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Abstract. Effective climate change mitigation necessitates swift societal transformations. Social tipping processes, where small

triggers initiate qualitative systemic shifts, are potential key mechanisms instigating societal change. A necessary foundation

for societal tipping processes is the creation of enabling conditions. Here we assess future sea-level rise estimates and social

survey data within the framework of a social activation model to exemplify the enabling conditions for tipping processes. We

find that in many countries, climate change concern is sufficient, the enabling conditions and opportunities for social activation5

already exist. Further, drawing upon the interrelation between climate change concern and anticipation of future sea level

rise, we report three qualitative classes of tipping potential that are regionally clustered, with greatest potential for tipping in

Western Pacific rim and East Asian countries. These findings propose a transformative pathway where climate change concern

increases the social tipping potential, while extended anticipation time horizons can trigger the system towards an alternative

trajectory of larger social activation for climate change mitigation.10

1 Introduction

With increasing greenhouse gas emissions and resultant global warming, the Earth’s climate system is becoming more vulner-

able to irreversible and abrupt changes (Steffen et al., 2018; Armstrong McKay et al., 2022). The urgency of projected climate

impacts is accentuated by interacting tipping elements in the Earth system that, once initiated, carry the potential for cascading

‘domino effects’ (Lenton and Williams, 2013; Rocha et al., 2018; Wunderling et al., 2021). Rapid societal transformations are15
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necessary to reduce greenhouse gas emissions and stabilize the Earth’s climate system (Otto et al., 2020a; Winkelmann et al.,

2022).

Sea-level rise (SLR) presents one of the greatest potential impacts of climate change. With approximately 40% of the world’s

population residing within 100km of the coastline, SLR poses a global threat to coastal cities, infrastructure, and cultural

heritage sites (Nicholls and Cazenave, 2010; Hinkel et al., 2014; Cazenave and Cozannet, 2014; Marzeion and Levermann,20

2014). The impacts of SLR are already manifesting today (e.g. increased storm surges, flooding, groundwater salination, and

harm to marine ecosystems), and the expected future impacts vary by region (Nicholls et al., 2021; Barragán and de Andrés,

2015). For example, densely populated urban centers in Japan, India, and China are among those potentially most affected by

future SLR (Barragán and de Andrés, 2015) (Fig. 1b,c). Depending on the RCP emission scenario, future SLR estimates range

between 1m and 5m (Nauels et al., 2017) by the year 2300 (Fig. 1a), where up to 15m SLR by 2300 cannot be ruled out under25

high emission scenarios (Masson-Delmotte et al., 2021). SLR impacts are further projected to amplify due to the large inertia

and positive feedbacks (Garbe et al., 2020), locking in long-term commitments to potentially irreversible SLR (Levermann

et al., 2013).

2020 2100 2200 2300
Year

0

1

2

3

4

5

6

7

Pr
oj

ec
te

d 
se

a 
le

ve
l c

ha
ng

e 
[m

]

RCP2.6
RCP4.5
RCP8.5

0

5

10

15 Japan China

0

5

10

15 United States

2100 2200 2300
Year

India

2100 2200 2300
Year

0

5

10

15 Russia

China

United
States India

Russia

Japan

Af
fe

ct
ed

 p
op

ul
at

io
n 

sh
ar

e 
a 

[%
]

a) b) c)

Figure 1. Projected global mean sea-level rise and affected world regions. (a) Projected SLR in response to greenhouse gas emissions

under different RCP scenarios with low (blue), medium (orange) and high emissions (red) (estimates by MAGICC v2.0). Thick lines indicate

the median projected SLR, shaded areas indicate the range that includes 66% of all ensemble runs. (b) Regions affected by future SLR in the

five countries with the largest share of global greenhouse gas emissions. Lines indicate the areas that are directly affected by future global

mean SLR within one (red), four (orange) to seven generations (yellow). (c) Average shares of population of the largest national emitters

China, United States of America, India, Russia and Japan that is estimated to be directly affected by projected SLR. Shaded areas again

indicate the 66% range.

The problem of future sea-level rise presents a unique social-ecological dilemma, a severe clash of time scales. The most

serious potential direct impacts of SLR likely manifest on the order of centuries and more (Garbe et al., 2020; Levermann et al.,30

2013), but mitigation of these impacts necessitates rapid countering societal actions within the next few years to decades (Clark

et al., 2016). However, future problems are often discounted (Frederick et al., 2002), and human forethought for the future
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becomes limited beyond the order of decades (Tonn et al., 2006; Winkelmann et al., 2022). People who do not consider distant

future consequences are more likely to have climate skeptical views (Većkalov et al., 2021), and are less likely to engage in

mitigating behaviors (Milfont et al., 2012; Corral-Verdugo et al., 2017). Indeed, the dilemma of climate change presents not35

only a classic tragedy of the commons, but also a tragedy of the horizon (Hurlstone et al., 2020).

1.1 Social tipping as transformative mechanism for climate actions

Social tipping has been proposed as a mechanism for bringing about necessary sustainability transformations and mitigate

climate impacts (Milkoreit et al., 2018; Moser and Dilling, 2007; Otto et al., 2020a; Farmer et al., 2019; Tàbara et al., 2018;

Nyborg et al., 2016; Lenton, 2020; Winkelmann et al., 2022). Social tipping is exemplified by qualitative systemic changes40

resultant from comparatively small changes within the social system, or the broader environment in which the system is em-

bedded (Winkelmann et al., 2022). Similar to the notion of climate tipping processes (Lenton et al., 2008; Armstrong McKay

et al., 2022), social tipping dynamics are internally self-amplifying via positive feedback mechanisms such that rapid move-

ments from one qualitative state into another become possible, resulting in sudden large-scale structural changes (Otto et al.,

2020a; Milkoreit et al., 2018; Van Ginkel et al., 2020). A necessary element for social tipping processes is the development of45

’enabling conditions’ Tàbara et al. (2018); Lenton et al. (2022), fostering the likelihood that an event (intentional or not) or a

systemic pertubation can instigate rapid, non-linear transformations. The ultimate trigger of social tipping processes can come

from forces initiating in both natural or social systems (Winkelmann et al., 2022), as well as those emerging from individual-

level changes (Otto et al., 2020a; Milkoreit et al., 2018; Lenton et al., 2022).

Within social-ecological systems, experienced climate impacts (Demski et al., 2017; Konisky et al., 2016), e.g. floods and50

heat waves (Ricke and Caldeira, 2014), have the potential to shift attitudes and behaviors toward climate change and instigate

social tipping processes (Müller et al., 2021). Behavioral changes are more likely if extreme weather events elicit an emotional

response, increase the salience of climate change, or when people directly attribute the event to climate change (Sisco, 2021).

Within social systems, extensive empirical studies have focused on identifying drivers of engagement in climate actions (van

Valkengoed and Steg, 2019; Bergquist et al., 2022; Cologna and Siegrist, 2020). Specifically, heightened climate change con-55

cerns provide a necessary foundation for individual-level engagement in climate actions (van Valkengoed and Steg, 2019;

Hoffmann et al., 2022), even though not necessarily serving as an ultimate trigger (Kollmuss and Agyeman, 2002) as con-

cerns are often moderated by other characteristics (such as increased costs (Diekmann and Preisendörfer, 2003), perceptions

of individual efficacy (Mayer and Smith, 2019), and trust (Cologna and Siegrist, 2020; Smith and Mayer, 2018)). Notably, the

likelihood to engage in mitigating action varies in relation to the perceived psychological distance of climate risks (Spence60

et al., 2012) such that those perceived to be more culturally, spatially, or temporally proximate increase the likelihood of cli-

mate action (Frederick et al., 2002; Brügger et al., 2015; Singh et al., 2017). Accordingly, climate change concern (or risk

perceptions) can be best understood as a necessary condition, enabling the likelihood to engage in climate actions - yet on it’s

own, may not be sufficient to shape individual behavioral change or policy support.
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1.2 Anticipation of SLR can activate climate actions65

In the case of SLR, immediate climate actions for mitigation are required, as even 5-year delays in reaching peak GHG-

emissions can each affect a future commitment of ∼+0.2m in SLR by 2300 (Mengel et al., 2018). Yet, the most severe imme-

diate impacts of SLR are unlikely to be experienced within current lifetimes, likely between +0.3-1.0m by 2100 (Oppenheimer

et al., 2019). Accordingly, direct experiences of SLR impacts are unlikely to trigger necessary societal changes on time scales

required for mitigation (Pahl et al., 2014), within the remaining ’intervention time horizon’ (the period within societal actions70

can influence whether a natural system tips) (Winkelmann et al., 2022).

Rather, the anticipation of the impacts of SLR presents a crucial potential pathway towards bridging the inter-generational

gap. Increases to SLR are among the most prominent frames from which people learn about and understand climate im-

pacts (Hamilton et al., 2012). Concern about future SLR can activate desires to leave a positive legacy for the descendants of

one’s homeland, facilitating engagement in climate actions (Hurlstone et al., 2020). Recent empirical evidence suggests that75

concerns about future SLR constitutes a unique form of societal climate risk perceptions, increasing support for climate change

policies and willingness to engage in pro-climate behaviors by ∼ 15− 30% (Smith et al., 2020, 2022). Simulation modeling

approaches have further noted the importance of anticipation of future climate impacts, where extended time horizons can fos-

ter social tipping dynamics towards stabilizing the environment, and potentially preventing social-ecological collapse (Müller

et al., 2021). In this case, anticipation SLR can act as an instigating trigger of climate action. When the enabling conditions of80

a system are such that social tipping processes are increasingly likely, anticipation of climate impacts may be sufficient trigger,

bridging the temporal gap between risk exposure and impacts.

Here, we explore this interrelated role of anticipation of SLR and concern for climate change in triggering social tipping

processes towards climate action via adoption of a complex contagion social activation model of social tipping. We combine

projections of future SLR and cross-national social survey data of climate change concern to estimate likelihoods of social85

tipping processes (Ashwin et al., 2012), resulting from varying anticipation time horizons and levels of concern in 66 countries.

We thereby investigate mechanisms which close the temporal gap between causes and effects of climate impacts, exploring the

potential for societal transformations toward climate action and planetary stewardship.

1.3 Complex contagion modeling of social tipping

Models of complex social behavioral contagions (Lehmann and Ahn, 2018; Jusup et al., 2021) have explored thresholds for90

individual action, whereby a Pareto effect of ∼ 25% of the population becoming activated can result in social tipping-like

processes of cascading behaviors (Centola et al., 2018). In such cases, changes in individual preference factors (Nyborg et al.,

2016) and network structures (Centola and Baronchelli, 2015) can trigger rapid shifts in social norms and behaviors. Complex

contagion is commonly simulated using thresholds models (Dodds and Watts, 2004a), social learning and diffusion models,

adaptive network models (Gross and Sayama, 2009; Chu et al., 2021), or agent-based voter models (De Marchi and Page,95

2014).
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Recent advancements have further modeled social tipping dynamics (Müller et al., 2021) – notably, behavioral economic ex-

perimental approaches have investigated the difficulty in overcoming perceived costs associated with adopting new norms (An-

dreoni et al., 2021), agent-based models have identified conditions for rapid adoption of environmental behaviors (Kaaronen

and Strelkovskii, 2020), and coupled social-climate models have explored emissions reduction pathways (Moore et al., 2022).100

Yet, modeling social tipping dynamics, and environmental behavioral change more broadly, remains challenging, as the drivers

of human behavior and preference formation are non-deterministic, and are rather the product of an interrelated web of factors

(e.g. risk perceptions, costs, social norms, perceived efficacy, trust, political and cultural tastes). Such modeling endeavors

are further complicated within cross-cultural settings, as the drivers of climate attitudes and behaviors can vary greatly even

between cultural and geographically similar locales (Smith and Mayer, 2019; Marquart-Pyatt et al., 2019).105

Given these uncertainties and hetereogenities, we adopt a low-dimensional approach to modeling the interrelated role of

concern and anticipation of SLR impacts that is theoretically-based and driven by empirically-derived parameters. We extend

a recently developed refinement of Granovetter’s threshold model (Granovetter, 1978) for social tipping processes (Wieder-

mann et al., 2020) that explores engagement in climate actions from cascading contagious dynamics on social networks (Watts,

2002). Climate actions are those taken with the intentionality of mitigating- or adapting to- anticipated, perceived or experi-110

enced climate impacts (Stern, 2000). These can encompass a broad range of individual or social behaviors, such as changing

consumption patterns, participating in environmental collective actions, and supporting climate change-focused policies and

political actors (Tobler et al., 2012).

This approach divides populations into three distinct groups (McCarthy and Zald, 1977; Jenkins, 1983): (I) certainly active

instigators of climate actions (e.g. opinion shifts, social movements, or adoption of new technologies) , (II) contingently active115

individuals whose characteristics (e.g. norms, beliefs, social identity) broadly align with those of the certainly active population,

but who have yet to join these climate actions, and (III) certainly inactive individuals who are unlikely to ever join climate

actions (e.g. those with norms, values or identities in opposition, or those who lack the capacity to change). Specifically,

we adopt a one-dimensional macroscopic approximation of an emergent threshold function which incorporates microscopic

network dynamics accounting for the interrelation of behavioral contagion and network structures (see Sect. 3 for details).120

2 Model design

We apply the complex contagion social activation model of social tipping to the case of SLR, examining how national-level

projections of SLR impacts at varying temporal scales (2100, 2200, 2300) and climate change concern affect the share of

certainly and contingently active populations across different states world-wide (Fig. 2). For this purpose we use multiple data

sources to estimate the necessary parameters and input quantities: (i) future sea-level projections from the MAGICC climate125

model (Nauels et al., 2017) (Fig. 1a), (ii) global high-resolution topographic (Farr et al., 2007) and population distribution (Cen-

ter for International Earth Science Information Network, 2016) data, and (iii) pooled, harmonized social survey data on climate

change concern from 66 different countries.
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Figure 2. Visualization of modeling approach. The tipping potential in a country (green box) is estimated from sea-level projections (based

on climate model emulator MAGICC) and the extended Granovetter model of social tipping dynamics. Blue shading indicates external data

sources (see Sect. 3). Yellow shading indicates parameters to the model. Core components of the model are marked with grey boxes.

We consider people who live in an area that is likely directly impacted by SLR within a certain anticipation time horizon

as certainly active (Group I, Fig. 1c). A country’s potentially active population (the sum of Groups I and II) with share p130

is estimated from cross-national survey data on climate change concern (see Tables S1–S3), assuming that higher levels of

concern correspond to larger population shares that can potentially be mobilized for collective climate action. Based on both

group sizes, our model simulates the population share that ultimately participates in an action (see Fig. 3).

The more parsimonious design incorporates a similar level of qualified complexity across all model components and analyt-

ical interpretations, with the goal of minimizing sources of error originating from increased assumptions regarding additional135

parameters which remain unknown, or are potentially even unknowable. Similar approaches have further adopted survey data

and low-dimensional modeling designs to explore cross-national social tipping dynamics, particularly in the case of groundwa-

ter management (Castilla-Rho et al., 2017). Accordingly, the modeling goal is to provide grounded, interpretable, qualitative

assessments of the cross-national role of concern and anticipation of SLR, providing a foundation for further exploratory

research in the emerging research on social tipping dynamics.140

For every simulation, we expect to find the population share that ultimately engages in climate action in either of three

regimes: (i) an uncritical regime where only the untipped state exists and a large share of the population remains passive, (ii) a

critical bi-stable regime where event-induced tipping (Ashwin et al., 2012) can move the system into an alternative state (i.e.

potentially active population can be either active or passive, depending on initial conditions), and (iii) the tipped regime that

is reached via bifurcation-induced tipping (Ashwin et al., 2012), i.e. where a large share of the potentially active population145
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is active (see Fig. 3). By using a Monte-Carlo approach, we compute the likelihoods to enter either of the three regimes and

denote those as the respective per-country tipping potentials. To ensure the robustness of our results, all respective quantities

are computed as averages over an ensemble of simulations for random choices of unknown parameters that govern the specific

structure of the social tipping model (see Fig. 2 and Sect. 3).

3 Detailed model description150

3.1 Complex contagion model of social tipping dynamics

We adopt a recently developed framework for explaining processes and mechanisms behind social tipping through a network-

based microfoundation of Granovetter’s threshold model of collective behaviour (Wiedermann et al., 2020; Granovetter, 1978).

The model explains collective action from cascading contagious dynamics (Watts, 2002) of social activation in a complex social

network, exploring the interrelation of individual behavioral dynamics and network structures. In alignment with resource155

mobilization theory it assumes that a considered population can be divided into three distinct groups (Jenkins, 1983; McCarthy

and Zald, 1977): (i) A small fixed population share a consisting of certainly active individuals, such as instigators of a climate

action, that deliberately act upon a certain issue. (ii) A fixed population share c consisting of contingently active individuals

whose opinions and norms align with the behaviour of the instigators but who did not join the climate action yet. (iii) A

remaining population share consisting of certainly inactive individuals who, due to opposing opinions and values, will never160

join a respective climate action. The first two groups taken together then form the fixed potentially active population share

p = c+a. Actors in those groups are connected along ties in a social network with an average number of such ties per individual,

K, commonly referred to as the ‘average degree’ of the social network (Newman, 2018). Actors become active via cascading

dynamics if at least a fixed share ρ of their neighbors is active as well (Watts, 2002). The model’s dynamics can be described

by a one-dimensional discrete-time difference equation that computes the share of acting individuals, r(t + 1), at a given time165

t + 1 as

r(t + 1) = a + (p− a)F (r(t)). (1)

Here, a denotes the certainly active population share and p the potentially active population share, i.e. those that can be

mobilized via social activation. F is the cumulative distribution function of the actors’ activation thresholds, refereed to as

the emergent macroscopic threshold function. In other words, F (r(t)) represents the fraction of the contingent population170

(with relative size p− a) that take part in a given climate action once that movement has reached a relative size of r(t). It has

been first suggested (Granovetter, 1978) and then shown (Wiedermann et al., 2020) that such a threshold distribution F with

typically assumed properties, such as being broad-shaped and similar to a normal distribution, emerges from pairwise social

interactions between individuals in their underlying social network. In particularly, assuming a random network topology given

by the Erdős–Rényi model as a first approximation for the unknown underlying social network (Erdős and Rényi, 1960) yields175
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the following analytical expression for F (Wiedermann et al., 2020):

F (r) = 1− exp(−K)
∞∑

bi=0

(K −Kr)bi

bi!

⌊
ϱbi
1−ϱ

⌋
∑

ai=0

(Kr)ai

ai!
(2)

Note that, the emergent threshold function (F (r(t))) integrates information from individual behavioral thresholds and net-

work structures and acts as a parsimonious tool for modelling social tipping processes, but, the threshold function itself is rather

an outcome of these processes, and should not be treated as a social construct with causal effect in its own right. Also note that180

even though the approximation assumes the topology of an Erdős–Rényi random network, the emergent threshold function F

also represents other, less trivial, network structures sufficiently well (see below for details and SI for numerical simulations).

The fixed points r∗ of (1) can be estimated by setting

r∗ = a + (p− a)F (r∗) (3)

and solving for r∗ numerically. The model shows two saddle-node bifurcations with respect to both a and p (Wiedermann et al.,185

2020), which is the typical form of stability landscape for a tipping element, Fig. 3 (a). For sufficiently large p and small values

of a, i.e. a = 0 in the extreme case, the model displays an uncritical regime where no tipped state exists, Fig. 3 (a). Increasing

a pushes the system closer towards a bi-stable critical regime in which external influences, such as shocks or events, can lift

the system onto an alternative stable state (yellow area in Fig. 3 (a)). Further increasing a eventually triggers the commonly

studied form of social tipping, i.e. bifurcation-induced tipping, where the untipped fixed point r∗ vanishes and the system190

enters the tipped regime (green area in Fig. 3 (a)). Notably, similar dynamics and a distinction into three qualitative regimes

can be observed for increasing p from low to large values, thereby giving rise to a cusp catastrophe (Wiedermann et al., 2020).

In particular, for each value of p there is a critical value of a (given by the boundary between the red and yellow shaded area

in Fig. 3) at which the system first enters the bi-stable critical regime. In that sense, increasing values of p move the boundary

between the uncritical and critical regime closer towards smaller values of a.195

Given that the social network structure within the 66 countries that are included in our simulation are likely largely het-

erogeneous, and in many cases undetermined, we adopt a Monte-Carlo approach to check for the robustness of our results,

numerically estimating the potential for social tipping and resultant instantiations of emergent threshold functions by randomly

sampling unknown parameter values for K and ρ. We observed that the resulting ensemble of threshold functions (F (r)) then

not only resembles simple network topologies such as the Erdős–Rényi random network, but also sufficiently covers other,200

more realistic, network topologies. In particular, we perform robustness checks using an array of topologies (real-world em-

pirical data about Facebook friendships, Barabási–Albert (Barabási and Albert, 1999), Watts–Strogatz (Watts and Strogatz,

1998), ring topologies, and random geometric networks) (Dall and Christensen, 2002), finding that in most cases, the ensemble

threshold function fits estimates emerging from micro-simulation models, except in cases where the certainly active nodes are

heavily clustered in modular networks (See Figs. A1 and A2 in Supplementary Information). This is to be expected, since in205

networks where the certainly active population is clustered within a highly modularized network structure, it is unlikely for the

network to exhibit cascading processes resulting in social tipping across a broader population, as tipping would be contained
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Figure 3. a) Exemplary bifurcation diagram of the social tipping model w.r.t. one of several influencing factors: the certainly active population

share a. For low shares a of certainly active individuals the system is in the uncritical regime (red shaded area) where no tipping is possible

since only the lower branch exists. With increasing a the system enters the critical regime (yellow shaded area) and event-induced tipping

becomes possible if large enough shocks kick the steady state into the tipped state’s basin of attraction (orange shaded area). With further

increasing a the model reaches its critical threshold for bifurcation-induced tipping above which only the upper branch exists (green shaded

area).b) The tipping potential computed as the relative size of the basin of attraction of the upper branch.

to specific clusters and not through the network as a whole. However, we suggest that in the case of anticipation of SLR, real-

world social networks are less likely to have such highly modularized network structures as for many countries, SLR affects

broad sections of coastlines, stretching across diverse social and geographic groupings.210

3.2 Estimation of certainly active population from SLR

We estimate the certainly active population share a(T ) per country by the proportion of individuals that are projected to be

affected by sea-level rise (SLR) at a given anticipation time horizon T after 2020. Here, we assume individuals to be affected

if they live at an elevation X that lies at or below projected SLR at time T . Particularly, we use median SLR projections until

2300 obtained from the MAGICC climate model v2.0 (Nauels et al., 2017) for the RCP8.5 scenario that provides an upper215

bound of the RCPs (Riahi et al., 2011) (solid red line in Fig. 1(a)). Generally, the MAGICC climate model emulator estimates

approximately 1m sea-level change for low-emission scenario RCP2.6 ranging up to approximately 5m sea-level rise for high-

emission scenario RCP8.5 by the year 2300 (Fig. 1a). These projections are consistent with process-based models in IPCC
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AR6 (Masson-Delmotte et al., 2021), which further note that even more severe SLR of more than 15m by 2300 cannot be

excluded under high emission scenarios (Portner et al., 2019).220

In order to estimate the population-elevation distribution (Fig. 4) we combine country-specific gridded population data from

the Socioeconomic Data and Applications Center (SEDAC) (Center for International Earth Science Information Network,

2016) with SRTM30 near-global digital elevation data (Farr et al., 2007), both provided at an angular resolution of 1/120◦.

Since entries in the SRTM30-data are truncated to full meters, we add uniformly distributed random noise of magnitude 1

meter to the entry of each grid cell. The median SLR projections are then combined with the country-specific population-225

elevation distributions to obtain a time series of population shares that are affected by SLR until 2300. Software-packages to

parse and process both the gridded population and elevation data are available online at https://zenodo.org/record/4268015 and

https://github.com/marcwie/srtm30-parser.
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Figure 4. Cumulative distributions of country-specific population shares living at or below an elevation level of X above sea-level for

the five largest emitters of greenhouse gas that are considered in this study.

3.3 Estimation of potentially active population from social survey data.

We estimate the potentially active population share pC in a country C from subjects’ expressed concern for climate change230

in six different recent cross-national social survey programs: International Public Opinion on Climate Change (2022), Inter-

national Social Survey Programme (2010, Environment III), European Social Survey (2016, Wave 8), PEW Global Attitudes

Survey (Spring 2015), Eurobarometer (2017, EB 87.1; 2019, EB 91.3), and Life in Transition Survey (2010, II), see Tab. S1.

We assume that subjects that are not concerned at all are not potentially active. In contrast, subjects with the highest level of

concern are counted as surely belonging to the potentially active population share. For subjects with intermediate levels of con-235

cern we assume a certain share of them is potentially active, using the following approach to estimate this share: Each survey s

contains an item capturing individual perceptions of climate change concern across multiple countries C. These items are given

on an ordinal scale, with varying numbers of outcomes ns. We rescale those outcomes to take integer values is = 0,1, . . . ,ns−1

such that pi,C,s gives the relative frequency of response i in country C and survey program s. We then estimate the potentially

active population share pC,s in country C as240

pC,s =
1
ns

∑

ns

pi,C,s
i

ns− 1
∈ [0,1], (4)
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such that pC,s = 0 if all participants were to respond is = 0 and pC,s = 1 if all participants were to respond is = ns− 1. In

total, we compile data for 66 countries with access to the sea. Some countries, especially in the European Union, are covered

by all six surveys, while other countries only appear in a single instance with an average coverage of 2.36 survey programs

per country. In cases where multiple survey programs available for a particular country, we then adopt the median value of245

concern over all survey programs for that country as the estimated potentially active population share pC in Fig. 5 and Fig. 6.

An overview for estimated levels of concern across countries is given in Tab. S2 and Tab. S3.

3.4 Preprocessing, model setup and ensemble simulations

In alignment with earlier works (Marzeion and Levermann, 2014), we exclude countries with exceptionally low elevation

profiles, i.e, The Netherlands, Azerbaijan and Kazakhstan, that for large parts show elevation values even below present sea-250

level. We additionally exclude all countries that are not adjacent to any larger body of water and, thus, exclusively lie inland,

e.g. Mongolia or Austria. In total, we excluded 22 countries from these analyses.

In a first step we vary the potentially active population share p across its entire valid value range p ∈ [0,1] in order to obtain

comprehensive statistics about the model’s dynamics. We draw N = 2000 random combinations of parameters ρ ∈ (0,1) and

K ∈ (0,100) and compute r∗ numerically from Eq. (3) for every combination of p ∈ [0,1] and a(T ), for T = 0,1, . . . ,280. In255

a second analysis, we then fix the potentially active population share in each country, pC , according to the estimated levels of

concern (see above).

3.5 Tipping potential and intervention sizes.

The tipping potential in Fig. 5 and Fig. 6 is computed as the average basin stability (Menck et al., 2013) of the tipped fixed

point r∗u (subscript u for upper branch) in Fig. 3 taken over an ensemble of N = 2000 simulations with randomly drawn values260

of K and ρ (see above). For a single simulation s we define the tipping potential utot(s) as

utot(s) =





0 if only untipped lower branch exists
p−r∗m
p−a if unstable middle branch exists

1 if only tipped upper branch exists

(5)

Here, r∗m (subscript m for middle branch) is the location of the fixed point corresponding to the unstable branch of the model’s

bifurcation diagram (dashed line in Fig. 3(a)), p is the potentially active population share and a is the certainly active population

share. The average tipping potential utot is then given as265

utot = ⟨utot(s)⟩s (6)

=
1
N

∑

s|utot(s)∈(0,1)

utot(s) +
1
N

∑

s|utot(s)=1

1 (7)

=
1
N

∑

s|utot(s)∈(0,1)

utot(s) +ubif . (8)

11

https://doi.org/10.5194/egusphere-2023-1622
Preprint. Discussion started: 25 July 2023
c© Author(s) 2023. CC BY 4.0 License.



The average tipping potential utot measures the combined effects of event-induced (first term in the rhs. of Eq. (8)) and

bifurcation-induced tipping (second term in the rhs. of Eq. (8)) Each contribution to utot is thus either 0 < utot(s) < 1 if the270

system is in the critical regime and utot(s) = 1 if the system is in the tipped regime (Fig. 3(b)). When aggregated over all

simulations s, the bifurcation-induced tipping potential ubif computes the share of simulations in which bifurcation-tipping

occurred (depicted in Fig. 5 third row) and forms a direct contribution to utot.

For all simulations s where the model’s steady state falls into the critical regime (yellow shaded area in Fig. 3), we compute

the required intervention size I(s) to tip the equilibrated system from the stable untipped state r∗l (subscript l for lower branch)275

into the stable tipped state. Specifically, we express I(s) as the minimum contingent population share c = p−a required to lift

the system from r∗l over the middle branch r∗m. This yields

I(s) =





r∗m−r∗l
p−a if 0 < utot(s) < 1

0 otherwise
(9)

The required intervention sizes I depicted in Fig. 5 are then computed as the respective percentiles of the set of all ensemble

members s for which we obtain positive values of I(s).280

4 Results

4.1 Anticipation and concern foster complementary forms of social tipping

The tipping potentials are first estimated for the five countries with the largest greenhouse gas emissions (China, US, India,

Russia and Japan) (iea, 2020) for varying anticipation time horizons (e.g. 100, 150 or 200 years into the future) and potentially

active population shares. We then further assess the corresponding tipping potentials for the fixed potentially active population285

share according to the estimated level of climate change concern in each country (see also Sect. 3).

We find that the overall tipping potential increases strongly with greater potentially active population shares. A notable

dependency of this tipping potential on the time horizon can especially be observed for countries where a larger part of the

population lives at or close to sea-level, as in the case of Japan or China (Fig. 5 (a)).

With extended anticipation time horizons, the bifurcation-induced tipping potential, i.e. those cases where the system shifts290

into the tipped regime, increases most significantly if the potentially active population is larger than at least approximately

20% (see Fig. 5 (b)) – a level that is surpassed in all five considered countries. For the estimated values of the potentially

active population, our model suggests increased bifurcation-induced tipping potential in countries with large near-sea-level

population density, particularly China and Japan (Fig. 5 (c)). This implies that while the overall tipping potential is relatively

similar across contexts, bifurcation-induced tipping becomes more likely in regions which are more vulnerable to future SLR.295

However, compared with the overall large potential, bifurcation-induced tipping remains comparatively unlikely (cf. Fig. 5

(a) and (b)). This implies that even though an alternative stable state of collective climate action may exist, the system is

unlikely to reach this state by mere crossing of a single critical threshold or tipping point. This is because in most cases,

the share of certainly active population directly affected by SLR is not sufficient to trigger such bifurcation-induced tipping.
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Figure 5. Social tipping potential for the five highest-greenhouse gas emitting countries China, USA, India, Russia and Japan (in

terms of CO2 equivalents). (a) Total tipping potential and (b) bifurcation-induced tipping potential for varying shares of concerned popula-

tion p and anticipation time horizon T , from zero (blue) to more than 50% (red). Black lines indicate the estimated country-specific climate

change concern pC with a shaded interval of ±5% deviation, indicating that variations in the level of concern do not qualitatively alter the

results. (c) Total, utot, and bifurcation-induced tipping potential, ubif , for the estimated levels of country-specific climate change concern.

Shaded areas indicate variations of utot and ubif within the ±5%-band of concern. (d) Size I of necessary interventions to tip a given share

X of simulations once a country’s social system reaches the critical regime. The temporal axis reflects the anticipation time horizon of T

years prior to 2020, i.e. T = 0 implies that individuals do not anticipate any future impacts while the maximum possible value, T = 280,

assumes individuals to anticipate sea-level impacts up to 2300, the penultimate year in the MAGICC projections (see also Fig. 1).

Instead, the system is mostly found in a critical, yet not tipped, state where interventions then carry the potential to kick300

the system into its alternative stable state via event-induced tipping. The required intervention size, measured in terms of the

contingent population share, generally decreases as the anticipation time horizon grows, moving the system closer towards the

tipped state (see Fig. 3). Comparatively small intervention sizes (less than 10%) of spontaneously activated populations can
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suffice to trigger transitions to the alternative state with 5% chance, indicating a potential for event-induced tipping (see black

lines in Fig. 5 (d)).305

Additionally, our model indicates that countries with larger potentially active population shares have correspondingly lower

required intervention sizes for initiating event-induced tipping (as for instance India and Japan, see Fig. 5 (d)), as the gap is

lowered between an untipped stable state and the basin of attraction of the tipped state (cf. last row of Fig. 5 and Fig. 3). But,

even in cases of the highest climate change concern, such as in India, our model indicates that a non-zero intervention size is

needed when the anticipation time horizon is shorter, implying that at least some intervention is necessary to trigger tipping310

processes. Increasing the anticipation time horizon translates into substantially smaller required intervention sizes, eventually

even reaching zero for the modeled cases of Japan and, in parts, China (Fig. 5 (d)).

4.2 Three global classes of tipping processes

Drawing upon a broader comparative analysis covering 66 countries with access to the sea, we find that concern for climate

change and the total tipping potential are strongly correlated (Fig. 6 (a) and (b)). Accordingly, we identify three qualitative315

classes of tipping processes facilitating climate action that vary by the country-specific values of total and bifurcation-induced

tipping potentials (Tab. 1).

Tipping Class I – Large total and high bifurcation-induced tipping potential:

In these countries, the emergence of social tipping processes is fostered by heightened levels of climate change concern and

SLR-sensitive elevation-population profiles. In this case, an increase in the anticipation time horizon or a relatively small320

intervention size can trigger a transition to an alternative state of increased climate action. Therefore, such social systems can

be considered to already be in a rather critical state.

Examples for this Class I primarily include countries along the Pacific Ocean, such as Indonesia, Japan, Vietnam, as well as

China. Here, SLR is likely to affect large population shares due to large metropolitan areas located near the coast (Kulp and

Strauss, 2019). Combined with overall heightened climate change concern in these countries (cf. Fig. 6 (a)), individual events325

and expanded anticipation time horizons both have the potential to instigate social tipping processes in our model (Tab. 1).

Tipping Class II – Large total and low bifurcation-induced tipping potential:

Countries in this class are characterized by high levels of concern and low population shares likely to be affected by projected

SLR. This indicates that the corresponding countries might be sufficiently close to or already in a critical state, where rela-

tively small interventions would suffice to induce transitions towards an alternative state via event-induced tipping. However,330

bifurcation-induced tipping pathways resulting from expanded anticipation time horizons are comparatively unlikely due to

less SLR-sensitive elevation-population profiles.

Class II mostly covers countries in South America, Africa and along the Indian Ocean. Climate change concern in those

countries can often be attributed to more short-term impacts than those related to SLR, such as water scarcity, more frequent
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Figure 6. Cross-national potential for social tipping towards increased climate action. (a) Estimated country-specific potentially active

population share. (Total) tipping potential (b) and bifurcation-induced tipping potential (c) for the estimated values of climate change concern

from social survey data and the largest possible anticipation time horizons. Countries are geographically clustered according to their tipping

classes I-III, i.e. countries with large total and bifurcation-induced tipping potential (Tipping Class I) in the Indo-Pacific, countries with large

total and low bifurcation-induced tipping potential (Tipping Class II) in the remaining Southern Hemisphere, and low total and bifurcation-

induced tipping potential (Tipping Class III) in Europe and North America.
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Table 1. Countries tend to cluster regionally with respect to their total and bifurcation tipping potentials in response to anticipated

sea level rise.

Class I Class II Class III

Total Tipping Potential Large Large Small

Bifurcation Tipping Potential High Low Low

SLR Exposure/Anticipation Greater Lower Lower

Climate Change Concern High High Lower

Regional Clusters West Pacific rim countries,

China, Indonesia, Japan, Viet-

nam

South America, Africa, Indian

Ocean rim

North America, Europe

extreme weather events, or shifts in precipitation variability (Howe et al., 2019). This is also reflected within the scope of335

our model, as the total tipping potential (driven by climate change concern) and the bifurcation-induced potential (driven by

anticipated SLR impacts) are largely uncorrelated (Fig. 6 (b) and (c)). We suggest that such temporally more immediate climate

impacts could potentially trigger a rapid short-term mobilization of a large population share, thereby acting as a (non-deliberate)

social tipping intervention, which can effectively kick the respective social systems into an alternative state of increased climate

action via event-induced tipping processes.340

Tipping Class III – Small total and small bifurcation-induced tipping potential:

This class is exemplified by cases where both the elevation profile and low climate change concern effectively hinder social

tipping. Accordingly, only large intervention sizes potentially push the system towards an alternative state of increased climate

action. Further increasing concern could lower the baseline of the required intervention sizes, thereby rendering the system

more critical (moving it towards Tipping Class II). However, due to the country-specific elevation profiles, increased anticipa-345

tion time horizons are expected to only have minor influences on the intervention sizes required for triggering social tipping,

as the projected impacts of SLR remain comparatively small.

Class III covers North America and parts of Europe. Here, immediate threats from SLR are comparatively small since large

population shares live further inland. Likewise, climate change concern is comparatively lower (cf. Fig. 6(a)), potentially due

to larger perceived psychological distances to these risks (Spence et al., 2012). Such psychological distances can result from350

comparatively higher economic development, larger perceived preparedness for the impacts of climate change (Spence et al.,

2012) and decreased vulnerability (Maiella et al., 2020). Thus, according to our model, social tipping in these counties is

fostered largely through elevating climate change concern (Singh et al., 2017). Then, once concern reaches a sufficiently high

level, other events or interventions would have the potential to kick the system into an alternative state of increased climate

action.355

Notably, a fourth tipping class with low total tipping potential and a large bifurcation-induced tipping potential cannot exist

since by definition the former exceeds the latter (see Sect. 3).
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5 Conclusions

5.1 Summary and discussion

Here, we adopt a model for social tipping to explore transformative pathways towards an alternative state of increased climate360

action resultant from climate change concern and anticipated impacts of projected sea-level rise across 66 countries with access

to the sea. We find that in many countries, climate change concern has reached a point where the system can be considered

critical, such that an alternative stable tipped state exists (where a large population share engages in climate actions), and

sensitive interventions (e.g. policy regime changes or social movements) or stochastic events (e.g. storm surges or floods) have

the potential to push the system towards that tipped state.365

Our model suggests that climate change concern has reached sufficiently high levels in many countries such that social

tipping processes towards increased climate action could be instigated. However, concern alone is insufficient to trigger such

social tipping processes. Rather, concern functions to create critical, enabling conditions under which a system becomes more

susceptible to social tipping interventions (such as by political or civil society actors). Expanded anticipation time horizons can

directly lower the required intervention size, thereby increasing the likelihood for social tipping dynamics to emerge.370

As such, the two factors, climate change concern and anticipation time horizons, are of a complementary yet mutually

beneficial nature. Increases in concern make tipping dynamics more likely to occur following external influences or interven-

tions, while the more deterministic process largely manifests through increased anticipation time horizons. As the anticipation

time horizons necessary to trigger tipping are often on a centennial timescale, event-induced tipping (Ashwin et al., 2012) via

interventions presents a comparatively more likely pathway towards instigating social tipping processes in the near future.375

In this way, in our model social tipping processes largely differ from those in climate systems (see also (Winkelmann

et al., 2022)), which often focus on identifying scenarios where a (single) control parameter crosses a critical threshold, e.g., in

global mean surface temperature, as the instigator of systemic transgression into an alternative stable state (Lenton et al., 2008).

Instead, the notion of sensitive intervention (Farmer et al., 2019) and event-induced tipping becomes ever more important for

social tipping processes, as critical thresholds of control parameters might be infeasible to reach or impossible to predict.380

A key finding from our modeled results is the emergence of three qualitative classes of social tipping. Here we identify

a transformation pathway towards increased potential for social tipping towards climate action. While the tipping potential

within a Class III-state is comparatively low it increases with climate change concern such that the possibility for tipping

processes begins to exist (i.e. leading to a Class II-state). Then, extended anticipation time horizons reduce the intervention

sizes necessary to trigger tipping processes (Tipping Class I), such that a comparatively smaller kick within the system or it’s385

environment carries the potential to instigate social tipping processes.

Given the increasing social relevance of anthropogenic climate change, identifying social systems that are in more critical

states can guide strategic policy entrepreneurs (Kingdon, 1995). Targeted interventions can amplify critical conditions or can

even provide a substantial enough kick to instigate climate actions. For example, climate change social movements can play

a crucial role, providing a mechanism to develop new political coalitions (Weible and Sabatier, 2017), thereby increasing the390

salience of climate change as a political issue. Such increased salience can effectively open a policy window, allowing climate
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policy advocates to promote their agendas (Kingdon, 1995). Further large shift in public opinion can punctuate sticky environ-

mental regulatory regimes (Baumgartner and Jones, 2010) and political-institutional lock-ins (Cecere et al., 2014), resulting

in the adoption of new public policies, such as carbon taxation (Lemoine and Traeger, 2016) or incentivizing development of

alternative energy supplies (Patt and Lilliestam, 2018).395

In contrast to common behavioral contagion modeling approaches (Dodds and Watts, 2004b; Böttcher et al., 2017), our

country-specific estimations of social tipping potentials are uniquely based on real-world observations (i.e., projected SLR

impacts, measured elevation-population distributions and a comprehensive review of social survey data on climate change

concern). We thereby contribute a novel perspective to the growing field of social-ecological systems modeling that aims

to specifically account for the dynamic interactions between biogeophysical Earth and social systems on up to planetary400

scales (Müller-Hansen et al., 2017; Beckage et al., 2018; Donges et al., 2020; Beckage et al., 2022; Moore et al., 2022).

Additionally, our modeling exercise expands upon previous studies of threshold dynamics and social tipping that have

largely focused on social systems in isolation, either theoretically (Granovetter, 1978; Schelling, 1971), in controlled laboratory

experiments (Centola et al., 2018; Centola and Baronchelli, 2015) or via network-based numerical simulations (Watts, 2002;

Singh et al., 2013; Karsai et al., 2016).405

Overall, we find that concern for climate change increases the criticality and likelihood for social tipping processes, and ex-

panded anticipation time horizons and growing shares of active population move the system closer towards a critical threshold,

effectively reducing the required intervention size needed to ultimately kick the system into a alternative state where climate

action becomes the social norm. Our study highlights the potential that lies in the combination of these factors, pushing social

systems closer towards positive tipping points, and is thus a first step towards truly closing the loop from climate impacts to410

substantive societal transformation (Donges et al., 2017).

5.2 Limitations

We acknowledge that social tipping processes can be triggered by a variety of distinct external factors such as in the aftermath

of extreme events (Demski et al., 2017; Konisky et al., 2016) or in response to large-scale environmental changes (Ioris et al.,

2020). However, our model simulates the potential for social tipping solely resultant from anticipation of projected SLR. We415

find that, on its own, SLR is comparatively unlikely to result in bifurcation-induced tipping. However, our approach does not yet

account for other potential impacts that are directly related to SLR, such as increased flood risks, coastal erosion, or increased

vulnerability to storm surges (Kulp and Strauss, 2019). These impacts are comparatively more likely to affect even larger

population shares in coastal areas, and are likely to occur in coming years and decades (Muis et al., 2016; Buchanan et al.,

2016; Tebaldi et al., 2012). As such, our modeling approach can be considered rather conservative in estimating potentials for420

tipping processes triggered by SLR-related impacts.

For now, we assume a straightforward conversion of SLR into certainly active populations as a probable scenario of sub-

jective risk assessment, in which individuals simply compare official projections with their knowledge of the elevation profile

of their local region. However, SLR is projected to vary regionally, with coastal areas around the Indian Ocean and Western
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Pacific being affected more severely than other locales (Perrette et al., 2013). Since these are also regions where climate change425

concern is highest, such regional SLR differences could result in even greater potential for social tipping.

Observation-based research have noted how social contagion varies by geographic factors, such as the physical distance an

actor has to travel to participate (Traag et al., 2017), individual propensity for behavioral change (State and Adamic, 2015), as

well as the complexity in contagion spreading across social network structures (Guilbeault and Centola, 2021) and forms of

social interaction (Iacopini et al., 2019). Given the potentially heterogeneous social network structures across the 66 countries,430

we assessed the robustness of our results using numerical Monte Carlo simulations of cascading dynamics across a diverse

set of common network topologies. We found that in most cases, there is a parametrization of the emergent threshold function

F that is similar to what one would expect from certain other, non-trivial, network topologies. In that sense, our modeling

approach can not only be interpreted as an ensemble of different Erdős–Rény networks, but an ensemble of different network

topologies itself (see Supplementary Materials for detailed further discussion).435

We ultimately note that, while illustrative, neither the mechanism we explore here nor the underlying model results should

be interpreted in an overly-deterministic manner. For example, tipping can in fact occur in any of the three identified classes, as

concern is large enough for most countries so that they might have already entered into a critical regime. Rather, our findings

suggest that as countries transition towards Tipping Class I, the tipping potential increases and the intervention size necessary

to trigger social tipping decreases correspondingly.440

5.3 Outlook

In addition to natural drivers, deliberate interventions by policy makers and climate actors carry the potential to instigate social

tipping processes (Lenton, 2020), for instance via financial disclosure (Farmer et al., 2019), information feedbacks (Otto et al.,

2020a), or climate movements (McAdam, 2017). To assess the potential for deliberately initiated societal transformations, i.e.

positive social tipping (Tàbara et al., 2018; Hinkel et al., 2020; Lenton et al., 2022; Fesenfeld et al., 2022), future research445

should focus on identifying processes and mechanisms that lower the intervention sizes needed to kick the system into, or

increase the potential to shift the system closer towards, an alternative state of increased climate action. Thus, the actual type

of events instigating social tipping processes can emerge from an array of sources (e.g. natural or social) across varying scales

(e.g. macro or micro). For now, our model is agnostic to the specific form of the instigating event, but rather aims to identify

factors affecting the tipping potential of systems.450

The individual likelihood to engage in climate actions results from an interplay of internal (i.e. concern, values, attitudes and

beliefs) and external (contextual, political, economic) factors, as well as a multitude of potential barriers (i.e. current behav-

iors, adaptive capacity, social norms) (Kollmuss and Agyeman, 2002). Our proposed model currently assumes that behavioral

change is not associated with costs to the individual. Moreover, there are unique factors within each context, many of which

may even be unobservable or unknowable, that affect the capacity for tipping processes in a given social system. Still, our455

idealized scenario shows that due to the inherent complexity of social systems (Schill et al., 2019; Levin et al., 2013) tipping

processes arise from multiple intertwined and mutually co-dependent factors which potentially lead to alternative future trajec-

tories, for example in energy, financial, or socio-political systems (Otto et al., 2020a; Farmer et al., 2019; Lenton, 2020; Sharpe
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and Lenton, 2021; Tàbara et al., 2018). Future research should therefore factor in relevant heterogeneities within and between

countries, such as different forms of agency (Otto et al., 2020b; Stadelmann-Steffen et al., 2021), shifting social norms (Nyborg460

et al., 2016), cultural dimensions (Hofstede and Bond, 1984), the susceptibility of the country (or region) to a broader range of

climate impacts, or the ability to participate in social movements or civil society.

We explore one mechanism for social tipping processes, noting a potential transformative pathway resulting from the interre-

lation of climate change concern and anticipation of SLR via adoption of a social activation model. Given the necessity for rapid

societal transformations (Rockström et al., 2023), and the potential for social tipping processes to instigate such changes (Otto465

et al., 2020a; Winkelmann et al., 2022), we encourage further research in this field. Future work can explore global condi-

tions instigating social tipping, highlight unique mechanisms within country or region-specific case studies, explore the role of

short-term shocks (such as extreme events or rapid political mobilization) as triggers (Ricke and Caldeira, 2014), and identify

the distinct circumstances under which diverse social tipping elements are likely to experience transformative changes.

Data availability. The SRTM30 elevation data is available from the US Geological Survey.470

The Gridded Population data of the Earth (GPW) v2 is obtained from the Socioeconomic Data and Applications Center (SEDAC). Software

packages for downloading and preprocessing of the data are https://github.com/marcwie/sedac-gpw-parseravailable here and here.

The MAGICC v2.0 sea-level rise projections are computed using the model source code available at and using supplementary input data

from here.

International Social Survey Programme (2020, "Environment IV") data available here.475

International Public Opinion on Climate Change (2022) data are available here.

European Social Survey (2016, Wave 8) data are available here.

Eurobarometer (2017, 87.1) data are available here.

Eurobarometer (2019, 91.3) data are available available here.

Life in Transition Survey (2010, Wave II) data are available here.480

Pew Global Attitudes Survey (Spring 2015) data are available here.

Survey data replication coding and data collection materials are available via author’s Github GitHub.

Appendix A: Robustness Checks of Macroscopic Approximation

Within this study, we utilize a macroscropic approximation of the threshold function, F (r(t)), representing the fraction of

the contingent population (with relative size p− a) that takes part in a climate action. This approximation is derived analyti-485

cally (Wiedermann et al., 2020), assuming a Erdős–Rényi model for the unknown underlying social network (Erdős and Rényi,

1960).

Given that the true social network structure in any of the 66 countries simulated in this modeling exercise is unknown, we

follow a logic akin to bayesian non-informative priors and use a Monte Carlo simulation approach, choosing a random average

degree (K) and threshold value (ρ) for the macroscopic approximation, which results in an ensemble of sigmoid-shaped curves490
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for the emergent threshold distribution (F ) varying broadly in both the location and steepness of their inflection points. This

approach thereby generates an ensemble of different shapes of F utilized in our simulations, including for example: (i) a step

function (for large K and ρ = 1), (ii) an S-shaped curve (for intermediate K and ρ), (iii) a monotonic increase above the main

diagonal for smallρ, and (iv) a monotonic increase below the main diagonal for large ρ. Hence different parameterizations are

already considered when computing the average tipping potentials displayed in Figs. 3 and 4 of the paper. In that way, our495

approach is conservative in that it integrates widely across even qualitatively distinct forms of threshold functions as we do not

make strong assumptions about any specific such form.

Notably, the Erdős–Rényi model is comparatively parsimonious and may not well represent more highly clustered network

structures (Centola et al., 2018; Guilbeault and Centola, 2021). Accordingly, we engaged a series of robustness checks, com-

paring how well the ensemble of threshold functions emergent from our Monte Carlo simulations cover microscopic network500

dynamics across a range of network topologies: Barabasi-Albert (BA) (Barabási and Albert, 1999), Watts-Strogatz (WS) with

rewiring probability β = 0.25 (Watts and Strogatz, 1998), a ring topology (Watts-Strogatz with β = 0), a Random Geometric

Network (RGG) (Dall and Christensen, 2002) and real-world data from Facebook ( 63k nodes, avg. degree 26).

In general, we find that for all random topologies (Fig. A1), the ensemble of macroscopic approximations covers the em-

pirical results from the above-mentioned additional micro-simulation models rather well when the certainly active nodes are505

sufficiently dispersed across the network. In other words, in most cases, there is a combination of ρ and K in the Erdős–Rényi

network that produces an emergent threshold function F that is similar to what one would expect from certain other net-

work topologies. In that sense, our Monte-Carlo approach can not only be interpreted as an ensemble of different Erdős–Rény

networks, but an ensemble of different network topologies itself.

But, of particular note, when the certainly active nodes are closely clustered, we are less likely to observe tipping-like510

processes exemplified by this macroscopic approximation (esp. lower panel of Fig. A2). When the certainly active population

is clustered within a highly modularized network structure, it is unlikely for the network to exhibit cascading processes resulting

in social tipping across a broader population, as tipping would be contained to specific clusters and not penetrate through the

network as a whole.

We suggest that in the case of anticipation of SLR, real-world social networks are less likely to have such highly modu-515

larized network structures. For many countries, SLR affects broad sections of coastlines, stretching across diverse social and

geographic groupings. Furthermore, the effects of SLR are unlikely to be only observed and experienced by those directly

impacted, rather these are likely to spill-over to broader geographic regions and social groups (e.g. through climate induced

migration, mass media coverage) even though these are not specifically considered in the present manuscript. In such cases,

we assume that a high clustering of the certainly active population within a modularized network structure is less likely to be520

representative of the actual network structure of the 66 countries simulated in this modeling exercise.

Further, for our research design, we explicitly chose a common level of complexity across all components. That is, the

emphasis of these findings should not be too heavily on either the individual social, climate or network aspects, but rather the

combined implementation of these factors. And this level of complexity is set at a lower-level to specifically allow for exploring

conceptual scenarios. By keeping the modeling components on a relatively simplified level, we aim to avoid the tendency of525
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assuming predictive capacity via the increased complexity of the modeling approach. In this case, we chose a macroscopic

approximation of network topology that is comparatively simple, yet as we find, robust across a number of other potential

structures.
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Erdős, P. and Rényi, A.: On the Evolution of Random Graphs, in: Publication of the Mathematical Institute of the Hungarian Academy of

Sciences, pp. 17–61, 1960.

Farmer, J., Hepburn, C., Ives, M., Hale, T., Wetzer, T., Mealy, P., Rafaty, R., Srivastav, S., and Way, R.: Sensitive intervention points in the605

post-carbon transition, Science, 364, 132–134, 2019.

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., et al.: The shuttle

radar topography mission, Reviews of geophysics, 45, 2007.

Fesenfeld, L. P., Schmid, N., Finger, R., Mathys, A., and Schmidt, T. S.: The politics of enabling tipping points for sustainable development,

One Earth, 5, 1100–1108, 2022.610

Frederick, S., Loewenstein, G., and O’Donoghue, T.: Time Discounting and Time Preference: A Critical Review, Journal of Economic

Literature, 40, 351–401, https://www.aeaweb.org/articles?id=10.1257/002205102320161311, 2002.

Garbe, J., Albrecht, T., Levermann, A., Donges, J. F., and Winkelmann, R.: The hysteresis of the Antarctic ice sheet, Nature, 585, 538–544,

2020.

Granovetter, M.: Threshold models of collective behavior, American journal of sociology, 83, 1420–1443, 1978.615

24

https://doi.org/10.5194/egusphere-2023-1622
Preprint. Discussion started: 25 July 2023
c© Author(s) 2023. CC BY 4.0 License.



Gross, T. and Sayama, H.: Adaptive networks, Springer, 2009.

Guilbeault, D. and Centola, D.: Topological measures for identifying and predicting the spread of complex contagions, Nature communica-

tions, 12, 1–9, 2021.

Hamilton, L. C., Cutler, M. J., and Schaefer, A.: Public knowledge and concern about polar-region warming, Polar Geography, 35, 155–168,

2012.620

Hinkel, J., Lincke, D., Vafeidis, A. T., Perrette, M., Nicholls, R. J., Tol, R. S., Marzeion, B., Fettweis, X., Ionescu, C., and Levermann,

A.: Coastal flood damage and adaptation costs under 21st century sea-level rise, Proceedings of the National Academy of Sciences, 111,

3292–3297, 2014.

Hinkel, J., Mangalagiu, D., Bisaro, A., and Tàbara, J. D.: Transformative narratives for climate action, Climatic Change, 160, 495–506,

https://doi.org/10.1007/s10584-020-02761-y, 2020.625

Hoffmann, R., Muttarak, R., Peisker, J., and Stanig, P.: Climate change experiences raise environmental concerns and promote Green voting,

Nature Climate Change, 12, 148–155, 2022.

Hofstede, G. and Bond, M. H.: Hofstede’s culture dimensions: An independent validation using Rokeach’s value survey, Journal of cross-

cultural psychology, 15, 417–433, 1984.

Howe, P. D., Marlon, J. R., Mildenberger, M., and Shield, B. S.: How will climate change shape climate opinion?, Environmental Research630

Letters, 14, 113 001, 2019.

Hurlstone, M. J., Price, A., Wang, S., Leviston, Z., and Walker, I.: Activating the legacy motive mitigates intergenerational discounting in the

climate game, Global Environmental Change, 60, 102 008, https://doi.org/10.1016/j.gloenvcha.2019.102008, 2020.

Iacopini, I., Petri, G., Barrat, A., and Latora, V.: Simplicial models of social contagion, Nature communications, 10, 1–9, 2019.

Ioris, A. A. et al.: Socioecological economics of water development in the Brazilian Amazon: Elements for a critical reflection, Ecological635

Economics, 173, 2020.

Jenkins, J. C.: Resource mobilization theory and the study of social movements, Annual review of sociology, 9, 527–553, 1983.

Jusup, M., Holme, P., Kanazawa, K., Takayasu, M., Romic, I., Wang, Z., Gecek, S., Lipic, T., Podobnik, B., Wang, L., et al.: Social physics,

arXiv preprint arXiv:2110.01866, 2021.

Kaaronen, R. O. and Strelkovskii, N.: Cultural evolution of sustainable behaviors: Pro-environmental tipping points in an agent-based model,640

One Earth, 2, 85–97, 2020.

Karsai, M., Iñiguez, G., Kikas, R., Kaski, K., and Kertész, J.: Local cascades induced global contagion: How heterogeneous thresholds,

exogenous effects, and unconcerned behaviour govern online adoption spreading, Scientific Reports, 6, 1–10, 2016.

Kingdon, J. W.: Agendas, alternatives, and public policies, Little, Brown, Boston, 1995.

Kollmuss, A. and Agyeman, J.: Mind the Gap: Why do people act environmentally and what are the barriers to pro-environmental behavior?,645

Environmental Education Research, 8, 239–260, https://doi.org/10.1080/13504620220145401, 2002.

Konisky, D. M., Hughes, L., and Kaylor, C. H.: Extreme weather events and climate change concern, Climatic Change, 134, 533–547,

https://doi.org/10.1007/s10584-015-1555-3, 2016.

Kulp, S. A. and Strauss, B. H.: New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding, Nature

Communications, 10, 1–12, 2019.650

Lehmann, S. and Ahn, Y.-Y.: Complex spreading phenomena in social systems, Springer, 2018.

Lemoine, D. and Traeger, C. P.: Economics of tipping the climate dominoes, Nature Climate Change, 6, 514–519, 2016.

25

https://doi.org/10.5194/egusphere-2023-1622
Preprint. Discussion started: 25 July 2023
c© Author(s) 2023. CC BY 4.0 License.



Lenton, T. M.: Tipping positive change, Philosophical Transactions of the Royal Society B: Biological Sciences, 375, 20190 123,

https://doi.org/10.1098/rstb.2019.0123, 2020.

Lenton, T. M. and Williams, H. T.: On the origin of planetary-scale tipping points, Trends in Ecology & Evolution, 28, 380–382, 2013.655

Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., and Schellnhuber, H. J.: Tipping elements in the Earth’s climate

system, Proceedings of the national Academy of Sciences, 105, 1786–1793, 2008.

Lenton, T. M., Benson, S., Smith, T., Ewer, T., Lanel, V., Petykowski, E., Powell, T. W., Abrams, J. F., Blomsma, F., and Sharpe, S.:

Operationalising positive tipping points towards global sustainability, Global Sustainability, 5, e1, 2022.

Levermann, A., Clark, P. U., Marzeion, B., Milne, G. A., Pollard, D., Radic, V., and Robinson, A.: The multimillennial sea-level commitment660

of global warming, Proceedings of the National Academy of Sciences, 110, 13 745–13 750, 2013.

Levin, S., Xepapadeas, T., Crépin, A.-S., Norberg, J., De Zeeuw, A., Folke, C., Hughes, T., Arrow, K., Barrett, S., Daily, G., et al.: Social-

ecological systems as complex adaptive systems: modeling and policy implications, Environment and Development Economics, 18, 111–

132, 2013.

Maiella, R., La Malva, P., Marchetti, D., Pomarico, E., Di Crosta, A., Palumbo, R., Cetara, L., Di Domenico, A., and Verrocchio, M. C.: The665

psychological distance and climate change: A systematic review on the mitigation and adaptation behaviors, Frontiers in Psychology, 11,

2459, 2020.

Marquart-Pyatt, S. T., Qian, H., Houser, M. K., and McCright, A. M.: Climate change views, energy policy preferences, and intended actions

across welfare state regimes: Evidence from the European Social Survey, International Journal of Sociology, 49, 1–26, 2019.

Marzeion, B. and Levermann, A.: Loss of cultural world heritage and currently inhabited places to sea-level rise, Environmental Research670

Letters, 9, 034 001, 2014.

Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Huang, M.,

Leitzell, K., Lonnoy, E., Matthews, J., Maycock, T., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B.: IPCC, 2021: Summary for Policy-

makers., in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the

Intergovernmental Panel on Climate Change, Cambridge University Press, 2021.675

Mayer, A. and Smith, E. K.: Unstoppable climate change? The influence of fatalistic beliefs about climate change on behavioural change and

willingness to pay cross-nationally, Climate Policy, 19, 511–523, 2019.

McAdam, D.: Social Movement Theory and the Prospects for Climate Change Activism in the United States, Annual Review of Political

Science, 20, 189–208, https://doi.org/10.1146/annurev-polisci-052615-025801, 2017.

McCarthy, J. D. and Zald, M. N.: Resource mobilization and social movements: A partial theory, American journal of sociology, 82, 1212–680

1241, 1977.

Menck, P. J., Heitzig, J., Marwan, N., and Kurths, J.: How basin stability complements the linear-stability paradigm, Nature Physics, 9,

89–92, 2013.

Mengel, M., Nauels, A., Rogelj, J., and Schleussner, C.-F.: Committed sea-level rise under the Paris Agreement and the legacy of delayed

mitigation action, Nature Communications, 9, 601, 2018.685

Milfont, T. L., Wilson, J., and Diniz, P.: Time perspective and environmental engagement: A meta-analysis, International journal of psychol-

ogy, 47, 325–334, 2012.

Milkoreit, M., Hodbod, J., Baggio, J., Benessaiah, K., Calderón-Contreras, R., Donges, J. F., Mathias, J.-D., Rocha, J. C., Schoon, M., and

Werners, S. E.: Defining tipping points for social-ecological systems scholarship – an interdisciplinary literature review, Environmental

Research Letters, 13, 033 005, 2018.690

26

https://doi.org/10.5194/egusphere-2023-1622
Preprint. Discussion started: 25 July 2023
c© Author(s) 2023. CC BY 4.0 License.



Moore, F. C., Lacasse, K., Mach, K. J., Shin, Y. A., Gross, L. J., and Beckage, B.: Determinants of emissions pathways in the coupled

climate–social system, Nature, 603, 103–111, 2022.

Moser, S. C. and Dilling, L.: Toward the social tipping point: creating a climate for change, pp. 491–516, Cambridge University Press, 2007.

Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C., and Ward, P. J.: A global reanalysis of storm surges and extreme sea levels, Nature

Communications, 7, 1–12, 2016.695

Müller, P. M., Heitzig, J., Kurths, J., Lüdge, K., and Wiedermann, M.: Anticipation-induced social tipping: can the environment be stabilised

by social dynamics?, The European Physical Journal Special Topics, pp. 1–11, 2021.

Müller-Hansen, F., Schlüter, M., Mäs, M., Donges, J. F., Kolb, J. J., Thonicke, K., and Heitzig, J.: Towards representing human behavior and

decision making in Earth system models – an overview of techniques and approaches, Earth System Dynamics, 8, 977–1007, 2017.

Nauels, A., Meinshausen, M., Mengel, M., Lorbacher, K., and Wigley, T. M.: Synthesizing long-term sea level rise projections-the MAGICC700

sea level model v2.0, Geoscientific Model Development, 10, 2017.

Newman, M.: Networks, Oxford university press, 2018.

Nicholls, R. J. and Cazenave, A.: Sea-Level Rise and Its Impact on Coastal Zones, Science, 328, 1517–1520,

https://doi.org/10.1126/science.1185782, 2010.

Nicholls, R. J., Lincke, D., Hinkel, J., Brown, S., Vafeidis, A. T., Meyssignac, B., Hanson, S. E., Merkens, J.-L., and Fang, J.: A global analysis705

of subsidence, relative sea-level change and coastal flood exposure, Nature Climate Change, pp. 1–5, https://doi.org/10.1038/s41558-021-

00993-z, 2021.

Nyborg, K., Anderies, J. M., Dannenberg, A., Lindahl, T., Schill, C., Schlüter, M., Adger, W. N., Arrow, K. J., Barrett, S., Carpenter, S.,

et al.: Social norms as solutions, Science, 354, 42–43, 2016.

Oppenheimer, M., Glavovic, B., Hinkel, J., van de Wal, R., Magnan, A. K., Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., Deconto, R. M.,710

Ghosh, T., et al.: Sea level rise and implications for low lying islands, coasts and communities, 2019.

Otto, I. M., Donges, J. F., Cremades, R., Bhowmik, A., Hewitt, R. J., Lucht, W., Rockström, J., Allerberger, F., McCaffrey, M., Doe, S. S.,

et al.: Social tipping dynamics for stabilizing Earth’s climate by 2050, Proceedings of the National Academy of Sciences, 117, 2354–2365,

2020a.

Otto, I. M., Wiedermann, M., Cremades, R., Donges, J. F., Auer, C., and Lucht, W.: Human agency in the Anthropocene, Ecological Eco-715

nomics, 167, 106 463, 2020b.

Pahl, S., Sheppard, S., Boomsma, C., and Groves, C.: Perceptions of time in relation to climate change, Wiley Interdisciplinary Reviews:

Climate Change, 5, 375–388, 2014.

Patt, A. and Lilliestam, J.: The case against carbon prices, Joule, 2, 2494–2498, 2018.

Perrette, M., Landerer, F., Riva, R., Frieler, K., and Meinshausen, M.: A scaling approach to project regional sea level rise and its uncertainties,720

Earth System Dynamics, 4, 11–29, 2013.

Portner, H., Roberts, D., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Nicolai, M., Okem, A., Petzold, J.,

et al.: IPCC, 2019: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, 2019.

Riahi, K., Krey, V., Rao, S., Chirkov, V., Fischer, G., Kolp, P., Kindermann, G., Nakicenovic, N., and Rafai, P.: RCP-8.5: Exploring the

consequence of high emission trajectories, Climatic Change. doi, 10, 1007, 2011.725

Ricke, K. L. and Caldeira, K.: Natural climate variability and future climate policy, Nature Climate Change, 4, 333–338, 2014.

Rocha, J. C., Peterson, G., Bodin, Ö., and Levin, S.: Cascading regime shifts within and across scales, Science, 362, 1379–1383, 2018.

27

https://doi.org/10.5194/egusphere-2023-1622
Preprint. Discussion started: 25 July 2023
c© Author(s) 2023. CC BY 4.0 License.



Rockström, J., Gupta, J., Qin, D., Lade, S. J., Abrams, J. F., Andersen, L. S., McKay, D. I. A., Bai, X., Bala, G., Bunn, S. E., Ciobanu,

D., DeClerck, F., Ebi, K., Gifford, L., Gordon, C., Hasan, S., Kanie, N., Lenton, T. M., Loriani, S., Liverman, D. M., Mohamed, A.,

Nakicenovic, N., Obura, D., Ospina, D., Prodani, K., Rammelt, C., Sakschewski, B., Scholtens, J., Stewart-Koster, B., Tharammal, T., van730

Vuuren, D., Verburg, P. H., Winkelmann, R., Zimm, C., Bennett, E. M., Bringezu, S., Broadgate, W., Green, P. A., Huang, L., Jacobson,

L., Ndehedehe, C., Pedde, S., Rocha, J., Scheffer, M., Schulte-Uebbing, L., de Vries, W., Xiao, C., Xu, C., Xu, X., Zafra-Calvo, N., and

Zhang, X.: Safe and just Earth system boundaries, Nature, 619, 102–111, https://doi.org/10.1038/s41586-023-06083-8, 2023.

Schelling, T. C.: Dynamic models of segregation, The Journal of Mathematical Sociology, 1, 143–186, 1971.

Schill, C., Anderies, J. M., Lindahl, T., Folke, C., Polasky, S., Cárdenas, J. C., Crépin, A.-S., Janssen, M. A., Norberg, J., and Schlüter, M.:735

A more dynamic understanding of human behaviour for the Anthropocene, Nature Sustainability, 2, 1075–1082, https://www.nature.com/

articles/s41893-019-0419-7, 2019.

Sharpe, S. and Lenton, T. M.: Upward-scaling tipping cascades to meet climate goals: plausible grounds for hope, Climate Policy, 0, 1–13,

https://doi.org/10.1080/14693062.2020.1870097, 2021.

Singh, A. S., Zwickle, A., Bruskotter, J. T., and Wilson, R.: The perceived psychological distance of climate change impacts and its influence740

on support for adaptation policy, Environmental Science & Policy, 73, 93–99, 2017.

Singh, P., Sreenivasan, S., Szymanski, B. K., and Korniss, G.: Threshold-limited spreading in social networks with multiple initiators,

Scientific Reports, 3, 1–7, 2013.

Sisco, M. R.: The effects of weather experiences on climate change attitudes and behaviors, Current Opinion in Environmental Sustainability,

52, 111–117, 2021.745

Smith, E. K. and Mayer, A.: A social trap for the climate? Collective action, trust and climate change risk perception in 35 countries, Global

Environmental Change, 49, 140–153, 2018.

Smith, E. K. and Mayer, A.: Anomalous Anglophones? Contours of free market ideology, political polarization, and climate change attitudes

in English-speaking countries, Western European and post-Communist states, Climatic Change, 152, 17–34, 2019.

Smith, E. K., Eder, C., and Katsanidou, A.: On thinning ice: understanding the knowledge, concerns and behaviors towards polar ice loss in750

Germany, Polar Geography, 43, 243–258, https://doi.org/10.1080/1088937X.2020.1755904, 2020.

Smith, E. K., Eder, C., Donges, J., Heitzig, J., Katsanidou, A., Wiedermann, M., and Winkelmann, R.: Domino Effects in the Earth System

– The role of wanted social tipping points, https://doi.org/10.31219/osf.io/d8scb, 2022.

Spence, A., Poortinga, W., and Pidgeon, N.: The Psychological Distance of Climate Change, Risk Analysis, 32, 957–972, https://

onlinelibrary.wiley.com/doi/abs/10.1111/j.1539-6924.2011.01695.x, 2012.755

Stadelmann-Steffen, I., Eder, C., Harring, N., Spilker, G., and Katsanidou, A.: A framework for social tipping in climate change mitigation:

What we can learn about social tipping dynamics from the chlorofluorocarbons phase-out, Energy Research & Social Science, 82, 102 307,

2021.

State, B. and Adamic, L.: The diffusion of support in an online social movement: Evidence from the adoption of equal-sign profile pictures,

in: Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing, pp. 1741–1750, 2015.760

Steffen, W., Rockström, J., Richardson, K., Lenton, T. M., Folke, C., Liverman, D., Summerhayes, C. P., Barnosky, A. D., Cornell, S. E.,

Crucifix, M., et al.: Trajectories of the Earth System in the Anthropocene, Proceedings of the National Academy of Sciences, 115, 8252–

8259, 2018.

Stern, P.: Toward a coherent theory of environmentally significant behavior, Journal of social issues, 56, 407–424, 2000.

28

https://doi.org/10.5194/egusphere-2023-1622
Preprint. Discussion started: 25 July 2023
c© Author(s) 2023. CC BY 4.0 License.



Tàbara, J. D., Frantzeskaki, N., Hölscher, K., Pedde, S., Kok, K., Lamperti, F., Christensen, J. H., Jäger, J., and Berry, P.: Positive tipping765

points in a rapidly warming world, Current Opinion in Environmental Sustainability, 31, 120–129, 2018.

Tebaldi, C., Strauss, B. H., and Zervas, C. E.: Modelling sea level rise impacts on storm surges along US coasts, Environmental Research

Letters, 7, 014 032, 2012.

Tobler, C., Visschers, V. H., and Siegrist, M.: Addressing climate change: Determinants of consumers’ willingness to act and to support

policy measures, Journal of Environmental Psychology, 32, 197–207, 2012.770

Tonn, B., Hemrick, A., and Conrad, F.: Cognitive representations of the future: Survey results, Futures, 38, 810–829, 2006.

Traag, V. A., Quax, R., and Sloot, P. M.: Modelling the distance impedance of protest attendance, Physica A: Statistical Mechanics and its

Applications, 468, 171–182, 2017.

Van Ginkel, K. C., Botzen, W. W., Haasnoot, M., Bachner, G., Steininger, K. W., Hinkel, J., Watkiss, P., Boere, E., Jeuken, A., De Murieta,

E. S., et al.: Climate change induced socio-economic tipping points: review and stakeholder consultation for policy relevant research,775

Environmental Research Letters, 15, 023 001, 2020.

van Valkengoed, A. M. and Steg, L.: Meta-analyses of factors motivating climate change adaptation behaviour, Nature Climate Change, 9,

158–163, 2019.
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Figure A1. Robustness checks of macroscopic approximation - random network topologies. Each panel represents results from randomly

chosen certainly active nodes across divergent network topologies. Each dot represents micro-simulations results, while the lines represent

macroscopic approximations for nine exemplary combinations of the two parameters ρ and K – the actual ensemble contains a wider range

of combinations.
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Figure A2. Robustness checks of macroscopic approximation - clustered, segmented and differential degrees in diverse network

topologies.Each panel represents results from clustered, segmented and varied degrees of certainly active nodes across divergent network

topologies. Each dot represents micro-simulations results, while the lines represent macroscopic approximations for nine exemplary combi-

nations of the two parameters threshold rho and average degree K – the actual ensemble contains a wider range of combinations.
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Data Year Question Wording Item Coding
Number of

Mean
Std.

Outcomes ns Dev.

Eurobarometer 2017/ And how serious a problem do you 1 ‘Not at all serious’
10 0.75 0.05

(EB 87.1 / EB 91.3) 2019 think climate change is at this moment? to 10 ‘Extremely serious’

ESS 2016 How worried about climate change?
1 ‘Not worried’ to

5 0.51 0.06
5 ‘Extremely worried’

ISSP 2021

Do you think that a rise in the world’s 1 Not at a;; to

5 0.74 0.04temperature caused by climate change 5 ‘Extremely dangerous’

is dangerous for the environment?

IPOCC 2022

How worried are you 1 ‘Not at all worried’ to
4 0.78 0.07

about climate change? 4 ‘Very worried’

LITSII 2010
How concerned are you 1 ‘Not concerned’ to

5 0.58 0.08
about climate change? 5 ‘Extremely concerned’

PEW2015 2015
In your view, is global 1 ‘Not a problem’ to

4 0.78 0.09
climate change a problem? 4 ‘Very serious problem’

Table A1. Social Survey Data Sources, Question Wording, Items and Descriptive Statistics
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Country
EB 87.1 EB 91.3 PEW Global ISSP LITSII ESS

Median
2017 2019 Attitudes 2015 2021 2010 2016

Albania - - - - 0.49 - 0.49

Argentina - - 0.83 0.76 - - 0.80

Australia - - 0.71 0.58 - - 0.64

Belgium 0.72 0.73 - 0.60 - 0.55 0.66

Brazil - - 0.94 - - - 0.94

Bulgaria 0.77 0.80 - 0.74 0.63 - 0.75

Canada - - 0.76 0.68 - - 0.72

Chile - - 0.92 0.83 - - 0.88

China - - 0.65 - - - 0.65

Croatia 0.73 0.74 - 0.75 0.65 - 0.73

Cyprus 0.78 0.82 - - - - 0.80

Denmark 0.77 0.80 - 0.62 - - 0.77

Estonia 0.59 0.64 - - 0.48 0.41 0.54

Finland 0.71 0.72 - 0.63 - 0.51 0.67

France 0.78 0.80 0.82 0.62 0.50 0.55 0.70

Georgia - - - - 0.67 - 0.67

Germany 0.75 0.79 0.79 0.73 0.52 0.59 0.74

Ghana - - 0.86 - - - 0.86

Greece 0.81 0.84 - - - - 0.83

Iceland - - - 0.57 - 0.53 0.55

India - - 0.91 - - - 0.91

Indonesia - - 0.72 - - - 0.72

Ireland 0.71 0.77 - - - 0.44 0.71

Israel - - 0.63 0.70 - 0.42 0.63

Italy 0.80 0.80 0.82 - 0.68 0.55 0.80

Japan - - 0.76 0.79 - - 0.77

Jordan - - 0.76 - - - 0.76

Kenya - - 0.84 - - - 0.84

Latvia 0.62 0.66 - 0.59 0.51 - 0.60

Lebanon - - 0.85 - - - 0.85

Lithuania 0.74 0.73 - 0.67 0.62 0.47 0.67

Table A2. Estimated shares of potentially acting individuals from weighted averages over all responses in the six survey programs. Dashes

indicate that a country is not covered by the specific survey program. Countries with initial letters K–Z are found in Tab. A3
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Country
EB 87.1 EB 91.3 PEW Global ISSP LITSII ESS

Median
2017 2019 Attitudes 2015 2010 2010 2016

Malaysia - - 0.76 - - - 0.76

Malta 0.77 0.86 - - - - 0.82

Mexico - - 0.86 0.79 - - 0.83

Moldova - - - - 0.74 - 0.74

Montenegro - - - - 0.47 - 0.47

New Zealand - - - 0.60 - - 0.60

Nigeria - - 0.85 - - - 0.85

Norway - - - 0.57 - 0.50 0.53

Pakistan - - 0.71 - - - 0.71

Palestine - - 0.71 - - - 0.71

Peru - - 0.90 - - - 0.90

Philippines - - 0.89 0.75 - - 0.82

Poland 0.68 0.74 0.64 - 0.53 0.43 0.64

Portugal 0.78 0.81 - 0.76 - 0.62 0.77

Romania 0.74 0.74 - - 0.61 - 0.74

Russia - - 0.67 0.72 0.61 0.44 0.64

Senegal - - 0.80 - - - 0.80

Slovenia 0.75 0.77 - 0.69 0.62 0.55 0.69

South Africa - - 0.74 0.72 - - 0.73

South Korea - - 0.79 0.73 - - 0.76

Spain 0.80 0.83 0.80 0.75 - 0.60 0.80

Sweden 0.77 0.78 - 0.63 0.62 0.46 0.63

Taiwan - - - 0.78 - - 0.78

Tanzania - - 0.80 - - - 0.80

Turkey - - 0.73 0.81 0.55 - 0.73

Ukraine - - 0.67 - 0.62 - 0.64

United Kingdom 0.67 0.76 0.70 0.62 0.52 0.48 0.65

United States - - 0.66 0.61 - - 0.64

Venezuela - - 0.89 - - - 0.89

Vietnam - - 0.88 - - - 0.88

Table A3. Same as Tab. A2 for countries with initial letters K–Z.
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