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Abstract. SnowModel, a spatially distributed, snow-evolution modeling system, was parallelized using Coarray Fortran for 8 

high-performance computing architectures to allow high-resolution (1 m to 100’s of meters) simulations over large, regional 9 

to continental scale, domains. In the parallel algorithm, the model domain is split into smaller rectangular sub-domains that 10 

are distributed over multiple processor cores using one-dimensional decomposition. All of the memory allocations from the 11 

original code have been reduced to the size of the local sub-domains, allowing each core to perform fewer computations and 12 

requiring less memory for each process. A majority of the subroutines in SnowModel were simple to parallelize; however, 13 

there were certain physical processes, including blowing snow redistribution and components within the solar radiation and 14 

wind models, that required non-trivial parallelization using halo-exchange patterns. To validate the parallel algorithm and 15 

assess parallel scaling characteristics, high-resolution (100 m grid) simulations were performed over several western United 16 

States domains and over the contiguous United States (CONUS). The CONUS scaling experiment had approximately 71% 17 

parallel efficiency; runtime decreased by a factor of 32 running on 2304 cores relative to 52 cores (the minimum number of 18 

cores that could be used to run such a large domain as a result of memory and time limitations). CONUS 100 m simulations 19 

were performed for 21 years (2000 – 2021) using 46,238 and 28,260 grid cells in the x and y dimensions, respectively. Each 20 

year was simulated using 1800 cores and took approximately 5 hours to run. 21 

1 Introduction 22 

The cryosphere (snow and ice) is an essential component of Arctic, mountain, and downstream ecosystems, Earth’s surface 23 

energy balance, and freshwater resource storage (Huss et al., 2017). Globally, half the world’s population depends on 24 

snowmelt (Beniston, 2003). In snow-dominated regions like the Western United States, snowmelt contributes to 25 

approximately 70% of the total annual water supply (Foster et al., 2011). In these regions, late-season streamflow is 26 

dependent on the deepest snow drifts and therefore longest-lasting snow (Pflug and Lundquist, 2020). Since modeling snow-27 

fed streamflow accurately is largely dependent on our ability to predict snow quantities and the associated spatial and 28 

temporal variability (Clark and Hay, 2004), high-temporal and -spatial resolution snow datasets are important for predicting 29 

flood hazards and managing freshwater resources (Immerzeel et al., 2020).  30 
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The spatial and temporal seasonal snow characteristics also have significant implications outside of water resources. 31 

Changes in fractional snow-covered area affect albedo and thus atmospheric dynamics (Liston, 2004; Liston and Hall, 1995). 32 

Avalanches pose safety hazards to both transportation and recreational activities in mountainous terrain; the prediction of 33 

which requires high-resolution (meters) snow datasets (Morin et al., 2020; Richter et al., 2021). Additionally, the timing and 34 

duration of snow-covered landscapes strongly influence how species adapt, migrate, and survive (Boelman et al., 2019; 35 

Liston et al., 2016; Mahoney et al., 2018).  36 

To date, the primary modes for estimating snow properties and storage have come from observation networks, satellite-based 37 

observations, and physically derived snow algorithms in land surface models (LSMs). However, despite the importance of 38 

regional, continental, and global snow, estimates of snow properties over these scales remain uncertain, especially in alpine 39 

regions where wind, snow, and topography interact (Boelman et al., 2019; Dozier et al., 2016; Mudryk et al., 2015). 40 

Observation datasets used for spatial interpolation of snow properties and forcing datasets used in LSMs are often too sparse 41 

in mountainous terrain to accurately resolve snow spatial heterogeneities (Dozier et al., 2016; Renwick, 2014). Additionally, 42 

remotely sensed products have shown deficiencies in measuring snowfall rate (Skofronick-Jackson et al., 2013), snow-water 43 

equivalent (SWE), and snow depth (Nolin, 2010), especially in mountainous terrain where conditions of deep snow, wet 44 

snow, and/or dense vegetation may be present (Lettenmaier et al., 2015; Takala et al., 2011; Vuyovich et al., 2014). 45 

However, LSMs using high-resolution inputs, including forcing datasets from regional climate models (RCMs), have 46 

demonstrated realistic spatial distributions of snow properties (Wrzesien et al., 2018). 47 

For several decades, a distributed snow-evolution modeling system (SnowModel) has been developed, enhanced, and tested 48 

to accurately simulate snow properties across a wide range of landscapes, climates, and conditions (Liston and Elder, 2006b; 49 

Liston et al., 2020). To date, SnowModel has been used in over 200 refereed journal publications; a short listing of these is 50 

provided by Liston et al. (2020). Models like SnowModel can be computationally expensive. In these models, the required 51 

computational power increases with the number of grid cells covering the simulation domain. Finer grid resolutions usually 52 

imply more grid cells and higher accuracy resulting from improved representation of process physics at higher resolutions. 53 

The original serial SnowModel code was written in Fortran 77 and could not be executed in parallel using multiple processor 54 

cores. As a result, SnowModel’s spatial and temporal simulation domains (number of grid cells and time steps) were 55 

previously limited by the speed of one core and the memory available on the single-computer. Note that a “processor” refers 56 

to a single central processing unit (CPU) and typically consists of multiple cores, each core is able to run one or more 57 

processes in parallel. 58 

Recent advancements in multiprocessor computer technologies and architectures have allowed for increased performance in 59 

simulating complex natural systems at high resolutions. Parallel computing has been used on many LSMs to reduce compute 60 

time and allow for higher accuracy results from finer grid simulations (Hamman et al., 2018; Miller et al., 2014; Sharma et 61 

al., 2004). Our goal was to develop a parallel version of SnowModel (Parallel SnowModel) using Coarray Fortran (CAF) 62 

syntax without making significant changes to the original SnowModel code physics or structure. CAF is a Partitioned Global 63 
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Address Space (PGAS) programming model and has been used to run atmospheric models on 100,000 cores (Rouson et al., 64 

2017).  65 

In parallelizing numerical models, a common strategy is to decompose the domain into smaller sub-domains that get 66 

distributed across multiple processes (Dennis, 2007; Hamman et al., 2018). For rectangular gridded domains (like 67 

SnowModel), this preserves the original structure of the spatial loops and utilizes direct referencing of neighboring grids 68 

(Perezhogin et al., 2021). The parallelization of many LSMs involve “embarrassingly parallel” problems requiring minimal 69 

to no processor communication (Parhami, 1995); in this case, adjacent grid cells do not communicate with each other (an 70 

example of this would be where each grid cell represents a point, or one-dimension, snowpack model that is not influenced 71 

by nearby grid cells).  72 

While much of the SnowModel’s logic can be considered “embarrassingly parallel”, SnowModel also contains “non-trivial” 73 

algorithms within the solar radiation, wind, and snow redistribution models. Calculations within these algorithms often 74 

require information from neighboring grid cells, either for spatial derivative calculations or for horizontal fluxes of mass 75 

(e.g., saltating or turbulent-suspended snow) across the domain. Therefore, non-trivial parallelization requires implementing 76 

algorithm changes that allow computer processes to communicate and exchange data. The novelty of the work presented 77 

here includes 1) the presentation of Parallel SnowModel and high-resolution (100 m) distributed snow datasets over 78 

CONUS; 2) demonstrating how a simplified parallelization approach using CAF and one-dimensional decomposition can be 79 

implemented in geoscientific algorithms to scale over large domains; and 3) demonstrating an approach for non-trivial 80 

parallelization algorithms that involve spatial derivatives and fluxes using halo-exchange (HX) techniques.  81 

In Sect. 2, we describe SnowModel and provide a motivation for its parallelization. In Sect. 3, we explain our parallelization 82 

approach using CAF and the module developed that partitions the two-dimensional domain in the y dimension and organizes 83 

the non-trivial communication necessary to produce accurate results. In Sect. 4, we validate results from Parallel SnowModel 84 

compared to serial simulations, discuss the evolution of the performance of the parallel algorithm, analyze the efficiency of 85 

Parallel SnowModel using strong scaling metrics over several basins throughout the United States, and present Parallel 86 

SnowModel results over CONUS. Lastly, end with a discussion in Sect. 5 and a conclusion in Sect. 6. 87 

2 SnowModel 88 

SnowModel is a spatially distributed snow-evolution modeling system designed to model snow properties (e.g., snow depth, 89 

SWE, snow melt, snow density) over different landscapes and climates (Liston and Elder, 2006b). The most complete and 90 

up-to-date description of SnowModel can be found in the Appendices of Liston et al. (2020). While many snow modeling 91 

systems exist, SnowModel is standing to benefit from parallelization across larger domains because of its ability to input 92 

high-resolution meteorological data (e.g., wind, radiation, and precipitation) and model fine-scale snow properties and 93 

redistribution processes. SnowModel is designed to simulate domains on a structured grid with spatial resolutions ranging 94 

from 1 to 200 m (although it has the ability to simulate coarser resolutions, as well) and temporal resolutions ranging from 95 
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10 m to 1 d. The primary modeled processes include accumulation from frozen precipitation; blowing-snow redistribution 96 

and sublimation; interception, unloading, and sublimation within forest canopies; snow-density and grain-size evolution; and 97 

snowpack ripening and melt. These processes are distributed into four interacting submodules: MicroMet defines the 98 

meteorological forcing conditions (Liston and Elder, 2006a), EnBal describes surface and energy exchanges (Liston, 1995; 99 

Liston et al., 1999). SnowPack is a multilayer snowpack sub-model that simulates the evolution of snow properties and the 100 

moisture and energy transfers between layers (Liston and Hall, 1995; Liston and Mernild, 2012), and SnowTran-3D 101 

calculates snow redistribution by wind (Liston et al., 2007). Additionally, the initialization submodules that read in the 102 

model parameters, distribute inputs across the modeled grid, allocate arrays, etc., include PreProcess and ReadParam. 103 

SnowModel incorporates first-order physics required to simulate snow evolution within each of the global snow classes [e.g., 104 

Ice, Tundra, Boreal Forest, Montane Forest, Prairie, Maritime, and Ephemeral; (Sturm and Liston, 2021; Liston and Sturm, 105 

2021).  106 

The required inputs for SnowModel include 1) temporally varying meteorological variables of precipitation, wind speed and 107 

direction, air temperature, and relative humidity taken from meteorological stations or atmospheric models and 2) spatially 108 

distributed topography and land-cover type (Liston & Elder, 2006a). The following inputs were used for the experiments 109 

conducted in Sect. 4: USGS National Elevation Dataset (NED) for topography (Dean B. Gesch, 2018), The North American 110 

Land Change Monitoring System (NALCMS) Land Cover 2015 map for vegetation (Homer et al., 2015; Jin et al., 2019; 111 

Latifovic et al., 2016), and forcing variables from either the North American Land Data Assimilation System (NLDAS-2)  112 

(Mitchell, 2004; Xia, 2012a, b) on a 1/8 degree (approximately 12 km) grid or a high-resolution Weather Research Forecast 113 

(WRF) model from the National Center for Atmospheric Research (NCAR) on approximately a 4 km grid (Rasmussen et al., 114 

2023). The high-performance computing architectures used include NCAR’s Cheyenne supercomputer, which is a 5.43-115 

petaflop SGI ICE XA Cluster featuring 145,152 Intel Xeon processes in 4,032 dual-socket nodes and 313 TB of total 116 

memory (Laboratory, 2019) and The National Aeronautics and Space Administration’s (NASA) Center for Climate 117 

Simulation (NCCS) Discover supercomputer with a 1,560-teraflop SuperMicro Cluster featuring 20,800 Intel Xeon Skylake 118 

processes in 520 dual-socket nodes and 99.84 TB of total memory (Carriere, 2023). 119 

2.1 Parallelization Motivation 120 

The answers to current snow science, remote sensing, and water management questions require high-resolution data that 121 

covers large spatial and temporal domains. While modeling systems like SnowModel can be used to help provide these 122 

datasets, running them on single-processor workstations imposes limits on the spatiotemporal extents of the produced 123 

information. Serial simulations are limited by both execution time and memory requirements, where the memory limitation 124 

is largely dependent on the size of the simulation domain. Up to the equivalent of 175 two-dimensional and 10 three-125 

dimensional arrays are held in memory during a SnowModel simulation, depending on the model configuration. In analyzing 126 

the performance of the parallel algorithm (Sect. 4), serial simulations were attempted over six domains throughout the 127 

United States at 100 m grid resolution. The spatial location, domain dimensions (e.g., number of grids in the x and y 128 
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dimensions), and memory requirements, derived from the peak_memusage package 129 

(https://github.com/NCAR/peak_memusage), for the simulation experiments are highlighted in Fig. 1. The simulations were 130 

executed on Cheyenne for 16 timesteps on 23-24 March 2018 using NLDAS-2 forcing. The three largest domains (Pacific 131 

Northwest (PNW), Western U.S. and CONUS) could not be executed in serial using Cheyenne’s normal or large memory 132 

(55 GB and 109 GB, respectively) compute nodes due to both exceedances of the 12 h wall-clock limit and memory 133 

availability. Furthermore, we estimate that using a currently available, state of the art, single-processor workstation, would 134 

require approximately 120 d of computer time to perform a 1 y model simulation over the CONUS domain (Fig. 1) at a 100 135 

m grid increment and a 3 h time step. SnowModel is regularly used to perform multi-decade simulations, for trend analyses, 136 

climate change studies, and retrospective analyses (Liston and Hiemstra, 2011; Liston et al., 2020; Liston et al., 2022). If this 137 

1 y, 100 m, CONUS domain was simulated for a 40 y period (e.g., 1980 through present), it would take approximately 4800 138 

d, or over 13 y, of computer time. Clearly such simulations are not practical using single-processor computer hardware and 139 

software algorithms. 140 

 141 
Figure 1: Spatial location of simulated domains on WRF’s lambert conformal projection (Rasmussen et al., 2023) (a) and 142 
corresponding grid dimensions (Nx – number of grids in x dimension; Ny – number of grids in y dimension) and memory obtained 143 
from peak_memusage package required for single-layer SnowModel simulation experiments (b). For reference, the dashed lines 144 
represent the normal and large memory thresholds (55 and 109 GB) for Cheyenne’s SGI ICE XA cluster. 145 

3 Parallel Approach 146 

In parallelizing SnowModel and distributing computations and memory over multiple processes, we hope to be able to run 147 

regional to continental sized simulations efficiently. Some of the model configurations were not parallelized for reasons 148 

including ongoing development in the serial code base and limitations to the parallelization approach. These configurations 149 

are further discussed in Appendix A. This section introduces the syntax and framework used to parallelize SnowModel, 150 

including the partitioning strategy, algorithms involving non-trivial processor communication via halo exchange, and file 151 

input and output (I/O). 152 
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3.1 Fortran Coarrays 153 

CAF, formerly known as F-, (Iso/Iec, 2010; Numrich and Reid, 1998; Numrich et al., 1997) is the parallel language feature 154 

of Fortran that was used to parallelize SnowModel. CAF is similar to Message Passing Interface (MPI) libraries in that it 155 

uses the Single Program Multiple Data (SPMD) model where multiple independent cores simultaneously execute a program. 156 

SPMD allows for distributed memory allocation and remote memory transfer. However, unlike MPI, CAF uses the PGAS 157 

parallel programming model to handle the distribution of computational tasks amongst processes (Coarfa et al., 2005). In the 158 

PGAS model, each process contains local memory that can be accessed directly by all other processes. While CAF and MPI 159 

syntax often refers to processes as images or ranks, for consistency, we will continue to use the term “process”. Ultimately, 160 

CAF offers a high-level syntax that exploits locality and scales effectively (Coarfa et al., 2005). For simulation comparisons, 161 

we used OpenCoarrays, a library implementation of CAF (Fanfarillo et al., 2014) utilized by the gfortran compiler; intel and 162 

cray compilers both have independent CAF implementations.  163 

Upon initiation of a CAF program, the number of processes is designated and replicates the program Np times, with each 164 

process allocating and storing its own memory locally. Local arrays contain information specific to that process’s local 165 

domain, while coarrays are data structures used to communicate information among multiple processes. CAF syntax uses 166 

square brackets as subscripts to allocate coarrays and transfer data from one process to another. A variable without square 167 

brackets refers to the current process’s copy of a coarray variable. As an example, the coarray logic in Algorithm 1 (Fig. 2) 168 

demonstrates a CAF program executed with three processes. In this program memory from the first element of a one-169 

dimensional array, 𝑈, residing on the second and third processes (P2 and P3) gets copied into the fifth element of the local 170 

array 𝑈 on the second and first processes (P2 and P1), respectively. In the code logic and hereafter, proc represents each 171 

process’s identification number, while Np represents the total number of processes used to execute a program. Both integers 172 

are created through intrinsic CAF functions (e.g., this_image() and num_image(), respectively).   173 

 174 
Figure 2: Example logic and schematic transferring data and updating array values using coarrays. 175 
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3.2 Partitioning Algorithm 176 

The partitioning strategy identifies how the workload gets distributed amongst processes in a parallel algorithm. Both the 177 

data structures and physical processes involved in SnowModel justify a one-dimensional decomposition strategy in the y 178 

dimension. The multidimensional arrays of SnowModel are stored in row-major order, meaning that the x dimension is 179 

contiguous in memory. Additionally, dominant wind directions and therefore predominant snow redistribution occurs in the 180 

east-west direction as opposed to south-north directions. The partitioning algorithm decomposes the domain in the y 181 

dimension, and allocates local arrays based on Np. For domain decomposition, the computational global domain 𝑁! x 𝑁" is 182 

separated into 𝑁! x	𝑙_𝑛𝑦 blocks.	 If 𝑁" is evenly divisible by 𝑁#, then 𝑙_𝑛𝑦# 	=	 
$!
$"

. If integer division is not possible, then the 183 

remaining rows are distributed evenly amongst the processes starting at the bottom of the computational domain. Figure 3 184 

demonstrates how a serial domain containing 10 grid cells in the x and y dimensions would be decomposed with four 185 

processes using our partitioning strategy. The domain decomposition over several processes requires mapping information 186 

across local entities. Two arrays are created that identify the	𝑙_𝑛𝑦# for each processor (partition_ny) and the starting index of 187 

each processor’s local domain within the context of the global domain (prefix_sum). These arrays are used for indexing 188 

purposes during file I/O and processor communication.  189 

 190 
Figure 3: Example 10 x 10 global domain and partitioning for serial simulation (a), and parallel simulation using four processes (b). 191 

3.3 Non-trivial Parallelization 192 

Each process has sufficient information to correctly execute a majority of the physical computations within SnowModel. 193 

However, there are certain subroutines where grid computations require information from neighboring grid cells (e.g., data 194 
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dependencies) and therefore information outside of a process’s local domain. For SnowModel, these subroutines typically 195 

involve the transfer of blowing snow or calculations requiring spatial derivatives. Furthermore, with our one-dimensional 196 

decomposition approach, each grid cell within a process’s local domain has sufficient information from its neighboring grid 197 

cells in the x dimension but potentially lacks information from neighboring grid cells in the y dimension. As a regular grid 198 

method, SnowModel lends itself to process communication via HX, where coarrays are used in remote calls. HX using CAF 199 

involves copying boundary data into coarrays on neighboring images and using information from the coarrays to complete 200 

computations (Fig. 4). Although the entire local array could be declared a coarray and accessed by remote processes more 201 

directly, some CAF implementations impose additional constraints upon coarray memory allocations that can be problematic 202 

for such large allocations.  203 

 204 
Figure 4: Schematic showing HX using coarrays. The steps include: initial gridded representation of local arrays for three processes 205 
(a), P2 copying boundary data into coarrays for remote access (b), neighboring processes (P1 and P3) stitching coarray to local domains 206 
(c). 207 

3.3.1 Topography – Wind and Solar Radiation Models 208 

The wind and solar radiation models in MicroMet require information about surrounding surface topography. The wind 209 

model requires surface curvature, and the solar radiation model requires surface slope and aspect. These vary at each 210 

timestep as snow accumulates and melts because the defined surface includes the snow surface on top of the landscape. The 211 

curvature (𝛺%), for example, is computed at each model grid cell using the spatial gradient of the topographic elevation of 212 

eight neighboring grid cells (𝑍& , 𝑍' , 𝑍(, 𝑍$, 𝑍(), 𝑍$' , 𝑍$), 𝑍(' 	[𝑚], where 𝑍& corresponds to the elevation of the grid cell 213 

west of the current grid cell,  𝑍$) is the elevation of the grid cell northwest of the current grid cell, etc.) and a curvature 214 

length scale or radius, 𝜂	[𝑚] , which is a pre-defined parameter equal to approximately half the wavelength of the 215 

topographic features within a domain (Eq. 1) (Liston and Elder, 2006b). 216 

𝛺% =
*
+
1
,-#$	(,%0,&)

23
+	

,-#$	(,'0,()

23
+	

,-#$	(,')0,(&)

2423
	
,-#$	(,()0,'&)

2423
3 ,              (1) 217 
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Using the parallelization approach discussed above, processes lack sufficient information to make curvature calculations for 218 

the bordering grid cells along the top and/or bottom row(s) within their local domains. For example, all grid cells along the 219 

top row of 𝑃* will be missing information from nearby grid cells to the north (𝑍$), 𝑍$, and 𝑍$'), and require topographic 220 

elevation (𝑡𝑜𝑝𝑜) information from the bottom row(s) of the local domain of 𝑃2 to make the calculation (Algorithm 2, Fig. 221 

5a). HX is performed to distribute row(s) (𝑖𝑛𝑐) of 𝑡𝑜𝑝𝑜 data to each process that is missing that information in their local 222 

domains (Fig. 5b). Processes whose local domains are positioned in the bottom or top of the global domain will only perform 223 

one HX with their interior neighbor, while interior processes will perform two HXs. By combining and appropriately 224 

indexing information from the process’s local array and received coarrays (𝑐𝑜𝑎𝑟𝑟𝑎𝑦_𝑛 and 𝑐𝑜𝑎𝑟𝑟𝑎𝑦_𝑠) of topographic 225 

elevation, an accurate curvature calculation can be performed using this parallel approach (Fig. 5c). Lastly, sync all 226 

(Algorithm 2) is an intrinsic CAF function that synchronizes all of the processes. In other words, no process will go past this 227 

point in the algorithm until all of the processes have arrived. This is an important component of HX algorithms because it 228 

helps to prevent processes from making calculations before they have received important coarray information from a 229 

neighboring process. However, synchronization statements have an associated cost of decreasing the speed and efficiency of 230 

an algorithm and therefore should be minimized (discussed further in Sect. 4.2).  231 

 232 
Figure 5: Schematic for HX of 𝒄𝒐𝒂𝒓𝒓𝒂𝒚_𝒔 used in the curvature calculation by 𝑷𝟏, where 𝒊𝒏𝒄	= 2. Prior to HX,	𝑷𝟏 	contains 233 
insufficient information to perform the curvature calculation (a), grid cells (halo) within the local domain of 𝑷𝟐	(b) are transferred 234 
to 𝑷𝟏 via coarrays (coarray_s, Alg. 2) (c). At this point, 𝑷𝟏 has sufficient information to make the curvature calculation.  235 

3.3.2 Snow Redistribution 236 

Wind influences the mass balance of the snowpack by suspending and transporting snow particles in the air (turbulent-237 

suspension) and by causing snow grains to bounce on top of the snow surface (saltation). Furthermore, field measurements at 238 

alpine sites in Colorado and Wyoming, have shown that snow can be transported up to 6 km due to saltation and suspension 239 

(Tabler, 1975). Snow redistribution in SnowTran-3D is defined using a mass balance equation describing the temporal 240 

variation of snow depth at a point [Eq. 2 (Liston and Sturm, 1998), see their Fig 2], where changes in the horizontal mass-241 

transport rates of saltation, 𝑄5 [kg m-1 s-1], changes in turbulent-suspended snow,	𝑄6 [kg m-1 s-1], sublimation of transported 242 

snow particles, 𝑄7  [kg m-1 s-1], water-equivalent precipitation rate, P [m s-1], and snow and water density, 𝜌5  [kg m-3], 243 

combine to describe the time rate of change of snow depth 𝜁 [m]. At each timestep, snow redistribution (𝑑𝜁) is solved for 244 
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each grid cell through spatial derivatives ( 8
8!
	 , 8
8"

) from neighboring grid cells. Since spatial derivatives and horizontal mass-245 

transport rates of saltating and suspended snow are required, processor communication is also required along the boundary 246 

grid cells through HX.  247 

89
86
= *

:*
A𝜌&𝑃 −	C

8;*
8!
+ 8;+

8!
+	8;*

8"
+	8;+

8"
D + 𝑄7E ,                                           (2) 248 

In SnowModel, the saltation and suspension algorithms are separated into northerly, southerly, easterly, and westerly fluxes 249 

based on the u and v components of wind direction for each grid cell. Figure 6 shows a simplified serial algorithm and 250 

schematic for the saltation flux from a southerly wind. To start, SnowModel initializes the maximum saltation flux (Qsalt_v) 251 

as the boundary condition. To calculate the saltation flux, SnowModel iterates over continuous sections (jstart and jend) of 252 

the same wind direction, updates the change in saltation fluxes from upwind grid cells (dQsalt), and the change in saltation 253 

flux from the given wind direction (dh_qsalt_v), and makes adjustments of these fluxes based on the snow availability due to 254 

vegetation height and snow compaction (Liston and Elder, 2006b).  255 

 256 
Figure 6: Schematic of serial algorithm showing change in saltation flux (Qsalt_v and dh_salt_v) due to southerly winds over domain 257 
(a), and the iteration to update the saltation fluxes Nx = 1 (b). 258 

Similar logic is used for the parallel implementation of saltation and suspension fluxes with an additional iteration (salt_iter) 259 

to update the boundary condition for each process via HX. This allows the fluxes to be communicated from one process’s 260 

local domain to another. To prevent excessive iterations, salt_iter was provided a maximum bound that is equivalent to snow 261 

being transported 15 km via saltation or sublimation. This number was chosen based off prior field measurements (Tabler, 262 

1975) and simulation experiments. It is possible that in other environments an even larger length may be required, to be 263 

guaranteed to match the serial results in all cases, the number of iterations would have to be equal to the number of 264 

processes; however, this would result in no parallel speed up and has no practical benefit. A skeleton of the parallel 265 

calculation of the change in saltation due to southerly winds is illustrated in Algorithm 4 in Fig. 7. In the parallel algorithm, 266 
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the bc_halo_exchange subroutine performs a HX of Qsalt_v grid cells from upwind processes, allowing the saltation flux to 267 

be transported from one process’s local domain to the next.  268 

 269 
Figure 7: Schematic of the parallel algorithm showing change in saltation flux (Qsalt_v and dh_salt_v) due to southerly winds over a 270 
domain simulated with three processes (P1, P2, P3) (a), and over three saltation iterations (salt iter) for Nx = 1 (b). Before each 271 
iteration, the boundary condition of the saltation flux (bc_halo_exchange) gets updated using HX. 272 

3.4 File I/O 273 

File I/O management can be a significant bottleneck in parallel applications. Parallel implementations that are less memory 274 

restricted commonly use local to global mapping strategies, or a centralized approach for file I/O (Fig. 8a). However, this 275 

approach requires that each process stores global arrays for input and output variables and creates a substantial bottleneck as 276 

the domain size scales (Sect. 4.2). To improve performance, distributed file I/O can be implemented, where input and output 277 

files are directly and concurrently assessed by each process (Fig. 8b). 278 

 279 
Figure 8: Schematic of global to local mapping for file I/O using a centralized approach with four processes (a), and distributed file 280 
I/O where each process reads and writes data corresponding to its local domain (b). 281 
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SnowModel contains static spatial inputs that do not vary over time, e.g., topography and land cover, and dynamic spatial 282 

inputs, e.g., air temperature and precipitation, that vary spatially and temporally. The static inputs are of a higher resolution 283 

compared to the dynamic inputs (cf., topography is on the model grid, while atmospheric forcing is almost always more 284 

widely spaced). In an attempt to balance performance and consistency with the serial logic of the code, we used a mixed 285 

parallel file I/O approach. File input (reading) is performed in a distributed way for the static inputs and in a centralized way 286 

for dynamic inputs, while file output (writing) is performed in a distributed way, as described further below.  287 

3.4.1 Parallel Inputs 288 

SnowModel’s primary static spatial inputs include topography and vegetation data. However, depending on the simulation 289 

configuration, additional spatial inputs representing gridded values of latitude and longitude may be required. Acceptable 290 

static input file types include binary and ASCII files and can be read in a centralized or distributed manner. However, since 291 

the resolution of static inputs is identical to the resolution of the modeled grid, these arrays need to be read in a distributed 292 

manner. This is crucial for Parallel SnowModel’s ability to scale to regional and continental sized domains, as storing a 293 

single copy of the full domain topography over CONUS would require 5.23 GB of memory. Therefore, if a node containing 294 

36 processes needs to read in the entire global array of topography, a total of 188.28 GB of memory would be required for 295 

topography alone. This memory limitation of the centralized I/O approach would prevent a CONUS simulation from being 296 

executed using one process per node on Cheyenne’s large memory nodes. As a result, parallelization has been limited to 297 

reading static inputs from binary files (as noted in the Appendix A), thereby preventing the need for global arrays of static 298 

input variables, excessive process communication, and memory allocation. Binary input files can be accessed concurrently 299 

by indexing the starting byte and length of bytes commensurate to a process’s local domain. Therefore, each process only 300 

reads its own portion of the static input data.  301 

Reading of meteorological forcing variables (wind speed, wind direction, relative humidity, temperature, and precipitation) 302 

can be performed in parallel with either binary or NetCDF files. Depending on the forcing dataset, the resolution of the 303 

meteorological variables typically ranges from 1 to 30 km and therefore is often much coarser than the static inputs for high-304 

resolution simulations. For example, the resolution of NLDAS-2 meteorological forcing is approximately 11 km, while a 305 

high-resolution WRF model from NCAR is approximately 4 km. At each timestep, processes read in the forcing data from 306 

every station into a one-dimensional array, index the nearest station data, and interpolate the nearest station data to create 307 

forcing variables over the local domain. All processes perform the same operation and store common information (forcing 308 

data stored in the one-dimensional array). However, since the resolutions of the forcing datasets are significantly coarser 309 

than the model grid for high-resolution simulations, the dynamic forcing input array size remains comparable to other local 310 

arrays. While more efficient parallel file input schemes could improve performance, we decided to keep this logic to 311 

maintain consistency with the serial version of the code.  312 
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3.4.2 Parallel Outputs 313 

To eliminate the use of local to global mapping commonly used to output variables (Fig. 8a), each process writes its own 314 

output file (Fig. 8b). A postprocessing script is then used to concatenate files from each process into one file that represents 315 

the output for the global domain. Modern high-performance computing architectures have highly parallelized disc systems 316 

making file output using a distributed approach faster than the centralized approach. Therefore, file output in this manner 317 

reduces time and memory requirements. 318 

4 Results 319 

Parallel SnowModel experiments were evaluated on six domains in the United States (Fig. 1). All experiments were 320 

executed with a 100 m grid increment, a 3 h time step, and used a single-layer snowpack configuration. The validation 321 

experiments and scaling experiments were forced with NLDAS-2, while the CONUS simulation was forced with the higher-322 

resolution WRF dataset. All experiments included the primary SnowModel modules (MicroMet, EnBal, SnowPack, and 323 

SnowTran-3D).  324 

4.1 Parallel SnowModel Validation 325 

A key requirement of Parallel SnowModel is for its simulation results to be identical to those from the serial algorithm. To 326 

assess the accuracy of the CAF implementation, two validation experiments were performed (Tuolumne and Colorado 327 

Headwaters). The Tuolumne domain is located in the Sierra Nevada Mountain Range in California and contains 311 and 185 328 

grid cells in the x and y dimensions, respectively, while the Colorado Headwaters domain contains 3166 by 5167 grid cells in 329 

the x and y dimensions, respectively (Fig. 1). Both simulations were run at 100 m grid resolution using 3 h timesteps and 330 

forced with NLDAS-2 meteorological variables. The Tuolumne experiments were conducted from 1 September 2017 331 

through 31 August 2018, for a total of 2920 timesteps. Due to the larger domain size and 12 h wall-clock limitation, the 332 

Colorado Headwaters validation experiments were simulated from 1 January 2018 through 1 February 2018, for a total of 333 

256 timesteps.  334 

The implementation of Parallel SnowModel was validated to assess the reproducibility of the results compared to the 335 

original serial model by varying the number of processes and therefore the size of the domain decomposition. We compared 336 

results from the original serial model to parallel simulations executed with 2, 4, 8, 16, 36, 52, 72, and 144 (Note: the 337 

maximum number of processes executed over the Tuolumne domain was 52 due to its domain size and decomposition). 338 

Comparisons were made on 17 output variables, including relevant snow variables like snow depth, SWE, snow density, and 339 

SWE-melt. A complete list of output variables is provided in Appendix B. We used the root mean square error (RMSE) 340 

metric to evaluate differences between results for each timestep from the parallel and sequential simulations (Eq. 3). All 341 

variables across all processes produced RMSE values of 10-6, which is at the limit of machine precision, when compared to 342 

serial simulation results. 343 
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𝑅𝑀𝑆𝐸(𝑋, 𝑌) = 	M∑(=,->,)$

$
 ,                                                                        (3) 344 

4.2 Parallel Performance  345 

The performance of Parallel SnowModel was evaluated by comparing the execution time as a function of improvements to 346 

the algorithm (file I/O scheme and process communication) and execution time as a function of domain size and number of 347 

processes. Strong scaling is a common parallel performance metric implemented to understand the relationship between 348 

execution time and the number of processes used for a fixed domain size. The execution time used in the parallel 349 

performance assessments did not include the initialization of the algorithm (ReadParam, PreProcess, and array allocation), as 350 

to not weigh the initialization disproportionately, especially when running large domains over relatively short time periods. 351 

Speedup (S), a metric of strong scaling, is defined as the ratio of the serial execution time, 𝑇(1), over the execution time 352 

using N cores, 𝑇(𝑁) (Eq. 4). Optimally, parallel algorithms will experience a doubling of speedup as the number of cores is 353 

doubled (e.g., ideal scaling).  354 

𝑆(	𝑁	) = ?(	*	)
?(	$	)

	 ,                                                                                                     (4) 355 

Additionally, code profiling evaluates the execution time of individual submodules as a function of the number of processes. 356 

Together, code profiling and strong scaling can be used to understand locations of bottlenecks in the algorithm and how 357 

changes to the code affect performance. Figure 9 highlights the results of two significant changes made to the parallel 358 

algorithm, as shown through code profiling and speedup plots of three different stages of the code development (Mower et 359 

al., 2023). The simulations were executed on the Colorado Headwaters domain (Fig. 1) using 1, 2, 4, 8, 16, 36, 52, 72, and 360 

144 processes, outputted one variable, and were forced with NLDAS-2 data for 16 timesteps from 23-24 March 2018. The 361 

first stage is a representation of the code when it used a centralized (Sect. 3.4) file I/O approach and is thus referred to as 362 

Centralized (Fig. 9). Distributed High Sync represents a version of the code with distributed file I/O and high or excessive 363 

process communication, while Distributed Low Sync represents a more recent version of the code where unnecessary parallel 364 

logic and communication had been removed (Fig. 9). As mentioned previously, synchronization calls (e.g., sync all) are 365 

necessary to accurately perform HX and for the parallel algorithm to achieve identical results as the serial algorithm (Sect. 366 

4.1) but increase the overall execution time. Therefore, the major difference between the Distributed High Sync and the 367 

Distributed Low Sync is the optimization of process communication and wait times. The scaling results of the Centralized 368 

compared to the Distributed Low Sync version of the algorithm produced factors of 4 and 100 times speedup, respectively, 369 

when running with 144 processes. Code profiling plots of the Centralized version show the execution time of several 370 

submodules including ReadParam and Preproc (file input) and Output (file output) being constant as the number of processes 371 

increases. In other words, increasing the number of processes did not decrease the execution time within these submodules. 372 

Conversely, the execution time of ReadParam, Preproc, and Output all scale (decrease proportionately) with the number of 373 

processes in Distributed High Sync. SnowTran-3D displays an increase in execution time after approximately 36 processes 374 
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(in both Centralized and Distributed High Sync), which is no longer observed in Distributed Low Sync. Therefore, the 375 

difference in speedup across these three stages is mainly attributed to bottlenecks occurring from file I/O schemes and 376 

excessive processor communication in SnowTran-3D. Ultimately, without these improvements, the CONUS domain could 377 

not be simulated using Parallel SnowModel. 378 

 379 
Figure 9: Code profiling (top row) and strong scaling (bottom row) results demonstrating the progression of Parallel SnowModel, 380 
which includes a version of the code with centralized file I/O (Centralized; first column), a version of the code with distributed I/O 381 
and high process communication (Distributed High Sync; second column), and a more recent version of the code which includes 382 
distributed file I/O and low process communication (Distributed Low Sync; third column). The arrow in the code profiling plots of 383 
Distributed High Sync and Distributed Low Sync indicates the ReadParam timing is below the y-axis at approximately 0.3 seconds 384 
and 0.003 seconds, respectively. 385 

In addition to performing a scaling analysis across different versions of the code, we performed a scaling experiment across 386 

several domains using the current version of Parallel SnowModel (Mower et al., 2023). Six, 100 m resolution domains across 387 

the United States [Tuolumne, Colorado Headwaters, Idaho, PNW, Western U.S. (West), and CONUS] (Fig. 1) were 388 

simulated using different numbers of processes. The simulations were forced with NLDAS-2 data for 16 timesteps from 23-389 

24 March 2018 and outputted one variable. While 16 timesteps is a short time period to perform scaling experiments, we 390 

wanted to compare timing metrics across different sized domains and were limited by memory and the 12 h wall-clock on 391 

Cheyenne. However, as mentioned previously, the initialization timing was removed in the speedup calculations. 392 

Additionally, over these selected dates, a significant amount of wind and frozen precipitation was observed over CONUS to 393 

activate some of the snow redistribution schemes in SnowTran-3D. Figure 10 shows the S as function of the number of 394 

processes for the local and state (Tuolumne, Colorado Headwaters, and Idaho Fig. 10a) and regional and continental sized 395 

domains (PNW, Western. U.S., and CONUS, Fig. 10b). For the regional and continental domains, where serial simulations 396 

could not be performed either due to wall-clock or memory limitations (as discussed in Sect. 2), the approximate speedup (𝑆P) 397 
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is estimated using the execution time, 𝑇Q𝑃RS, of the simulation with the minimum number of processes (𝑃!) by assuming 398 

perfect scaling from there to a single process (Eq. 5). For example, this experiment identified the 𝑃! needed to run the PNW 399 

domain was 4 with a 𝑇Q1RS of approximately 104 min (the total execution time including initialization was approximately 188 400 

min). Therefore, the estimated 𝑇(1), assuming ideal scaling, of running Idaho on one core would be 416 min. Near perfect 401 

scaling is evident up to 144 processes in most of the domains, so the assumption that scaling is linear below 52 processes 402 

(𝑇Q1RS for the CONUS domain) appears to be justified. While this approximation is an assumption, it is helpful to visualize 403 

the approximate 𝑆P across the different domains on a similar scale. 404 

𝑆P(𝑁) = ?(	@A	)
?(	$	)

	 ∗ 𝑃R	 ,                                                                                                                 (5) 405 

 406 

Figure 10: The left panel displays speedup (Eq. 4) for local and state sized simulations (Tuolumne, Colorado, and Idaho), while the 407 
right panel shows approximate speedup (Eq. 5) for the regional and continental sized domains (PNW, West, and CONUS). 408 

In strong scaling, the number of processes is increased while the problem size remains constant; therefore, it represents a 409 

reduced workload per process. Strong scaling analysis is useful for I/O and memory bound applications to identify a setup 410 

that results in a reasonable runtime and moderate resource costs (Fig. 10). The speedup obtained by increasing the number of 411 

processes above 288 for the Colorado Headwaters domain is marginal, while increasing the number of processes above 1152 412 

results in an increase in runtime (decrease in speedup) for the PNW domain, due to excessive process communication. Local 413 

sized domains, e.g., Tuolumne, likely do not warrant the need for parallel resources because they have small serial runtimes 414 

and parallel efficiencies (E; Eq. 6), or approximate parallel efficiencies (𝐸R; Eq. 7), which is the ratio of the speedup (Eq. 4) 415 

or approximate speedup (Eq. 5) to the number of processes (e.g., using 52 processes, Tuolumne had a E of 20%). However, 416 

state, regional, and continental domains stand to benefit more significantly from parallelization. The CONUS runtime 417 
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decreased by a factor of 32 running on 2304 processes relative to 52 processes. Based on our approximate speedup 418 

assumption, we would expect a CONUS 𝑆P of 1644 times on 2304 processes compared to one core, with an 𝐸R  of 71%. If the 419 

initialization portion of the algorithm (ReadParam, PreProcess, and array allocation) is included in the total execution time, 420 

the CONUS S increases to a factor of 47 running on 2304 processes relative to 52 processes. This actually results in 421 

superlinear scaling and is attributed to the initialization process, where the process count allows sections of data to be 422 

retained in the local cache, reducing the need for the process to interact with global memory as frequently. Additionally, if 423 

17 variables, as opposed to one variable, are outputted, the CONUS 𝑆P is reduced by 22%. Ultimately, the strong scaling 424 

analysis supports the effectiveness of running Parallel SnowModel at high-resolution over large domains. 425 

𝐸(𝑁) = (
$
	 ∗ 100%	 ,                                                                                                                                     (6) 426 

𝐸R(𝑁) = (B

$
∗ 100%	 ,                                                                                                                               (7) 427 

4.3 CONUS Simulations 428 

A primary goal of this work was to run Parallel SnowModel simulations for 21 years (2000 – 2021) over the Fig. 1 CONUS 429 

domain on a 100 m grid, while resolving the diurnal cycle in the model physics and creating a daily dataset of snow 430 

properties, including snow depth, SWE, SWE-melt, sublimation, and precipitation partitioning into rain and snow. Future 431 

work will involve analyzing results from these simulations. Ultimately, the domain contained 46,238 and 28,260 grid cells in 432 

the x and y dimensions, respectively. Simulations were performed on a 3 h time step and forced with the WRF dataset. All 433 

simulations were executed on Discover using 1800 processes with a total compute time of approximately 192,600 core 434 

hours, or approximately 5 wall-clock hours per year. Spatial results of SWE on 12 February 2011 over the CONUS domain 435 

and a sub-domain located in the Indian Peaks west of Boulder, Colorado are displayed in Fig. 11. The sub-domain highlights 436 

two grid cells located 200 m apart on a peak. The time series of SWE evolution for those grid cells (Fig. 11d and Fig. 11e) 437 

demonstrates the ability of Parallel SnowModel to capture fine-scale snow properties even when simulating continental 438 

domains. The upwind (western) grid cell is scoured by wind, and snow is transported to downwind (eastern) grid cells where 439 

a snow drift forms. The information and insight available in this high-resolution dataset will have important implications for 440 

many applications from hydrology, to wildlife and ecosystems, to weather and climate, and many more. 441 
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 442 
Figure 11: Simulation results of Parallel SnowModel over CONUS using WRF projection. Spatial patterns of SWE over the CONUS 443 
domain for 12 February 2011 (a), highlighting the SWE distribution (b) and topography with an applied hillshade (c) of a sub-domain 444 
near Apache Peak in the Indian Peaks west of Boulder, CO. Time series of SWE from 2000-2021 and over the 2011 water year for grid 445 
cells (“erode” and “deposit”) identified in panel B are displayed in panels D and E, respectively. The “erode” and “deposit” grid cells 446 
highlight areas of similar elevation but significant differences in SWE evolution resulting from blowing-snow redistribution processes. 447 

5 Discussion 448 

In this paper, we present a relatively simple approach that allows SnowModel to perform high-resolution simulations over 449 

regional to continental sized domains. The code within the core submodules (EnBal, MicroMet, SnowPack, and SnowTran-450 

3D) and model configurations (single-layer snowpack, multi-layer snowpack, binary input files, etc.) were parallelized in 451 

this study. The parallelization subroutines of the program code have been modularized. This allows SnowModel to be 452 

compiled with Fortran compilers that do not support the Fortran 2008 standard, as well as modern compilers that support 453 

parallel CAF either internally or through libraries, such as OpenCoarrays (Fanfarillo et al., 2014). Additionally, it provides 454 

the structure for other parallelization logic (e.g., MPI) to be more easily added to the code base. The parallel module contains 455 

a simple approach to decomposing the computational domain in the y dimension into smaller rectangular sub-domains. 456 

These sub-domains are distributed across processes to perform asynchronous calculations. The parallelization module also 457 

contains logic for communicating information among processes using HX coarrays for the wind and solar radiation models, 458 
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as well as for snow redistribution. These approaches can be adopted in other parallelization efforts where spatial derivatives 459 

are calculated or fluxes are transported across gridded domains.  460 

Parallelizing numerical models often involves two-dimensional decomposition in both the x and y dimensions. While many 461 

benefits have been demonstrated by this approach, including improved load balancing (Dennis, 2007; Hamman et al., 2018), 462 

it comes with increased complication of the parallel algorithms, including the partitioning algorithm, file I/O, and process 463 

communication. The demonstrated speedup of Parallel SnowModel on high-performance computing architectures (Fig. 10), 464 

suggests that SnowModel scales effectively over regional to continental scales using the one-decomposition parallelization 465 

approach. The added benefits obtained from two-dimensional decomposition strategies might not outweigh the costs of 466 

development, testing, and minimizing changes to the code structure and logic for applications such as SnowModel. 467 

Ultimately, our simplified parallelization approach can be modeled by other geoscience schemes as a first step to enhance 468 

simulation size and resolution.  469 

Simulation experiments were conducted using Parallel SnowModel to validate the parallel logic, interpret its performance 470 

across different versions of algorithm and across different sized domains, and demonstrate its ability to simulate continental 471 

domains at high-resolution. Most importantly, a comparison of output results from serial SnowModel and Parallel 472 

SnowModel validated the accuracy of the parallel algorithm and confirmed that the physical representations were not altered 473 

by the parallelization (Sect. 4.1). Code profiling and speedup analyses over the Colorado Headwaters domain helped identify 474 

bottlenecks in file I/O and processor communication in SnowTran-3D (Sect. 4.2). Corrections to the referred bottlenecks 475 

allowed Parallel SnowModel to scale up to regional and continental sized simulations. Parallel speedup analyses helped to 476 

identify the optimum number of processes and efficiency of the parallel algorithm for different domain sizes (Sect 4.2). 477 

Additionally, these experiments emphasize the relationships among speed, memory, and computing resources for Parallel 478 

SnowModel. A common laptop (~ 4 processes) has sufficient CPUs to run local sized domains within a reasonable amount 479 

of time, but likely does not have sufficient memory for state-sized simulations. Similarly, the minimum memory (1160 GB; 480 

Fig. 1) and processes (52; Fig. 10) required to run the CONUS domain, could be simulated on a large server (~ 128 481 

processes) with one process per node. However, extrapolating from our scaling results on Cheyenne (Fig. 10), we estimate it 482 

would take over 10 days to run a CONUS simulation for one water year with this configuration. In contrast, it took 483 

approximately 5 hours for CONUS to run on the Discover supercomputer using 1800 processes (Sect. 4). Therefore, by the 484 

time it took the large server to complete a CONUS simulation for one water year, 48 water years could have been simulated 485 

on a supercomputer. Lastly, results from the CONUS simulation highlight the ability of Parallel SnowModel to run high-486 

resolution continental simulations, while maintaining fine-scale snow processes that occur at a local level.  487 

6 Conclusions 488 

While several snow products exist, few capture the suite of snow properties along with the spatial and temporal extents and 489 

resolutions that can benefit a wide variety of applications. For example, current snow information products include the 490 
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NASA daily SWE distributions globally for dry (non-melting) snow on a 25 km grid (Tedesco and Jeyaratnam, 2019), a 491 

NASA snow-cover product on a 500 m grid (Hall et al., 2006) that is often missing information due to clouds (approximately 492 

50% of the time (Moody et al., 2005)), and the Snow Data Assimilation System (SNODAS) daily snow information 493 

provided by the National Oceanic and Atmospheric Administration (NOAA) and the National Weather Service (NWS) 494 

National Operational Hydrologic Remote Sensing Center (NOHRSC) on a 1 km grid (Center, 2004), which is itself model 495 

derived and has limited geographic coverage and snow properties. The Airborne Snow Observatory (ASO) provides the 496 

highest resolution data with direct measurements of snow depth on a 3 m grid, and derived values of SWE on a 50 m grid 497 

(Painter et al., 2016), but is flown on an aircraft and thus has limited spatio-temporal coverage. Furthermore, there are many 498 

fields of study that can benefit from 100 m resolution information of internally consistent snow variables, including wildlife 499 

and ecosystem, military, hydrology, weather and climate, cryosphere, recreation, remote sensing, engineering and civil 500 

works, and industrial applications. SnowModel can produce high-resolution outputs of snow depth, density, SWE, grain size, 501 

thermal resistance, snow strength, snow albedo, landscape albedo, meltwater production, snow-water runoff, blowing snow 502 

flux, visibility, peak winter SWE, snow-season length, snow onset date, snow-free date, and more, all produced by a physical 503 

model that maintains consistency among variables. The SnowModel system itself supports the assimilation of a wide variety 504 

of observations such that it can provide all of these variables while maintaining consistency with the limited in situ and 505 

remotely sensed measurements that are available. The new Parallel SnowModel described here permits the application of 506 

this modeling system to very large domains without sacrificing spatial resolution. 507 

Appendix A 508 

Some of the configuration combinations were not parallelized during this study for reasons including ongoing development 509 

in the serial code base and limitations to the parallelization approach. These include simulations involving tabler surfaces 510 

(Tabler, 1975), I/O using ASCII files, lagrangian seaice tracking, and data assimilation. 511 

Appendix B 512 

Validation SnowModel experiments were run in serial and in parallel over the Tuolumne and Colorado Headwaters domains 513 

(Sect. 4.1) using the RMSE statistic (Eq. 3). Important output variables from EnBal, MicroMet, SnowPack, and SnowTran-514 

3D demonstrated similar, if not identical values, when compared to serial results for all timesteps during the simulations;  515 

RMSE values were within machine precision (~10-6) regardless of the output variable, domain, or number of processes used. 516 

The validated output variables include albedo [%], precipitation [𝑚], emitted longwave radiation [𝑊 ∗𝑚-2], incoming 517 

longwave radiation reaching the surface [𝑊 ∗𝑚-2], incoming solar radiation reaching the surface [𝑊 ∗𝑚-2], relative 518 

humidity [%], runoff from base of snowpack [𝑚 ∗ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝], rain precipitation [𝑚], snow density [𝑘𝑔 ∗ 𝑚-C], snow-water 519 

equivalent melt [𝑚], snow depth [𝑚], snow precipitation [𝑚], static-surface sublimation [𝑚], snow-water equivalent [𝑚], air 520 

https://doi.org/10.5194/egusphere-2023-1612
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.



21 
 

temperature [°𝐶], wind direction [°], and wind speed [𝑚 ∗ 𝑠-*]. The Tuolumne domain could not be simulated with 72 521 

processes, likely due to an insufficiently small local domain of 2-3 rows as a result of the domain decomposition. Ultimately, 522 

we feel confident that Parallel SnowModel is producing the same results as the original serial algorithm. 523 

Code, data availability, and supplement 524 

The Parallel SnowModel code and the data used in Sect. 4 is available through a public GitHub repository (Mower et al., 525 

2023). The code base is limited to the parallelization changes to the serial version of the model. Furthermore, it does not 526 

contain preprocessing steps used to build simulation domains. For more information about the serial version of SnowModel, 527 

refer to Liston and Elder (2006b). The data includes figures and SnowModel output files that contain the necessary 528 

information to recreate the simulations. The gridded output variables themselves are not included due to storage limitations. 529 

Pending approval, we will submit our code to get a DOI. 530 
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