
Response to Referee #1 

The authors look at the primarily at the controls on the relationship between AOD and cloud 

effective radius (CER), both meteorological parameters and other cloud properties. 

Concentrating on two regions (over land and ocean near China), this study also introduces the 

geographical detector method (GDM) to the study of aerosol-cloud interactions. They also look 

at the impact of meteorological properties on the relationship between AOD and cloud 

properties more generally. 

The introduction of the GDM to this study is novel and of interest to the readers of ACP. With 

some extra explanation, I think this paper would make a really useful introduction to the method 

for others in atmospheric science. However, I have a number of concerns about the paper as a 

whole that would have to be addressed before I would recommend publication. 

The authors are grateful to Referee #1 for the valuable time spent on thorough reading our 

manuscript and providing expert views to guide us for improving the manuscript with the main 

and specific points and the references. We have taken notice of all comments, listed below in 

black, and made many changes to the manuscript to address these, together with the comments 

from the other referees. We address each of your comments below and refer to our responses 

in the revised manuscript and provide line numbers and copy text in “quotes”.   

To ensure that the data used only included single layer liquid clouds and nonprecipitating cases, 

the filtering criteria described by Saponaro et al. (2017) were applied. It is noted that all the 

figures have been updated throughout the revised manuscript. 

Main points 

1. The introduction of the GDM method is a really nice aspect of this study. However, I feel it 

could be explained and examined in more detail, as there are a number of factors that are 

unclear to someone meeting this method for the first time. For example, the impact of the 

explanatory variables in Tables 4 and 5 sum to over 100%. This is not what I would have 

expected. Similarly, I am not familiar with the 'interaction detector' or the 'interactive q-values'. 

What do these mean? How should they be interpreted? Likewise, the term 'nonlinear 

enhancement of the influence of the independent parameters' on L456 is not straightforward to 

someone new to this method.  

Answer: In statistics, the q-value is a measure used to evaluate the explanatory power of 

variables on the dependent variable. When multiple independent variables are considered 

separately, it is indeed possible for the sum of the q-values of multiple X variables to exceed 

100%. When they are considered together, this is referred to as ‘interaction q-value’. This 

situation is quite common and similar to the issue in multiple linear regression. The main reason 

for this is the presence of correlation among the X variables, indicating that these variables are 

not independent. Consequently, multiple independent variables may contribute to the 

dependent variable in a similar manner, leading to a sum of q-values over 100%. 

To better explain this and clarify “interaction detector” and “interaction q-values”, we have 

replaced the text below figure 2 (lines 354-373) with “The interaction detector can be used to 

test for the influence of interaction between different influencing factors, e.g., x1 and x2, on 

the dependent factor (y) and whether this interaction weakens or enhances the influence of each 



of x1 or x2 on the dependent variable, y, or whether they are independent in influencing y. For 

example, Figure 3(a) shows the spatial distribution of the dependent variable, y. The factors x1 

and x2 both vary across the study region, but in different ways, and for each factor different 

sub-regions can be distinguished by application of the Jenks classification method described 

above to each factor separately. This is illustrated in Figures 3(b) and 3(c) where, as an example, 

three different sub-regions are considered for each factor. Usually, the dependent variable y is 

influenced by several different factors xi (Figure 3) and the combined effect of two or more 

factors may have a weaker or stronger influence on y than each of the individual factors. The 

q values for the influences of factors x1 and x2 on y, obtained from the application of the factor 

detector method (Eq. 2), may be represented as q (x1) and q (x2). Hence, a new spatial unit and 

subregions may be generated by overlaying the factor strata x1 and x2, written as x1∩x2, 

where ∩ denotes the interaction between factor strata x1 and x2 as illustrated in Figure 3(d). 

Thus, the q value of the interaction of x1∩x2 may be obtained, represented as q (x1∩x2). 

Comparing the q value of the interaction of the pair of factors and the q value of each of the 

two individual factors, five categories of the interaction factor relationship can be considered 

which are summarized in Table 2. If q(x1∩x2) > q(x1) + q(x2), this is referred to as a nonlinear 

enhancement of two variables. And if q(x1∩x2) > Max[q(x1), q(x2)], this is referred to as a 

bilinear enhancement of two variables. The occurrence of nonlinear enhancement and bilinear 

enhancement are indicated with the q values in Table 2 and in the caption of Figure 7.”. 

The occurrence of nonlinear enhancement is indicated with the q values in Table 1 (Table 2 in 

the revised manuscript) and in the caption of Figure 7 in the revised manuscript. 

Table 1. Interaction categories of two factors and the interaction relationship 

 Illustration Description Interaction 

 

 
 

q(x1∩x2) < Min[q(x1),q(x2)] Weakened, nonlinear 

 Min[q(x1),q(x2)] < q(x1∩x2) < Max[q(x1),q(x2)] Weakened, unique 

 

q(x1∩x2) > Max[q(x1),q(x2)] Enhanced, bilinear 

 

q(x1∩x2) = q(x1)+q(x2) Independent 

  q(x1∩x2) > q(x1)+q(x2) Enhanced, nonlinear 

2. The AOD-CER relationship is difficult to interpret as the Twomey effect, especially where 

LWP is not controlled for (McComiskey and Feingold, 2012). Several previous studies have 

also investigated the potential controls on the AOD-CER relationship (e.g. Tan et al, 2017; 

Yuan et al, 2008; Myhre et al, 2007; Tang et al, 2014; Andersen and Cermak, 2015). There 

should be a clearer distinction around what is added by this work (which can be the GDM). 

Answer: We have taken notice of the references provided and added them to the revised 

manuscript where appropriate. McComiskey and Feingold (2012) discuss effects of 

unconstrained LWP, which in the revised manuscript is mentioned in Section 4.2 (lines 442-

444): “Note however, that no selection was made for LWP and the condition of constant LWP 

was not fulfilled. This will be further discussed in Section 4.3.” In section 4.3 and Discussions 

(lines 757-777) we discuss the effect of LWP on S in detail. McComiskey and Feingold (2012) 

also discuss the spatial separation of satellite observations of cloud and aerosol is addressed in 



Section 2.2 (lines 225-229) and a reference to McComiskey and Feingold (2012) has been 

added: “Aerosol retrieval is only executed in clear sky conditions whereas cloud properties can 

only be retrieved in cloudy skies. Hence, it is not possible to obtain co-located aerosol and 

cloud data from satellite. For satellite-based aci studies it is assumed that, following, e.g., Jia 

et al. (2022), aerosol properties are homogeneous enough to be representative for those in 

adjacent cloud areas. Consequences of this assumption were discussed by McComiskey and 

Feingold (2012).”. 

Potential controls on the CER-AOD relationship and confounding meteorological effects are 

discussed in the Introduction, supported with many references (lines 129-160): 

“Meteorological conditions are important factors determining …. promote the formation of 

thicker and higher clouds” and in Discussions (lines 778-798): “The above results were 

obtained by using traditional statistical methods where relationships were derived from 

scatterplots of CER versus AOD, stratified in two different AOD regimes and five different 

LWP regimes, as discussed above. The data were also analyzed by using the GDM to determine 

which factors influence aci and identify how interactions between different parameters 

influence the results of the aci analysis, i.e. the sensitivity and resulting adjustments. In 

particular, the GDM provides information on the extent to which the effect of individual factors 

is influenced by other factors. As shown in Section 4.6.1, the effect of individual factors may 

be overestimated when confounding effects of other factors are not accounted for. The 

interaction detector analysis (Section 4.6.2) shows a more realistic estimate of the effects on 

aci when different factors are analyzed together. The factor detector analysis (Section 4.6.1) 

shows that over the ECS, AOD has the largest influence on cloud parameters, as indicated by 

the large and statistically significant q values. Among the meteorological factors, PVV has 

more influence on the variations of the cloud parameters than RH and LTS. Over the YRD, 

AOD has the largest influence on COT, with large and significant q values. Among the 

meteorological factors, the effect of LTS on CF is greater than that of RH and PVV. However, 

the q-values may sum up to over 100% when the variables are not independent, i.e. the 

explanatory power of such variables is too high. The evaluation of the effects of interaction 

between different factors on aci corrects these clearly unrealistic situations. The analysis in 

section 4.6.2 shows that the interactive q-statistic values derived in this study are larger than 

any of the values for single variables, i.e. the explanatory power of a combination of factors is 

higher than that of individual factors, but less than 100%. However, although the GDM 

provides evidence of the effects of aerosol and meteorological factors and their interactions on 

cloud properties and quantify the relative contributions to aci, it cannot quantify the absolute 

contributions with confidence.”.   

We have added the references provided by Referee#1 with a brief summary of the findings 

reported in these references. In Section 6 Conclusions, we have added (lines 807-809): “These 

results may be influenced by confounding effects of meteorological parameters. The study 

further shows that over the ECS the CER is larger for higher LTS and RH but lower for higher 

PVV. Over the YRD, there is no significant influence of LTS on the relationship between CER 

and AOD.  

However, the main comment of Referee #1 is about the question “what is added by this work” 

and the answer is indeed that it is the GDM as was already mentioned in the Introduction at 

lines 164-172 in the revised manuscript: “In the current study the geographical detector method 

(GDM) is applied as a complementary tool to quantify the relative importance of the effects of 

nine parameters on S. The GDM is explained in detail in Section 3.2. In brief, a set of statistical 

methods is used to detect the spatial variability of aerosol and cloud properties, which are 



spatially differentiated, and evaluate the occurrence of correlations in their behaviour and the 

driving forces behind these correlations (Wang and Hu, 2012; Wang et al., 2016). The basic 

idea of the GDM is that the spatial distributions of two variables tend to be similar if these two 

variables are connected (Zhang and Zhao, 2018). The method is used in this study to analyse 

the relative importance of different factors, and interactions between them, influencing aci.”  

Furthermore, we have changed the first sentence of Section 3.2 (lines 312-313) to “The 

geographical detector method (GDM) is introduced to analyze which factors influence the aci 

and identify possible correlations between different factors” and the text below Figure 2 has 

been changed (see also response to comment 1).  

And in the conclusions we have added the text cited above (lines 810-819): “The GDM has 

been applied to determine which factors influence S and cloud parameters and the interaction 

detector analysis has been used to determine the combined effect of different parameters on 

cloud parameters. The results from the GDM interaction detector analysis clearly show the 

enhancement of the interaction q-values over the q-values for the individual factors. In other 

words, the explanatory power of the combined effects of aerosol and a meteorological 

parameter is larger than that of each parameter alone. Thus, the GDM provides an alternative 

way to obtain information on confounding effects of different parameters. We conclude that 

aerosol and meteorological conditions significantly influence cloud parameters and that 

combined effects of different factors are often more important than the effect of each individual 

factor. The relative importance of each factor differs significantly over the ECS and YRD.” 

3. The majority of more recent studies have used Nd for calculation of the ACI, rather than 

CER (Quaas et al, 2008; Gryspeerdt et al, 2017; McCoy et al, 2018; Hasekamp et al, 2019). 

There are also useful studies that investigate the susceptibility (AOD-Nd relationship) and the 

impacts on this value (Jia et al, 2022).  This avoids the LWP-CER issue prevalent in previous 

work and presents a cleaner separation of the Twomey and adjustments. It could be worth 

including a section on why CER is used and might be something to consider for future work in 

this area. 

Answer: We address the use of CER rather than Nd with the following text, added to the 

Introduction (lines 177-186): “It is noted that RFaci is formulated in terms of Nd, whereas 

studies on the Twomey effects often use CER instead of Nd. CER is readily available as a 

satellite retrieval product, although in particular over land the reliability is questioned (Grandey 

and Stier, 2010), whereas Nd is derived from CER and the cloud optical thickness (COT) (e.g., 

Grandey and Stier, 2010; Arola et al., 2022). This implies that Nd is subject to the same retrieval 

errors as CER, including a possible relation between CER and LWP. The comparison of global 

maps of the sensitivities of CER and Nd to AOD by Grandey and Stier (2010) exhibits very 

similar patterns. In this study, the CER sensitivity to AOD is stratified by LWP, which however 

poses problems in the evaluation of RFaci. However, the current study focuses on understanding 

effects of different parameters on CER sensitivity to aerosol rather than the application to 

determine RFaci.”. 

4. Previous studies have shown that it is difficult to interpret correlations over large regions as 

an aerosol effect due to the impact of meteorological confounders (Grandey and Stier, 2010). 

Correlations between AOD and cloud properties are also fraught with potential confounding 

effects (Quaas et al, 2010; Boucher and Quaas, 2012; Gryspeerdt et al, 2014). Does the GDM 

method address these issues? If so how? If not, this study should be much clearer about the 

claims of causality it puts forward. 



Answer: Thank you for this comment. We have added the references provided in the 

introduction with a brief summary of the findings of each of them. This comment addresses 

two issues: large regions and confounding effects. As regards large regions: Grandey and Stier 

(2010) recommend 4ox4o as the largest size and “if data exist at higher gridded resolution the 

possibility of analyzing data at this higher resolution should be seriously considered.” In this 

study we have followed this recommendation: we have considered two large study regions 

(YRD and ECS) for the initial evaluation of CER-AOD relationships. Based on these results, 

we have selected data ranges for which a clear ACI relationship occurs and for these conditions 

we have refined this study to smaller scales using 1ox1o grid cells and the results are presented 

in Figure 6 and discussed in Sections 4.2 and 4.3 in the revised manuscript.  

We have also considered the size of the study area, or grid size, when using the GDM.  In the 

GDM, the y data are recorded in a raster grid, over a total study area of 9°x9°, as illustrated in 

Figure 1 (Figure 2 in the manuscript). The data in the raster grid is transformed into dot files, 

each dot containing a value for y and for one of the influencing parameters x. The dependent 

(y) and influencing (x) parameters are separated into 2 layers with the same grid. As the 

resolution of MYD 08 data used in this study is 1°x1°, the data transformed into dot files is 

based on raster grid 1°x1°. Here, 15-year averaged distributions of clouds (y, 5 layers) and 

aerosols/meteorological conditions (x, 4 layers) are used as input in the GDM. Tables 2 and 3 

show the q values for factors which may influence cloud parameters over the ECS and YRD in 

different regions sizes, evaluated for data collected in the period from 2008-2022. The data in 

Tables 2 and 3 show that for regions smaller than 9°x9°, the GDM result is not significant and 

that the results become more significant when the area is getting larger (for example 9°x9°, 

10°x10°, 11°x11°, 12°x12°). In future research, higher resolution data can be used for GDM 

by controlling the size of the study area to be less than 4°x4°. 

The problem of large regions and the effect of possible meteorological confounders was also 

addressed by Arola et al. (2022) and in response to a comment by Referee#2 we have added 

the following text to Section 5 (Discussion, lines 757-777): “Arola et al. (2022) addressed the 

susceptibility of Nd to changes in aerosol and the adjustment of LWP (using satellite 

observations), and confounding factors, in particular co-variability of Nd and LWP induced by 

meteorological effects. They show how errors in the retrieved CER and COT or spatial 

heterogeneity in cloud fields influence the Nd - LWP relation. However, both Nd and LWP are 

not retrieved but derived from CER and COT. Using Eq. 1 and Eq. 2 in Arola et al. (2022), the 

Nd -LWP relationship can be shown to have a highly non-linear dependence on CER and thus 

it is no surprise that any error in CER strongly affects the relation between Nd and LWP. Their 

experiments, i.e. using smaller scales (5° x 5°) to reduce spatial meteorological variability, or 

using snapshots to remove meteorological variability in time, did not lead to a conclusion 

whether the Nd - LWP variability is due to spatial heterogeneity in the cloud fields or due to 

retrieval errors. The main message from this part of the study (using satellite data) by Arola et 

al. (2022) is “the spatial variability of CER introduces a bias which moreover becomes stronger 

in conditions where the CER values are lower on average”. Experiments with simulated 

measurements show that “the main cause of the negative LWP vs Nd slopes is the error in CER”. 

Arola et al. emphasize that the spatial cloud variability and retrieval errors in CER and COT 

are similar sources for negative bias in LWP adjustment and that these sources could not be 

separately assessed in their simulations. The implication of the findings of Arola et al. (2022) 

on the adjustment of LWP for the results of the current study on the sensitivity of CER to 

aerosol (or CCN, using AOD as proxy) is that the assumption of constant LWP may be violated. 

This would affect the results presented in Section 4.3 where LWP was stratified and S was 



found to vary with LWP. In view of the LWP adjustment to changes in aerosol, the variation 

of CER sensitivity with LWP may be somewhat different from that reported in section 4.3.”  

The results from the GDM interaction detector analysis in Section 4.6.2 clearly show the 

enhancement of the interaction q-values over the q-values for the individual factors. In other 

words, the explanatory power of the combined effects of a meteorological parameter and 

aerosol is larger than that of each parameter alone. Thus, the GDM provides an alternative way 

to obtain information on confounding effects of different parameters.    

 

Figure 1. The principle of the geographical detector method. See text for explanation. 

Table 2. q values for factors which may influence cloud parameters over the ECS in areas with 

different sizes, evaluated for data collected in the period from 2008-2022. 

Region  Cloud AOD RH LTS PVV 

4°x4° 

CER 0.67 0.43 0.14 0.59 

COT 0.27 0.51 0.28 0.44 

LWP 0.72 0.25 0.09 0.53 

CF 0.68 0.29 0.11 0.28 

CTP 0.31 0.50 0.29 0.57 

5°x5° 

CER 0.79 0.42 0.40 0.72 

COT 0.54 0.41 0.25 0.48 

LWP 0.57 0.37 0.34 0.52 

CF 0.46 0.48 0.16 0.53 

CTP 0.49 0.45 0.25 0.31 

6°x6° 

CER   0.85** 0.47 0.49 0.54 

COT 0.62 0.62 0.37 0.56 

LWP 0.64 0.34 0.41 0.31 

CF 0.30 0.23 0.16 0.40 

CTP 0.46 0.47 0.22 0.45 

7°x7° 

CER     0.73*** 0.36 0.39     0.63*** 

COT 0.60 0.37 0.37    0.53** 

LWP 0.58 0.19 0.31 0.47 

CF 0.34 0.13 0.05    0.43** 



CTP 0.37 0.47 0.21 0.47 

8°x8° 

CER     0.86*** 0.48     0.57***    0.63** 

COT     0.72*** 0.50 0.54     0.65*** 

LWP 0.71 0.41 0.48 0.51 

CF 0.39 0.27 0.14    0.42** 

CTP 0.48 0.56 0.56 0.56 

9°x9° 

CER     0.81***     0.33***     0.44***     0.70*** 

COT     0.69*** 0.40 0.38     0.67*** 

LWP     0.68*** 0.23     0.43***     0.49*** 

CF     0.46*** 0.20 0.09     0.47*** 

CTP 0.47 0.53 0.18 0.58 

10°x10° 

CER     0.86***     0.46***     0.54***     0.62*** 

COT     0.71***    0.55**     0.52***     0.67*** 

LWP     0.72*** 0.29     0.39***     0.47*** 

CF     0.49*** 0.19 0.09     0.44*** 

CTP 0.53 0.58 0.29 0.66 

11°x11° 

CER     0.87***     0.45***     0.39***     0.54*** 

COT     0.71***     0.53***     0.45***     0.60*** 

LWP     0.73*** 0.73 0.26     0.44*** 

CF     0.48*** 0.13 0.04     0.29*** 

CTP 0.62 0.52 0.26 0.57 

12°x12° 

CER     0.84***     0.42*** 0.31     0.55*** 

COT    0.66***     0.46*** 0.37     0.52*** 

LWP    0.64*** 0.30 0.05     0.41*** 

CF    0.42*** 0.13 0.11     0.24*** 

CTP 0.53 0.49 0.27 0.54 

Note: ***indicates that the q value is significant at the 0.01 level (p < 0.01), **indicates that the q value is 

significant at the 0.05 level (p < 0.05). 

Table 3. q values for factors which may influence cloud parameters over the YRD in areas with 

different sizes, evaluated for data collected in the period from 2008-2022. 

Region Cloud AOD RH LTS PVV 

4°x4° 

CER 0.47 0.64 0.04 0.27 

COT 0.75 0.62 0.37 0.55 

LWP 0.60 0.54 0.49 0.60 

CF 0.42 0.62 0.06 0.62 

CTP 0.85 0.59 0.53 0.77 

5°x5° 

CER 0.28 0.53 0.24 0.17 

COT 0.79 0.43 0.43 0.53 

LWP 0.69 0.49 0.44 0.38 

CF 0.46 0.42 0.33 0.51 

CTP 0.86 0.69 0.57 0.60 

6°x6° 

CER 0.17 0.14 0.18 0.11 

COT 0.75 0.30 0.27 0.41 

LWP 0.71 0.32 0.31 0.26 

CF 0.30 0.34 0.12 0.39 

CTP 0.81 0.53 0.40 0.54 



7°x7° 

CER 0.18 0.21 0.06 0.19 

COT 0.75 0.47 0.21 0.53 

LWP 0.43 0.44 0.52 0.33 

CF 0.36 0.26 0.13 0.23 

CTP 0.73 0.75 0.46 0.65 

8°x8° 

CER 0.31 0.24 0.34 0.17 

COT     0.66*** 0.45 0.24 0.31 

LWP 0.21 0.43 0.60 0.38 

CF   0.28** 0.07     0.68*** 0.05 

CTP 0.60 0.75 0.45 0.56 

9°x9° 

CER 0.31 0.25 0.13 0.18 

COT     0.61***     0.45*** 0.12 0.29 

LWP 0.16 0.32     0.55*** 0.18 

CF     0.30*** 0.02     0.50*** 0.07 

CTP 0.50     0.74*** 0.32 0.56 

10°x10° 

CER 0.41 0.28 0.20 0.27 

COT     0.63***    0.50** 0.08 0.37 

LWP 0.21 0.36     0.51*** 0.22 

CF     0.38*** 0.06     0.48*** 0.17 

CTP 0.50 0.78 0.31 0.60 

11°x11° 

CER 0.35 0.28 0.17 0.22 

COT     0.69***     0.40*** 0.06 0.46 

LWP    0.35** 0.28 0.40 0.24 

CF     0.39*** 0.06     0.47*** 0.15 

CTP 0.48     0.72*** 0.24 0.49 

12°x12° 

CER 0.32 0.19 0.19 0.16 

COT     0.50***     0.28*** 0.07 0.47 

LWP   0.18**     0.25***     0.36*** 0.26 

CF    0.37*** 0.06     0.45*** 0.12 

CTP 0.32     0.65*** 0.25 0.35 

Note: ***indicates that the q value is significant at the 0.01 level (p < 0.01), **indicates that the q value is 

significant at the 0.05 level (p < 0.05). 

5. Another important factor is the calculation of LWP that is used for binning in the ACI 

calculations. As the LWP depends on the CER, does this not lead to an implicit filtering by 

CER, which would affect the calculation of ACI?  

Answer: Stratification of the data for LWP was applied by, e.g., Saponaro et al. (2017) and Ma 

et al. (2018) in an attempt to satisfy the conditions for the Twomey effect. Indeed, Ma et al. 

(2018) show that the variation of the CER vs AI (both stratified according to LWP) relation 

changes with changes in LWP. The data in Section 4.3 also show the variation of S with the 

LWP interval and likely this is a more continuous variation if smaller LWP intervals (quasi-

constant LWP, Ma et al., 2018) would be used. So indeed the assumption of constant LWP is 

not truly satisfied and this indeed affects the calculation of ACI as can be deduced from the 

data in Table 4 below (Table 3 in the revised manuscript). We further note that Arola et al. 

(2022) and others show a clear LWP - Nd relationship, in agreement with other studies. And 

LWP and Nd are both calculated from CER and COT, so a relationship is expected. We have 

addressed the findings by Arola et al. (2022) and this text was copied in our response to 



comment 4. We have added the following text in Section 4.3 (lines 528-534): “The variation 

of S with changes in LWP indicates that the condition of constant LWP is not truly satisfied: 

if the data would be stratified according to smaller LWP intervals (quasi-constant LWP, Ma et 

al., 2018), S would likely vary more smoothly with LWP. As mentioned in the Introduction, 

LWP is not directly retrieved but calculated form CER and COT and thus also the calculation 

of S is to some extend affected by LWP. We further note the results by Ma et al. (2018), i.e. 

the slope of CER versus AI (comparable to S in this paper) varies little with LWP, with positive 

values over land and negative values over ocean and thus behaves similar to the data in Table 

4 (Table 3 in the revised manuscript) for YRD and ECS.”. 

Table 4. Estimates of S, computed using Eq. (1), and correlation coefficients R between CER and AOD, 

stratified by LWP, over the ECS for 0.1<AOD<0.3 and over the YRD for AOD>0.3. Statistically 

significant data points are indicated with * (p value < 0.01). 

  ECS (0.1<AOD<0.3) YRD (AOD>0.3) 

LWP (g m-2) S R S R 

0-40 0.10 0.94* 0.08 0.63* 

40-80 -0.19 -0.98* 0.10 0.81* 

80-120 -0.38 -0.99* 0.06 0.57* 

120-160 -0.41 -0.99* -0.03 -0.11 

160-200 -0.46 -0.98* -0.14 -0.42* 

6. Is there a reason for using AOD, rather than a product such as the aerosol index (Nakajima 

et al, 2001), which has a stronger link to the CCN concentration? 

Answer: AI=AOD*AE, but AE retrieval over land from MODIS is problematic (Ma et al., 

2018 refers to Sayer et al., 2013) and therefore is no longer provided as a MODIS product in 

C6! We cite Ma et al.: “using AOD instead of AI does not influence the conclusions. (next to 

their Table 1)” 

Another argument may come from Gryspeerdt et al. (2023): “The larger relative error in the 

aerosol retrieval under clean conditions reduces the correlation between the CCN and the 

retrieved aerosol due to regression dilution (Pitkänen et al., 2016). This reduces the magnitude 

of β under clean conditions, as observed in Fig. 1a and b. This issue is particularly severe for 

AI, which is calculated using the ratio of aerosol optical depths at two wavelengths, resulting 

in a relative error which tends to infinity under clean conditions” (β = d ln Nd / d Ln A, where 

A is the aerosol proxy AI or AOD). The problem occurs under clean aerosol conditions because 

the contribution of the surface to the TOA result in larger uncertainty in the retrieved AOD. 

We have added the following text in the Introduction (lines 106-122): “In studies on S utilizing 

satellite data, which is the subject of the current study, the aerosol optical depth (AOD) is often 

used as a proxy for the aerosol concentration, which is justified by the correlation of AOD and 

CCN published by Andreae (2009). However, AOD is determined by all aerosol particles in 

the atmospheric column, including particles that do not act as CCN, depends on the relative 

humidity (RH) throughout the atmospheric column, does not provide information on chemical 

composition and may be influenced by aerosol in disconnected layers. The use of the Aerosol 

Index (AI), the product of AOD and the Ångström Exponent (AE; describing the spectral 



variation of AOD), is suggested as a better indicator of CCN because AE includes information 

on aerosol size (e.g., Nakajima et al., 2001). However, the AE is determined from AOD 

retrieved at two or more wavelengths and the evaluation of the results versus ground-based 

reference data shows the large uncertainty in AE. Therefore, in recent MODIS product 

Collections, AE is not provided over land (e.g., Levy et al., 2013; Kourtidis et al., 2015). AE 

is also not well-defined for low AOD for which uncertainty is largest (Bellouin et al., 2020; 

Gryspeerdt et al., 2023). The issues associated with using AOD or AI as proxy for CCN were 

discussed by, among others, Rosenfeld et al. (2014) who do not recommend the use of AI while 

also concluding that no better proxy is available. Therefore, in this study, AOD is used as a 

proxy for CCN to study S. It is noted that in other studies, e.g., Jia et al., 2022, both AOD and 

AI have been used and the results show similar behaviour.”. 

Specific points 

1. The abstract mostly list results, rather than providing an overview of the paper and the 

conclusions. Is there an overall picture or aim of the study that could help to structure this? 

Answer: We have revised the abstract substantially and added to following sentence upfront, 

to provide the overall picture “The sensitivity (S) of cloud parameters to the influence of 

different aerosol and meteorological parameters has in most previous aerosol-cloud interaction 

(aci) studies been addressed using traditional statistical methods. In the current study, 

relationships between cloud droplet effective radius (CER) and aerosol optical depth (AOD, 

used as a proxy for cloud condensation nuclei, CCN), i.e. the sensitivity (S) of CER to AOD, 

is investigated with different constraints of AOD and cloud liquid water path (LWP). In 

addition to traditional statistical methods, the geographical detector method (GDM) has been 

applied to quantify the relative importance of the effects of aerosol and meteorological 

parameters, and their interaction, on S.” Note that many other changes were made to the 

abstract in “track changes”. 

2. L39 - Is this opposite effect just because the sign of the pressure vertical velocity is defined 

differently? I am not sure what opposite means in this context. 

Answer: We can see that the CER decreases with increasing AOD over the ECS, which is 

consistent with the Twomey effect. The meteorological parameters do no change the trend of 

CER variation to the AOD. However, the CER is larger for higher LTS and RH but lower for 

higher PVV. We also reorganized the text with “The study further shows that over the ECS the 

CER is larger for higher LTS and RH but lower for higher PVV.” (see lines 32-33) in the 

revised manuscript. 

3. L68 - The terms first and second indirect effect are less commonly used in more recent 

studies. I would suggest referring to adjustments instead (see IPCC AR5), as this more closely 

links in with the radiative forcing/effective radiative forcing distinction and aligns more closely 

with other recent work. 

Answer: Thank you for this valuable comment. We have changed the terminology throughout 

the revised manuscript and used several key references to guide us, such as IPCC AR5, 

Gryspeerdt et al. (2023), Bellouin et al. (2020) and several others.  

4. L81 - I would have said that satellites typically have a fairly poor temporal resolution (unless 

the authors are referring to geostationary satellites?) 



Answer: In this paper we only use MODIS data. We have removed “and high spatial and 

temporal resolution”  

5. L93 - Is there any reason for choosing these studies?  They seem to be rather disjointed, with 

some looking at the Twomey effect directly and some considering adjustments. Some notable 

studies looking at the impact of meteorological parameters on potential adjustments (e.g. Koren 

et al, 2010) and the particularly Twomey effect (Jones et al, 2009; Jia et al. 2022) are left out. 

Answer: We have reorganized the text and added the notable references looking at the impact 

of meteorological parameters on potential adjustments (e.g. Koren et al, 2010) and the 

particularly Twomey effect (Jones et al, 2009; Jia et al. 2022). See the text on pages 5-6 (lines 

129-164) in the revised manuscript. 

6. L96 - PVV is redefined here 

Answer: Consistent notation has been used through the revised manuscript. 

7. L116 - There needs to be some discussion of how the GDM is affected by the results of 

Grandey and Stier (2010), who suggest that spatial correlations are unreliable. It may be that 

the results of GS10 are not applicable here, as the GDM method is capable of accounting for 

the co-variations that drive the results in GS10. If so, it would be good to have some evidence 

of this, as it would provide more significance to the results presented in this work. 

Answer: Spatially-varying aerosol and cloud properties may contribute towards observed 

relationships between aerosol and cloud properties. This may affect the results of many of the 

aforementioned studies which analyze data on a relatively large regional scale. Aerosol type, 

cloud regime and synoptic regime may vary over such large spatial scales. If data are analyzed 

for the region as a whole, false correlations may be introduced. Grandy and Stier (2010) 

suggested that for region sizes larger than 4°x4°, spurious spatial variations in retrieved cloud 

and aerosol properties can introduce widespread significant errors to calculation S. However, 

we can observe that at the regional scales of 8°x8° and 15°x15°, although significant errors are 

introduced, the spatial distribution patterns of S (the sensitivities of CER and Nd to AOD) look 

very similar, as shown in Figure 2 of Grandy and Stier (2010). 

GDM is a spatial statistical analysis method aimed at studying the degree of influence and 

spatial patterns of different factors on the changes in geographic phenomena. In the analysis, 

we can simultaneously consider the interactions and impacts among multiple factors, thus 

revealing the relationships of synergistic changes. Therefore, the geographic detector method 

can encompass the analysis of co-variations.  

We have added the following text in the Sect 4.6.1 (lines 647 to 666): “Tables 5 and 6 list q 

values for individual factors, together with p showing the absence of statistical significance in 

many cases, especially over the YRD, and often the explanatory power is not high when the 

significance is low. These data show that cloud parameters are dominated by aerosol effects 

over the ECS but meteorological influences on cloud parameters predominate over the YRD, 

as was also concluded from the analysis from “traditional” statistical methods presented in 

Section 4.5 and these conclusions are consistent with the results published by Andersen and 

Cermak (2015). Among the meteorological parameters, we also find that PVV (with highest q 

in the three meteorological parameters) predominantely influences cloud parameters over the 

ECS. Jones et al. (2009) and Jia et al. (2022) reported that stronger aerosol cloud interactions 



typically occur under higher updraft velocity conditions. In addition, we find that CTP is 

mainly affected by RH (q = 0.74***) and PVV (q = 0.56) over the YRD, as suggested by Koren 

et al. (2010). Koren et al. reported that observed cloud top height correlates best with model 

pressure updraft velocity and relative humidity. To some extent, LTS influences CER (q = 

0.44***) and LWP (q = 0.43***) over the ECS, while, in contrast, over the YRD LTS 

predominately influences CF (q = 0.50***) and LWP (q = 0.55***). Matsui et al. (2004) and Tan 

et al. (2017) reported that aerosol impact on CER is stronger in more dynamic environments 

that feature a lower LTS and argue that very high LTS environments dynamically suppress 

cloud droplet growth and reduce aci intensity. While strong correlations between AOD and 

cloud parameters have been previously observed, they are likely due to the swelling of aerosol 

particles in humid airmasses (Quaas et al, 2010), rather than an aerosol influence, which is in 

agreement with findings by, e.g., Myhre et al. (2007), Twohy et al. (2009) and Quaas et al. 

(2010).” 

This study provides a general description of the sensitivity (S) of cloud parameters to the 

influence of different aerosol and meteorological parameters over the YRD and the ECS. 

Correlations between AOD and cloud parameters are found over the target regions, which can 

be attributed in part to the influence of general circulation. In general, there are many relations 

between the various parameters, both related to cloud microphysics and meteorology. Thus, 

establishing cause and effect relationships between parameters is difficult and must be made 

with care. It is not possible to completely separate meteorological influences from aerosol 

influences on clouds. This work can therefore only provide further evidence of the aerosol and 

meteorological effect on clouds and quantify the relative contributions and combined effects 

on clouds, but cannot quantify the absolute contributions with confidence. 

In the current study, based on a regional scale of 9°x9°, the GDM method is used to explore 

the relative importance of various factors on cloud parameters and identify possible 

correlations between different factors. In the future, aerosol cloud interactions can be studied 

on smaller regional scale (<4°x4°) using higher resolution source data. 

8. L154 - Why only 2008 to 2022? The MODIS record runs back to 2002/3 

Answer: There is no particular reason for the selection of 2008 as the starting year. Most other 

studies use a shorter period of time. Based on your comment and that of other referees, we have 

thought about shorter periods and realized that, in principle, periods were included when the 

AOD was at its maximum (2008-2014) and when the AOD was decreasing in response to 

implementation of emission reduction policy. We therefore split the data sets for these 2 periods 

and plotted CER vs AOD, see Figures 2 and 3 below. We noticed that over the ECS there was 

not a significant difference between the CER/AOD relations during these two periods. 

However, over the YRD, for the high AOD period, CER clearly decreased with increasing 

AOD for 0.1<AOD<0.3 and for larger AOD the CER increased with R=0.87. For the second 

period, however, there was no clear correlation between CER and AOD for both AOD intervals. 

The data also show that over the YRD the CER for AOD>0.3 increased to larger values during 

the first period than during the second period. We did not look for explanations of this 

difference, possibly the aerosol properties changed in response to emission reduction, or 

confounding meteorological factors played a role. 

We also looked for shorter periods, considering each year between 2008 and 2022. The results 

show similar behavior for each year over both study areas with interannual variations between 



the fits, and thus the value of S. However, the statistical significance is low (large p) due to the 

small number of samples. 

These findings were briefly summarized in the Discussion (lines 733-746): “These results were 

obtained using data from a period of 15 years. During this period, the aerosol properties 

changed in response to expanding economy, resulting in the increase of the AOD until 2007, 

and the implementation of emission reduction policy resulting in the decrease of the AOD from 

2014 which flattened from about 2018 (de Leeuw et al., 2021; 2022; 2023). To account for 

these changes, the sensitivity S was determined for the periods 2008-2014 and 2014-2022, 

without stratification for LWP (see Figures S1 and S2 in the Supplementary). The results for 

the ECS show no significant difference between the CER-AOD relations during these two 

periods. Over the YRD, however, the data for 2008-2014 show a clear decrease of CER with 

increasing AOD for 0.1<AOD<0.3 and for larger AOD the CER increased, with a statistical 

significant correlation (R=0.87) and S=0.10 as compared to S=0.08 for the whole period. In 

contrast, the data for 2014-2022 show no clear correlation between CER and AOD for both 

AOD intervals over the YRD. A similar exercise for shorter periods, i.e. for each year between 

2008 and 2022, show similar behavior as for the whole period 2008-2022, over both study 

areas, with interannual variations of the value of S. However, the statistical significance is low 

(large p) due to the small number of data samples in each year.” 

  

Figure 2. CER vs AOD over the YRD for the periods 2008-2014 (left) and 2015-2022 (right). 

   

Figure 3. CER vs AOD over the ECS for the periods 2008-2014 (left) and 2015-2022 (right). 



9. L159 - The aerosol and cloud retrievals are necessarily conducted in different regions of the 

1x1 degree gridbox (aerosol retrievals are only conducted in clear sky), meaning that they are 

not coincident. This may not affect the results if the regions are non-precipitating. Jia et al 

(2022) showed that wet scavenging can have a considerable impact on the susceptibility. 

Answer: The use of non-collocated aerosol and cloud data is addressed in Section, 2.2. (lines 

225-229): “Aerosol retrieval is only executed in clear sky conditions whereas cloud properties 

can only be retrieved in cloudy skies. Hence, it is not possible to obtain co-located aerosol and 

cloud data from satellite. For satellite-based aci studies it is assumed that, following, e.g., Jia 

et al. (2022), aerosol properties are homogeneous enough to be representative for those in 

adjacent cloud areas. Consequences of this assumption were discussed by McComiskey and 

Feingold (2012).”  

We have filtered the data (exclude precipitating clouds) following the method used in Ma et al. 

(GRL2018) and Saponaro et al. (2017) (see lines 265-267 in the revised manuscript): “To 

ensure that the data used only included single layer liquid clouds and nonprecipitating cases, 

the filtering criteria described by Saponaro et al. (2017) were applied.”. This issue is shown 

throughout the revised manuscript (all the figures were changed/modified in this respect). 

10. L153 - I would suggest referencing Platnick et al (2016), given the authors are using 

MODIS collection 6.1.  

Answer: We have added the following text to Section 2.2. (lines 236-245): “The MODIS 

Collection 6.1 AOD product over China has been validated by, e.g., Che et al. (2019) and 

globally over land and ocean by Wei et al. (2019). MODIS C6.1 cloud products were evaluated 

by Platnick et al. (2017). The validation of CER and LWP, the primary cloud products used in 

this paper, was described by Painemal and Zuidema (2011), who compared MODIS C5 with 

in situ data (aircraft), and likewise the MODIS C6.1 CER product was evaluated by Fu et al. 

(2022) by comparison with airborne measurements. Fu et al. (2022) concluded that their 

“validation, along with in situ validation of MODIS CER from other regions (e.g., Painemal 

and Zuidema, 2011; Ahn et al., 2018), provides additional confidence in the global distribution 

of bias-adjusted MODIS CER reported in Fu et al. (2019).” It is noted that COT and CER are 

retrieved whereas LWP is secondarily derived (e.g., Painemal and Zuidema, 2011).” 

11. L169 - Brendan et al (2005) suggests that cloud contamination becomes an issue when the 

AOD is larger than 0.6. Why is a larger threshold used here? 

Answer: The conclusion of Brendan et al. (2005) applies to the MOD06 Collection 04 cloud 

product and these authors conclude with “The cloud masking technique in the recently updated 

Collection 05 cloud retrieval algorithm has been improved, and the Collection 05 cloud 

products available in the near future will largely eliminate the aerosol contamination effect”. 

Christenson et al. (ACP 2017) used MOD06 C6 data (1km x1km) and reported that “large 

aerosol optical depths remain in the MODIS-observed pixels near cloud edges, due primarily 

to 3-D effects (Varnái and Marshak, 2009) and the swelling of aerosols by higher relative 

humidity.” And “Varnái and Marshak (2009) also noted that beyond 15 km contamination 

effects were minimized in MODIS data (1km x1km).” Therefore Christensen et al. only used 

data pairs beyond the 15 km length scale in their aci study.  

In our study we use MODIS L3 collection 6.1 with a spatial resolution of 1°x1°. Comparisons 

with surface-based sun photometer data revealed that Collection 6 should improve upon 



Collection 5, and overall, 69.4% of MODIS Collection 6 AOD fell within an expected 

uncertainty of ± (0.05 + 15%) (Levy et al., 2013; Tan et al., 2017). In this study, to eliminate 

1° by 1° scenes in which the aerosol distribution is heterogeneous, retrievals with a standard 

deviation higher than the mean values are discarded (Saponaro et al., 2017; Jia et al., 2022). In 

addition, many previous researches do not set a threshold of AOD when using MODIS L3 C6 

data (Grandey and Stier, 2010; Tang et al., 2014; Saponaro et al., 2017; Tan et al., 2017; Ma et 

al., 2018; Jia et al., 2022). Based on these findings, we used the larger threshold of 1.5. 

These explanations have been summarized in the text added to section 2.2 (lines 252-260): 

“The choice of this threshold, rather than 0.6 used by Brendan et al. (2006), who used MOD06 

Collection 04 products, is based on reports by Christenson et al. (2017) and (Varnái and 

Marshak, 2009). Christenson et al. (2017) used MOD06 C6 data (1km x1km) and reported that 

“large aerosol optical depths remain in the MODIS-observed pixels near cloud edges, due 

primarily to 3-D effects (Varnái and Marshak, 2009) and the swelling of aerosols by higher 

relative humidity.” Varnái and Marshak (2009) noted that beyond 15 km contamination effects 

were minimized in MODIS data (1km x1km). Furthermore, we discarded scenes (1° by 1°) in 

which the aerosol distribution is heterogeneous, i.e. with a standard deviation higher than the 

mean value (Saponaro et al., 2017; Jia et al., 2022).” 

12. L172 - Why is 200gm^-2 used as a threshold for the LWP? 

Answer: In the text we added (line 261): “LWP larger than 200 g m-2 is excluded to avoid deep 

convective clouds (Wang et al., 2014)”. 

13. L184 - I would suggest putting the URL links in the references or acknowledgements 

Answer: Although it is nowadays quite common to provide url + last accessed data as a 

reference in the text, we have followed this suggestion.  

14. L187 - ERA5 and ERA Interim both seem to be mentioned at different points in this work. 

I suggest using only one (preferably ERA5) 

Answer: Indeed we used ERA-5 and have corrected this throughout the text. 

15. L190 - I am not sure this is the definition of the first indirect effect as all of these properties 

also vary with cloud adjustments. 

Answer: In response to your comments and those from other reviewers, we have changed the 

terminology to the terminology recommended in IPCC AR5 (see also our response to your 

specific point 3). As a result, we have change the title of Section 3.1 to “Sensitivity of cloud 

parameters to changes in aerosol concentrations” and the first sentence now reads “Changes in 

aerosol loading lead to an adjustment of cloud optical or microphysical parameters (COT, CER, 

etc.).”, together with many other changes throughout the revised manuscript. 

16. L192 - Ice nuclei are usually referred to as "ice nucleating particles" (INP) - Vali et al (2015) 

Answer: Thank you for this suggestion: this has been changed here and elsewhere in the 

revised manuscript.  

17. L204 - Do the authors mean CCN here (as in Andreae, 2009) 



Answer: In the original formulation by Feingold et al (2001), α is the AOD. This relation was 

derived assuming that the cloud droplet number concentration Nd varies with the aerosol 

number as Na
a1(their eq. 5), with a1=0.7. Following Andreae (2009) there is a power law 

relation between AOD and CCN. We changed the sentence below eq. 1 (see lines 300-301 in 

the revised manuscript) to “Where 𝑟𝑒 represents the CER and 𝛼 represents the AOD. Following 

Andreae (2009), AOD and CCN are correlated and AOD varies with CCN following a power 

law relationship.”, while also changes were made to the rest of this paragraph.  

18. L216 - An explicit list of these parameters, perhaps in the diagram, could be useful for 

others trying to replicate this study. 

Answer: Thank you for this comment. We have added this information in Table 5 (Table 1 in 

the revised manuscript). 

Table 5. Parameters used in the present study, together with the sources, time periods and spatial 

resolutions. 

Source Time period Resolution Parameters 

MYD08 Jan 2008-Dec 2022 Daily, 1°x1° AOD at 550 nm 

COT at 2.1 um 

CER at 3.7 um and 2.1 um 

Cloud-top temperature 

Cloud-top pressure 

LWP at 2.1 um 

Cloud Fraction 

Solar zenith angle 

Sensor zenith angle 

Cloud multi-layer flag 

   Cloud phase flag 

ERA5 Jan 2008-Dec 2022 hourly, 0.25°x0.25° Temperatures at 700 and 1000 hPa 

Relative humidity at 750 hPa 

Vertical velocity at 750 hPa 

19. L221 - I have not used the Jenks method before, but from what I understand, you have to 

specify the number of regions/regimes? How is this done and does the number of regions 

chosen affect the results? 

Answer: The geographic detector model requires the input independent variable to be a type 

variable. The Jenks natural breaks classification method is one of many discretization methods 

and is commonly used in literature. The Jenks natural breaks classification method (Brewer 

and Pickle, 2002), aiming to minimize the variance within the group and maximize the variance 

between groups, was applied to categorize the whole region into n subregions. For example, 



AOD needs to be classified into 5 levels using the Jenks natural breaks classification method, 

and the AOD source data needs to be reclassified into 1-5 natural numbers from small to large, 

and then counted into the grid. Therefore, the input of the independent variable AOD is a type 

variable. However, it should be noted that the GDM also has unstable characteristics. On the 

one hand, it is due to the MAUP (Modified Area Unit Problem) variable area unit problem, 

which can be understood as the influence of "scale effect". Due to the limitation of data 

resolution used in this study, the spatial statistical unit is 1°x1°. On the other hand, the methods 

used for data discretization can also have an impact. This study attempts to determine the 

optimal number of classifications by examining the impact of different classification numbers 

(3-8) on the GDM output results (as shown in Tables 6 and 7 below).  The data shows that the 

classification number of regions does not affect the relative importance of cloud factors on the 

cloud. Here we classify the values of each cloud factor into 5 levels during the period of 2008-

2022.  

Table 6. q values for factors which may influence cloud parameters over the ECS (9°x9°) in different 

number of classification levels (3~8) (see text) using Jenks natural breaks classification method, 

evaluated for data collected in the period from 2008-2022. 

cloud parameters 
number of 

classification levels 
AOD RH LTS PVV 

CER 

3 0.80***    0.33** 0.42*** 0.69*** 

4 0.81***     0.40*** 0.43*** 0.67*** 

5 0.81***    0.33** 0.44*** 0.70*** 

6 0.85*** 0.41 0.52*** 0.73*** 

7 0.83*** 0.37 0.44 0.74*** 

8 0.84*** 0.40 0.48** 0.70*** 

COT 

3 0.66*** 0.43   0.42** 0.64*** 

4 0.69*** 0.45 0.43 0.66*** 

5 0.69*** 0.40 0.38 0.67*** 

6 0.72*** 0.47 0.50 0.72*** 

7 0.75*** 0.49 0.43 0.71*** 

8 0.75*** 0.48 0.46 0.68*** 

LWP 

3 0.68*** 0.18     0.34*** 0.57*** 

4 0.67*** 0.25    0.37** 0.48*** 

5 0.68*** 0.23     0.43*** 0.49*** 

6 0.72*** 0.27 0.44 0.55*** 

7 0.71*** 0.30 0.36 0.59*** 

8 0.75*** 0.26 0.45 0.58*** 

CF 

3 0.42*** 0.19 0.05 0.46*** 

4 0.46*** 0.18 0.07 0.44*** 

5 0.46*** 0.20 0.09 0.47*** 

6 0.47*** 0.22 0.07 0.50*** 

7 0.49*** 0.19 0.08 0.56*** 

8 0.49*** 0.22 0.09 0.50*** 

CTP 

3 0.47 0.48 0.24 0.60 

4 0.44 0.56 0.21 0.58 

5 0.47 0.53 0.18 0.58 

6 0.51 0.56 0.36 0.69 

7 0.50 0.57 0.27 0.66 



8 0.51 0.58 0.26 0.65 

Note: ***indicates that the q value is significant at the 0.01 level (p < 0.01), **indicates that the q value is 

significant at the 0.05 level (p < 0.05). 

Table 7. q values for factors which may influence cloud parameters over the YRD (9°x9°) in different 

number of classification levels (3~8) (see text) using Jenks natural breaks classification method, 

evaluated for data collected in the period from 2008-2022. 

cloud parameters 
number of 

classification levels 
AOD RH LTS PVV 

CER 

3 0.22 0.14 0.01 0.12 

4 0.32 0.19 0.05 0.14 

5 0.31 0.25 0.13 0.18 

6 0.33 0.17 0.17 0.23 

7 0.34 0.25 0.17 0.15 

8 0.38 0.27 0.19 0.23 

COT 

3     0.52***    0.47** 0.08 0.19 

4     0.53***     0.52*** 0.10 0.31 

5     0.61*** 0.45 0.12 0.29 

6    0.56** 0.45 0.11 0.28 

7     0.60*** 0.49 0.12 0.28 

8 0.59 0.54 0.15 0.32 

LWP 

3 0.17 0.35     0.52*** 0.16 

4 0.17 0.34     0.54*** 0.00 

5 0.16 0.32     0.55*** 0.18 

6 0.18 0.34 0.55 0.21 

7 0.18 0.38    0.54** 0.18 

8 0.23 0.37 0.55 0.20 

CF 

3     0.30*** 0.01     0.34*** 0.04 

4     0.37*** 0.02     0.45*** 0.03 

5     0.30*** 0.02     0.50*** 0.07 

6     0.39*** 0.03     0.50*** 0.09 

7     0.36*** 0.05     0.58*** 0.06 

8     0.38*** 0.04     0.56*** 0.10 

CTP 

3 0.49    0.72** 0.26 0.48 

4 0.46     0.74*** 0.35 0.52 

5 0.50    0.74*** 0.32 0.56 

6 0.52 0.75 0.32 0.56 

7 0.55 0.79 0.38 0.57 

8 0.50 0.79 0.36 0.56 

Note: ***indicates that the q value is significant at the 0.01 level (p < 0.01), **indicates that the q value is 

significant at the 0.05 level (p < 0.05). 

20. Eq2 - I am not familiar with this method, so might need a bit more explanation. Is sigma 

here the variance of y within the specified region/regime? 



Answer: Sigma 𝜎 here is the standard deviation of y within the specified region/regime and 

𝜎2 is the variance of y within the specified region/regime. This is specified in the text on page 

13 of the revised manuscript (see lines 334-335): “and 𝜎𝑖
2 and 𝜎2 denotes variance of samples 

in the subregion i and the total variance in the entire study area, respectively.”.  

21. Eq2 - How does this method compare to a more common correlation measure for non-linear 

relationships, such as Spearman's Rank? 

Answer: Spearman's Rank analysis and GDM are two different statistical methods used to 

study the correlation and degree of influence between variables. 

Spearman's Rank analysis is a non-parametric statistical method used to measure the 

correlation between two variables. It assesses the monotonic relationship between variables by 

only calculating the rank order of the variables. 

GDM is a spatial statistical analysis method mainly used to study the spatial correlation and 

influencing factors between geographical phenomena. It can identify the dominant role, 

interaction, and non-linear effects of different factors on the spatial distribution of geographical 

phenomena. It not only accounts for the rank order of the variables but also spatial information. 

The results of Spearman's Rank analysis are shown in Table 8 and Table 9 below. Over the 

ECS, the correlation coefficient ρ between dependent a y variable (CER, COT, LWP) and an 

independent x variable (AOD, RH, LTS and PVV) are highest for AOD and following by PVV, 

LTS and RH. For CF and CTP, the correlation coefficient ρ is highest for PVV, followed by 

AOD, RH and LTS. The orders of correlation coefficient ρ are consistent with that of GDM q 

values (Table 5 in the revised manuscript). Over the YRD, for the CF the orders of correlation 

coefficient ρ are different from that of GDM q values (Table 6 in the revised manuscript). It 

shows that the correlation coefficient ρ is lowest for LTS but the GDM q value is highest for 

LTS. It may be attribute to that GDM not only accounts for the rank order of the variables as 

determined by the Spearman’s Rank method but also spatial information. 

Table 8. Statistics of Spearman's Rank analysis between x (AOD and meteorological conditions) and 

y (cloud parameters) over the ECS during 2008-2022. Statistically significant data points are indicated 

with *** (p value < 0.01) 

Cloud parameter AOD RH LTS PVV 

CER -0.92***   0.61***  0.65*** -0.83*** 

COT  0.85*** -0.63*** -0.63***  0.83*** 

LWP -0.85***  0.48***  0.59*** -0.71*** 

CF 0.65*** -0.46*** -0.23**  0.71*** 

CTP -0.70***  0.73***  0.37*** -0.81*** 

 

 

 

 

 

 



Table 9. Statistics of Spearman's Rank analysis between x (AOD and meteorological conditions) and 

y (cloud parameters) over the YRD during 2008-2022. Statistically significant data points are indicated 

with * (p value < 0.01) 

Cloud parameter AOD RH LTS PVV 

CER   0.40*** -0.36*** -0.09 0.25** 

COT -0.76***  0.63*** -0.19 -0.42*** 

LWP -0.35***  0.59***    -0.63*** -0.44*** 

CF -0.49***  0.30***    0.26** -0.32*** 

CTP  0.72*** -0.85***     0.48***  0.71*** 

22. L379 - The p-value for testing here is quoted as 0.01, but elsewhere it appears that 0.1 (a 

fairly lax criteria) is used.  

Answer: Done. We have made unified standards that the p-value for testing here is quoted as 

0.01 through the revised manuscript.  

23. L422 - The high explanatory power of AOD for CF variations suggests that this method is 

not actually identifying causal relationships. While strong correlations between AOD and CF 

have been previously observed, they are likely due to aerosol humidification (Quaas et al, 2010), 

rather than an aerosol influence. It seems likely the same effect is being observed here, so care 

should be taken in the presentation of the results not to mis-attribute causality (unless 

applicable).  

Answer: This study provides a general description of the sensitivity (S) of cloud parameters to 

the influence of different aerosol and meteorological parameters over YRD and ECS. 

Correlations between AOD and cloud parameters are found over the target regions, which can 

be attributed in part to the influence of general circulation. In general, there are many relations 

between the various parameters, both related to cloud microphysics and meteorology. It is not 

possible to completely separate meteorological influences from aerosol influences on clouds. 

This work can therefore only provide further evidence of the aerosol and meteorological effects 

on clouds and quantify the relative contributions and combined effects on clouds, but cannot 

quantify the absolute contributions with confidence. Thus, establishing cause and effect 

relationships between parameters is difficult and must be made with care.  

We have added the following text in the Sect 4.6.1 (lines 647 to 666): “Tables 5 and 6 list q 

values for individual factors, together with p showing the absence of statistical significance in 

many cases, especially over the YRD, and often the explanatory power is not high when the 

significance is low. These data show that cloud parameters are dominated by aerosol effects 

over the ECS but meteorological influences on cloud parameters predominate over the YRD, 

as was also concluded from the analysis from “traditional” statistical methods presented in 

Section 4.5 and these conclusions are consistent with the results published by Andersen and 

Cermak (2015). Among the meteorological parameters, we also find that PVV (with highest q 

in the three meteorological parameters) predominantely influences cloud parameters over the 

ECS. Jones et al. (2009) and Jia et al. (2022) reported that stronger aerosol cloud interactions 

typically occur under higher updraft velocity conditions. In addition, we find that CTP is 

mainly affected by RH (q = 0.74***) and PVV (q = 0.56) over the YRD, as suggested by Koren 

et al. (2010). Koren et al. reported that observed cloud top height correlates best with model 

pressure updraft velocity and relative humidity. To some extent, LTS influences CER (q = 

0.44***) and LWP (q = 0.43***) over the ECS, while, in contrast, over the YRD LTS 



predominately influences CF (q = 0.50***) and LWP (q = 0.55***). Matsui et al. (2004) and Tan 

et al. (2017) reported that aerosol impact on CER is stronger in more dynamic environments 

that feature a lower LTS and argue that very high LTS environments dynamically suppress 

cloud droplet growth and reduce aci intensity. While strong correlations between AOD and 

cloud parameters have been previously observed, they are likely due to the swelling of aerosol 

particles in humid airmasses (Quaas et al, 2010), rather than an aerosol influence, which is in 

agreement with findings by, e.g., Myhre et al. (2007), Twohy et al. (2009) and Quaas et al. 

(2010).”. 

We have also added the following text in the Sect 4.6.2 (lines 652 to 655 and lines 695-699): 

“Among the meteorological parameters, we find that the combined effect of AOD and PVV 

predominately influences on cloud parameters over the ECS. The result is in accord with the 

finding of Jones et al. (2009) and Jia et al. (2022) that stronger aerosol cloud interactions 

typically occur under higher updraft velocity conditions.” and “The results from the GDM 

interaction detector analysis clearly show the enhancement of the interaction q-values over the 

q-values for the individual factors. In other words, the explanatory power of the combined 

effects of aerosol and a meteorological parameter is larger than that of each parameter alone. 

Thus, the GDM provides an alternative way to obtain information on confounding effects of 

different parameters.”. 

24. L469 - After the introduction of the GDM, sections 4.5 and 4.6 appear to go back to more 

'traditional' methods as used by previous paper. I am not sure I really see how these section 

support the paper in determining the cause of the different ACI values in these regions. It would 

be good to have a clearer link to the other work performed and how it supports the overall aim 

and conclusions of the paper.  

Answer: In the revised version, we have moved Sections 4.5 (now 4.4.) and 4.6 (now 4.5) 

before Section 4.4 (now 4.6). Thus, we first discuss findings from “traditional” methods, 

followed by findings using the GDM. We have also added Section 5 (Discussion) and Section 

6 (Conclusions) where we discuss the different findings using “traditional” methods and GDM, 

with more emphasis on the added value of GDM.  

25. L601 - Could the authors be more specific on how this study will help improve model 

parametrisations?  

Answer: Aerosol particles, acting as cloud condensation nuclei, affect the number and size of 

cloud droplets. The link between aerosol and the formation and properties of clouds could 

better simulate changes in cloud parameters. By comparing with observational data of aerosols 

and clouds, the model's ability to simulate changes in cloud parameters can be evaluated. 

Meteorological factors are key influencing parameters for the formation and evolution of 

clouds, and a more accurate description of the relative contribution of meteorological factors 

can improve the parameterization scheme of the model. Therefore, by more accurately 

simulating and predicting the impact of aerosols and meteorological parameters on clouds, 

parameterization schemes will be adjusted and improved, which further improve the simulation 

ability and accuracy of climate models for cloud parameter changes.  

The text in the Conclusion has been reorganized as “By comparison with aerosol and cloud 

observations, the regional climate model’s ability to simulate changes in cloud parameters can 

be evaluated. A more accurate description of the relative contribution of meteorological factors 



can improve the parameterization scheme of the model over eastern China.” in the revision 

manuscript (lines 821-824). 
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