
1

Parallel SnowModel (v1.0): a parallel implementation of a 1

Distributed Snow-Evolution Modeling System (SnowModel) 2

Ross Mower1,2, Ethan D. Gutmann1, Jessica Lundquist2, Glen E. Liston3, Soren Rasmussen1 3
1The National Center for Atmospheric Research, Boulder, Colorado, USA 4
2Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA 5
3Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado, USA 6

Correspondence to: Ross Mower (rossamower@ucar.edu) 7

Abstract. SnowModel, a spatially distributed, snow-evolution modeling system, was parallelized using Coarray Fortran for 8

high-performance computing architectures to allow high-resolution (1 m to 100’s of meters) simulations over large, regional 9

to continental scale, domains. In the parallel algorithm, the model domain is split into smaller rectangular sub-domains that 10

are distributed over multiple processor cores using one-dimensional decomposition. All of the memory allocations from the 11

original code have been reduced to the size of the local sub-domains, allowing each core to perform fewer computations and 12

requiring less memory for each process. A majority of the subroutines in SnowModel were simple to parallelize; however, 13

there were certain physical processes, including blowing snow redistribution and components within the solar radiation and 14

wind models, that required non-trivial parallelization using halo-exchange patterns. To validate the parallel algorithm and 15

assess parallel scaling characteristics, high-resolution (100 m grid) simulations were performed over several western United 16

States domains and over the contiguous United States (CONUS). The CONUS scaling experiment had approximately 71% 17

parallel efficiency; runtime decreased by a factor of 32 running on 2304 cores relative to 52 cores (the minimum number of 18

cores that could be used to run such a large domain as a result of memory and time limitations). CONUS 100 m simulations 19

were performed for 21 years (2000 – 2021) using 46,238 and 28,260 grid cells in the x and y dimensions, respectively. Each 20

year was simulated using 1800 cores and took approximately 5 hours to run. 21

1 Introduction 22

The cryosphere (snow and ice) is an essential component of Arctic, mountain, and downstream ecosystems, Earth’s surface 23

energy balance, and freshwater resource storage (Huss et al., 2017). Globally, half the world’s population depends on 24

snowmelt (Beniston, 2003). In snow-dominated regions like the Western United States, snowmelt contributes to 25

approximately 70% of the total annual water supply (Foster et al., 2011). In these regions, late-season streamflow is 26

dependent on the deepest snow drifts and therefore longest-lasting snow (Pflug and Lundquist, 2020). Since modeling snow-27

fed streamflow accurately is largely dependent on our ability to predict snow quantities and the associated spatial and 28

temporal variability (Clark and Hay, 2004), high-temporal and -spatial resolution snow datasets are important for predicting 29

flood hazards and managing freshwater resources (Immerzeel et al., 2020). 30

https://doi.org/10.5194/egusphere-2023-1612
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.

2

The spatial and temporal seasonal snow characteristics also have significant implications outside of water resources. 31

Changes in fractional snow-covered area affect albedo and thus atmospheric dynamics (Liston, 2004; Liston and Hall, 1995). 32

Avalanches pose safety hazards to both transportation and recreational activities in mountainous terrain; the prediction of 33

which requires high-resolution (meters) snow datasets (Morin et al., 2020; Richter et al., 2021). Additionally, the timing and 34

duration of snow-covered landscapes strongly influence how species adapt, migrate, and survive (Boelman et al., 2019; 35

Liston et al., 2016; Mahoney et al., 2018). 36

To date, the primary modes for estimating snow properties and storage have come from observation networks, satellite-based 37

observations, and physically derived snow algorithms in land surface models (LSMs). However, despite the importance of 38

regional, continental, and global snow, estimates of snow properties over these scales remain uncertain, especially in alpine 39

regions where wind, snow, and topography interact (Boelman et al., 2019; Dozier et al., 2016; Mudryk et al., 2015). 40

Observation datasets used for spatial interpolation of snow properties and forcing datasets used in LSMs are often too sparse 41

in mountainous terrain to accurately resolve snow spatial heterogeneities (Dozier et al., 2016; Renwick, 2014). Additionally, 42

remotely sensed products have shown deficiencies in measuring snowfall rate (Skofronick-Jackson et al., 2013), snow-water 43

equivalent (SWE), and snow depth (Nolin, 2010), especially in mountainous terrain where conditions of deep snow, wet 44

snow, and/or dense vegetation may be present (Lettenmaier et al., 2015; Takala et al., 2011; Vuyovich et al., 2014). 45

However, LSMs using high-resolution inputs, including forcing datasets from regional climate models (RCMs), have 46

demonstrated realistic spatial distributions of snow properties (Wrzesien et al., 2018). 47

For several decades, a distributed snow-evolution modeling system (SnowModel) has been developed, enhanced, and tested 48

to accurately simulate snow properties across a wide range of landscapes, climates, and conditions (Liston and Elder, 2006b; 49

Liston et al., 2020). To date, SnowModel has been used in over 200 refereed journal publications; a short listing of these is 50

provided by Liston et al. (2020). Models like SnowModel can be computationally expensive. In these models, the required 51

computational power increases with the number of grid cells covering the simulation domain. Finer grid resolutions usually 52

imply more grid cells and higher accuracy resulting from improved representation of process physics at higher resolutions. 53

The original serial SnowModel code was written in Fortran 77 and could not be executed in parallel using multiple processor 54

cores. As a result, SnowModel’s spatial and temporal simulation domains (number of grid cells and time steps) were 55

previously limited by the speed of one core and the memory available on the single-computer. Note that a “processor” refers 56

to a single central processing unit (CPU) and typically consists of multiple cores, each core is able to run one or more 57

processes in parallel. 58

Recent advancements in multiprocessor computer technologies and architectures have allowed for increased performance in 59

simulating complex natural systems at high resolutions. Parallel computing has been used on many LSMs to reduce compute 60

time and allow for higher accuracy results from finer grid simulations (Hamman et al., 2018; Miller et al., 2014; Sharma et 61

al., 2004). Our goal was to develop a parallel version of SnowModel (Parallel SnowModel) using Coarray Fortran (CAF) 62

syntax without making significant changes to the original SnowModel code physics or structure. CAF is a Partitioned Global 63

https://doi.org/10.5194/egusphere-2023-1612
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.

3

Address Space (PGAS) programming model and has been used to run atmospheric models on 100,000 cores (Rouson et al., 64

2017). 65

In parallelizing numerical models, a common strategy is to decompose the domain into smaller sub-domains that get 66

distributed across multiple processes (Dennis, 2007; Hamman et al., 2018). For rectangular gridded domains (like 67

SnowModel), this preserves the original structure of the spatial loops and utilizes direct referencing of neighboring grids 68

(Perezhogin et al., 2021). The parallelization of many LSMs involve “embarrassingly parallel” problems requiring minimal 69

to no processor communication (Parhami, 1995); in this case, adjacent grid cells do not communicate with each other (an 70

example of this would be where each grid cell represents a point, or one-dimension, snowpack model that is not influenced 71

by nearby grid cells). 72

While much of the SnowModel’s logic can be considered “embarrassingly parallel”, SnowModel also contains “non-trivial” 73

algorithms within the solar radiation, wind, and snow redistribution models. Calculations within these algorithms often 74

require information from neighboring grid cells, either for spatial derivative calculations or for horizontal fluxes of mass 75

(e.g., saltating or turbulent-suspended snow) across the domain. Therefore, non-trivial parallelization requires implementing 76

algorithm changes that allow computer processes to communicate and exchange data. The novelty of the work presented 77

here includes 1) the presentation of Parallel SnowModel and high-resolution (100 m) distributed snow datasets over 78

CONUS; 2) demonstrating how a simplified parallelization approach using CAF and one-dimensional decomposition can be 79

implemented in geoscientific algorithms to scale over large domains; and 3) demonstrating an approach for non-trivial 80

parallelization algorithms that involve spatial derivatives and fluxes using halo-exchange (HX) techniques. 81

In Sect. 2, we describe SnowModel and provide a motivation for its parallelization. In Sect. 3, we explain our parallelization 82

approach using CAF and the module developed that partitions the two-dimensional domain in the y dimension and organizes 83

the non-trivial communication necessary to produce accurate results. In Sect. 4, we validate results from Parallel SnowModel 84

compared to serial simulations, discuss the evolution of the performance of the parallel algorithm, analyze the efficiency of 85

Parallel SnowModel using strong scaling metrics over several basins throughout the United States, and present Parallel 86

SnowModel results over CONUS. Lastly, end with a discussion in Sect. 5 and a conclusion in Sect. 6. 87

2 SnowModel 88

SnowModel is a spatially distributed snow-evolution modeling system designed to model snow properties (e.g., snow depth, 89

SWE, snow melt, snow density) over different landscapes and climates (Liston and Elder, 2006b). The most complete and 90

up-to-date description of SnowModel can be found in the Appendices of Liston et al. (2020). While many snow modeling 91

systems exist, SnowModel is standing to benefit from parallelization across larger domains because of its ability to input 92

high-resolution meteorological data (e.g., wind, radiation, and precipitation) and model fine-scale snow properties and 93

redistribution processes. SnowModel is designed to simulate domains on a structured grid with spatial resolutions ranging 94

from 1 to 200 m (although it has the ability to simulate coarser resolutions, as well) and temporal resolutions ranging from 95

https://doi.org/10.5194/egusphere-2023-1612
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.

4

10 m to 1 d. The primary modeled processes include accumulation from frozen precipitation; blowing-snow redistribution 96

and sublimation; interception, unloading, and sublimation within forest canopies; snow-density and grain-size evolution; and 97

snowpack ripening and melt. These processes are distributed into four interacting submodules: MicroMet defines the 98

meteorological forcing conditions (Liston and Elder, 2006a), EnBal describes surface and energy exchanges (Liston, 1995; 99

Liston et al., 1999). SnowPack is a multilayer snowpack sub-model that simulates the evolution of snow properties and the 100

moisture and energy transfers between layers (Liston and Hall, 1995; Liston and Mernild, 2012), and SnowTran-3D 101

calculates snow redistribution by wind (Liston et al., 2007). Additionally, the initialization submodules that read in the 102

model parameters, distribute inputs across the modeled grid, allocate arrays, etc., include PreProcess and ReadParam. 103

SnowModel incorporates first-order physics required to simulate snow evolution within each of the global snow classes [e.g., 104

Ice, Tundra, Boreal Forest, Montane Forest, Prairie, Maritime, and Ephemeral; (Sturm and Liston, 2021; Liston and Sturm, 105

2021). 106

The required inputs for SnowModel include 1) temporally varying meteorological variables of precipitation, wind speed and 107

direction, air temperature, and relative humidity taken from meteorological stations or atmospheric models and 2) spatially 108

distributed topography and land-cover type (Liston & Elder, 2006a). The following inputs were used for the experiments 109

conducted in Sect. 4: USGS National Elevation Dataset (NED) for topography (Dean B. Gesch, 2018), The North American 110

Land Change Monitoring System (NALCMS) Land Cover 2015 map for vegetation (Homer et al., 2015; Jin et al., 2019; 111

Latifovic et al., 2016), and forcing variables from either the North American Land Data Assimilation System (NLDAS-2) 112

(Mitchell, 2004; Xia, 2012a, b) on a 1/8 degree (approximately 12 km) grid or a high-resolution Weather Research Forecast 113

(WRF) model from the National Center for Atmospheric Research (NCAR) on approximately a 4 km grid (Rasmussen et al., 114

2023). The high-performance computing architectures used include NCAR’s Cheyenne supercomputer, which is a 5.43-115

petaflop SGI ICE XA Cluster featuring 145,152 Intel Xeon processes in 4,032 dual-socket nodes and 313 TB of total 116

memory (Laboratory, 2019) and The National Aeronautics and Space Administration’s (NASA) Center for Climate 117

Simulation (NCCS) Discover supercomputer with a 1,560-teraflop SuperMicro Cluster featuring 20,800 Intel Xeon Skylake 118

processes in 520 dual-socket nodes and 99.84 TB of total memory (Carriere, 2023). 119

2.1 Parallelization Motivation 120

The answers to current snow science, remote sensing, and water management questions require high-resolution data that 121

covers large spatial and temporal domains. While modeling systems like SnowModel can be used to help provide these 122

datasets, running them on single-processor workstations imposes limits on the spatiotemporal extents of the produced 123

information. Serial simulations are limited by both execution time and memory requirements, where the memory limitation 124

is largely dependent on the size of the simulation domain. Up to the equivalent of 175 two-dimensional and 10 three-125

dimensional arrays are held in memory during a SnowModel simulation, depending on the model configuration. In analyzing 126

the performance of the parallel algorithm (Sect. 4), serial simulations were attempted over six domains throughout the 127

United States at 100 m grid resolution. The spatial location, domain dimensions (e.g., number of grids in the x and y 128

https://doi.org/10.5194/egusphere-2023-1612
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.

5

dimensions), and memory requirements, derived from the peak_memusage package 129

(https://github.com/NCAR/peak_memusage), for the simulation experiments are highlighted in Fig. 1. The simulations were 130

executed on Cheyenne for 16 timesteps on 23-24 March 2018 using NLDAS-2 forcing. The three largest domains (Pacific 131

Northwest (PNW), Western U.S. and CONUS) could not be executed in serial using Cheyenne’s normal or large memory 132

(55 GB and 109 GB, respectively) compute nodes due to both exceedances of the 12 h wall-clock limit and memory 133

availability. Furthermore, we estimate that using a currently available, state of the art, single-processor workstation, would 134

require approximately 120 d of computer time to perform a 1 y model simulation over the CONUS domain (Fig. 1) at a 100 135

m grid increment and a 3 h time step. SnowModel is regularly used to perform multi-decade simulations, for trend analyses, 136

climate change studies, and retrospective analyses (Liston and Hiemstra, 2011; Liston et al., 2020; Liston et al., 2022). If this 137

1 y, 100 m, CONUS domain was simulated for a 40 y period (e.g., 1980 through present), it would take approximately 4800 138

d, or over 13 y, of computer time. Clearly such simulations are not practical using single-processor computer hardware and 139

software algorithms. 140

 141
Figure 1: Spatial location of simulated domains on WRF’s lambert conformal projection (Rasmussen et al., 2023) (a) and 142
corresponding grid dimensions (Nx – number of grids in x dimension; Ny – number of grids in y dimension) and memory obtained 143
from peak_memusage package required for single-layer SnowModel simulation experiments (b). For reference, the dashed lines 144
represent the normal and large memory thresholds (55 and 109 GB) for Cheyenne’s SGI ICE XA cluster. 145

3 Parallel Approach 146

In parallelizing SnowModel and distributing computations and memory over multiple processes, we hope to be able to run 147

regional to continental sized simulations efficiently. Some of the model configurations were not parallelized for reasons 148

including ongoing development in the serial code base and limitations to the parallelization approach. These configurations 149

are further discussed in Appendix A. This section introduces the syntax and framework used to parallelize SnowModel, 150

including the partitioning strategy, algorithms involving non-trivial processor communication via halo exchange, and file 151

input and output (I/O). 152

https://doi.org/10.5194/egusphere-2023-1612
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.

6

3.1 Fortran Coarrays 153

CAF, formerly known as F-, (Iso/Iec, 2010; Numrich and Reid, 1998; Numrich et al., 1997) is the parallel language feature 154

of Fortran that was used to parallelize SnowModel. CAF is similar to Message Passing Interface (MPI) libraries in that it 155

uses the Single Program Multiple Data (SPMD) model where multiple independent cores simultaneously execute a program. 156

SPMD allows for distributed memory allocation and remote memory transfer. However, unlike MPI, CAF uses the PGAS 157

parallel programming model to handle the distribution of computational tasks amongst processes (Coarfa et al., 2005). In the 158

PGAS model, each process contains local memory that can be accessed directly by all other processes. While CAF and MPI 159

syntax often refers to processes as images or ranks, for consistency, we will continue to use the term “process”. Ultimately, 160

CAF offers a high-level syntax that exploits locality and scales effectively (Coarfa et al., 2005). For simulation comparisons, 161

we used OpenCoarrays, a library implementation of CAF (Fanfarillo et al., 2014) utilized by the gfortran compiler; intel and 162

cray compilers both have independent CAF implementations. 163

Upon initiation of a CAF program, the number of processes is designated and replicates the program Np times, with each 164

process allocating and storing its own memory locally. Local arrays contain information specific to that process’s local 165

domain, while coarrays are data structures used to communicate information among multiple processes. CAF syntax uses 166

square brackets as subscripts to allocate coarrays and transfer data from one process to another. A variable without square 167

brackets refers to the current process’s copy of a coarray variable. As an example, the coarray logic in Algorithm 1 (Fig. 2) 168

demonstrates a CAF program executed with three processes. In this program memory from the first element of a one-169

dimensional array, 𝑈, residing on the second and third processes (P2 and P3) gets copied into the fifth element of the local 170

array 𝑈 on the second and first processes (P2 and P1), respectively. In the code logic and hereafter, proc represents each 171

process’s identification number, while Np represents the total number of processes used to execute a program. Both integers 172

are created through intrinsic CAF functions (e.g., this_image() and num_image(), respectively). 173

 174
Figure 2: Example logic and schematic transferring data and updating array values using coarrays. 175

https://doi.org/10.5194/egusphere-2023-1612
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.

7

3.2 Partitioning Algorithm 176

The partitioning strategy identifies how the workload gets distributed amongst processes in a parallel algorithm. Both the 177

data structures and physical processes involved in SnowModel justify a one-dimensional decomposition strategy in the y 178

dimension. The multidimensional arrays of SnowModel are stored in row-major order, meaning that the x dimension is 179

contiguous in memory. Additionally, dominant wind directions and therefore predominant snow redistribution occurs in the 180

east-west direction as opposed to south-north directions. The partitioning algorithm decomposes the domain in the y 181

dimension, and allocates local arrays based on Np. For domain decomposition, the computational global domain 𝑁! x 𝑁" is 182

separated into 𝑁! x	𝑙_𝑛𝑦 blocks.	 If 𝑁" is evenly divisible by 𝑁#, then 𝑙_𝑛𝑦# 	=	
$!
$"

. If integer division is not possible, then the 183

remaining rows are distributed evenly amongst the processes starting at the bottom of the computational domain. Figure 3 184

demonstrates how a serial domain containing 10 grid cells in the x and y dimensions would be decomposed with four 185

processes using our partitioning strategy. The domain decomposition over several processes requires mapping information 186

across local entities. Two arrays are created that identify the	𝑙_𝑛𝑦# for each processor (partition_ny) and the starting index of 187

each processor’s local domain within the context of the global domain (prefix_sum). These arrays are used for indexing 188

purposes during file I/O and processor communication. 189

 190
Figure 3: Example 10 x 10 global domain and partitioning for serial simulation (a), and parallel simulation using four processes (b). 191

3.3 Non-trivial Parallelization 192

Each process has sufficient information to correctly execute a majority of the physical computations within SnowModel. 193

However, there are certain subroutines where grid computations require information from neighboring grid cells (e.g., data 194

https://doi.org/10.5194/egusphere-2023-1612
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.

8

dependencies) and therefore information outside of a process’s local domain. For SnowModel, these subroutines typically 195

involve the transfer of blowing snow or calculations requiring spatial derivatives. Furthermore, with our one-dimensional 196

decomposition approach, each grid cell within a process’s local domain has sufficient information from its neighboring grid 197

cells in the x dimension but potentially lacks information from neighboring grid cells in the y dimension. As a regular grid 198

method, SnowModel lends itself to process communication via HX, where coarrays are used in remote calls. HX using CAF 199

involves copying boundary data into coarrays on neighboring images and using information from the coarrays to complete 200

computations (Fig. 4). Although the entire local array could be declared a coarray and accessed by remote processes more 201

directly, some CAF implementations impose additional constraints upon coarray memory allocations that can be problematic 202

for such large allocations. 203

 204
Figure 4: Schematic showing HX using coarrays. The steps include: initial gridded representation of local arrays for three processes 205
(a), P2 copying boundary data into coarrays for remote access (b), neighboring processes (P1 and P3) stitching coarray to local domains 206
(c). 207

3.3.1 Topography – Wind and Solar Radiation Models 208

The wind and solar radiation models in MicroMet require information about surrounding surface topography. The wind 209

model requires surface curvature, and the solar radiation model requires surface slope and aspect. These vary at each 210

timestep as snow accumulates and melts because the defined surface includes the snow surface on top of the landscape. The 211

curvature (𝛺%), for example, is computed at each model grid cell using the spatial gradient of the topographic elevation of 212

eight neighboring grid cells (𝑍& , 𝑍' , 𝑍(, 𝑍$, 𝑍(), 𝑍$' , 𝑍$), 𝑍(' 	[𝑚], where 𝑍& corresponds to the elevation of the grid cell 213

west of the current grid cell, 𝑍$) is the elevation of the grid cell northwest of the current grid cell, etc.) and a curvature 214

length scale or radius, 𝜂	[𝑚] , which is a pre-defined parameter equal to approximately half the wavelength of the 215

topographic features within a domain (Eq. 1) (Liston and Elder, 2006b). 216

𝛺% =
*
+
1
,-#$	(,%0,&)

23
+	

,-#$	(,'0,()

23
+	

,-#$	(,')0,(&)

2423
	
,-#$	(,()0,'&)

2423
3 , (1) 217

https://doi.org/10.5194/egusphere-2023-1612
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.

9

Using the parallelization approach discussed above, processes lack sufficient information to make curvature calculations for 218

the bordering grid cells along the top and/or bottom row(s) within their local domains. For example, all grid cells along the 219

top row of 𝑃* will be missing information from nearby grid cells to the north (𝑍$), 𝑍$, and 𝑍$'), and require topographic 220

elevation (𝑡𝑜𝑝𝑜) information from the bottom row(s) of the local domain of 𝑃2 to make the calculation (Algorithm 2, Fig. 221

5a). HX is performed to distribute row(s) (𝑖𝑛𝑐) of 𝑡𝑜𝑝𝑜 data to each process that is missing that information in their local 222

domains (Fig. 5b). Processes whose local domains are positioned in the bottom or top of the global domain will only perform 223

one HX with their interior neighbor, while interior processes will perform two HXs. By combining and appropriately 224

indexing information from the process’s local array and received coarrays (𝑐𝑜𝑎𝑟𝑟𝑎𝑦_𝑛 and 𝑐𝑜𝑎𝑟𝑟𝑎𝑦_𝑠) of topographic 225

elevation, an accurate curvature calculation can be performed using this parallel approach (Fig. 5c). Lastly, sync all 226

(Algorithm 2) is an intrinsic CAF function that synchronizes all of the processes. In other words, no process will go past this 227

point in the algorithm until all of the processes have arrived. This is an important component of HX algorithms because it 228

helps to prevent processes from making calculations before they have received important coarray information from a 229

neighboring process. However, synchronization statements have an associated cost of decreasing the speed and efficiency of 230

an algorithm and therefore should be minimized (discussed further in Sect. 4.2). 231

 232
Figure 5: Schematic for HX of 𝒄𝒐𝒂𝒓𝒓𝒂𝒚_𝒔 used in the curvature calculation by 𝑷𝟏, where 𝒊𝒏𝒄	= 2. Prior to HX,	𝑷𝟏 	contains 233
insufficient information to perform the curvature calculation (a), grid cells (halo) within the local domain of 𝑷𝟐	(b) are transferred 234
to 𝑷𝟏 via coarrays (coarray_s, Alg. 2) (c). At this point, 𝑷𝟏 has sufficient information to make the curvature calculation. 235

3.3.2 Snow Redistribution 236

Wind influences the mass balance of the snowpack by suspending and transporting snow particles in the air (turbulent-237

suspension) and by causing snow grains to bounce on top of the snow surface (saltation). Furthermore, field measurements at 238

alpine sites in Colorado and Wyoming, have shown that snow can be transported up to 6 km due to saltation and suspension 239

(Tabler, 1975). Snow redistribution in SnowTran-3D is defined using a mass balance equation describing the temporal 240

variation of snow depth at a point [Eq. 2 (Liston and Sturm, 1998), see their Fig 2], where changes in the horizontal mass-241

transport rates of saltation, 𝑄5 [kg m-1 s-1], changes in turbulent-suspended snow,	𝑄6 [kg m-1 s-1], sublimation of transported 242

snow particles, 𝑄7 [kg m-1 s-1], water-equivalent precipitation rate, P [m s-1], and snow and water density, 𝜌5 [kg m-3], 243

combine to describe the time rate of change of snow depth 𝜁 [m]. At each timestep, snow redistribution (𝑑𝜁) is solved for 244

https://doi.org/10.5194/egusphere-2023-1612
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.

10

each grid cell through spatial derivatives (8
8!
	 , 8
8"

) from neighboring grid cells. Since spatial derivatives and horizontal mass-245

transport rates of saltating and suspended snow are required, processor communication is also required along the boundary 246

grid cells through HX. 247

89
86
= *

:*
A𝜌&𝑃 −	C

8;*
8!
+ 8;+

8!
+	8;*

8"
+	8;+

8"
D + 𝑄7E , (2) 248

In SnowModel, the saltation and suspension algorithms are separated into northerly, southerly, easterly, and westerly fluxes 249

based on the u and v components of wind direction for each grid cell. Figure 6 shows a simplified serial algorithm and 250

schematic for the saltation flux from a southerly wind. To start, SnowModel initializes the maximum saltation flux (Qsalt_v) 251

as the boundary condition. To calculate the saltation flux, SnowModel iterates over continuous sections (jstart and jend) of 252

the same wind direction, updates the change in saltation fluxes from upwind grid cells (dQsalt), and the change in saltation 253

flux from the given wind direction (dh_qsalt_v), and makes adjustments of these fluxes based on the snow availability due to 254

vegetation height and snow compaction (Liston and Elder, 2006b). 255

 256
Figure 6: Schematic of serial algorithm showing change in saltation flux (Qsalt_v and dh_salt_v) due to southerly winds over domain 257
(a), and the iteration to update the saltation fluxes Nx = 1 (b). 258

Similar logic is used for the parallel implementation of saltation and suspension fluxes with an additional iteration (salt_iter) 259

to update the boundary condition for each process via HX. This allows the fluxes to be communicated from one process’s 260

local domain to another. To prevent excessive iterations, salt_iter was provided a maximum bound that is equivalent to snow 261

being transported 15 km via saltation or sublimation. This number was chosen based off prior field measurements (Tabler, 262

1975) and simulation experiments. It is possible that in other environments an even larger length may be required, to be 263

guaranteed to match the serial results in all cases, the number of iterations would have to be equal to the number of 264

processes; however, this would result in no parallel speed up and has no practical benefit. A skeleton of the parallel 265

calculation of the change in saltation due to southerly winds is illustrated in Algorithm 4 in Fig. 7. In the parallel algorithm, 266

https://doi.org/10.5194/egusphere-2023-1612
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.

11

the bc_halo_exchange subroutine performs a HX of Qsalt_v grid cells from upwind processes, allowing the saltation flux to 267

be transported from one process’s local domain to the next. 268

 269
Figure 7: Schematic of the parallel algorithm showing change in saltation flux (Qsalt_v and dh_salt_v) due to southerly winds over a 270
domain simulated with three processes (P1, P2, P3) (a), and over three saltation iterations (salt iter) for Nx = 1 (b). Before each 271
iteration, the boundary condition of the saltation flux (bc_halo_exchange) gets updated using HX. 272

3.4 File I/O 273

File I/O management can be a significant bottleneck in parallel applications. Parallel implementations that are less memory 274

restricted commonly use local to global mapping strategies, or a centralized approach for file I/O (Fig. 8a). However, this 275

approach requires that each process stores global arrays for input and output variables and creates a substantial bottleneck as 276

the domain size scales (Sect. 4.2). To improve performance, distributed file I/O can be implemented, where input and output 277

files are directly and concurrently assessed by each process (Fig. 8b). 278

 279
Figure 8: Schematic of global to local mapping for file I/O using a centralized approach with four processes (a), and distributed file 280
I/O where each process reads and writes data corresponding to its local domain (b). 281

https://doi.org/10.5194/egusphere-2023-1612
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.

12

SnowModel contains static spatial inputs that do not vary over time, e.g., topography and land cover, and dynamic spatial 282

inputs, e.g., air temperature and precipitation, that vary spatially and temporally. The static inputs are of a higher resolution 283

compared to the dynamic inputs (cf., topography is on the model grid, while atmospheric forcing is almost always more 284

widely spaced). In an attempt to balance performance and consistency with the serial logic of the code, we used a mixed 285

parallel file I/O approach. File input (reading) is performed in a distributed way for the static inputs and in a centralized way 286

for dynamic inputs, while file output (writing) is performed in a distributed way, as described further below. 287

3.4.1 Parallel Inputs 288

SnowModel’s primary static spatial inputs include topography and vegetation data. However, depending on the simulation 289

configuration, additional spatial inputs representing gridded values of latitude and longitude may be required. Acceptable 290

static input file types include binary and ASCII files and can be read in a centralized or distributed manner. However, since 291

the resolution of static inputs is identical to the resolution of the modeled grid, these arrays need to be read in a distributed 292

manner. This is crucial for Parallel SnowModel’s ability to scale to regional and continental sized domains, as storing a 293

single copy of the full domain topography over CONUS would require 5.23 GB of memory. Therefore, if a node containing 294

36 processes needs to read in the entire global array of topography, a total of 188.28 GB of memory would be required for 295

topography alone. This memory limitation of the centralized I/O approach would prevent a CONUS simulation from being 296

executed using one process per node on Cheyenne’s large memory nodes. As a result, parallelization has been limited to 297

reading static inputs from binary files (as noted in the Appendix A), thereby preventing the need for global arrays of static 298

input variables, excessive process communication, and memory allocation. Binary input files can be accessed concurrently 299

by indexing the starting byte and length of bytes commensurate to a process’s local domain. Therefore, each process only 300

reads its own portion of the static input data. 301

Reading of meteorological forcing variables (wind speed, wind direction, relative humidity, temperature, and precipitation) 302

can be performed in parallel with either binary or NetCDF files. Depending on the forcing dataset, the resolution of the 303

meteorological variables typically ranges from 1 to 30 km and therefore is often much coarser than the static inputs for high-304

resolution simulations. For example, the resolution of NLDAS-2 meteorological forcing is approximately 11 km, while a 305

high-resolution WRF model from NCAR is approximately 4 km. At each timestep, processes read in the forcing data from 306

every station into a one-dimensional array, index the nearest station data, and interpolate the nearest station data to create 307

forcing variables over the local domain. All processes perform the same operation and store common information (forcing 308

data stored in the one-dimensional array). However, since the resolutions of the forcing datasets are significantly coarser 309

than the model grid for high-resolution simulations, the dynamic forcing input array size remains comparable to other local 310

arrays. While more efficient parallel file input schemes could improve performance, we decided to keep this logic to 311

maintain consistency with the serial version of the code. 312

https://doi.org/10.5194/egusphere-2023-1612
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.

13

3.4.2 Parallel Outputs 313

To eliminate the use of local to global mapping commonly used to output variables (Fig. 8a), each process writes its own 314

output file (Fig. 8b). A postprocessing script is then used to concatenate files from each process into one file that represents 315

the output for the global domain. Modern high-performance computing architectures have highly parallelized disc systems 316

making file output using a distributed approach faster than the centralized approach. Therefore, file output in this manner 317

reduces time and memory requirements. 318

4 Results 319

Parallel SnowModel experiments were evaluated on six domains in the United States (Fig. 1). All experiments were 320

executed with a 100 m grid increment, a 3 h time step, and used a single-layer snowpack configuration. The validation 321

experiments and scaling experiments were forced with NLDAS-2, while the CONUS simulation was forced with the higher-322

resolution WRF dataset. All experiments included the primary SnowModel modules (MicroMet, EnBal, SnowPack, and 323

SnowTran-3D). 324

4.1 Parallel SnowModel Validation 325

A key requirement of Parallel SnowModel is for its simulation results to be identical to those from the serial algorithm. To 326

assess the accuracy of the CAF implementation, two validation experiments were performed (Tuolumne and Colorado 327

Headwaters). The Tuolumne domain is located in the Sierra Nevada Mountain Range in California and contains 311 and 185 328

grid cells in the x and y dimensions, respectively, while the Colorado Headwaters domain contains 3166 by 5167 grid cells in 329

the x and y dimensions, respectively (Fig. 1). Both simulations were run at 100 m grid resolution using 3 h timesteps and 330

forced with NLDAS-2 meteorological variables. The Tuolumne experiments were conducted from 1 September 2017 331

through 31 August 2018, for a total of 2920 timesteps. Due to the larger domain size and 12 h wall-clock limitation, the 332

Colorado Headwaters validation experiments were simulated from 1 January 2018 through 1 February 2018, for a total of 333

256 timesteps. 334

The implementation of Parallel SnowModel was validated to assess the reproducibility of the results compared to the 335

original serial model by varying the number of processes and therefore the size of the domain decomposition. We compared 336

results from the original serial model to parallel simulations executed with 2, 4, 8, 16, 36, 52, 72, and 144 (Note: the 337

maximum number of processes executed over the Tuolumne domain was 52 due to its domain size and decomposition). 338

Comparisons were made on 17 output variables, including relevant snow variables like snow depth, SWE, snow density, and 339

SWE-melt. A complete list of output variables is provided in Appendix B. We used the root mean square error (RMSE) 340

metric to evaluate differences between results for each timestep from the parallel and sequential simulations (Eq. 3). All 341

variables across all processes produced RMSE values of 10-6, which is at the limit of machine precision, when compared to 342

serial simulation results. 343

https://doi.org/10.5194/egusphere-2023-1612
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.

14

𝑅𝑀𝑆𝐸(𝑋, 𝑌) = 	M∑(=,->,)$

$
 , (3) 344

4.2 Parallel Performance 345

The performance of Parallel SnowModel was evaluated by comparing the execution time as a function of improvements to 346

the algorithm (file I/O scheme and process communication) and execution time as a function of domain size and number of 347

processes. Strong scaling is a common parallel performance metric implemented to understand the relationship between 348

execution time and the number of processes used for a fixed domain size. The execution time used in the parallel 349

performance assessments did not include the initialization of the algorithm (ReadParam, PreProcess, and array allocation), as 350

to not weigh the initialization disproportionately, especially when running large domains over relatively short time periods. 351

Speedup (S), a metric of strong scaling, is defined as the ratio of the serial execution time, 𝑇(1), over the execution time 352

using N cores, 𝑇(𝑁) (Eq. 4). Optimally, parallel algorithms will experience a doubling of speedup as the number of cores is 353

doubled (e.g., ideal scaling). 354

𝑆(𝑁) = ?(*)
?($)

	 , (4) 355

Additionally, code profiling evaluates the execution time of individual submodules as a function of the number of processes. 356

Together, code profiling and strong scaling can be used to understand locations of bottlenecks in the algorithm and how 357

changes to the code affect performance. Figure 9 highlights the results of two significant changes made to the parallel 358

algorithm, as shown through code profiling and speedup plots of three different stages of the code development (Mower et 359

al., 2023). The simulations were executed on the Colorado Headwaters domain (Fig. 1) using 1, 2, 4, 8, 16, 36, 52, 72, and 360

144 processes, outputted one variable, and were forced with NLDAS-2 data for 16 timesteps from 23-24 March 2018. The 361

first stage is a representation of the code when it used a centralized (Sect. 3.4) file I/O approach and is thus referred to as 362

Centralized (Fig. 9). Distributed High Sync represents a version of the code with distributed file I/O and high or excessive 363

process communication, while Distributed Low Sync represents a more recent version of the code where unnecessary parallel 364

logic and communication had been removed (Fig. 9). As mentioned previously, synchronization calls (e.g., sync all) are 365

necessary to accurately perform HX and for the parallel algorithm to achieve identical results as the serial algorithm (Sect. 366

4.1) but increase the overall execution time. Therefore, the major difference between the Distributed High Sync and the 367

Distributed Low Sync is the optimization of process communication and wait times. The scaling results of the Centralized 368

compared to the Distributed Low Sync version of the algorithm produced factors of 4 and 100 times speedup, respectively, 369

when running with 144 processes. Code profiling plots of the Centralized version show the execution time of several 370

submodules including ReadParam and Preproc (file input) and Output (file output) being constant as the number of processes 371

increases. In other words, increasing the number of processes did not decrease the execution time within these submodules. 372

Conversely, the execution time of ReadParam, Preproc, and Output all scale (decrease proportionately) with the number of 373

processes in Distributed High Sync. SnowTran-3D displays an increase in execution time after approximately 36 processes 374

https://doi.org/10.5194/egusphere-2023-1612
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.

15

(in both Centralized and Distributed High Sync), which is no longer observed in Distributed Low Sync. Therefore, the 375

difference in speedup across these three stages is mainly attributed to bottlenecks occurring from file I/O schemes and 376

excessive processor communication in SnowTran-3D. Ultimately, without these improvements, the CONUS domain could 377

not be simulated using Parallel SnowModel. 378

 379
Figure 9: Code profiling (top row) and strong scaling (bottom row) results demonstrating the progression of Parallel SnowModel, 380
which includes a version of the code with centralized file I/O (Centralized; first column), a version of the code with distributed I/O 381
and high process communication (Distributed High Sync; second column), and a more recent version of the code which includes 382
distributed file I/O and low process communication (Distributed Low Sync; third column). The arrow in the code profiling plots of 383
Distributed High Sync and Distributed Low Sync indicates the ReadParam timing is below the y-axis at approximately 0.3 seconds 384
and 0.003 seconds, respectively. 385

In addition to performing a scaling analysis across different versions of the code, we performed a scaling experiment across 386

several domains using the current version of Parallel SnowModel (Mower et al., 2023). Six, 100 m resolution domains across 387

the United States [Tuolumne, Colorado Headwaters, Idaho, PNW, Western U.S. (West), and CONUS] (Fig. 1) were 388

simulated using different numbers of processes. The simulations were forced with NLDAS-2 data for 16 timesteps from 23-389

24 March 2018 and outputted one variable. While 16 timesteps is a short time period to perform scaling experiments, we 390

wanted to compare timing metrics across different sized domains and were limited by memory and the 12 h wall-clock on 391

Cheyenne. However, as mentioned previously, the initialization timing was removed in the speedup calculations. 392

Additionally, over these selected dates, a significant amount of wind and frozen precipitation was observed over CONUS to 393

activate some of the snow redistribution schemes in SnowTran-3D. Figure 10 shows the S as function of the number of 394

processes for the local and state (Tuolumne, Colorado Headwaters, and Idaho Fig. 10a) and regional and continental sized 395

domains (PNW, Western. U.S., and CONUS, Fig. 10b). For the regional and continental domains, where serial simulations 396

could not be performed either due to wall-clock or memory limitations (as discussed in Sect. 2), the approximate speedup (𝑆P) 397

https://doi.org/10.5194/egusphere-2023-1612
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.

16

is estimated using the execution time, 𝑇Q𝑃RS, of the simulation with the minimum number of processes (𝑃!) by assuming 398

perfect scaling from there to a single process (Eq. 5). For example, this experiment identified the 𝑃! needed to run the PNW 399

domain was 4 with a 𝑇Q1RS of approximately 104 min (the total execution time including initialization was approximately 188 400

min). Therefore, the estimated 𝑇(1), assuming ideal scaling, of running Idaho on one core would be 416 min. Near perfect 401

scaling is evident up to 144 processes in most of the domains, so the assumption that scaling is linear below 52 processes 402

(𝑇Q1RS for the CONUS domain) appears to be justified. While this approximation is an assumption, it is helpful to visualize 403

the approximate 𝑆P across the different domains on a similar scale. 404

𝑆P(𝑁) = ?(@A)
?($)

	 ∗ 𝑃R	 , (5) 405

 406

Figure 10: The left panel displays speedup (Eq. 4) for local and state sized simulations (Tuolumne, Colorado, and Idaho), while the 407
right panel shows approximate speedup (Eq. 5) for the regional and continental sized domains (PNW, West, and CONUS). 408

In strong scaling, the number of processes is increased while the problem size remains constant; therefore, it represents a 409

reduced workload per process. Strong scaling analysis is useful for I/O and memory bound applications to identify a setup 410

that results in a reasonable runtime and moderate resource costs (Fig. 10). The speedup obtained by increasing the number of 411

processes above 288 for the Colorado Headwaters domain is marginal, while increasing the number of processes above 1152 412

results in an increase in runtime (decrease in speedup) for the PNW domain, due to excessive process communication. Local 413

sized domains, e.g., Tuolumne, likely do not warrant the need for parallel resources because they have small serial runtimes 414

and parallel efficiencies (E; Eq. 6), or approximate parallel efficiencies (𝐸R; Eq. 7), which is the ratio of the speedup (Eq. 4) 415

or approximate speedup (Eq. 5) to the number of processes (e.g., using 52 processes, Tuolumne had a E of 20%). However, 416

state, regional, and continental domains stand to benefit more significantly from parallelization. The CONUS runtime 417

https://doi.org/10.5194/egusphere-2023-1612
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.

17

decreased by a factor of 32 running on 2304 processes relative to 52 processes. Based on our approximate speedup 418

assumption, we would expect a CONUS 𝑆P of 1644 times on 2304 processes compared to one core, with an 𝐸R of 71%. If the 419

initialization portion of the algorithm (ReadParam, PreProcess, and array allocation) is included in the total execution time, 420

the CONUS S increases to a factor of 47 running on 2304 processes relative to 52 processes. This actually results in 421

superlinear scaling and is attributed to the initialization process, where the process count allows sections of data to be 422

retained in the local cache, reducing the need for the process to interact with global memory as frequently. Additionally, if 423

17 variables, as opposed to one variable, are outputted, the CONUS 𝑆P is reduced by 22%. Ultimately, the strong scaling 424

analysis supports the effectiveness of running Parallel SnowModel at high-resolution over large domains. 425

𝐸(𝑁) = (
$
	 ∗ 100%	 , (6) 426

𝐸R(𝑁) = (B

$
∗ 100%	 , (7) 427

4.3 CONUS Simulations 428

A primary goal of this work was to run Parallel SnowModel simulations for 21 years (2000 – 2021) over the Fig. 1 CONUS 429

domain on a 100 m grid, while resolving the diurnal cycle in the model physics and creating a daily dataset of snow 430

properties, including snow depth, SWE, SWE-melt, sublimation, and precipitation partitioning into rain and snow. Future 431

work will involve analyzing results from these simulations. Ultimately, the domain contained 46,238 and 28,260 grid cells in 432

the x and y dimensions, respectively. Simulations were performed on a 3 h time step and forced with the WRF dataset. All 433

simulations were executed on Discover using 1800 processes with a total compute time of approximately 192,600 core 434

hours, or approximately 5 wall-clock hours per year. Spatial results of SWE on 12 February 2011 over the CONUS domain 435

and a sub-domain located in the Indian Peaks west of Boulder, Colorado are displayed in Fig. 11. The sub-domain highlights 436

two grid cells located 200 m apart on a peak. The time series of SWE evolution for those grid cells (Fig. 11d and Fig. 11e) 437

demonstrates the ability of Parallel SnowModel to capture fine-scale snow properties even when simulating continental 438

domains. The upwind (western) grid cell is scoured by wind, and snow is transported to downwind (eastern) grid cells where 439

a snow drift forms. The information and insight available in this high-resolution dataset will have important implications for 440

many applications from hydrology, to wildlife and ecosystems, to weather and climate, and many more. 441

https://doi.org/10.5194/egusphere-2023-1612
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.

18

 442
Figure 11: Simulation results of Parallel SnowModel over CONUS using WRF projection. Spatial patterns of SWE over the CONUS 443
domain for 12 February 2011 (a), highlighting the SWE distribution (b) and topography with an applied hillshade (c) of a sub-domain 444
near Apache Peak in the Indian Peaks west of Boulder, CO. Time series of SWE from 2000-2021 and over the 2011 water year for grid 445
cells (“erode” and “deposit”) identified in panel B are displayed in panels D and E, respectively. The “erode” and “deposit” grid cells 446
highlight areas of similar elevation but significant differences in SWE evolution resulting from blowing-snow redistribution processes. 447

5 Discussion 448

In this paper, we present a relatively simple approach that allows SnowModel to perform high-resolution simulations over 449

regional to continental sized domains. The code within the core submodules (EnBal, MicroMet, SnowPack, and SnowTran-450

3D) and model configurations (single-layer snowpack, multi-layer snowpack, binary input files, etc.) were parallelized in 451

this study. The parallelization subroutines of the program code have been modularized. This allows SnowModel to be 452

compiled with Fortran compilers that do not support the Fortran 2008 standard, as well as modern compilers that support 453

parallel CAF either internally or through libraries, such as OpenCoarrays (Fanfarillo et al., 2014). Additionally, it provides 454

the structure for other parallelization logic (e.g., MPI) to be more easily added to the code base. The parallel module contains 455

a simple approach to decomposing the computational domain in the y dimension into smaller rectangular sub-domains. 456

These sub-domains are distributed across processes to perform asynchronous calculations. The parallelization module also 457

contains logic for communicating information among processes using HX coarrays for the wind and solar radiation models, 458

https://doi.org/10.5194/egusphere-2023-1612
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.

19

as well as for snow redistribution. These approaches can be adopted in other parallelization efforts where spatial derivatives 459

are calculated or fluxes are transported across gridded domains. 460

Parallelizing numerical models often involves two-dimensional decomposition in both the x and y dimensions. While many 461

benefits have been demonstrated by this approach, including improved load balancing (Dennis, 2007; Hamman et al., 2018), 462

it comes with increased complication of the parallel algorithms, including the partitioning algorithm, file I/O, and process 463

communication. The demonstrated speedup of Parallel SnowModel on high-performance computing architectures (Fig. 10), 464

suggests that SnowModel scales effectively over regional to continental scales using the one-decomposition parallelization 465

approach. The added benefits obtained from two-dimensional decomposition strategies might not outweigh the costs of 466

development, testing, and minimizing changes to the code structure and logic for applications such as SnowModel. 467

Ultimately, our simplified parallelization approach can be modeled by other geoscience schemes as a first step to enhance 468

simulation size and resolution. 469

Simulation experiments were conducted using Parallel SnowModel to validate the parallel logic, interpret its performance 470

across different versions of algorithm and across different sized domains, and demonstrate its ability to simulate continental 471

domains at high-resolution. Most importantly, a comparison of output results from serial SnowModel and Parallel 472

SnowModel validated the accuracy of the parallel algorithm and confirmed that the physical representations were not altered 473

by the parallelization (Sect. 4.1). Code profiling and speedup analyses over the Colorado Headwaters domain helped identify 474

bottlenecks in file I/O and processor communication in SnowTran-3D (Sect. 4.2). Corrections to the referred bottlenecks 475

allowed Parallel SnowModel to scale up to regional and continental sized simulations. Parallel speedup analyses helped to 476

identify the optimum number of processes and efficiency of the parallel algorithm for different domain sizes (Sect 4.2). 477

Additionally, these experiments emphasize the relationships among speed, memory, and computing resources for Parallel 478

SnowModel. A common laptop (~ 4 processes) has sufficient CPUs to run local sized domains within a reasonable amount 479

of time, but likely does not have sufficient memory for state-sized simulations. Similarly, the minimum memory (1160 GB; 480

Fig. 1) and processes (52; Fig. 10) required to run the CONUS domain, could be simulated on a large server (~ 128 481

processes) with one process per node. However, extrapolating from our scaling results on Cheyenne (Fig. 10), we estimate it 482

would take over 10 days to run a CONUS simulation for one water year with this configuration. In contrast, it took 483

approximately 5 hours for CONUS to run on the Discover supercomputer using 1800 processes (Sect. 4). Therefore, by the 484

time it took the large server to complete a CONUS simulation for one water year, 48 water years could have been simulated 485

on a supercomputer. Lastly, results from the CONUS simulation highlight the ability of Parallel SnowModel to run high-486

resolution continental simulations, while maintaining fine-scale snow processes that occur at a local level. 487

6 Conclusions 488

While several snow products exist, few capture the suite of snow properties along with the spatial and temporal extents and 489

resolutions that can benefit a wide variety of applications. For example, current snow information products include the 490

https://doi.org/10.5194/egusphere-2023-1612
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.

20

NASA daily SWE distributions globally for dry (non-melting) snow on a 25 km grid (Tedesco and Jeyaratnam, 2019), a 491

NASA snow-cover product on a 500 m grid (Hall et al., 2006) that is often missing information due to clouds (approximately 492

50% of the time (Moody et al., 2005)), and the Snow Data Assimilation System (SNODAS) daily snow information 493

provided by the National Oceanic and Atmospheric Administration (NOAA) and the National Weather Service (NWS) 494

National Operational Hydrologic Remote Sensing Center (NOHRSC) on a 1 km grid (Center, 2004), which is itself model 495

derived and has limited geographic coverage and snow properties. The Airborne Snow Observatory (ASO) provides the 496

highest resolution data with direct measurements of snow depth on a 3 m grid, and derived values of SWE on a 50 m grid 497

(Painter et al., 2016), but is flown on an aircraft and thus has limited spatio-temporal coverage. Furthermore, there are many 498

fields of study that can benefit from 100 m resolution information of internally consistent snow variables, including wildlife 499

and ecosystem, military, hydrology, weather and climate, cryosphere, recreation, remote sensing, engineering and civil 500

works, and industrial applications. SnowModel can produce high-resolution outputs of snow depth, density, SWE, grain size, 501

thermal resistance, snow strength, snow albedo, landscape albedo, meltwater production, snow-water runoff, blowing snow 502

flux, visibility, peak winter SWE, snow-season length, snow onset date, snow-free date, and more, all produced by a physical 503

model that maintains consistency among variables. The SnowModel system itself supports the assimilation of a wide variety 504

of observations such that it can provide all of these variables while maintaining consistency with the limited in situ and 505

remotely sensed measurements that are available. The new Parallel SnowModel described here permits the application of 506

this modeling system to very large domains without sacrificing spatial resolution. 507

Appendix A 508

Some of the configuration combinations were not parallelized during this study for reasons including ongoing development 509

in the serial code base and limitations to the parallelization approach. These include simulations involving tabler surfaces 510

(Tabler, 1975), I/O using ASCII files, lagrangian seaice tracking, and data assimilation. 511

Appendix B 512

Validation SnowModel experiments were run in serial and in parallel over the Tuolumne and Colorado Headwaters domains 513

(Sect. 4.1) using the RMSE statistic (Eq. 3). Important output variables from EnBal, MicroMet, SnowPack, and SnowTran-514

3D demonstrated similar, if not identical values, when compared to serial results for all timesteps during the simulations; 515

RMSE values were within machine precision (~10-6) regardless of the output variable, domain, or number of processes used. 516

The validated output variables include albedo [%], precipitation [𝑚], emitted longwave radiation [𝑊 ∗𝑚-2], incoming 517

longwave radiation reaching the surface [𝑊 ∗𝑚-2], incoming solar radiation reaching the surface [𝑊 ∗𝑚-2], relative 518

humidity [%], runoff from base of snowpack [𝑚 ∗ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝], rain precipitation [𝑚], snow density [𝑘𝑔 ∗ 𝑚-C], snow-water 519

equivalent melt [𝑚], snow depth [𝑚], snow precipitation [𝑚], static-surface sublimation [𝑚], snow-water equivalent [𝑚], air 520

https://doi.org/10.5194/egusphere-2023-1612
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.

21

temperature [°𝐶], wind direction [°], and wind speed [𝑚 ∗ 𝑠-*]. The Tuolumne domain could not be simulated with 72 521

processes, likely due to an insufficiently small local domain of 2-3 rows as a result of the domain decomposition. Ultimately, 522

we feel confident that Parallel SnowModel is producing the same results as the original serial algorithm. 523

Code, data availability, and supplement 524

The Parallel SnowModel code and the data used in Sect. 4 is available through a public GitHub repository (Mower et al., 525

2023). The code base is limited to the parallelization changes to the serial version of the model. Furthermore, it does not 526

contain preprocessing steps used to build simulation domains. For more information about the serial version of SnowModel, 527

refer to Liston and Elder (2006b). The data includes figures and SnowModel output files that contain the necessary 528

information to recreate the simulations. The gridded output variables themselves are not included due to storage limitations. 529

Pending approval, we will submit our code to get a DOI. 530

Author contribution 531

EDG and GDL conceived the study. RM, EDG, GDL, and SR were integral in the code development. RM, EDG, and JL 532

were involved in the design, execution, and interpretation of the experiments. All authors discussed the results and 533

contributed to the final version of the draft. 534

Competing interests 535

The contact author has declared that none of the authors has any competing interests. 536

Disclaimer 537

Publisher’s note: Copernicus Publications remains neutral with regard to jurisdictional claims in published maps and 538

institutional affiliations. 539

Financial support 540

The authors would like to acknowledge that this work has been performed under funding from NASA Earth Science Office 541

(ESTO) Advanced Information Systems Technology (AIST) Program (grant no. 80NSSC20K0207) and support by the 542

University of Washington’s College of Engineering Fellowship. 543

 544

https://doi.org/10.5194/egusphere-2023-1612
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.

22

Acknowledgements 545

We acknowledge Alessandro Fanfarillo in his help during the early stages of the Parallel SnowModel code development. We 546

are also grateful for the feedback from various team members involved in the AIST project, including Carrie Vuyovich, 547

Kristi Arsenault, Melissa Wrzesien, Adele Reinking, and Barton Forman. 548

 549

References 550

Beniston, M.: Climatic Change in Mountain Regions: A Review of Possible Impacts, Climatic Change, 59, 5-31, 551

10.1023/A:1024458411589, 2003. 552

Boelman, N. T., Liston, G. E., Gurarie, E., Meddens, A. J. H., Mahoney, P. J., Kirchner, P. B., Bohrer, G., Brinkman, T. J., 553

Cosgrove, C. L., Eitel, J. U. H., Hebblewhite, M., Kimball, J. S., LaPoint, S., Nolin, A. W., Pedersen, S. H., Prugh, L. R., 554

Reinking, A. K., and Vierling, L. A.: Integrating snow science and wildlife ecology in Arctic-boreal North America, 555

Environmental Research Letters, 14, 010401, 10.1088/1748-9326/aaeec1, 2019. 556

Discover SCU Hardware: https://www.nccs.nasa.gov/systems/discover/scu-info, last 557

Center, N. O. H. R. S.: Snow data assimilation system (SNODAS) data products at NSIDC, 2004. 558

Clark, M. P. and Hay, L. E.: Use of Medium-Range Numerical Weather Prediction Model Output to Produce Forecasts of 559

Streamflow, Journal of Hydrometeorology, 5, 15-32, 10.1175/1525-7541(2004)005<0015:Uomnwp>2.0.Co;2, 2004. 560

Coarfa, C., Dotsenko, Y., Mellor-Crummey, J., Cantonnet, F., El-Ghazawi, T., Mohanti, A., Yao, Y., and Chavarría-561

Miranda, D.: An evaluation of global address space languages: co-array fortran and unified parallel c, Proceedings of the 562

tenth ACM SIGPLAN symposium on Principles and practice of parallel programming, 36-47, 563

Dean B. Gesch, G. A. E., Michael J. Oimoen, Samantha Arundel: The National Elevation Dataset, 70201572, 564

USGS Publication Warehouse2018. 565

Dennis, J. M.: Inverse space-filling curve partitioning of a global ocean model, 2007 IEEE International Parallel and 566

Distributed Processing Symposium, 1-10, 567

Dozier, J., Bair, E. H., and Davis, R. E.: Estimating the spatial distribution of snow water equivalent in the world's 568

mountains, WIREs Water, 3, 461-474, https://doi.org/10.1002/wat2.1140, 2016. 569

https://doi.org/10.5194/egusphere-2023-1612
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.

23

Fanfarillo, A., Burnus, T., Cardellini, V., Filippone, S., Nagle, D., and Rouson, D.: OpenCoarrays: open-source transport 570

layers supporting coarray Fortran compilers, Proceedings of the 8th International Conference on Partitioned Global Address 571

Space Programming Models, 1-11, 572

Foster, J. L., Hall, D. K., Eylander, J. B., Riggs, G. A., Nghiem, S. V., Tedesco, M., Kim, E., Montesano, P. M., Kelly, R. E. 573

J., Casey, K. A., and Choudhury, B.: A blended global snow product using visible, passive microwave and scatterometer 574

satellite data, International Journal of Remote Sensing, 32, 1371-1395, 10.1080/01431160903548013, 2011. 575

Hall, D., Riggs, G., and Salomonson, V.: MODIS/Terra Snow Cover 5-Min L2 Swath 500m, Version, 5, 2011167.2011750, 576

2006. 577

Hamman, J. J., Nijssen, B., Bohn, T. J., Gergel, D. R., and Mao, Y.: The Variable Infiltration Capacity model version 5 578

(VIC-5): Infrastructure improvements for new applications and reproducibility, Geoscientific Model Development, 11, 3481-579

3496, 2018. 580

Homer, C., Dewitz, J., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N., Wickham, J., and Megown, K.: 581

Completion of the 2011 National Land Cover Database for the conterminous United States–representing a decade of land 582

cover change information, Photogrammetric Engineering & Remote Sensing, 81, 345-354, 2015. 583

Huss, M., Bookhagen, B., Huggel, C., Jacobsen, D., Bradley, R. S., Clague, J. J., Vuille, M., Buytaert, W., Cayan, D. R., 584

Greenwood, G., Mark, B. G., Milner, A. M., Weingartner, R., and Winder, M.: Toward mountains without permanent snow 585

and ice, Earth's Future, 5, 418-435, https://doi.org/10.1002/2016EF000514, 2017. 586

Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T., Hyde, S., Brumby, S., Davies, B. J., Elmore, 587

A. C., Emmer, A., Feng, M., Fernández, A., Haritashya, U., Kargel, J. S., Koppes, M., Kraaijenbrink, P. D. A., Kulkarni, A. 588

V., Mayewski, P. A., Nepal, S., Pacheco, P., Painter, T. H., Pellicciotti, F., Rajaram, H., Rupper, S., Sinisalo, A., Shrestha, 589

A. B., Viviroli, D., Wada, Y., Xiao, C., Yao, T., and Baillie, J. E. M.: Importance and vulnerability of the world’s water 590

towers, Nature, 577, 364-369, 10.1038/s41586-019-1822-y, 2020. 591

ISO/IEC: Fortran Standard 2008; Technical report, Geneva, Switzerland, 2010. 592

Jin, S., Homer, C., Yang, L., Danielson, P., Dewitz, J., Li, C., Zhu, Z., Xian, G., and Howard, D.: Overall methodology 593

design for the United States national land cover database 2016 products, Remote Sensing, 11, 2971, 2019. 594

Laboratory, C. a. I. S.: Cheyenne, 10.5065/D6RX99HX, 2019. 595

https://doi.org/10.5194/egusphere-2023-1612
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.

24

Latifovic, R., Homer, C., Ressl, R., Pouliot, D., Hossain, S. N., Colditz, R. R., Olthof, I., Giri, C. P., and Victoria, A.: 20 596

North American Land-Change Monitoring System, Remote sensing of land use and land cover, 303, 2016. 597

Lettenmaier, D. P., Alsdorf, D., Dozier, J., Huffman, G. J., Pan, M., and Wood, E. F.: Inroads of remote sensing into 598

hydrologic science during the WRR era, Water Resources Research, 51, 7309-7342, 599

https://doi.org/10.1002/2015WR017616, 2015. 600

Liston, G., Reinking, A. K., and Boleman, N.: Daily SnowModel Outputs Covering the ABoVE Core Domain, 3-km 601

Resolution, 1980-2020, 10.3334/ORNLDAAC/2105, 2022. 602

Liston, G. E.: Local advection of momentum, heat, and moisture during the melt of patchy snow covers, Journal of Applied 603

Meteorology and Climatology, 34, 1705-1715, 1995. 604

Liston, G. E.: Representing Subgrid Snow Cover Heterogeneities in Regional and Global Models, Journal of Climate, 17, 605

1381-1397, 10.1175/1520-0442(2004)017<1381:Rsschi>2.0.Co;2, 2004. 606

Liston, G. E. and Elder, K.: A meteorological distribution system for high-resolution terrestrial modeling (MicroMet), 607

Journal of Hydrometeorology, 7, 217-234, 2006a. 608

Liston, G. E. and Elder, K.: A distributed snow-evolution modeling system (SnowModel), Journal of Hydrometeorology, 7, 609

1259-1276, 2006b. 610

Liston, G. E. and Hall, D. K.: An energy-balance model of lake-ice evolution, Journal of Glaciology, 41, 373-382, 1995. 611

Liston, G. E. and Hiemstra, C. A.: The changing cryosphere: Pan-Arctic snow trends (1979–2009), Journal of Climate, 24, 612

5691-5712, 2011. 613

Liston, G. E. and Mernild, S. H.: Greenland freshwater runoff. Part I: A runoff routing model for glaciated and nonglaciated 614

landscapes (HydroFlow), Journal of Climate, 25, 5997-6014, 2012. 615

Liston, G. E. and Sturm, M.: A snow-transport model for complex terrain, Journal of Glaciology, 44, 498 - 516, 1998. 616

Liston, G. E. and Sturm, M.: Global Seasonal-Snow Classification, Version 1 [dataset], 2021. 617

Liston, G. E., Perham, C. J., Shideler, R. T., and Cheuvront, A. N.: Modeling snowdrift habitat for polar bear dens, 618

Ecological Modelling, 320, 114-134, https://doi.org/10.1016/j.ecolmodel.2015.09.010, 2016. 619

https://doi.org/10.5194/egusphere-2023-1612
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.

25

Liston, G. E., Winther, J.-G., Bruland, O., Elvehøy, H., and Sand, K.: Below-surface ice melt on the coastal Antarctic ice 620

sheet, Journal of Glaciology, 45, 273-285, 1999. 621

Liston, G. E., Haehnel, R. B., Sturm, M., Hiemstra, C. A., Berezovskaya, S., and Tabler, R. D.: Simulating complex snow 622

distributions in windy environments using SnowTran-3D, Journal of Glaciology, 53, 241-256, 2007. 623

Liston, G. E., Itkin, P., Stroeve, J., Tschudi, M., Stewart, J. S., Pedersen, S. H., Reinking, A. K., and Elder, K.: A Lagrangian 624

snow‐evolution system for sea‐ice applications (SnowModel‐LG): Part I—Model description, Journal of Geophysical 625

Research: Oceans, 125, e2019JC015913, 2020. 626

Mahoney, P. J., Liston, G. E., LaPoint, S., Gurarie, E., Mangipane, B., Wells, A. G., Brinkman, T. J., Eitel, J. U., 627

Hebblewhite, M., and Nolin, A. W.: Navigating snowscapes: scale‐dependent responses of mountain sheep to snowpack 628

properties, Ecological Applications, 28, 1715-1729, 2018. 629

Miller, P., Robson, M., El-Masri, B., Barman, R., Zheng, G., Jain, A., and Kalé, L.: Scaling the isam land surface model 630

through parallelization of inter-component data transfer, 2014 43rd International Conference on Parallel Processing, 422-631

431, 632

Mitchell, K. E.: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP 633

products and partners in a continental distributed hydrological modeling system, J. Geophys. Res., 109, D07S90, 2004. 634

Moody, E. G., King, M. D., Platnick, S., Schaaf, C. B., and Gao, F.: Spatially complete global spectral surface albedos: 635

Value-added datasets derived from Terra MODIS land products, IEEE Transactions on Geoscience and Remote Sensing, 43, 636

144-158, 2005. 637

Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Gobiet, A., Hagenmuller, P., Lafaysse, M., Ližar, M., 638

Mitterer, C., Monti, F., Müller, K., Olefs, M., Snook, J. S., van Herwijnen, A., and Vionnet, V.: Application of physical 639

snowpack models in support of operational avalanche hazard forecasting: A status report on current implementations and 640

prospects for the future, Cold Regions Science and Technology, 170, 102910, 641

https://doi.org/10.1016/j.coldregions.2019.102910, 2020. 642

Mower, R., Gutmann, E. D., and Liston, G. E.: Parallel-SnowModel 1.0 [code], https://github.com/NCAR/Parallel-643

SnowModel-1.0, 2023. 644

Mudryk, L. R., Derksen, C., Kushner, P. J., and Brown, R.: Characterization of Northern Hemisphere Snow Water 645

Equivalent Datasets, 1981–2010, Journal of Climate, 28, 8037-8051, 10.1175/jcli-d-15-0229.1, 2015. 646

https://doi.org/10.5194/egusphere-2023-1612
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.

26

Nolin, A. W.: Recent advances in remote sensing of seasonal snow, Journal of Glaciology, 56, 1141-1150, 647

10.3189/002214311796406077, 2010. 648

Numrich, R. W. and Reid, J.: Co-Array Fortran for parallel programming, ACM Sigplan Fortran Forum, 1-31, 649

Numrich, R. W., Steidel, J. L., Johnson, B. H., Dinechin, B. D. d., Elsesser, G., Fischer, G., and MacDonald, T.: Definition 650

of the F−− Extension to Fortran 90, International Workshop on Languages and Compilers for Parallel Computing, 292-306, 651

Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems, J. S., Gehrke, F., Hedrick, A., Joyce, M., Laidlaw, 652

R., and Marks, D.: The Airborne Snow Observatory: Fusion of scanning lidar, imaging spectrometer, and physically-based 653

modeling for mapping snow water equivalent and snow albedo, Remote Sensing of Environment, 184, 139-152, 2016. 654

Parhami, B.: SIMD machines: do they have a significant future?, ACM SIGARCH Computer Architecture News, 23, 19-22, 655

1995. 656

Perezhogin, P., Chernov, I., and Iakovlev, N.: Advanced parallel implementation of the coupled ocean–ice model FEMAO 657

(version 2.0) with load balancing, Geoscientific Model Development, 14, 843-857, 2021. 658

Pflug, J. M. and Lundquist, J. D.: Inferring Distributed Snow Depth by Leveraging Snow Pattern Repeatability: Investigation 659

Using 47 Lidar Observations in the Tuolumne Watershed, Sierra Nevada, California, Water Resources Research, 56, 660

e2020WR027243, https://doi.org/10.1029/2020WR027243, 2020. 661

Rasmussen, R. M., Liu, C., Ikeda, K., Chen, F., Kim, J.-H., Schneider, T., Gochis, D., Dugger, A., and Viger, R.: Four-662

kilometer long-term regional hydroclimate reanalysis over the conterminous United States (CONUS), 1979-2020, Research 663

Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory 664

[dataset], 10.5065/ZYY0-Y036, 2023. 665

Renwick, J.: MOUNTerrain: GEWEX mountainous terrain precipitation project, GEWEX news, 24, 5-6, 2014. 666

Richter, B., Schweizer, J., Rotach, M. W., and van Herwijnen, A.: Modeling spatially distributed snow instability at a 667

regional scale using Alpine3D, Journal of Glaciology, 67, 1147-1162, 10.1017/jog.2021.61, 2021. 668

Rouson, D., Gutmann, E. D., Fanfarillo, A., and Friesen, B.: Performance portability of an intermediate-complexity 669

atmospheric research model in coarray Fortran, Proceedings of the Second Annual PGAS Applications Workshop, 1-4, 670

Sharma, V., Swayne, D., Lam, D., MacKay, M., Rouse, W., and Schertzer, W.: Functional Parallelization of a Land Surface 671

Model in Regional Climate Modeling, 2004. 672

https://doi.org/10.5194/egusphere-2023-1612
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.

27

Skofronick-Jackson, G. M., Johnson, B. T., and Munchak, S. J.: Detection Thresholds of Falling Snow From Satellite-Borne 673

Active and Passive Sensors, IEEE Transactions on Geoscience and Remote Sensing, 51, 4177-4189, 674

10.1109/TGRS.2012.2227763, 2013. 675

Sturm, M. and Liston, G. E.: Revisiting the global seasonal snow classification: An updated dataset for earth system 676

applications, Journal of Hydrometeorology, 22, 2917-2938, 2021. 677

Tabler, R. D.: Estimating the transport and evaporation of blowing snow, Great Plains Agric Counc Publ, 1975. 678

Takala, M., Luojus, K., Pulliainen, J., Derksen, C., Lemmetyinen, J., Kärnä, J.-P., Koskinen, J., and Bojkov, B.: Estimating 679

northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and 680

ground-based measurements, Remote Sensing of Environment, 115, 3517-3529, https://doi.org/10.1016/j.rse.2011.08.014, 681

2011. 682

Tedesco, M. and Jeyaratnam, J.: AMSR-E/AMSR2 Unified L3 Global Daily 25 km EASE-Grid Snow Water Equivalent, 683

Version 1, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center, 2019. 684

Vuyovich, C. M., Jacobs, J. M., and Daly, S. F.: Comparison of passive microwave and modeled estimates of total watershed 685

SWE in the continental United States, Water Resources Research, 50, 9088-9102, https://doi.org/10.1002/2013WR014734, 686

2014. 687

Wrzesien, M. L., Durand, M. T., Pavelsky, T. M., Kapnick, S. B., Zhang, Y., Guo, J., and Shum, C. K.: A New Estimate of 688

North American Mountain Snow Accumulation From Regional Climate Model Simulations, Geophysical Research Letters, 689

45, 1423-1432, https://doi.org/10.1002/2017GL076664, 2018. 690

Xia, Y.: Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System 691

project phase 2 (NLDAS-2): 1. Intercomparison and application of model products, J. Geophys. Res., 117, D03109, 2012a. 692

Xia, Y.: Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System 693

project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow, J. Geophys. Res., 117, D03110, 2012b. 694

 695

https://doi.org/10.5194/egusphere-2023-1612
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.

