larger 339 

values of Ω𝑇  and smaller values of Δ𝜂𝐸 and 𝑄𝑠𝐸
 indicate modelled runout more closely fits observed. Note that we 340 

add a value of 1 to Ω𝑇  and use the squared- reciprocal values of Δ𝜂𝐸 and 𝑄𝑠𝐸
 in (24) so that the magnitude of 𝐿(Λ) is 341 

always equal to or greater than zero and increases with improved fit. The metric Ω𝑇  is written as: 342 

𝛺𝑇 =  
𝛼−𝛽−𝛾

𝛼+𝛽+𝛾
 +1 (25) 343 

where α, 𝛽 and γ are the areas of matching, overestimated and underestimated runout extent, respectively.  344 

The spatial index for volumetric error, Δ𝜂𝐸, is determined as: 345 

𝛥𝜂𝐸 =  √
∑ [(𝛥𝜂𝑂𝑖 −𝛥𝜂𝑀𝑖)𝛥𝑥2]2𝑝

𝑖=0

𝑉2 
 . (26) 346 

Where 𝑉 is observed total mobilized volume and 𝑝 is the number of nodes in the modelled runout extent, and  Δ𝜂𝑀𝑖  347 

and Δ𝜂𝑂𝑖  are the modelled and observed topographic change [m] at the i-th node within the runout extent.  348 

To calculate 𝑄𝑠𝐸
, we first determine the cumulative debris flow volume (𝑄𝑠) at each node, 𝑗, (𝑄𝑠 𝑗) along the runout 349 

profile, in a manner similar to the flow volume/mass balance curves in Fannin and Wise (2001) and Hungr and Evans 350 

(2004): 351 

𝑄𝑠 𝑗 = −𝛥𝑥2 ∑ 𝛥𝜂𝑖,𝑗

𝑢𝑗

𝑖=1
 (28) 352 

where Δ𝜂𝑖𝑗  is the topographic change [m] at the 𝑖-th node located upstream of node 𝑗, and 𝑢𝑗 is the total number of all 353 

nodes located upstream of 𝑗 . 𝑄𝑠 𝑗  is computed for both the observed and modelled runout ( 𝑄𝑠𝑂 𝑗  and 𝑄𝑠𝑀 𝑗 354 

respectively) and 𝑄𝑠𝐸
 of a runout is determined as:     355 
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𝑄𝑠𝐸
= √

1

𝑟
∑ (𝑄𝑠𝑂 𝑗−𝑄𝑠𝑀 𝑗)

2𝑟
𝑗=1

 𝑄𝑠𝑂̅̅ ̅̅ ̅̅ 2  (29) 356 

Where 𝑟 is the number of nodes along the runout profile, and 𝑄𝑠𝑂
̅̅ ̅̅ ̅ is the observed mean cumulative flow. 357 

As will be detailed in Section 5, field estimates for 𝑆𝑐 and 𝑞𝑐, vary over the length of the runout path. To account for 358 

the heterogeneity of 𝑆𝑐 and 𝑞𝑐, we estimate prior distributions of potential 𝑆𝑐 and 𝑞𝑐 values from field/remote sensing 359 

measurements. Then, from model calibration to a DEM-of-Difference (pre-runout DEM subtracted from the post-360 

runout DEM; DoD using the calibration utility, we find single values of 𝑆𝑐 and 𝑞𝑐 that allow the modelled DoD to 361 

replicate the observed DoD .  362 

We run the calibration utility using a single Markov chain of 2000 repetitions. At most sites, the model converged 363 

relatively quickly on a solution and we therefore didn’t consider burn-in or evaluate convergence (e.g., Gelman et al. 364 

2021). Future implementations of the calibration utility may include multiple chains, burn-in and a check for 365 

convergence. As a final note, many debris flow runout models are evaluated using Ω𝑇   or variations of Ω𝑇  alone (e.g, 366 

Gorr et al., 2022; Han et al., 2017) and the MWR calibration utility can also be run solely as a function of Ω𝑇 . However, 367 

we found that calibration based on Ω𝑇  alone results in high parameter equifinality (e.g., Beven 2006); multiple 368 

parameter sets result in an equally calibrated model as evaluated by Ω𝑇 . As such, we recommend calibrating debris 369 

flow models to an observed DoD. If repeat lidar is available, a DoD can be obtained from before and after scans of 370 

the observed runout event. Alternatively, a DoD can be created by hiking the observed runout event and mapping 371 

field-interpreted erosion and deposition depths. Additional details on how we prepared DoDs for multiple sites are 372 

included in the Supplementary Material. 373 

 374 

 375 

3.2 Mapping landslide runout hazard  376 

MWR includes an additional utility called MWR Probability that produces landslide runout probability maps. MWR 377 

Probability repeatedly runs MWR a user specified 𝑁𝑝 times, each repetition with a different, randomly sampled 378 

parameter set from the posterior parameter PDFs produced by the calibration utility. MWR Probability includes three 379 

options for specifying the initial mass wasting source material: (1) a user-provided landslide source area polygon(s) 380 

based on field and/or remote sensing observations; (2) a user-defined hillslope susceptible to landslides (e.g., 381 

potentially unstable slope), where landslide area and location are randomly selected within, but no larger than the 382 

hillslope; this option is useful when the extent of a potential landslide is unknown; and (3) a series of mapped landslide 383 

source areas within a watershed, as determined by an externally run Monte Carlo landslide initiation model (e.g., 384 

Hammond et al. 1992; Strauch et al., 2018) ; this option is useful for regional runout hazard applications. If using 385 

Option 1, modelled runout probability represents uncertainty in MWR parameterization. If using Option 2 or 3, 386 

modelled runout probability reflects uncertainty in both MWR parameterization and landslide location and size. 387 
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For all three run options, each model iteration begins with the same initial topography. After 𝑁𝑝 model simulations, 388 

𝑁𝑝 different versions of the post-runout landscape are created, and model performance for each are evaluated. After 389 

𝑁𝑝 model runs, probability of runout at each model node is determined as: 390 

𝑃(𝛥𝜂) =
𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓(|𝛥𝜂|>0)

𝑁𝑝
 (30) 391 

where 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓(|Δ𝜂| > 0) is the number of times topographic elevation at a node changes as a result of erosion 392 

or deposition from the 𝑁𝑝 model runs. Probability of erosion or aggradation can be determined by replacing the 393 

numerator in (30) with 𝑛𝑢𝑛𝑚𝑏𝑒𝑟_𝑜𝑓(𝛥𝜂 < 0) or 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓(𝛥𝜂 > 0) respectively.  394 

4. Basic model behavior 395 

We evaluate basic model behavior using a series of virtual experiments. The virtual experiments consist of six 396 

synthetic terrains including: (A) a planar slope that intersects a gently sloped plane (S = 0.001), (B) a planer slope 397 

with a constriction, that intersects a gently-sloped plane, (C) a planar slope that has a bench mid-slope and then 398 

intersects a gently-sloped plane; (D) a concave up, uniform-convergence slope; (E) a concave up, variable-399 

convergence slope that widens (convergence decreases) in the downslope direction; (F) a convex up, variable-400 

convergence slope that widens (convergence decreases) in the downslope direction. On each terrain, a 30-meter wide, 401 

50-meter long and 3-meter deep landslide is released from the top of the terrain. All six terrains are covered by a 1-402 

meter thick regolith and use the same parameter values (𝑆𝑐  = 0.03, 𝑞𝑐 = 0.2 m,  𝑘 = 0.01, 𝐷𝑝 = 0.2 m). Experiment 403 

results are shown in Figure 5. 404 

  405 
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Figure 5. Shaded, 3-D visualizations of model response to six different synthetic terrains, colored according to the 406 

DoD of the final runout surface. Red indicates a positive change in the elevation of the terrain (aggradation) and 407 

blue indicates a negative change (erosion). Grid size is 10 meters. 3-D representation of DoD is exaggerated by a 408 

factor of 5 to make visible in figure.  409 

On Terrain A, the landslide spread as it moved downslope and formed levees along the edge of the runout path. The 410 

width of the spread was a function of the multiflow direction algorithm and resistance along lateral margins of the 411 

runout as represented by 𝑞𝑐. At the slope break at the base of the slope, the material deposited at an angle controlled 412 

by 𝑆𝑐 . On Terrain B, the flow initially eroded and deposited identical to the first but near the slope break, the 413 

topographic constriction forced flow depth to increase and exceed 𝑞𝑐, minimizing the formation of levees (because 414 

𝑞𝑂 > 𝑞𝑐)  and resulted in a slightly larger deposit at the base of the slope. On Terrain C, landslide runout was again 415 

initially identical to the runout on Terrain A; however, upon intersecting the mid-slope bench, most of the runout 416 

material deposited. A small, thinner portion did continue past the bench but eroded at a lower rate than the initial slide 417 

upslope of the bench. Upon intersecting the flat surface at the base of the hillslope, the runout material deposited.  418 

On Terrain D, the landslide and its runout were confined to the center of convergent terrain and only deposited once 419 

the slope was less than 𝑆𝑐 . The slide never widened because the uniformly convergent channel shape prevented 420 

spreading and the narrower flow width maintained a higher flow depth, which prevented the formation of levees. On 421 

Terrain E, the landslide again deposited once slope was less than 𝑆𝑐 but because topographic convergence of Terrain 422 

E decreases in the downslope direction, as the runout material moved downslope, the deposit spread more than on 423 

Terrain D, which caused thinner flow and deposition along margins of the runout path. On the final terrain, Terrain F, 424 

slope is always greater than 𝑆𝑐 so deposition was limited to levees along the edge of the flow that formed as the runout 425 

spread in response to decreasing convergence.  426 

MWR model behavior can be summarized as follows. The displacement and deposition of landslide material predicted 427 

by MWR responds to topography in a reasonable manner: Flow width increases as convergence decreases (e.g, Terrain 428 

F), which in turn reduces flow depth. Lower flow depths cause lower erosion rates and reduce aggradation extent. 429 

Conversely, modelled flow depth increases when convergence increases (e.g., Terrain B). Where the flow encounters 430 

broadly convergent or planer slopes, lateral levee deposits form, a common feature of landslides reported in the 431 

literature and at sites reported here (see Section 5) that detailed mechanistic models can struggle to reproduce (e.g., 432 

Barnhart et al, 2021).  433 

We did not attempt to compare MWR modelled flow with the output of shallow-water-equation based models or 434 

observed granular flows  (e.g., Medina et al, 2008; McDougall and Hungr, 2004;  Iverson and Denlinger, 2001; Han 435 

et al., 2015). The cellular automaton representation in MWR does not model the time-dependent evolution of debris 436 

flow velocity and depth, and conceptually moves debris instantaneously at each iteration, as driven by changes in the 437 

evolving topographic elevation field. Because of that, only the final outcome of MWR can be compared with other 438 

models or observed runout, which we do in the next section.   439 
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5. Model Validation: 440 

5.1 Overview 441 

In this section, we demonstrate the ability of a calibrated MWR to replicate observed runout extent, sediment transport 442 

and topographic change at field sites located in the western USA and summarize model calibration results with an 443 

evaluation of MWR calibration relative to terrain attributes of the observed runout paths. Note that simply calibrating 444 

a model to match field data does not constitute a satisfactory test of model predictive ability (Iverson, 2003). Strategic 445 

testing, which involves calibrating the model to one site or period of time and then running the calibrated model at a 446 

separate site or period of time (Murray, 2013), is a better indicator. Two of our validation sites, the Cascade Mountain 447 

and Olympic Mountain sites, include two separate landslides and subsequent runout and we test model predictive 448 

ability at these sites in Section 6.  449 

Calibrated model performance is demonstrated at the following field sites (see Figure 6a for locations and observed 450 

runout extent): (1) two runout events over the same hillslope in the Cascade Mountains (Washington state [WA], 451 

USA): a large debris avalanche in 2009 (Cascade Mountains, 2009) and a moderately-sized debris flow in 2022 452 

(Cascade Mountains, 2022) that inundated and flowed within a first-to-second order channel until perpendicularly 453 

intersecting a narrow river valley several hundred meters below the landslide (Figure 1a); (2) debris flows in the Black 454 

Hills (WA) sourced from a small failure along the toe of a deep-seated landslide (Black Hills, South) and a moderately-455 

sized debris avalanche from a large road fill (Black Hills, North) that flowed several kilometers along a relatively 456 

wide, broadly convergent channel before stopping (Figure 1b); (3) a single, moderately-sized debris avalanche in the 457 

Rocky Mountains (Rocky Mountains), the majority of which flowed several hundred meters over a broadly convergent 458 

to divergent hillslope in Colorado (Figure 1c); and (4) a 30-year chronology of small landslides and subsequent debris 459 

flows in the Olympic Mountains (WA) in steep, highly convergent channels that flowed well over a kilometer and 460 

coalesced into a single runout deposit in a dendritic, channelized watershed (Olympic Mountains; Figure 1d). All 461 

landslides initiated during heavy rainfall or rain-plus-snowmelt storm events (WRCC, 2022; NRCS, 2022; Table 1) 462 

but their runout varied in terms of erosion rate, grain size (Figure 6b), depositional behavior (Figure 6c) and the 463 

topographic convergence of the underlying terrain. 464 

Table 1. Landslide and runout characteristics 465 

 

site 

Cascade 

Mountains, 

09 

Cascade 

Mountains, 

22 

Black 

Hills, 

south 

Black 

Hills, 

north 

Rocky 

Mountains 

Olympic 

Mountains 

landslide length, ℓ [m] 185 55 80 75 40 45 

landslide width [m] 80 50 15 65 35 15 

landslide volume [m3] 110,000 22,000 1,500 18,500 4,600 400 - 2,200 

2-day cumulative precipitation 

+ snowmelt [mm] 

120+85 140+75 205+50 205+50 193+0 100 - 220 

+ ? 

maximum grain size [m] 0.316 0.316 0.48 0.206 0.984 0.8 

Slope range of positive-net 

deposition [%] 

1 - 15 1 - 15 <1 - 10 <1 - 8 16 - 25 5 - 15 

average flow depth in scour 

zone [m] a 

4 2 2 3 3 3 

average channel slope in scour 

zone [m/m] 

0.25 0.25 0.15 0.15 0.4 0.3 
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average channel width in scour 

zone [m] 

45 20 25 35 55 10 

length of erosion, [m] 600 340 1210 1345 360 2550 

erosion area, 𝔸 [m2] 28,400 6,600 22,800 52,400 20,800 28,900 

erosion volume, ∑ 𝐸Δ𝑥2 [m3] b  44,547 5,125 12,332 26,815 34,275 33,725 

average erosion per unit length 

of landslide, 𝐸̅/ℓ, [m/m] 

0.0085 0.014 0.0068 0.0068 0.041 0.026 

𝑘 0.020 0.034 0.017 0.020 0.076 0.051 

growth factor, [m3/m] 74.2 15.1 10.2 19.9 95.2 13.2 

average observed |Δ𝜂| [m] 2.4 2.2 0.53 0.63 0.89 1.4 

total erosion volume / total 

mobilized volume c 

0.29 0.19 0.89 0.59 0.88 0.97 

a rough approximation based on landslide volume, channel width and height of scour marks in erosion zone 466 
b excludes landslide volume  467 
c total moblized volume = erosion volume + landslide volume  468 

 469 

     470 
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Figure 6 (a) Landslide locations in Washington and Colorado states. Coordinates next to each site are WGS84. 471 

Shaded DEMs of each site are shown at the same scale. (b) Observed average erosion rate per unit landslide length 472 

(𝐸̅/ℓ) relative to the observed average-maximum grainsize. Error bars indicate standard deviation. (c) Underlying 473 

topographic slope of observed deposition locations.  474 

5.2 Model setup and field parameterization  475 

Each model was set up on a 10-meter grid representation of the pre-event DEM. The extent of the mass wasting source 476 

material, which in all cases was a landslide, was interpreted from a combination of lidar, air-photo and field 477 

observations. At all locations, we use (13) to approximate shear stress. We field-surveyed each site, noting the 478 

maximum flow thickness, typical deposition and erosion depths and the size of the largest grains in the runout deposits.  479 

We estimated parameter values from these field and remote observations (See Table 1). A site-specific value for 𝑘 480 

was determined as a function of the observed average erosion depth (determined as total erosion volume divided by 481 

the erosion area, 𝐸̅) relative to the landslide length (ℓ). Further details are described in the Supplementary Material.  482 

The initial mass wasting source material (e.g., the initial landslide body) ranged in volume from 400 to 110,000 m3 483 

across sites. At all sites, erosion and subsequent entrainment added to the total mobilized volume (initial landslide + 484 

erosion volume ), but the contribution was highly variable. The erosion volume divided by the total mobilized volume 485 

was as low as 0.19 at the Cascade Mountain, 2022 landslide to as high as 0.97 at the Olympic Mountain landslides 486 

(Table 1).    487 

The average maximum grain size varied from 0.2 m at the Black hills sites to nearly 1 m at the Rocky Mountain Site 488 

(Figure 6b, Table 1).  Values of 𝐸̅/ℓ  ranged from 0.007 to 0.041 [m/m] with the highest rate occurring at the Rocky 489 

Mountain landslide and the lowest at the Black Hills sites. In terms of growth factors (average volumetric erosion per 490 

unit length of the erosion-dominated region of the runout path, Hungr et al. 1984; Reid et al., 2016) values ranged 491 

from 10 m3/m at the Black Hills South site to 95 m3/m during the Rocky Mountain landslide (Table 1). 492 

The median values of topographic slopes at which observed deposition occurred (i.e., Δ𝜂 > 0) ranged between 0.3 493 

and 0.1 across sites, while deposition was also observed in much steeper (>0.4) slopes, and much flatter slopes at some 494 

sites (Figure 6c) (Table 1). The slope of channel reaches where net deposition (cumulative erosion and deposition; 495 

e.g., Guthrie et al., 2010) was positive tended to be lowest at the Black Hills site (<1% to 10%) and highest at Rocky 496 

Mountain site (16% to 25%).   497 

We defined uniform prior distributions of 𝑆𝑐 and 𝑞𝑐 based on the field observations and then used the calibration utility 498 

to find the best-fit parameter values (parameter values corresponding to the highest 𝐿(Λ)). Minimum and maximum 499 

values of 𝑆𝑐 were initially estimated from the range of observed slope of areas of positive-net deposition (Table 1). 500 

Minimum and maximum values of 𝑞𝑐  were set as 0.01 to 1.75, which roughly represents the range of minimum 501 

observed thickness of debris flow termini in the field at all of the validation sites. For the purpose of implementing 502 

the calibration utility, we prepared a DoD of each site. The DoD was determined either form repeat lidar or field 503 

observations as detailed in the Supplementary Material.  504 
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5.3 Calibration and model performance 505 

Markov chains, colored according to the likelihood index, 𝐿(Λ)  are plotted in the 𝑆𝑐 - 𝑞𝑐  domain, along with 506 

histograms of sampled 𝑆𝑐 and  𝑞𝑐 values for each landslide in Figure 7. Each Markov chain includes 2000 model 507 

iterations. The runtime for 2000 model iterations depended on model domain and landslide size but varied from 508 

roughly 1.5 to 6 hours on a 2016 2.1 GHz Intel Core Xeon, 32 GB memory desktop.  The chains show a wide array 509 

of sampling patterns and parameter ranges but broadly speaking, at all sites, the algorithm jumped within 𝑆𝑐- 𝑞𝑐 space 510 

towards higher 𝐿(Λ), to form bell-shaped posterior distributions for each parameter. Depending on the landslide type, 511 

the calibration algorithm converged on different 𝑆𝑐 - 𝑞𝑐  pairs. For example, at the Cascade Mountains site, the 512 

calibration utility converged to smaller 𝑞𝑐 and 𝑆𝑐 values for the 2009 event (Figure 7a), which permitted thinner flows 513 

over lower slopes and effectively made the 2009 modelled runout more mobile relative to the 2022 modelled runout 514 

(Figure 7b). At the Rocky Mountains site, a relatively high 𝑞𝑐 value helps control lateral extent of the modelled runout 515 

that in the field was controlled by standing trees (Figure 7e).  516 

 517 
Figure 7. MWR calibration results for (a) Cascade Mountains, 2009; (b) Cascade Mountains, 2022, (c) Black Hills, 518 

South; (d) Black Hills, North; (e) Rocky Mountains and; (f) Olympic Mountains. Each result shows a scatter plot of 519 

the sampled 𝑆𝑐 and 𝑞𝑐 values, colored by their relative 𝐿(Λ) value. To the right of each scatter plot are histograms of 520 

the iterated 𝑆𝑐 and 𝑞𝑐 parameters, which represent an empirical PDF of the possible 𝑆𝑐 and 𝑞𝑐 values that calibrate 521 

MWR to the site. Note y-axis scale differs between plots. 522 

 523 

Profile plots of modelled 𝑄𝑠 and maps of the modelled planimetric runout extent, colored to indicate where the runout 524 

matched (α), overestimated (𝛽) or underestimated (γ) the observed runout are shown in Figure 8. Values of Ω𝑇  we 525 
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obtained with MWR are comparable or higher than reported values of Ω𝑇  in the literature that used a variety of models 526 

(Gorr et al., 2022; Barnhart et al., 2021; Note, to compare Ω𝑇  values to those studies, subtract 1 from values reported 527 

in this study). Across the sites, the volumetric error of the model, 𝛥𝜂𝐸, ranges between 6% and 15% (median 9.1%) 528 

of the total mobilized volume from the observed DoD. An overall <10% volumetric error is reasonable considering 529 

the low number of parameters required to calibrate MWR and that empirical estimates of total mobilized volume used 530 

to run other runout models can vary by as much of an order of magnitude (e.g., Gartner et al., 2014: Barnhart et al., 531 

2021). Model performance in predicting volume flux along the runout profile was within similar error ranges. Except 532 

for the Rocky Mountains site where MWR consistently modelled wider-than-observed flow, the cumulative flow error 533 

along the runout profile (𝑄𝑠𝐸
) were limited to 5%-19% of the mean cumulative flow determined from the observed 534 

DoD.  535 

MWR generally successfully replicates observed sediment transport along the runout path via model parameterizations 536 

that are unique to each landslide. For example, the profile plots of 𝑄𝑠 at the Cascade Mountain site (Figure 8a and 8b) 537 

show that during the 2009 landslide, all of the runout material flowed past the first 750 meters of the runout path. 538 

During the 2022 landslide, material began to deposit just down slope of the initial landslide scar, as both observed and 539 

modelled 𝑄𝑠 reverse slope, indicating loss in downstream volume flux. Model comparisons in the Cascade Mountains 540 

site were limited to the upper 750 m of the hillslope because a large portion of the runout material was lost to fluvial 541 

erosion in the valley (see Supplementary Material).  542 

MWR also successfully replicates the observed sediment transport patterns at the Olympic Mountains site (profile plot 543 

of 𝑄𝑠 in Figure 8f) and to a lesser degree, the Rocky Mountain site (Figure 8e). This finding is notable, because at the 544 

Olympic Mountain site, observed runout extent and sediment depositional pattern were heavily impacted by woody 545 

debris. Similarly, at the Rocky Mountains site, the width of the runout appeared to be restricted by trees. (See 546 

Supplementary Material).  547 

Using a fixed cell size of 10-m might have impacted model performance in some areas. MWR tended to over-estimate 548 

the runout width for small landslides like the Olympic Mountains and Cascade Mountains, 2022 sites (yellow zones 549 

in Figures 8f and 8b), likely because of the 10-m grid size used to represent the terrain. A 10-m DEM is generally 550 

accepted as a good balance between model detail and computational limitations (e.g., Horton et al. 2013). However, 551 

for small landslides, the 10-m grid is close to the size of the channels that controlled observed runout (Supplementary 552 

Material) and may not have accurately represented the terrain. Modelled flow was less topographically-constrained 553 

and tended to flow over a wider area of the terrain than observed in the more confined and smaller channels within 554 

the axis of the runout valleys.  555 

Because MWR does not have an explicit representation of flow momentum, it may show poor performance in regions 556 

of the runout path where momentum controls runout extent. For example, at the Cascade Mountain, 2009 slide, 557 

modelled extent misses a bench located along the east edge of the runout path (large red zone in Figure 8a). Review 558 

of model behavior for this slide (Figure 9) shows how MWR successfully mimics diverging flow around a broad ridge 559 

in the middle of the runout path (iteration 𝑡=28 in Figure 9), but afterword converges too rapidly into a narrow ravine 560 

in the middle of the runout path (iteration 𝑡=40 in Figure 9). At the Rocky Mountains site, in addition to standing 561 
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trees, the forward momentum of the runout may have also restricted lateral spread of the observed runout. Modelled 562 

runout is consistently too wide. 563 

Overall, calibration was best at the Cascade Mountain, 2009 landslide (values of Ω𝑇  are highest and values of Δ𝜂𝐸 564 

and 𝑄𝑠𝐸
 are lowest) and poorest at the Rocky Mountain and Olympic Mountain sites (Values of  Ω𝑇  are lowest 𝑄𝑠𝐸

 565 

and Δ𝜂𝐸 are highest). At both the Rocky Mountain and Olympic Mountain sites, because we lacked repeat lidar, we 566 

created the DoD from a map of field estimated erosion and deposition depths and estimated the pre-event DEM. The 567 

lower calibration scores may indicate that field estimated DoDs were not as accurate as those determined via lidar 568 

differencing. Another source of uncertainty that we have not addressed in our study is regolith thickness. Using 569 

spatially accurate regolith thickness, rather than a uniform thickness, would likely improve MWR performance too. 570 

Nonetheless, although imperfect, at most sites, MWR does not appear to have a strong systematic bias in modeled 571 

output, which suggests that MWR may not have any structural weaknesses; however the consistent over-estimated 572 

width on planar to divergent topography at the Rocky Mountain site requires further investigation at similar sites to 573 

determine if this issue is due to calibration or the model. 574 

 575 
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 576 

  577 
Figure 8.  Calibrated model performance as indicated by modeled runout extent, profile plots of 𝑄𝑠, and reported 578 

values of Ω𝑇 , Δ𝜂𝐸 and 𝑄𝑠𝐸
. In all maps, up is north except in (e), north is towards the left. (a) Cascade Mountains, 579 

2009; (b) Cascade Mountains, 2022; (c) Black Hills, North; (d) Black Hills, South; (e) Rocky Mountains; (f) 580 

Olympic Mountains.  581 

 582 
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 583 

Figure 9. Illustration of modeled runout at the Cascade Mountains, 2009 landslide. At iteration 𝑡 = 0, Algorithm 1 584 

determines the direction and flux of the initial debritons over the slip surface of the landslide (all nodes located in 585 

the landslide green-dashed polygon). Note how the landslide slip surface directs the initial flow. In later iterations, 586 

Algorithm 2 routes the debritons down slope, updating the debritons and the terrain. By the end of the modeled 587 

runout, a colluvial fan forms at the base of the slope. Topography lines reflect the underlying terrain, which is 588 

updated after each iteration. MWR successfully replicates diverging flow at iteration 𝑡 = 28 but misses a region of 589 

the observed runout path at iteration 𝑡 = 40 where momentum likely controlled flow direction (compare to runout 590 

scar in air photo and underestimated region on topographic bench in Figure 8a)  591 

To understand whether the ability to calibrate MWR systematically varies with topography of the runout path, we 592 

compared model performance with three topographic indices described by Chen & Yu (2011). The indices are 593 

computed from the terrain in the observed runout extent and include the relief ratio (H/L), mean total curvature (𝜅) 594 

and the mean specific stream power index (𝑆𝑃𝐼). The index H/L equals the average slope of the runout path (or relative 595 

relief), determined as the total topographic relief of the runout (measured from the center of the landslide to the end 596 

of the runout path) divided by the horizontal length of the runout and indicates the mobility of the runout. Index 𝜅 597 

represents topographic convergence, which is the second derivative of the terrain surface, with increasingly positive 598 
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values of index 𝜅 reflecting growing topographic convergence and concave-up channel profile (e.g., Istanbulluoglu et 599 

al., 2008).  The index 𝑆𝑃𝐼 is determined as the natural log of the product of the contributing area and slope. Indices 𝜅 600 

and 𝑆𝑃𝐼 are computed at each node in the runout extent and the mean values are computed from all nodes in the extent.   601 

Comparison of model performance with respect to the topographic indices in Figure 10 shows: slightly improved 602 

model performance over runout-paths that are less convergent (𝑆𝑃𝐼 and 𝜅 values of the observed runout path are 603 

lower) and on steeper terrain (higher H/L) but neither trend is significant. The latter finding appears to be mostly a 604 

result of how well modelled sediment transport and topographic change (𝑄𝑠𝐸
 and Δ𝜂𝐸) replicated observed, as there 605 

does not appear to be a trend in Ω𝑇  with H/L and the two best performing models (both Cascade Mountain landslides) 606 

had the lowest (best) 𝑄𝑠𝐸
 values and low Δ𝜂𝐸 values. Both findings are likely impacted by the grid size we used to 607 

represent terrain. As noted above, at all sites we used a 10-m grid, but at some sites 10-m doesn’t quite capture the 608 

relief of channelized topography that controlled observed runout, leading to modelled runout that was considerably 609 

wider than observed and causing low Ω𝑇  value (this is especially true at the Olympic Mountains site, Figure 10a, b 610 

and c). 611 

In summary, using the calibration utility, we showed how the MWR can be calibrated to a range of different landslide 612 

types and runout terrains. To a certain degree, though calibration, MWR can be parameterized to compensate for 613 

deficiencies in the DEM or processes not explicitly represented in the model (momentum, woody debris). We were 614 

unable to establish a clear pattern between calibration performance and topographic indices. This finding is likely 615 

because numerous factors other than the terrain form, such as the DEM resolution, the quality of the DoD and 616 

importance of processes not explicitly included in the model also impact performance.  617 

 618 

  619 
Figure 10. Illustration of model calibration, as reflected by the posterior parameter likelihood 𝐿(𝜃) and planimetric 620 

fit (Ω𝑇) relative to topographic indices. There is no strong trend between the topographic indices and calibration 621 

performance. 622 
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6. Discussion 623 

6.1 Strategic testing of MWR for hazard mapping applications 624 

Having demonstrated basic model response to topography and that MWR can be calibrated to a variety of landslides 625 

and runout terrains, we now strategically test MWR using the Cascade Mountain and Black Hills sites. Since both of 626 

these sites include two separate landslides, we can thus test model performance by swapping best-fit model parameters 627 

at each site, rerunning the models and comparing results with the original, calibrated results. At the Cascade Mountain 628 

site, the 2009 and 2022 landslides originated on the same hillslope (Figure 8a and 8b). At Black Hills site, the two 629 

landslides occurred on different hillslopes but in adjacent east-west oriented watersheds (Figure 8c and 8d).  630 

As shown in Figure 11, at three of the landslides (both Cascade Mountain landslides and the Black Hills, North 631 

landslide), when the best-fit parameters from the other landslide are used to predict runout, the accuracy of modelled 632 

runout planimetric extent drops but resultant Ω𝑇  values can still be as high or higher than values reported in other 633 

studies (compare to equivalent Ω𝑇  values in Gorr et al., 2022 and Barnhart et al., 2021). In terms of modelled sediment 634 

transport and topographic change, swapping best-fit parameters has a more substantial effect. At the Cascade 635 

Mountain, 2009 landslide, using the 2022 best-fit parameter values causes about half of the modelled runout material 636 

to prematurely deposit on the hillslope, reducing the amount of sediment that reaches the valley floor (𝑄𝑠𝐸
 increases 637 

by a factor of nine; Figure 11). Using the Cascade Mountain, 2009 parameter values on the Cascade Mountain, 2022 638 

landslide (Figure 11b) increases modelled runout extent and results in nearly four times the entrainment and transport 639 

of sediment to the valley floor, causing 𝑄𝑠𝐸
 to increase by a factor of 20 and Δ𝜂𝐸 by 83%. At the Black Hills site, 640 

using the South basin best-fit model parameters at the North basin causes 𝑄𝑠𝐸
 and Δ𝜂𝐸 increase by 83% and 39% 641 

respectively (Figure 11c). Unlike the other three landslides, swapping best-fit parameters at the Black Hills, South 642 

landslide results in both large sediment transport and runout extent error because the North basin best-fit parameters 643 

cause modelled landslide to entrain too little and stop only a few hundred meters from the initial source area (Figure 644 

11d). 645 

Although the need for calibration of MWR is a limitation for its transferability across sites, this limitation holds true 646 

for most physics-based models. Barnhart et al. (2021) compared the ability of three different detailed-mechanistic 647 

models to replicate an observed post-wildfire debris-flow runout event in California, USA. All three models used a 648 

shallow-water-equation-based approach that conserved both mass and momentum, representing the flow as either a 649 

single phase or double phase fluid. All models gave comparable results in simulating the event, suggesting that there 650 

may not be a “true” best model. Despite the high level of detail and processes explicitly included in each model, all 651 

models were sensitive to and required an estimate of the total mobilized volume, and the ability to replicate observed 652 

runout ultimately depended on the selection of the parameters used to characterize debris flow properties.  653 

 654 

 655 
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  656 

Figure 11.  Model performance using the neighboring landslide parameter values, as indicated by modeled runout 657 

extent, profile plots of 𝑄𝑠, reported values of Ω𝑇 , Δ𝜂𝐸 and 𝑄𝑠𝐸
 . Compare with Figure 8. (a) Cascade Mountain, 658 

2009; (b) Cascade Mountain, 2022; (c) Black Hills, North; (d) Black Hills, South 659 

 660 

As landslide hazard models often forecast hazard probabilistically, an alternative test to simply swapping the best-fit 661 

parameters is to swap parameter PDFs determined from the calibration utility and compare probability of runout at 662 

each model node (equation 30). As shown in Figure 12, similar to the first test, at three of the landslides, using the 663 

parameter distribution associated with the neighbouring landslide results in relatively minor changes in whether runout 664 
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is likely to occur versus not occur (probability of runout ≥50%; Figures 12a, 12b and 12d). At the Black Hills South 665 

landslide, swapping parameter PDFs causes a large change in runout probability (Figure 12c).  666 

 667 

 668 
Figure 12. Model tests by swapping parameter PDFs and comparing runout probability at the (a) Cascade Mountain, 669 

2009; (b) Cascade Mountain, 2022; (c) Black Hills, South and; (d) Black Hills, North sites. (1) runout using 670 

parameter distributions of the site and (2) runout using parameter distributions of the neighboring site. 671 

 672 

The results of these two tests suggest that in most cases, once best-fit parameters or parameter PDFs have been 673 

established for a landslide, those parameter/PDF values may be useful for assessing runout extent but not useful for 674 

sediment transport and topographic change prediction at nearby sites. However, we suspect that these results are a 675 

consequence of comparing very different landslide types and runout processes. In regions where landslide processes 676 

are relatively uniform (like the Olympic Mountain site), calibration to one landslide might be sufficient to predict the 677 

depositional patterns of another. At sites like the Cascade Mountain and Black Hills sites, which consisted of a diverse 678 

range of landslide processes including small, confined debris flows to large, unconfined debris avalanches, MWR may 679 

need to be calibrated to each type of landslide and predictive applications might involve applying the appropriate 680 

parameter set based on landslide type. 681 
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6.2. MassWastingRunout probability applications 682 

In this section we briefly demonstrate how to determine runout probability from a probabilistically determined 683 

landslide hazard map or a specific, potentially unstable slope using MWR. The first application may be appropriate 684 

for watershed- to regional-scale runout hazard assessments. The second application is an example hazard assessment 685 

for a potentially unstable hillslope. Both applications are demonstrated at the Olympic Mountain site where landslide 686 

size and type tended to be relatively uniform and parameter PDFs determined through calibration may therefore 687 

represent typical runout processes in the basin. 688 

6.2.1. Runout probability from a landslide hazard map 689 

To determine runout probability from a landslide hazard map, we ran MWR Probability using option 3, reading a 690 

series of mapped landslide source areas created by an externally run Monte Carlo landslide initiation model. For the 691 

landslide initiation model, we used LandslideProbability, an existing component in Landlab that computes landslide 692 

probability by iteratively calculating Factor-of-Safety (𝐹𝑆: ratio of the resisting to the driving forces) at each node on 693 

the raster model grid 𝑁𝑝 times from randomly selected soil (regolith) hydrology properties (e.g., soil depth, saturated 694 

hydraulic conductivity) soil strength (friction angle, cohesion) and recharge rates (precipitation input rate minus 695 

evapotranspiration and soil storage). Landslide probability at a node is defined as the number of times 𝐹𝑆<1 divided 696 

by 𝑁𝑝.  697 

We first ran LandslideProbability using a 50-year precipitation event (WRCC, 2017) to determine landslide 698 

probability (Figure 13a) over the entire Olympic Mountains model domain and create the series of 𝑁𝑝 FS maps. 699 

Details on the LandslideProbaility setup are included in the Supplementary Material. We then read the series of FS 700 

maps into MWR Probability, treating all nodes with 𝐹𝑆 < 1 as a landslide source, and ran MWR 𝑁𝑝 times. Each 701 

iteration, MWR read a new 𝐹𝑆 map and randomly selected a new set of parameter values from 𝑆𝑐- 𝑞𝑐 parameter PDFs 702 

created by the calibration utility.  703 

Runout probability results are illustrated in Figure 13b and show that the probability of runout is high in many of the 704 

second order channels but low at the basin outlet. As discussed in Section 3, the probability of aggradation or erosion 705 

caused by the runout can also be determined by adjusting the numerator of (30) and the probability of deposition 706 

greater than 1 meter is shown in Figure 13c. In this example, in addition to MWR parameter uncertainty, runout 707 

probability reflects uncertainty in landslide size and location caused by a 50-year precipitation event. 708 

6.2.2 Runout probability for a specific, potentially unstable slope 709 

When field evidence or other data indicate that a specific hillslope may be potentially unstable, but the exact area of 710 

a potential landslide on that slope is unknown, MWR can be used to generate a hazard estimate that takes into account 711 

the uncertainty in the landslide area. For this application, MWR Probability is run using option (2), which requires a 712 

polygon representing the extent of the potentially unstable slope. For each model repetition, a landslide area can form 713 

anywhere within the potentially unstable slope and is at least as large as a user defined minimum size but no larger 714 

than the potentially unstable slope.  715 
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As an example application of using MWR Probability option (2), we designated a 0.6 ha, convergent hillslope in the 716 

headwaters of the Olympic Mountains site as a potentially unstable slope and modelled runout probability, again using 717 

𝑁𝑝 = 1000  (Figure 13d). This example shows that, given uncertainty in the landslide size and location, and 718 

uncertainty in calibrated parameterization of MWR, if a landslide were to initiate on the potentially unstable slope, 719 

the probability of the runout reaching the basin outlet is less than 5%.  720 
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 721 
Figure 13. Olympic Mountain site: (a) Landslide probability, 𝑃(𝐹𝑆 ≤ 1). (b) Corresponding runout probability, 722 

𝑃(Δ𝜂). (c) Probability of deposition greater than 1 m and (d) Runout probability for the potentially unstable slope 723 

(green-dashed polygon).  724 
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7.0 Concluding remarks 725 

In this study, we described, calibrated and tested MassWastingRunout (MWR), a new cellular-automata landslide 726 

runout model that combines the functionality of simple runout algorithms used in landscape evolution and watershed 727 

sediment yield models (WSMs) with the predictive detail typical of runout models used for landslide inundation hazard 728 

mapping. MWR is implemented in Python as a component for the Landlab earth surface modelling toolkit and is 729 

designed for probabilistic landslide hazard assessments, sediment transport and landscape evolution applications. 730 

MWR includes a Markov Chain Monte Carlo calibration utility that determines the best-fit parameter values for a site 731 

as well as empirical Probability Density Functions (PDF) of the parameter values.  MWR also includes a utility called 732 

MWR Probability that takes the PDF output from the calibration utility to model runout probability.  733 

Results show that despite its simple conceptualization, MWR can replicate observed erosion, deposition and sediment 734 

transport patterns. A notable finding of this paper is that MWR modeled runout did not have any strong systematic 735 

bias in predictions (toward unrealistically short or wide flows, for example), which suggests that MWR may not have 736 

any structural weaknesses. When compared to other models capable of replicating inundation patterns of observed 737 

runout events, the strength of MWR lies in its potential computation efficiency, use of field-inferable parameters, 738 

limited reliance on calibration parameters (only two, critical slope, 𝑆𝑐, and a threshold flux for deposition, 𝑞𝑐) and its 739 

ability to internally estimate the total mobilized volume. MWR needs only the location and geometry of an initial 740 

source area to model the entire runout process. 741 

MWR shows a rich set of intuitive responses to topographic curvature and slope and model performance over a range 742 

of landslide and landscape conditions across the four sites we used for this study was sufficiently controlled with the 743 

two calibration parameters. When calibrated to each individual site, the volumetric error of MWR, 𝛥𝜂𝐸 , ranged 744 

between 6% and 15% (median 9.1%) of the observed total mobilized volume. Except for the Rocky Mountains site 745 

where MWR consistently modelled wider-than-observed flow, the cumulative flow error along the runout profile 746 

(𝑄𝑠𝐸
) were limited to 5%-19% of the mean cumulative flow determined from the observed DoD. These are considered 747 

acceptable levels of performance given that the total mobilized volume of many debris flow models assume an order 748 

of magnitude range of confidence. 749 

Once MWR is calibrated to runout observations, it can be linked to other landslide hazard models and may be useful 750 

as a regional runout hazard mapping tool in areas with relatively uniform landslide processes. In this study we showed 751 

how to use MWR to map debris flow hazard for an expert-defined potentially unstable slope and for a landslide hazard 752 

map produced from an externally run Monte Carlo landslide initiation model (Figure 13).   753 

As a component of the Landlab earth surface modelling toolkit, MWR is designed to be compatible with other models. 754 

MWR can be readily coupled with a landslide initiation model (e.g., LandslideProbability) and geomorphic transport 755 

laws for hillslope diffusion and fluvial incision to investigate the role of landslides and their runout on long-term 756 

landscape evolution. We did not explore the use of MWR in landscape evolution or sediment yield models in this 757 

study, however its ability to replicate observed topographic change and sediment transport at multiple sites shows 758 

promise for this application. The use of a calibrated runout model in WSMs might allow for region-specific and more 759 

insightful predictions of landslide impact on landscape morphology and watershed-scale sediment dynamics. 760 

 761 
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8.0 Notation 762 

𝑞𝑅𝑖
  [m]   debris flux from a node to each of the node 𝑖-th receiver nodes 763 

𝑞𝑂  [m]   the total out-going debris flux 764 

𝑁𝑟    the number of receiving nodes of node 𝑛 765 

𝑆𝑖    the underlying topographic slope (tan 𝜃) to each of the node 𝑖-th receiver nodes 766 

𝑎    exponent in (1) that controls how flow is distributed to downslope nodes 767 

𝑞𝐼  [m]  The total incoming flux  768 

𝑁𝑑    number of donors nodes to a node 769 

𝑞𝐷𝑗   [m]  the flux from node 𝐷𝑗  (the 𝑗-th donor node) 770 

ℎ  [m]  flow depth at node, adjusted to be no more than ℎ𝑚𝑎𝑥 771 

ℎ𝑚𝑎𝑥   [m]   the maximum observed flow depth 772 

𝐴  [m]  aggradation depth 773 

𝑆𝑐    critical slope 774 

𝑆   steepest slope to the node’s eight neighbouring nodes 775 

Δ𝑥 [m]  cell length 776 

𝐴𝑝|𝑁𝑎
  [m]  potential aggradation depth that forms a deposit that spreads over 𝑁𝑎 consecutive nodes 777 

𝐴𝑝,𝑖 [m]  i-th deposition amount in the deposit illustrated in Figure 4 778 

𝑁𝑎    number of nodes 𝑞𝑠𝑛
𝐼  is assumed to spreads over 779 

𝐸  [m]  erosion depth 780 

ℎ𝑟  [m]   regolith depth 781 

ℎ𝑒 [m]   potential erosion depth 782 

𝜃  [°]  topographic slope used to determine shear stress, equal to tan-1(𝑆) 783 

𝜏 [Pa]  basal shear stress 784 

𝜏𝑐  [Pa]  critical shear stress of the regolith 785 

𝑘   erodibility parameter in (11) 786 

𝑓   exponent, controls the non-linearity of ℎ𝑒 in (11) 787 

𝜌 [kg/m3] density of runout material 788 

𝜎 [Pa] normal stress at basal surface 789 

𝜑  tangent of collision angle between grains, measured from the vertical axis 790 

𝜐𝑠  volumetric solids concentration 791 

𝜌𝑠 [kg/m3] density of solids 792 

𝐷𝑠 [m] characteristic particle diameter 793 

𝑢 [m/s] depth average flow velocity 794 

𝑧 [m] depth below the flow surface 795 

𝑢∗  shear velocity 796 

𝑔 [m/s] acceleration due to gravity 797 

Δ𝜂 [m] change in elevation at node 798 

𝜉𝐷  attribute value delivered to the node 799 

𝜉𝑅  attribute value sent to receiver nodes 800 

𝜉  attribute value at node 801 

Λ  parameter set 802 

𝐿(Λ)  likelihood of parameter set 803 

𝑝(Λ)  prior probability of parameter set 804 

𝛺𝑇  omega metric, nondimensional  805 

𝛼 [m2] modelled area of matching extent (compared to observed runout extent) 806 

𝛽 [m2] modelled area of overestimated extent 807 

𝛾 [m2]  modelled area of underestimated extent 808 

Δ𝜂𝐸  volumetric error of the modelled topographic change relative to the observed total 809 

mobilized volume, fraction.  810 

𝑉 [m3] observed total mobilized volume 811 

𝑝  the number of nodes in the modelled runout extent 812 

Δ𝜂𝑀𝑖  [m] the modelled topographic change [m] at the i-th node within the runout extent 813 

Δ𝜂𝑂𝑖  [m] the observed topographic change [m] at the i-th node within the runout extent 814 
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 815 

𝑄𝑠𝐸
   mean-modelled-cumulative flow error along the runout path relative to the observed 816 

mean cumulative flow, fraction. 817 

𝑄𝑠 𝑗 [m3]  the cumulative debris flow volume (𝑄𝑠) at each node, 𝑗, 818 

Δ𝜂𝑖𝑗  [m] the topographic change [m] at the 𝑖-th node located upstream of node 𝑗 819 

𝑢𝑗  the total number of all nodes located upstream of 𝑗 820 

𝑄𝑠𝑂
̅̅ ̅̅ ̅ [m3] the observed mean cumulative flow 821 

𝑃(𝛥𝜂)  probability of runout at a model node 822 

𝑁𝑝  number Monte Carlo iterations used to determine probability 823 

9.0 Acknowledgements 824 

This research was partially supported by the following programs: National Science Foundation (NSF) 825 

PREEVENTS program, ICER-1663859; NSF OAC-2103632; and NASA Grant number 22-RRNES22-826 

0010 and benefited from critical referee reviews. Stephen Slaughter field reviewed the Cascade 827 

Mountains, 2009 and Black Hills landslides the year they occurred and provided photos and field 828 

observations that aided interpretation. John Jenkins helped with the 2022 field reconnaissance the 829 

Cascade Mountains landslide. Eli Schwat helped with field reconnaissance at the Olympic Mountains site. 830 

This work also benefitted from Landlab support and coding guidance from Eric Hutton and helpful 831 

feedback from many others. 832 

10.0 Competing interests  833 

 The contact author has declared that none of the authors has any competing interests. 834 

 835 

11.0 References 836 

Bagnold, R. A.: Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. 837 

Proceedings of the Royal Society of London, 225(1160), 49–63. https://doi.org/10.1098/rspa.1954.0186, 1954. 838 

Barca, D., Crisci, G., Di Gregorio, S., and Nicoletta, F.: Cellular automata method for modelling lava fl ows: 839 

Simulation of the 1986–1987 eruption, Mount Etna, Sicily, in Kilburn, C., and Luongo, G., eds., Active lavas: 840 

Monitoring and modeling: London, University College of London Press, p. 291–309, 1993. 841 

Barnhart, K. R., Hutton, E. W. H., Tucker, G. E., Gasparini, N. M., Istanbulluoglu, E., Hobley, D. E. J., Lyons, N. J., 842 

Mouchene, M., Nudurupati, S. S., Adams, J. M., & Bandaragoda, C.: Short communication: Landlab v2.0: a software 843 

package for Earth surface dynamics. Earth Surface Dynamics, 8(2), 379–397. https://doi.org/10.5194/esurf-8-379-844 

2020, 2020. 845 

Barnhart, K. R., Jones, R., George, D. J., McArdell, B. W., Rengers, F. K., Staley, D. M., & Kean, J. W.: Multi‐Model 846 

Comparison of Computed Debris Flow Runout for the 9 January 2018 Montecito, California Post‐Wildfire Event. 847 

Journal of Geophysical Research: Earth Surface, 126(12). https://doi.org/10.1029/2021jf006245, 2021. 848 

https://doi.org/10.1098/rspa.1954.0186
https://doi.org/10.5194/esurf-8-379-2020
https://doi.org/10.5194/esurf-8-379-2020
https://doi.org/10.1029/2021jf006245


 

 
35 

Benda, L., & Dunne, T.: Stochastic forcing of sediment supply to channel networks from landsliding and debris flow. 849 

Water Resources Research, 33(12), 2849–2863. https://doi.org/10.1029/97wr02388, 1997. 850 

Benda, L., Veldhuisen, C. P., & Black, J.: Debris flows as agents of morphological heterogeneity at low-order 851 

confluences, Olympic Mountains, Washington. Geological Society of America Bulletin, 115(9), 1110. 852 

https://doi.org/10.1130/b25265.1, 2003. 853 

Beven, K.: A manifesto for the equifinality thesis. Journal of Hydrology, 320(1–2), 18–36. 854 

https://doi.org/10.1016/j.jhydrol.2005.07.007, 2006. 855 

Burton, A., & Bathurst, J. C.: Physically based modelling of shallow landslide sediment yield at a catchment scale. 856 

Environmental Geology, 35(2–3), 89–99. https://doi.org/10.1007/s002540050296, 1998. 857 

Bigelow, P., Benda, L., Miller, D., & Burnett, K. M.: On Debris Flows, River Networks, and the Spatial Structure of 858 

Channel Morphology. Forest Science, 53(2), 220–238. https://doi.org/10.1093/forestscience/53.2.220, 2007 859 

Campforts, B., Shobe, C. M., Overeem, I., & Tucker, G. E.: The Art of Landslides: How Stochastic Mass Wasting 860 

Shapes Topography and Influences Landscape Dynamics. Journal of Geophysical Research: Earth Surface, 127(8). 861 

https://doi.org/10.1029/2022jf006745, 2022 862 

Campforts, B., Shobe, C. M., Steer, P., Vanmaercke, M., Lague, D., & Braun, J.: HyLands 1.0: a hybrid landscape 863 

evolution model to simulate the impact of landslides and landslide-derived sediment on landscape evolution. 864 

Geoscientific Model Development, 13(9), 3863–3886. https://doi.org/10.5194/gmd-13-3863-2020, 2020. 865 

Capart, H., & Fraccarollo, L.: Transport layer structure in intense bed-load. Geophysical Research Letters, 38(20), 866 

n/a. https://doi.org/10.1029/2011gl049408, 2011. 867 

Capart, H., Hung, C., & Stark, C. R.: Depth-integrated equations for entraining granular flows in narrow channels. 868 

Journal of Fluid Mechanics, 765. https://doi.org/10.1017/jfm.2014.713, 2015. 869 

Carretier, S., Martinod, P., Reich, M., & Goddéris, Y.: Modelling sediment clasts transport during landscape evolution. 870 

Earth Surface Dynamics, 4(1), 237–251. https://doi.org/10.5194/esurf-4-237-2016, 2016. 871 

Chase, C. G.: Fluvial landsculpting and the fractal dimension of topography. Geomorphology, 5(1–2), 39–57. 872 

https://doi.org/10.1016/0169-555x(92)90057-u, 1992. 873 

Chen, C., & Yu, F.: Morphometric analysis of debris flows and their source areas using GIS. Geomorphology, 129(3–874 

4), 387–397. https://doi.org/10.1016/j.geomorph.2011.03.002, 2011. 875 

Chen, H., & Zhang, L.: EDDA 1.0: integrated simulation of debris flow erosion, deposition and property changes. 876 

Geoscientific Model Development, 8(3), 829–844. https://doi.org/10.5194/gmd-8-829-2015, 2015. 877 

Chen, T.-Y. K., Wu, Y.-C., Hung, C.-Y., Capart, H., and Voller, V. R.: A control volume finite-element model for 878 

predicting the morphology of cohesive-frictional debris flow deposits, Earth Surface Dynamics, 11, 325–342, 879 

https://doi.org/10.5194/esurf-11-325-2023, 2023. 880 

https://doi.org/10.1029/97wr02388
https://doi.org/10.1130/b25265.1
https://doi.org/10.1016/j.jhydrol.2005.07.007
https://doi.org/10.1007/s002540050296
https://doi.org/10.1093/forestscience/53.2.220
https://doi.org/10.1029/2022jf006745
https://doi.org/10.5194/gmd-13-3863-2020
https://doi.org/10.1029/2011gl049408
https://doi.org/10.1017/jfm.2014.713
https://doi.org/10.5194/esurf-4-237-2016
https://doi.org/10.1016/0169-555x(92)90057-u
https://doi.org/10.1016/j.geomorph.2011.03.002
https://doi.org/10.5194/gmd-8-829-2015
https://doi.org/10.5194/esurf-11-325-2023


 

 
36 

Clerici, A., & Perego, S.: Simulation of the Parma River blockage by the Corniglio landslide (Northern Italy). 881 

Geomorphology, 33(1–2), 1–23. https://doi.org/10.1016/s0169-555x(99)00095-1, 2000. 882 

Codd, E. F.: Cellular Automata (1st ed.). New York, Academic Press, 1968. 883 

Coz, J. L., Renard, B., Bonnifait, L., Branger, F., & Boursicaud, R. L.: Combining hydraulic knowledge and uncertain 884 

gaugings in the estimation of hydrometric rating curves: A Bayesian approach. Journal of Hydrology, 509, 573–587. 885 

https://doi.org/10.1016/j.jhydrol.2013.11.016, 2014. 886 

Crave, A., & Davy, P.: A stochastic “precipiton” model for simulating erosion/sedimentation dynamics. Computers 887 

& Geosciences, 27(7), 815–827. https://doi.org/10.1016/s0098-3004(00)00167-9, 2001. 888 

D’Ambrosio, D., Di Gregorio, S., Iovine, G., Lupiano, V., Rongo, R., & Spataro, W.: First simulations of the Sarno 889 

debris flows through Cellular Automata modelling. Geomorphology, 54(1–2), 91–117. https://doi.org/10.1016/s0169-890 

555x(03)00058-8, 2003. 891 

Egashira, S., Honda, N., & Itoh, T.: Experimental study on the entrainment of bed material into debris flow. Physics 892 

and Chemistry of the Earth, Parts a/B/C, 26(9), 645–650. https://doi.org/10.1016/s1464-1917(01)00062-9, 2001. 893 

Foglia, L., Hill, M. C., Mehl, S. W., and Burlando, P. (2009), Sensitivity analysis, calibration, and testing of a 894 

distributed hydrological model using error-based weighting and one objective function, Water Resources 895 

Research, 45, W06427, doi:10.1029/2008WR007255. 896 

Fannin, R. J., & Wise, M. P.: An empirical-statistical model for debris flow travel distance. Canadian Geotechnical 897 

Journal, 38(5), 982–994. https://doi.org/10.1139/t01-030, 2001. 898 

Frank, F., McArdell, B. W., Huggel, C., & Vieli, A.: The importance of entrainment and bulking on debris flow runout 899 

modeling: examples from the Swiss Alps. Natural Hazards and Earth System Sciences, 15(11), 2569–2583. 900 

https://doi.org/10.5194/nhess-15-2569-2015, 2015. 901 

Freeman, T. G.: Calculating catchment area with divergent flow based on a regular grid. Computers & 902 

Geosciences, 17(3), 413–422. https://doi.org/10.1016/0098-3004(91)90048-i, 1991. 903 

Gartner, J. E., Cannon, S. H., & Santi, P. M.: Empirical models for predicting volumes of sediment deposited by debris 904 

flows and sediment-laden floods in the transverse ranges of southern California. Engineering Geology, 176, 45–56. 905 

https://doi.org/10.1016/j.enggeo.2014.04.008, 2014. 906 

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B.: Bayesian Data Analysis (3rd ed.). 907 

Electronic Edition, 2021. 908 

Goode, J. R., Luce, C. H., & Buffington, J. M.: Enhanced sediment delivery in a changing climate in semi-arid 909 

mountain basins: Implications for water resource management and aquatic habitat in the northern Rocky Mountains. 910 

Geomorphology, 139–140, 1–15. https://doi.org/10.1016/j.geomorph.2011.06.021, 2012. 911 

Gorr, A., McGuire, L. A., Youberg, A., & Rengers, F. K.: A progressive flow-routing model for rapid assessment of 912 

debris-flow inundation. Landslides, 19(9), 2055–2073. https://doi.org/10.1007/s10346-022-01890-y, 2022 913 

https://doi.org/10.1016/s0169-555x(99)00095-1
https://doi.org/10.1016/j.jhydrol.2013.11.016
https://doi.org/10.1016/s0098-3004(00)00167-9
https://doi.org/10.1016/s0169-555x(03)00058-8
https://doi.org/10.1016/s0169-555x(03)00058-8
https://doi.org/10.1016/s1464-1917(01)00062-9
https://doi.org/10.1029/2008WR007255
https://doi.org/10.1139/t01-030
https://doi.org/10.1016/0098-3004(91)90048-i
https://doi.org/10.1016/j.enggeo.2014.04.008
https://doi.org/10.1016/j.geomorph.2011.06.021
https://doi.org/10.1007/s10346-022-01890-y


 

 
37 

Guthrie, R., Hockin, A., Colquhoun, L., Nagy, T., Evans, S. G., & Ayles, C. P.: An examination of controls on debris 914 

flow mobility: Evidence from coastal British Columbia. Geomorphology, 114(4), 601–613. 915 

https://doi.org/10.1016/j.geomorph.2009.09.021, 2010. 916 

Guthrie, R. H., & Befus, A. D.: DebrisFlow Predictor: an agent-based runout program for shallow landslides. Natural 917 

Hazards and Earth System Sciences, 21(3), 1029–1049. https://doi.org/10.5194/nhess-21-1029-2021, 2021. 918 

Hammond C.J., Prellwitz R.W., Miller S.M.: Landslides hazard assessment using Monte Carlo simulation. In: Bell 919 

DH (ed) Proceedings of 6th international symposium on landslides, Christchurch, New Zealand, Balkema, vol 2. pp 920 

251–294, 1992. 921 

Han, Z., Chen, G., Li, Y., Tang, C., Xu, L., He, Y., Huang, X., & Wang, W.: Numerical simulation of debris-flow 922 

behavior incorporating a dynamic method for estimating the entrainment. Engineering Geology, 190, 52–64. 923 

https://doi.org/10.1016/j.enggeo.2015.02.009, 2015. 924 

Han, Z., Li, Y., Huang, J., Chen, G., Xu, L., Tang, C. Y., Zhang, H., & Shang, Y.: Numerical simulation for run-out 925 

extent of debris flows using an improved cellular automaton model. Bulletin of Engineering Geology and the 926 

Environment, 76(3), 961–974. https://doi.org/10.1007/s10064-016-0902-6, 2017. 927 

Han, Z., Ma, Y., Li, Y., Zhang, H., Chen, N., Hu, G., & Chen, G.: Hydrodynamic and topography based cellular 928 

automaton model for simulating debris flow run-out extent and entrainment behavior. Water Research, 193, 116872. 929 

https://doi.org/10.1016/j.watres.2021.116872, 2021. 930 

Heiser, M., Scheidl, C., & Kaitna, R.: Evaluation concepts to compare observed and simulated deposition areas of 931 

mass movements. Computational Geosciences, 21(3), 335–343. https://doi.org/10.1007/s10596-016-9609-9, 2017. 932 

Hobley, D. E. J., Adams, J. M., Nudurupati, S. S., Hutton, E. W. H., Gasparini, N. M., Istanbulluoglu, E., & Tucker, 933 

G. E.: Creative computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional 934 

numerical models of Earth-surface dynamics. Earth Surface Dynamics, 5(1), 21–46. https://doi.org/10.5194/esurf-5-935 

21-2017, 2017. 936 

Horton, P., Jaboyedoff, M., Rudaz, B., & Zimmermann, M. N.: Flow-R, a model for susceptibility mapping of debris 937 

flows and other gravitational hazards at a regional scale. Natural Hazards and Earth System Sciences, 13(4), 869–885. 938 

https://doi.org/10.5194/nhess-13-869-2013, 2013. 939 

Hungr, O., Morgan, G. J., & Kellerhals, R.: Quantitative analysis of debris torrent hazards for design of remedial 940 

measures. Canadian Geotechnical Journal, 21(4), 663–677. https://doi.org/10.1139/t84-073, 1984. 941 

Hungr, O., & Evans, S. G.: Entrainment of debris in rock avalanches: An analysis of a long run-out mechanism. 942 

Geological Society of America Bulletin, 116(9), 1240. https://doi.org/10.1130/b25362.1, 2004. 943 

Hutter, K., Svendsen, B., & Rickenmann, D.: Debris flow modeling: A review. Continuum Mechanics and 944 

Thermodynamics, 8(1), 1–35. https://doi.org/10.1007/bf01175749, 1996. 945 

https://doi.org/10.1016/j.geomorph.2009.09.021
https://doi.org/10.5194/nhess-21-1029-2021
https://doi.org/10.1016/j.enggeo.2015.02.009
https://doi.org/10.1007/s10064-016-0902-6
https://doi.org/10.1016/j.watres.2021.116872
https://doi.org/10.1007/s10596-016-9609-9
https://doi.org/10.5194/esurf-5-21-2017
https://doi.org/10.5194/esurf-5-21-2017
https://doi.org/10.5194/nhess-13-869-2013
https://doi.org/10.1139/t84-073
https://doi.org/10.1130/b25362.1
https://doi.org/10.1007/bf01175749


 

 
38 

Iovine, G., D’Ambrosio, D., & Di Gregorio, S.: Applying genetic algorithms for calibrating a hexagonal cellular 946 

automata model for the simulation of debris flows characterised by strong inertial effects. Geomorphology, 66(1–4), 947 

287–303. https://doi.org/10.1016/j.geomorph.2004.09.017, 2005. 948 

Istanbulluoglu, E. Bras R. L.:  Vegetation‐modulated landscape evolution: Effects of vegetation on landscape 949 

processes, drainage density, and topography. Journal of Geophysical Research, 110(F2). 950 

https://doi.org/10.1029/2004jf000249, 2005. 951 

Istanbulluoglu, E., Bras R. L.,  Flores-Cervantes, H., and Tucker, G. E..: Implications of bank failures and fluvial 952 

erosion for gully development: Field observations and modeling, J. Geophysical Research, 110, F01014, 953 

doi:10.1029/2004JF000145, 2005. 954 

Istanbulluoglu, E., O. Yetemen, E. R. Vivoni, H. A. Gutie´rrez-Jurado, and R. L. Bras, Eco-geomorphic implications 955 

of hillslope aspect: Inferences from analysis of landscape morphology in central New Mexico, Geophysical. Research 956 

Letters, 35, L14403, 10.1029/ 2008GL034477, 2008. 957 

Iverson, R. M.: The physics of debris flows. Reviews of Geophysics, 35(3), 245–296. 958 

https://doi.org/10.1029/97rg00426, 1997. 959 

Iverson, R. M., & Denlinger, R. P.: Flow of variably fluidized granular masses across three-dimensional terrain: 1. 960 

Coulomb mixture theory. Journal of Geophysical Research, 106(B1), 537–552. 961 

https://doi.org/10.1029/2000jb900329, 2001. 962 

Iverson, R.M., How should mathematical models of geomorphic processes be judged?. In Wilcock, P., & Iverson, R. 963 

(Eds.), Prediction in Geomorphology. American Geophysical Union, 2003. 964 

Julien, P. Y., & Paris, A.: Mean Velocity of Mudflows and Debris Flows. Journal of Hydraulic Engineering, 136(9), 965 

676–679. https://doi.org/10.1061/(asce)hy.1943-7900.0000224, 2010. 966 

Kean, J. W., Staley, D. M., Lancaster, J., Rengers, F., Swanson, B., Coe, J., et al.: Inundation, flow dynamics, and 967 

damage in the 9 January 2018 Montecito debris-flow event, California, USA: Opportunities and challenges for post-968 

wildfire risk assessment. Geosphere, 15(4), 1140–1163. https://doi.org/10.1130/GES02048.1, 2019 969 

Korup, O.: Effects of large deep-seated landslides on hillslope morphology, western Southern Alps, New Zealand. 970 

Journal of Geophysical Research, 111(F1). https://doi.org/10.1029/2004jf000242, 2006 971 

Lancaster, S. T., Hayes, S. K., & Grant, G. E.: Effects of wood on debris flow runout in small mountain watersheds. 972 

Water Resources Research, 39(6). https://doi.org/10.1029/2001wr001227, 2003. 973 

Larsen, I. J., & Montgomery, D. R.: Landslide erosion coupled to tectonics and river incision. Nature Geoscience, 974 

5(7), 468–473. https://doi.org/10.1038/ngeo1479, 2012. 975 

Liu, J., Wu, Y., Gao, X., & Zhang, X.: A Simple Method of Mapping Landslides Runout Zones Considering Kinematic 976 

Uncertainties. Remote Sensing, 14(3), 668. https://doi.org/10.3390/rs14030668, 2022. 977 

https://doi.org/10.1016/j.geomorph.2004.09.017
https://doi.org/10.1029/2004jf000249
https://doi.org/10.1029/2004JF000145
https://doi.org/10.1029/97rg00426
https://doi.org/10.1029/2000jb900329
https://doi.org/10.1061/(asce)hy.1943-7900.0000224
https://doi.org/10.1130/GES02048.1
https://doi.org/10.1029/2004jf000242
https://doi.org/10.1029/2001wr001227
https://doi.org/10.1038/ngeo1479
https://doi.org/10.3390/rs14030668


 

 
39 

Major, J. J.: Depositional Processes in Large‐Scale Debris‐Flow Experiments. The Journal of Geology, 105(3), 345–978 

366. https://doi.org/10.1086/515930, 1997. 979 

Major, J. J., & Iverson, R. M.: Debris-flow deposition: Effects of pore-fluid pressure and friction concentrated at flow 980 

margins. Geological Society of America Bulletin, 111(10), 1424–1434. https://doi.org/10.1130/0016-7606(1999)111, 981 

1999. 982 

McCoy, S. W., Kean, J. W., Coe, J. A., Tucker, G. S., Staley, D. M., & Wasklewicz, T. A.: Sediment entrainment by 983 

debris flows: In situ measurements from the headwaters of a steep catchment. Journal of Geophysical Research, 984 

117(F3), n/a. https://doi.org/10.1029/2011jf002278, 2012. 985 

McDougall, S., & Hungr, O.: A model for the analysis of rapid landslide motion across three-dimensional terrain. 986 

Canadian Geotechnical Journal, 41(6), 1084–1097. https://doi.org/10.1139/t04-052, 2004. 987 

Medina, V., Hürlimann, M., & Bateman, A.: Application of FLATModel, a 2D finite volume code, to debris flows in 988 

the northeastern part of the Iberian Peninsula. Landslides, 5(1), 127–142. https://doi.org/10.1007/s10346-007-0102-989 

3, 2008. 990 

Montgomery, D. R., & Dietrich, W. E.: Where do channels begin? Nature, 336(6196), 232–234. 991 

https://doi.org/10.1038/336232a0, 1988. 992 

Murray, B.A., & Paola, C.: A cellular model of braided rivers. Nature, 371(6492), 54–57. 993 

https://doi.org/10.1038/371054a0, 1994. 994 

Murray, A. B., & Paola, C.: Properties of a cellular braided-stream model. Earth Surface Processes and Landforms, 995 

22(11), 1001–1025. https://doi.org/10.1002/(sici)1096-9837(199711)22:11, 1997. 996 

 997 

Murray A.B.: Which Models Are Good (Enough), and When?. In: John F. Shroder (ed.) Treatise on Geomorphology, 998 

Volume 2, pp. 50-58. San Diego: Academic Press, 2013. 999 

Natural Resources Conservation Service | Snow and Water Interactive Map (n.d.). Natural Resources Conservation 1000 

Service. https://www.nrcs.usda.gov/resources/data-and-reports/snow-and-water-interactive-map, Accessed April, 1001 

2022 1002 

Nudurupati, S. S., Istanbulluoglu, E., Tucker, G. E., Gasparini, N. M., Hobley, D. E. J., Hutton, E. W. H., Barnhart, 1003 

K. R., & Adams, J. M.: On transient semi‐arid ecosystem dynamics using Landlab: vegetation shifts, topographic 1004 

refugia, and response to climate. Water Resources Research, 59(4). https://doi.org/10.1029/2021wr031179, 2023. 1005 

Perron, J. T.: Climate and the Pace of Erosional Landscape Evolution. Annual Review of Earth and Planetary Sciences, 1006 

45(1), 561–591. https://doi.org/10.1146/annurev-earth-060614-105405, 2017. 1007 

Reid, M. J., Coe, J. A., & Brien, D. L.: Forecasting inundation from debris flows that grow volumetrically during 1008 

travel, with application to the Oregon Coast Range, USA. Geomorphology, 273, 396–411. 1009 

https://doi.org/10.1016/j.geomorph.2016.07.039, 2016. 1010 

https://doi.org/10.1086/515930
https://doi.org/10.1130/0016-7606(1999)111
https://doi.org/10.1029/2011jf002278
https://doi.org/10.1139/t04-052
https://doi.org/10.1007/s10346-007-0102-3
https://doi.org/10.1007/s10346-007-0102-3
https://doi.org/10.1038/336232a0
https://doi.org/10.1038/371054a0
https://doi.org/10.1002/(sici)1096-9837(199711)22:11
https://www.nrcs.usda.gov/resources/data-and-reports/snow-and-water-interactive-map
https://doi.org/10.1029/2021wr031179
https://doi.org/10.1146/annurev-earth-060614-105405
https://doi.org/10.1016/j.geomorph.2016.07.039


 

 
40 

Renard, B., Garreta, V., & Lang, M. J.: An application of Bayesian analysis and Markov chain Monte Carlo methods 1011 

to the estimation of a regional trend in annual maxima. Water Resources Research, 42(12). 1012 

https://doi.org/10.1029/2005wr004591, 2006. 1013 

Rengers, F. K., McGuire, L. A., Kean, J. W., Staley, D. M., and Hobley, D. E. J.: Model simulations of flood and 1014 

debris flow timing in steep catchments after wildfire, Water Resources Research, 52, 6041–6061, 1015 

doi:10.1002/2015WR018176, 2016. 1016 

Roda-Boluda, D. C., D’Arcy, M., McDonald, J., & Whittaker, A. C.: Lithological controls on hillslope sediment 1017 

supply: insights from landslide activity and grain size distributions. Earth Surface Processes and Landforms, 5), 956–1018 

977. https://doi.org/10.1002/esp.4281, 2018. 1019 

Shaller, P. J., Doroudian, M., & Hart, M. W.: The Eureka Valley Landslide: Evidence of a dual failure mechanism for 1020 

a Long-Runout Landslide. Lithosphere, 2020(1). https://doi.org/10.2113/2020/8860819, 2020. 1021 

Schürch, P., Densmore, A. L., Rosser, N., & McArdell, B. W.: Dynamic controls on erosion and deposition on debris-1022 

flow fans. Geology, 39(9), 827–830. https://doi.org/10.1130/g32103.1, 2011. 1023 

Shen, P., Zhang, L. M., Wong, H., Peng, D., Zhou, S., Zhang, S., & Chen, C.: Debris flow enlargement from 1024 

entrainment: A case study for comparison of three entrainment models. Engineering Geology, 270, 105581. 1025 

https://doi.org/10.1016/j.enggeo.2020.105581, 2020. 1026 

Stock, J. P. J., & Dietrich, W. E.: Erosion of steepland valleys by debris flows. Geological Society of America Bulletin, 1027 

118(9–10), 1125–1148. https://doi.org/10.1130/b25902.1, 2006. 1028 

Strauch, R. L., Istanbulluoglu, E., Nudurupati, S. S., Bandaragoda, C., Gasparini, N. M., & Tucker, G. E.: A 1029 

hydroclimatological approach to predicting regional landslide probability using Landlab. Earth Surface Dynamics, 1030 

6(1), 49–75. https://doi.org/10.5194/esurf-6-49-2018, 2018. 1031 

Takahashi, T.: Debris Flow (2nd ed.). CRC Press, Taylor & Francis Group, 2014. 1032 

Tucker, G. E., & Bras, R. L.: Hillslope processes, drainage density, and landscape morphology. Water Resources 1033 

Research, 34(10), 2751–2764. https://doi.org/10.1029/98wr01474, 1998. 1034 

Tucker, G. E., Hancock, G. J.: Modelling landscape evolution. Earth Surface Processes and Landforms, 35(1), 28–50. 1035 

https://doi.org/10.1002/esp.1952, 2010. 1036 

Tucker, G. E., McCoy, S., & Hobley, D. E. J.: A lattice grain model of hillslope evolution. Earth Surface Dynamics, 1037 

6(3), 563–582. https://doi.org/10.5194/esurf-6-563-2018, 2018. 1038 

Western Regional Climate Center. (n.d.), from https://wrcc.dri.edu/, accessed 2017 and 2022 1039 

Whipple, K. X., & Dunne, T.: The influence of debris-flow rheology on fan morphology, Owens Valley, California. 1040 

Geological Society of America Bulletin, 104(7), 887–900. https://doi.org/10.1130/0016-7606(1992)104, 1992. 1041 

https://doi.org/10.1029/2005wr004591
https://doi.org/10.1002/esp.4281
https://doi.org/10.2113/2020/8860819
https://doi.org/10.1130/g32103.1
https://doi.org/10.1016/j.enggeo.2020.105581
https://doi.org/10.1130/b25902.1
https://doi.org/10.5194/esurf-6-49-2018
https://doi.org/10.1029/98wr01474
https://doi.org/10.1002/esp.1952
https://doi.org/10.5194/esurf-6-563-2018
https://wrcc.dri.edu/
https://doi.org/10.1130/0016-7606(1992)104


 

 
41 

Zhou, G. G. D., Li, S., Song, D., Choi, C. E., & Chen, X.: Depositional mechanisms and morphology of debris flow: 1042 

physical modelling. Landslides, 16(2), 315–332. https://doi.org/10.1007/s10346-018-1095-9, 2019. 1043 

 1044 

 1045 

https://doi.org/10.1007/s10346-018-1095-9

