
1

Parallel SnowModel (v1.0): a parallel implementation of a 1

Distributed Snow-Evolution Modeling System (SnowModel) 2

Ross Mower1,2, Ethan D. Gutmann1, Glen E. Liston3, Jessica Lundquist2, Soren Rasmussen1 3
1The NSF National Center for Atmospheric Research, Boulder, Colorado, USA 4
2Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA 5
3Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado, USA 6

Correspondence to: Ross Mower (rossamower@ucar.edu) 7

Abstract. SnowModel, a spatially distributed, snow-evolution modeling system, was parallelized using Coarray Fortran for 8

high-performance computing architectures to allow high-resolution (1 m to 100s of meters) simulations over large, regional 9

to continental scale, domains. In the parallel algorithm, the model domain was split into smaller rectangular sub-domains that 10

are distributed over multiple processor cores using one-dimensional decomposition. All the memory allocations from the 11

original code were reduced to the size of the local sub-domains, allowing each core to perform fewer computations and 12

requiring less memory for each process. Most of the subroutines in SnowModel were simple to parallelize; however, there 13

were certain physical processes, including blowing snow redistribution and components within the solar radiation and wind 14

models, that required non-trivial parallelization using halo-exchange patterns. To validate the parallel algorithm and assess 15

parallel scaling characteristics, high-resolution (100 m grid) simulations were performed over several western United States 16

domains and over the contiguous United States (CONUS) for a year. The CONUS scaling experiment had approximately 17

70% parallel efficiency; runtime decreased by a factor of 1.9 running on 1800 cores relative to 648 cores (the minimum 18

number of cores that could be used to run such a large domain because of memory and time limitations). CONUS 100 m 19

simulations were performed for 21 years (2000 – 2021) using 46,238 and 28,260 grid cells in the x and y dimensions, 20

respectively. Each year was simulated using 1800 cores and took approximately 5 hours to run. 21

1 Introduction 22

The cryosphere (snow and ice) is an essential component of Arctic, mountain, and downstream ecosystems, Earth’s surface 23

energy balance, and freshwater resource storage (Huss et al., 2017). Globally, half the world’s population depends on 24

snowmelt (Beniston, 2003). In snow-dominated regions like the Western United States, snowmelt contributes to 25

approximately 70% of the total annual water supply (Foster et al., 2011). In these regions, late-season streamflow is 26

dependent on the deepest snow drifts and therefore longest-lasting snow (Pflug and Lundquist, 2020). Since modeling snow-27

fed streamflow accurately is largely dependent on our ability to predict snow quantities and the associated spatial and 28

temporal variability (Clark and Hay, 2004), high-temporal and -spatial resolution snow datasets are important for predicting 29

flood hazards and managing freshwater resources (Immerzeel et al., 2020). 30

2

The spatial and temporal seasonal snow characteristics also have significant implications outside of water resources. 31

Changes in fractional snow-covered area affect albedo and thus atmospheric dynamics (Liston, 2004; Liston and Hall, 1995). 32

Avalanches pose safety hazards to both transportation and recreational activities in mountainous terrain; the prediction of 33

which requires high-resolution (meters) snow datasets (Morin et al., 2020; Richter et al., 2021). Additionally, the timing and 34

duration of snow-covered landscapes strongly influence how species adapt, migrate, and survive (Boelman et al., 2019; 35

Liston et al., 2016; Mahoney et al., 2018). 36

To date, the primary modes for estimating snow properties and storage have come from observation networks, satellite-based 37

sensors, and physically derived snow algorithms in land surface models (LSMs). However, despite the importance of 38

regional, continental, and global snow, estimates of snow properties over these scales remain uncertain, especially in alpine 39

regions where wind, snow, and topography interact (Boelman et al., 2019; Dozier et al., 2016; Mudryk et al., 2015). 40

Observation datasets used for spatial interpolation of snow properties and forcing datasets used in LSMs are often too sparse 41

in mountainous terrain to accurately resolve snow spatial heterogeneities (Dozier et al., 2016; Renwick, 2014). Additionally, 42

remotely sensed products have shown deficiencies in measuring snowfall rate (Skofronick-Jackson et al., 2013), snow-water 43

equivalent (SWE), and snow depth (Nolin, 2010), especially in mountainous terrain where conditions of deep snow, wet 44

snow, and/or dense vegetation may be present (Lettenmaier et al., 2015; Takala et al., 2011; Vuyovich et al., 2014). 45

However, LSMs using high-resolution inputs, including forcing datasets from regional climate models (RCMs), have 46

demonstrated realistic spatial distributions of snow properties (Wrzesien et al., 2018). 47

Many physical snow models have been developed either in stand-alone algorithms or larger LSMs with varying degrees of 48

complexity based on their application. The more advanced algorithms attempt to accurately model snow properties at high 49

resolution especially in regions where snow interacts with topography, vegetation, and/or wind. Wind-induced snow 50

transport is one such complexity of snow that represents an important interaction between the cryosphere and atmosphere. It 51

occurs in regions permanently or temporarily covered by snow, influences snow properties (e.g. heterogeneity, sublimation, 52

avalanches, and melt timing), and has been shown to improve simulated snowpack distribution (Bernhardt et al., 2012; 53

Freudiger et al., 2017; Keenan et al., 2023; Quéno et al., 2023). Models that have incorporated wind-induced physics 54

generally require components to both develop the snow mass balance and incorporate atmospheric inputs of the wind field. 55

Additionally, these models typically require high resolution grids (1 to 100 m) as the redistribution components of the model 56

become negligible at larger spatial discretizations (Liston et al., 2007). However, there often exists a trade-off between the 57

accuracy of simulating wind-induced snow transport and the computational requirements for downscaling and developing 58

the wind fields over the gridded domain (Reynolds et al., 2021; Vionnet et al., 2014). Therefore, simplifying assumptions of 59

uniform wind direction has been applied in models like Distributed Blowing Snow Model (DBSM) (Essery et al., 1999; Fang 60

and Pomeroy, 2009). More advanced models have utilized advection-diffusion equations, like Alpine3D (Lehning et al., 61

2006) or spatial distributed formulations like SnowTran-3D (Liston and Sturm, 1998). Finite volume methods for more 62

efficiently discretizing wind fields have been applied to models such as DBSM (Marsh et al., 2020). The most complex 63

models consider nonsteady turbulence which utilize three-dimensional wind fields from atmospheric models to simulate 64

3

blowing snow transport and sublimation; for example, SURFEX in Meso-NH/Crocus (Vionnet et al., 2014; Vionnet et al., 65

2017), wind fields from the atmospheric model ARPS (Xue et al., 2000) being incorporated into Alpine3D (Mott and 66

Lehning, 2010; Mott et al., 2010; Lehning et al., 2008), and SnowDrift3D (Prokop and Schneiderbauer, 2011). Incorporating 67

wind-induced physics into snow models is computationally expensive; thus, parallelizing the serial algorithms would likely 68

be beneficial to many models. 69

For several decades, a distributed snow-evolution modeling system (SnowModel) has been developed, enhanced, and tested 70

to accurately simulate snow properties across a wide range of landscapes, climates, and conditions (Liston and Elder, 2006a; 71

Liston et al., 2020). To date, SnowModel has been used in over 200 refereed journal publications; a short listing of these is 72

provided by Liston et al. (2020). Physically derived snow algorithms, as used in SnowModel, that model the energy balance, 73

multilayer snow physics, and lateral snow transport are computationally expensive. In these models, the required 74

computational power increases with the number of grid cells covering the simulation domain. Finer grid resolutions usually 75

imply more grid cells and higher accuracy resulting from improved representation of process physics at higher resolutions. 76

The original serial SnowModel code was written in Fortran 77 and could not be executed in parallel using multiple processor 77

cores. As a result, SnowModel’s spatial and temporal simulation domains (number of grid cells and time steps) were 78

previously limited by the speed of one core and the memory available on the single computer. Note that a “processor” refers 79

to a single central processing unit (CPU) and typically consists of multiple cores, each core can run one or more processes in 80

parallel. 81

Recent advancements in multiprocessor computer technologies and architectures have allowed for increased performance in 82

simulating complex natural systems at high resolutions. Parallel computing has been used on many LSMs to reduce compute 83

time and allow for higher accuracy results from finer grid simulations (Hamman et al., 2018; Miller et al., 2014). Our goal 84

was to develop a parallel version of SnowModel (Parallel SnowModel) using Coarray Fortran (CAF) syntax without making 85

significant changes to the original SnowModel code physics or structure. CAF is a Partitioned Global Address Space 86

(PGAS) programming model and has been used to run atmospheric models on 100,000 cores (Rouson et al., 2017). 87

In parallelizing numerical models, a common strategy is to decompose the domain into smaller sub-domains that get 88

distributed across multiple processes (Dennis, 2007; Hamman et al., 2018). For rectangular gridded domains (like 89

SnowModel), this preserves the original structure of the spatial loops and utilizes direct referencing of neighboring grids 90

(Perezhogin et al., 2021). The parallelization of many LSMs involve “embarrassingly parallel” problems requiring minimal 91

to no processor communication (Parhami, 1995); in this case, adjacent grid cells do not communicate with each other (an 92

example of this would be where each grid cell represents a point, or one-dimension, snowpack model that is not influenced 93

by nearby grid cells). 94

While much of the SnowModel’s logic can be considered “embarrassingly parallel”, SnowModel also contains “non-trivial” 95

algorithms within the solar radiation, wind, and snow redistribution models. Calculations within these algorithms often 96

require information from neighboring grid cells, either for spatial derivative calculations or for horizontal fluxes of mass 97

(e.g., saltating or turbulent-suspended snow) across the domain. Therefore, non-trivial parallelization requires implementing 98

4

algorithm changes that allow computer processes to communicate and exchange data. The novelty of the work presented 99

here includes 1) the presentation of Parallel SnowModel, high-resolution (100 m) distributed snow datasets over CONUS, 100

and an analysis of the performance of the parallel algorithm; 2) demonstrating how a simplified parallelization approach 101

using CAF and one-dimensional decomposition can be implemented in geoscientific algorithms to scale over large domains; 102

and 3) demonstrating an approach for non-trivial parallelization algorithms that involve spatial derivatives and fluxes using 103

halo-exchange techniques. 104

In Sect. 2, we provide background information on SnowModel, parallelization using CAF, data and domains used in this 105

study, and a motivation for this work. In Sect. 3, we explain our parallelization approach using CAF and introduce the 106

simulation experiments used to demonstrate the performance of Parallel SnowModel through strong scaling metrics and 107

CONUS simulations. In Sect. 4, we provide results of the simulation experiments introduced in Sect. 3. Lastly, we end with a 108

discussion in Sect. 5 and a conclusion in Sect. 6. 109

2 Background 110

2.1 SnowModel 111

SnowModel is a spatially distributed snow-evolution modeling system designed to model snow states (e.g., snow depth, 112

SWE, snow melt, snow density) and fluxes over different landscapes and climates (Liston and Elder, 2006a). The most 113

complete and up-to-date description of SnowModel can be found in the Appendices of Liston et al. (2020). While many 114

snow modelling systems exist, SnowModel will benefit from parallelization because of its ability to simulate snow processes 115

on a high-resolution grid through downscaling meteorological inputs and modelling snow redistribution. SnowModel is 116

designed to simulate domains on a structured grid with spatial resolutions ranging from 1 to 200 m (although it can simulate 117

coarser resolutions, as well) and temporal resolutions ranging from 10 m to 1 d. The primary modeled processes include 118

accumulation from frozen precipitation; blowing-snow redistribution and sublimation; interception, unloading, and 119

sublimation within forest canopies; snow-density and grain-size evolution; and snowpack ripening and melt. These processes 120

are distributed into four, core interacting submodules: MicroMet defines the meteorological forcing conditions (Liston and 121

Elder, 2006b), EnBal describes surface and energy exchanges (Liston, 1995; Liston et al., 1999), SnowPack-ML is a 122

multilayer snowpack sub-model that simulates the evolution of snow properties and the moisture and energy transfers 123

between layers (Liston and Hall, 1995; Liston and Mernild, 2012), and SnowTran-3D calculates snow redistribution by wind 124

(Liston et al., 2007). Additional simulation features include SnowDunes (Liston et al., 2018) and SnowAssim (Liston and 125

Hiemstra, 2008), which model sea-ice applications and data assimilation techniques, respectively. Figure 1 shows a 126

schematic of the core SnowModel toolkit. Additionally, the initialization submodules that read in the model parameters, 127

distribute inputs across the modeled grid, allocate arrays, etc., include PreProcess and ReadParam. Outputting arrays is 128

contained within the Outputs submodule. SnowModel incorporates first-order physics required to simulate snow evolution 129

5

within each of the global snow classes [e.g., Ice, Tundra, Boreal Forest, Montane Forest, Prairie, Maritime, and Ephemeral; 130

(Sturm and Liston, 2021; Liston and Sturm, 2021)]. 131

 132
Figure 1: The original figure from Pedersen et al. (2015) was modified for the present paper, providing an example of possible 133
inputs, core submodules, and outputs of SnowModel. 134

2.2 Coarray Fortran 135

CAF, formerly known as F-, (Iso/Iec, 2010; Numrich and Reid, 1998; Numrich et al., 1997) is the parallel language feature 136

of Fortran that was used to parallelize SnowModel. CAF is like Message Passing Interface (MPI) libraries in that it uses the 137

Single Program Multiple Data (SPMD) model where multiple independent cores simultaneously execute a program. SPMD 138

allows for distributed memory allocation and remote memory transfer. However, unlike MPI, CAF uses the PGAS parallel 139

programming model to handle the distribution of computational tasks amongst processes (Coarfa et al., 2005). In the PGAS 140

model, each process contains local memory that can be accessed directly by all other processes. While CAF and MPI syntax 141

often refers to processes as images or ranks, for consistency, we will continue to use the term “process”. Ultimately, CAF 142

offers a high-level syntax that exploits locality and scales effectively (Coarfa et al., 2005). For simulation comparisons, we 143

used OpenCoarrays, a library implementation of CAF (Fanfarillo et al., 2014) utilized by the gfortran compiler; intel and 144

cray compilers both have independent CAF implementations. 145

2.3 Model Domains, Data, and Computing Resources 146

The required inputs for SnowModel include 1) temporally varying meteorological variables of precipitation, wind speed and 147

direction, air temperature, and relative humidity taken from meteorological stations or atmospheric models and 2) spatially 148

distributed topography and land-cover type (Liston & Elder, 2006a). The following inputs were used for the experiments 149

introduced in Sect. 3: USGS National Elevation Dataset (NED) for topography (Gesch et al., 2018), The North American 150

Land Change Monitoring System (NALCMS) Land Cover 2015 map for vegetation (Homer et al., 2015; Jin et al., 2019; 151

Latifovic et al., 2016), and forcing variables from either the North American Land Data Assimilation System (NLDAS-2) 152

(Mitchell, 2004; Xia, 2012a, b) on a 1/8 degree (approximately 12 km) grid or a high-resolution Weather Research Forecast 153

6

(WRF) model from the National Center for Atmospheric Research (NCAR) on approximately a 4 km grid (Rasmussen et al., 154

2023). The high-performance computing architectures used include NCAR’s Cheyenne supercomputer, which is a 5.43-155

petaflop SGI ICE XA Cluster featuring 145,152 Intel Xeon processes in 4,032 dual-socket nodes and 313 TB of total 156

memory (Laboratory, 2019) and The National Aeronautics and Space Administration’s (NASA) Center for Climate 157

Simulation (NCCS) Discover supercomputer with a 1,560-teraflop SuperMicro Cluster featuring 20,800 Intel Xeon Skylake 158

processes in 520 dual-socket nodes and 99.84 TB of total memory. Simulation experiments were conducted over six domains 159

(Tuolumne, CO Headwaters, Idaho, PNW, Western US, and CONUS) throughout the United States at 100 m grid resolution. 160

The spatial location, domain dimensions (e.g., number of grids in the x and y dimensions), and memory requirements, 161

derived from the peak_memusage package (https://github.com/NCAR/peak_memusage), for the simulation experiments are 162

highlighted in Fig. 2. 163

 164
Figure 2: (a) Spatial location of simulated domains on WRF’s lambert conformal projection (Rasmussen et al., 2023) and (b) 165
corresponding grid dimensions (Nx – number of grids in x dimension; Ny – number of grids in y dimension) and memory obtained 166
from peak_memusage package required for single-layer SnowModel simulation experiments. For reference, the dashed lines represent 167
the normal and large memory thresholds (55 and 109 GB) for Cheyenne’s SGI ICE XA cluster. 168

2.4 Parallelization Motivation 169

The answers to current snow science, remote sensing, and water management questions require high-resolution data that 170

covers large spatial and temporal domains. While modeling systems like SnowModel can be used to help provide these 171

datasets, running them on single-processor workstations imposes limits on the spatiotemporal extents of the produced 172

information. Serial simulations are limited by both execution time and memory requirements, where the memory limitation 173

is largely dependent on the size of the simulation domain. Up to the equivalent of 175 two-dimensional and 10 three-174

dimensional arrays are held in memory during a SnowModel simulation, depending on the model configuration. In analyzing 175

the performance of the Parallel SnowModel (Sect. 4), serial simulations were attempted over six domains throughout the 176

United States at 100 m grid resolution (Fig. 2) for the 2018 water year (1 September 2017 to 1 September 2018). Only the 177

Tuolumne domain could be simulated in serial based on the memory (109 GB for a large memory node) and time (12 h wall-178

clock limit) constraints on Cheyenne. The CO Headwaters and Idaho domains could not be simulated in serial due to time 179

https://github.com/NCAR/peak_memusage

7

constraints, while the three largest domains (Pacific Northwest (PNW), Western U.S. and CONUS) could not be executed in 180

serial due to both exceedances of the 12 h wall-clock limit and memory availability. Furthermore, we estimate that using a 181

currently available, state of the art, single-processor workstation, would require approximately 120 d of computer time to 182

perform a 1 y model simulation over the CONUS domain. SnowModel is regularly used to perform multi-decade 183

simulations, for trend analyses, climate change studies, and retrospective analyses (Liston and Hiemstra, 2011; Liston et al., 184

2020; Liston et al., 2022). If this 1 y, 100 m, CONUS domain was simulated for a 40 y period (e.g., 1980 through present), it 185

would take approximately 4800 d, or over 13 y, of computer time. Clearly such simulations are not practical using single-186

processor computer hardware and software algorithms. 187

3 Methods 188

In parallelizing SnowModel and distributing computations and memory over multiple processes, we demonstrate its ability 189

to efficiently run regional to continental sized simulations. Some of the model configurations were not parallelized for 190

reasons including ongoing development in the serial code base and limitations to the parallelization approach. These 191

configurations are further discussed in Appendix A. This section introduces the syntax and framework used to parallelize 192

SnowModel and the simulation experiments used to assess the performance of the parallel algorithm. 193

3.1 Parallel Implementation 194

Changes to the SnowModel logic were made through the parallelization process and included the partitioning algorithm, 195

non-trivial communication via halo-exchange, and file input and output (I/O) schemes. 196

3.1.1 Partitioning Algorithm 197

The partitioning strategy identifies how the workload gets distributed amongst processes in a parallel algorithm. The 198

multidimensional arrays of SnowModel are stored in row-major order, meaning the x dimension is contiguous in memory. 199

Additionally, dominant wind directions and therefore predominant snow redistribution occurs in the east-west direction as 200

opposed to south-north directions. Therefore, both the data structures and physical processes involved in SnowModel justify 201

a one-dimensional decomposition strategy in the y dimension, where the computational global domain Nx x Ny is separated 202

into Nx x lny blocks.	 If Ny is evenly divisible by the total number of processes (N),	lny = Ny / N. If integer division is 203

not possible, the remaining rows are distributed evenly amongst the processes starting at the bottom of the computational 204

domain. Figure 3 demonstrates how a serial domain containing 10 grid cells in the x and y dimensions would be 205

decomposed with four processes using our partitioning strategy. 206

8

 207
Figure 3: Example 10 x 10 global domain and partitioning for (a) serial simulation and (b) parallel simulation using four processes. 208

3.1.2 Non-trivial Parallelization 209

Each process has sufficient information to correctly execute most of the physical computations within SnowModel. 210

However, there are certain subroutines where grid computations require information from neighboring grid cells (e.g., data 211

dependencies) and therefore information outside of the local domain of a process. For SnowModel, these subroutines 212

typically involve the transfer of blowing snow or calculations requiring spatial derivatives. Furthermore, with our one-213

dimensional decomposition approach, each grid cell within a process local domain has sufficient information from its 214

neighboring grid cells in the x dimension but potentially lacks information from neighboring grid cells in the y dimension. As 215

a regular grid method, SnowModel lends itself to process communication via halo-exchange where coarrays are used in 216

remote calls. Halo-exchange using CAF involves copying boundary data into coarrays on neighboring processes and using 217

information from the coarrays to complete computations (Fig. 4). Although the entire local array could be declared a coarray 218

and accessed by remote processes more directly, some CAF implementations, (e.g. Cray) impose additional constraints upon 219

coarray memory allocations that can be problematic for such large allocations. 220

 221
Figure 4: Schematic showing halo-exchange using coarrays. The steps include: (a) initial gridded representation of local arrays for 222
three processes, (b) P2 copying boundary data into coarrays for remote access, (c) neighboring processes (P1 and P3) stitching coarray 223
to local domains. 224

9

3.1.2.1 Topography – Wind and Solar Radiation Models 225

The wind and solar radiation models in MicroMet require information about surrounding surface topography (Liston and 226

Elder, 2006b). The wind model requires surface curvature, and the solar radiation model requires surface slope and aspect. 227

These vary at each timestep as snow accumulates and melts because the defined surface includes the snow surface on top of 228

the landscape. The surface curvature, for example, is computed at each model grid cell using the spatial gradient of the 229

topographic elevation of eight neighboring grid cells. Using the parallelization approach discussed above, processes lack 230

sufficient information to make curvature calculations for the bordering grid cells along the top and/or bottom row(s) within 231

their local domains. Note that the number of row(s) (inc) is determined by a predefined parameter that represents the 232

wavelength of topographic features within a domain. Future work should permit this parameter to vary spatially to account 233

for changes in the length scale across the domain. For example, all grid cells along the top row of P1 will be missing 234

information from nearby grid cells to the north and require topographic elevation (topo) information from the bottom 235

row(s) of the local domain of P2 to make the calculation (Fig. 5a). Halo-exchange is performed to distribute row(s) of data to 236

each process that is missing that information in their local domains (Fig. 5b). Processes whose local domains are positioned 237

in the bottom or top of the global domain will only perform one halo-exchange with their interior neighbor, while interior 238

processes will perform two halo-exchanges. By combining and appropriately indexing information from the process local 239

array and received coarrays of topographic elevation, an accurate curvature calculation can be performed using this parallel 240

approach (Fig. 5c). 241

 242
Figure 5: Schematic for halo-exchange used in the curvature calculation by P1, where inc = 2. (a) Prior to halo-exchange, P1 243
contains insufficient information to perform the curvature calculation, (b) grid cells (halo) within the local domain of P2 are (c) 244
transferred to P1 via coarrays. At this point, P1 has sufficient information to make the curvature calculation. 245

3.1.2.2 Snow Redistribution 246

Wind influences the mass balance of the snowpack by suspending and transporting snow particles in the air (turbulent-247

suspension) and by causing snow grains to bounce on top of the snow surface (saltation). In SnowModel, the saltation and 248

suspension algorithms are separated into northerly, southerly, easterly, and westerly fluxes based on the u and v components 249

of wind direction for each grid cell. Figure 6 shows a simplified schematic for the saltation flux from a southerly wind. In the 250

10

serial algorithm (Fig. 6a), SnowModel initializes the saltation flux based on the wind speed at that time step (initial 251

flux). To calculate the final saltation flux (updated flux), SnowModel steps through regions of continuous wind 252

direction (delineated by the indices: jstart and jend), updates the change in saltation fluxes from upwind grid cells and 253

the change in saltation flux from the given wind direction, and makes adjustments to these fluxes based on the soft snow 254

availability above the vegetation height (Liston and Elder, 2006a). Similar logic is used for the parallel implementation of 255

the saltation and suspension fluxes with an additional iteration (salt iter) that updates the boundary condition for each 256

process via halo-exchange. This allows the fluxes to be communicated from the local domain of one process to another. To 257

minimize the number of iterations, salt iter was provided a maximum bound that is equivalent to snow being 258

transported 15 km via saltation or suspension. This number was chosen based off prior field measurements (Tabler, 1975) 259

and simulation experiments. It is possible that in other environments an even larger length may be required. To be 260

guaranteed to match the serial results in all cases, the number of iterations would have to be equal to the number of 261

processes; however, this would result in no parallel speed up and has no practical benefit. A schematic of the parallel 262

calculation of the change in saltation due to southerly winds is illustrated in Fig. 6b. The bc_halo_exchange represents 263

a halo-exchange of grid cells from upwind processes, allowing the saltation flux to be transported from one process local 264

domain to the next. 265

 266
Figure 6: (a) Schematic of the serial and (b) parallel redistribution algorithm showing the change in saltation flux due to southerly 267
winds over a gridded domain for Nx = 1. The parallel schematic demonstrates how three processes (P1, P2, P3) use an additional 268
iteration (salt iter) to perform a halo-exchange (bc_halo_exchange) and update the boundary condition of the saltation flux. 269

3.1.3 File I/O 270

File I/O management can be a significant bottleneck in parallel applications. Parallel implementations that are less memory 271

restricted commonly use local to global mapping strategies, or a Centralized approach for file I/O (Fig. 7a). This approach 272

requires that one or more processes stores global arrays for input variables and that one process (Process 1; Fig. 7a) stores 273

11

global arrays for all output variables. As the domain size increases, the mapping of local variables to global variables for 274

outputting creates a substantial bottleneck. To improve performance, Distributed file I/O can be implemented, where input 275

and output files are directly and concurrently accessed by each process (Fig. 7b). 276

 277
Figure 7: (a) Schematic of global to local mapping for file I/O using a Centralized approach with four processes, and (b) Distributed 278
file I/O where each process reads and writes data corresponding to its local domain. 279

SnowModel contains static spatial inputs that do not vary over time (e.g., topography and land cover) and dynamic spatial 280

inputs (e.g., air temperature and precipitation) that vary spatially and temporally. The static inputs are of a higher resolution 281

compared to the dynamic inputs (cf., topography is on the model grid, while atmospheric forcing is almost always more 282

widely spaced). To balance performance and consistency with the serial logic of the code, we used a mixed parallel file I/O 283

approach. A goal of this work was to maintain nearly identical serial and parallel versions of the code in one code base that 284

can be easily maintained and utilized by previous, current, and future SnowModel users with different computational 285

resources and skills. Therefore, we wanted to maintain both the Centralized and Distributed file I/O approaches. However, 286

for optimal parallel performance over larger simulation domains, file input (reading) is performed in a Distributed way for 287

the static inputs and in a Centralized way for dynamic inputs, while file output (writing) is performed in a Distributed way, 288

as described further below. This permits the new version of the code to be a drop in replacement for the original serial code 289

without requiring users to install new software libraries or manage hundreds of output files, while enabling users who wish 290

to take advantage of the parallel nature of the code to do so with minimal additional work and no changes to the underlying 291

code. 292

3.1.3.1 Parallel Inputs 293

As noted above, SnowModel has two primary types of input files, temporally static files such as vegetation and topography 294

and transient inputs such as meteorological forcing data. While acceptable static input file types include flat binary, NetCDF, 295

12

and ASCII files for the serial version of the code, optimizing the efficiency of Parallel SnowModel requires static inputs 296

from binary files that can be accessed concurrently and directly subset by indexing the starting byte and length of bytes 297

commensurate to a process local domain. Therefore, each process can read its own portion of the static input data. For very 298

large domains, the available memory becomes a limitation when using the centralized approach. For example, the CONUS 299

simulation could not be simulated using a centralized file I/O approach because each process would be holding global arrays 300

of topography and vegetation in memory, each of which would require approximately 5.2 GB of memory per process. 301

Reading of meteorological forcing variables (wind speed, wind direction, relative humidity, temperature, and precipitation) 302

can be performed in parallel with either binary or NetCDF files. Depending on the forcing dataset, the grid spacing of the 303

meteorological variables typically ranges from 1 to 30 km and therefore often requires a smaller memory footprint than static 304

inputs for high-resolution simulations. For example, the resolution of NLDAS-2 meteorological forcing has a grid of 305

approximately 11 km, while the high-resolution WRF model used has a 4 km grid. At each timestep, processes read in the 306

forcing data from every station within the domain into a one-dimensional array, index the nearest locations for each 307

SnowModel grid, and interpolate the data to create forcing variables over the local domain. All processes perform the same 308

operation and store common information; however, since the resolutions of the forcing datasets are significantly coarser than 309

the model grid for high-resolution simulations, the dynamic forcing input array size remains comparable to other local arrays 310

and does not impose significant memory limitations for simulations performed to date. While more efficient parallel file 311

input schemes could improve performance, we decided to keep this logic in part to maintain consistency with the serial 312

version of the code and minimize code changes. 313

3.1.3.2 Parallel Outputs 314

To eliminate the use of local to global mapping commonly used to output variables (Fig. 7a), each process writes its own 315

output file (Fig. 7b). A postprocessing script is then used to concatenate files from each process into one file that represents 316

the output for the global domain. Modern high-performance computing architectures have highly parallelized storage 317

systems making file output using a distributed approach significantly faster than the centralized approach. Therefore, file 318

output in this manner reduces time and memory requirements. Future work could leverage other established parallel I/O 319

libraries at the cost of additional installation requirements. 320

3.2 Simulation Experiments 321

Parallel SnowModel experiments were conducted to both evaluate the effectiveness of the parallelization approach used in 322

this study (Sect. 3.1) and to produce a high-resolution snow dataset over CONUS. All experiments were executed with a 100 323

m grid increment, a 3 h time step, a single-layer snowpack configuration, and included the primary SnowModel modules 324

(MicroMet, EnBal, SnowPack, and SnowTran-3D). These experiments are further described below, with results provided in 325

Sect. 4. 326

Validation experiments comparing output from the original serial version of the code to the parallel version were conducted 327

continuously throughout the parallel algorithm development to assess the reproducibility of the results. Additionally, a more 328

13

thorough validation effort was performed at the end of the study that compared output from the serial algorithm to that of the 329

parallel algorithm, while varying the domain size, the number of processes, and therefore the domain decomposition. Results 330

from all of these validation experiments produced root mean squared error (RMSE) values of 10-6, which is at the limit of 331

machine precision, when compared to serial simulation results. See Appendix B for more details on the validation 332

experiments. The serial version of SnowModel has been evaluated in many studies across different snow classes (Sturm and 333

Liston, 2021; Liston and Sturm, 2021), time periods, and snow properties. Evaluations ranged from snow cover (Pedersen et 334

al., 2016; Randin et al., 2015), snow depth (Szczypta et al., 2013; Wagner et al., 2023), SWE (Freudiger et al., 2017; 335

Hammond et al., 2023; Mortezapour et al., 2020; Voordendag et al., 2021), and SWE-melt (Hoppinen et al., 2023; Lund et 336

al., 2022), using field observations, snow-telemetry stations, and remote sensing products. A full comparison of the Parallel 337

SnowModel simulations presented here with observations across CONUS is beyond the scope of the present work. 338

Incorrectly simulated SWE could affect the scaling results and CONUS visualizations presented in Sect. 3.2.1.1, 3.2.1.2, and 339

3.2.2; for example, if zero SWE were incorrectly simulated in many locations, processing time would be less than if SWE 340

had been simulated and tracked. However, based on the scale of these analyses and the fact that SnowModel has been 341

previously evaluated in a wide range of locations, we believe the impacts of this limitation on the computational results 342

presented here are minimal. 343

3.2.1 Parallel Performance 344

In high performance computing, scalability attempts to assess the effectiveness of running a parallel algorithm with an 345

increasing number of processes. Thus, scalability can be used to identify the optimal number of processes for a fixed domain, 346

understand the limitations of a parallel algorithm as a function of domain size and number of processes, and estimate the 347

efficiency of the parallel algorithm on new domains or computing architectures. Speedup, efficiency, and code profiling 348

were tools used to assess the scalability and performance of Parallel SnowModel on fixed domains. Speedup [S(N); Eq. 349

(1)], a metric of strong scaling, is defined as the ratio of the serial execution time, T(1), over the execution time using N 350

processes, T(N). Optimally, parallel algorithms will experience a doubling of speedup as the number of processes is 351

doubled. Some reasons why parallel algorithms do not follow ideal scaling include the degree of concurrency possible and 352

overhead costs due to communication. Synchronization statements have an associated cost of decreasing the speed and 353

efficiency of an algorithm due to communication overhead and requirements for one process to sit idle while waiting for 354

another to reach the synchronization point. Furthermore, speedup tends to peak or plateau at a certain limit on a given 355

computing architecture and domain because either the overheads grow with an increasing number of processes, or the 356

number of processes exceeds the degree of concurrency inherent in the algorithm (Kumar and Gupta, 1991). For large 357

domains, where serial simulations cannot be performed either due to wall-clock or memory limitations, relative speedup, 358

[S"(N); Eq. (2)], is commonly used. Relative speedup is estimated as a ratio of the execution time, T(P"), of the minimum 359

number of processes, (P"), that can be simulated on a given domain over T(N). An additional speedup metric, approximate 360

14

speedup [S̈(N); Eq. (3)], is introduced to estimate S by assuming perfect scaling from P" to a single process. While this is 361

only an approximation, it is helpful to compare the S̈ across the different domains on a similar scale. Additionally, efficiency 362

[E(N); Eq. (4)], and approximate efficiency [Ë(N); Eq. (5)] are the ratios of S to N and S̈ to N, respectively. A simulation 363

that demonstrates ideal scaling, would have 100% efficiency. Additionally, code profiling evaluates the cumulative 364

execution time of individual submodules (e.g. Preprocess, Readparam, MicroMet, Enbal, SnowPack, SnowTran-3D, and 365

Output) as a function of the number of processes. Together, code profiling and strong scaling can be used to understand 366

locations of bottlenecks in the algorithm and how changes to the code enhance performance. 367

 368

𝑺(𝑵) =
𝑻(𝟏)
𝑻(𝑵)

Eq. 1

𝑺0(𝑵) =
𝑻(𝑷0)
𝑻(𝑵)

Eq. 2

�̈�(𝑵) =
𝑻(𝑷0)
𝑻(𝑵) 	∗ 𝑷

0 Eq. 3

𝑬(𝑵) =
𝑺
𝑵	∗ 𝟏𝟎𝟎% Eq. 4

�̈�(𝑵) =
�̈�
𝑵 ∗ 𝟏𝟎𝟎% Eq. 5

3.2.1.1 Parallel Improvement 369

To better understand how changes to the Parallel SnowModel code have affected its performance, speedup and code 370

profiling plots were assessed for simulations using three distinct versions of the code. These versions represent snapshots of 371

the algorithms development and quantify the contributions of different types of code modifications to the final performance 372

of the model. These versions were identified by different GitHub commits (Mower et al., 2023) and can be summarized as 373

follows. The first or baseline version represents an early commit of Parallel SnowModel, where file I/O is performed in a 374

Centralized way, as described in Sect. 3.1.3. Each process stores both a local and global array in memory for all input 375

variables, makes updates to its local arrays, distributes that updated information into global arrays used by one process to 376

write each output variable. The embarrassingly parallel portion of the physics code has been parallelized, but the snow 377

redistribution step is not efficiently parallelized, it has a larger number of synchronizations and memory transfers. Therefore, 378

this approach has significant time and memory constraints. The Distributed version represents an instance of the code where 379

distributed file I/O (Sect. 3.1.3) had first been implemented. In this version, each process reads and writes input and output 380

variables for its local domain only. Global arrays and the communication required to update these variables are no longer 381

needed; this alleviates memory constraints and shows the value of parallelizing I/O in scientific applications. Lastly, the 382

Final version represents the most recent version of Parallel SnowModel, (at the time of this publication) where the snow 383

transport algorithm had been optimized to run efficiently. This was done by reducing unnecessary memory allocations, 384

15

reducing the transfer of data via coarrays, and optimizing memory transfers to reduce synchronization calls. This shows the 385

value of focused development on a single hotspot of the code base. The simulations were executed on the CO Headwaters 386

domain (Fig. 2) using 1, 2, 4, 16, 36, 52, 108, and 144 processes, outputted only a single variable, and were forced with 387

NLDAS-2 data from 23-24 March 2018. While 2-days is a short period to perform scaling experiments, a significant amount 388

of wind and frozen precipitation was observed over the CO Headwaters domain during the simulation to activate some of the 389

snow redistribution schemes in SnowTran-3D. Furthermore, to avoid disproportionately weighing the initialization of the 390

algorithm, we removed the timing values from the ReadParam and Preprocess submodules from the total execution time 391

used in the speedup analysis. Results from these experiments are provided in Sect. 4.1. 392

3.2.1.2 Strong Scaling 393

Strong scaling experiments of Parallel SnowModel were evaluated by comparing the approximate speedup and efficiency (S̈ 394

and Ë) over six different size domains across the United States, all with a 100 m grid spacing [Tuolumne, CO Headwaters, 395

Idaho, PNW, Western U.S., and CONUS] (Fig. 2). These experiments use the Final version of the code according to Sect. 396

3.2.1.1. The simulations were forced with NLDAS-2 data for 2928 timesteps from 1 September 2017 to 1 September 2018 397

and output one variable (SWE). The number of processes used in these simulations varied by domain based on the 12 h wall-398

clock and memory constraints on Cheyenne. Results from these experiments are provided in Sect. 4.2. 399

3.2.2 CONUS Simulations 400

A primary goal of this work was to run Parallel SnowModel simulations for 21 years (2000 – 2021) over the CONUS 401

domain (Fig. 2) on a 100 m grid, while resolving the diurnal cycle in the model physics and creating a daily dataset of snow 402

properties, including snow depth, SWE, melt rate, and sublimation. Future work will analyze results from these simulations. 403

The CONUS domain contained 46,238 and 28,260 grid cells in the x and y dimensions, respectively. Simulations were 404

performed on a 3 h time step and forced with the WRF dataset. All simulations were executed on Discover using 1800 405

processes with a total compute time of approximately 192,600 core hours, or approximately 5 wall-clock hours per year. 406

4 Results 407

4.1 Parallel Improvement 408

Figure 8 demonstrates how the scalability of Parallel SnowModel evolved, as shown through code profiling (top row; Fig. 8) 409

and speedup (bottom row; Fig. 8) plots at three different stages (Centralized, Distributed, and Final) of the code 410

development. The code profiling plots display the cumulative execution time of each submodule (T(N)[log (s)]) as a 411

function of the N. The strong scaling plots show the total execution time (T(N)[s]) and the speedup [S(N); Eq. (1)] as a 412

function of N on the primary y-axis and secondary y-axis, respectively. As mentioned previously, the initialization timing 413

was removed from these values. The speedup of the Centralized version of the code quickly plateaus at approximately 10 414

16

processes. While the Enbal, SnowPack, and MicroMet subroutines scale with the number of processes (execution time 415

decreases proportional to the increase in the number of processes), the ReadParam, Preprocess, and Output subroutines, 416

which all perform file I/O or memory allocation, require a fixed execution time regardless of the number of processes used, 417

and the execution time of the SnowTran-3D submodule increases beyond 16 processes. This highlights the large bottleneck 418

that often occurs during the file I/O step in scientific code and the importance of code infrastructure outside of the physics 419

routines. In contrast, all the submodules in the Distributed version of the code, scale up to 36 processes, at which point the 420

inefficient parallelization of the SnowTran-3D submodule causes a significant slowdown, an increase in execution time as 421

the number of processes increases. This results in a speedup that plateaus at 52 processes and decreases beyond 108 422

processes. In the Final version of the code, scalability is observed well beyond 36 processes, with a maximum speedup of 423

100 observed using 144 processes. The execution time of all the submodules decreases as the number of processors 424

increases. This work highlights the value of going beyond the rudimentary parallelization of a scientific code base by 425

profiling and identifying individual elements that would benefit the most from additional optimization. This is a well-known 426

best practice in software engineering but often underappreciated in high-performance scientific computing. In Parallel 427

SnowModel, the improvement of these communication bottlenecks is primarily attributed to utilizing a distributed file I/O 428

scheme and minimizing processor communication by limiting the use of coarrays and synchronization calls. Ultimately, 429

without these improvements, the CONUS domain could not be simulated using Parallel SnowModel. 430

 431
Figure 8: Code profiling (top row) and strong scaling (bottom row) results demonstrating the progression of Parallel SnowModel, 432
which includes a version of the code with centralized file I/O (Centralized; first column), a version of the code with distributed file 433
I/O (Distributed; second column), and a final version of the code at the time of this publication (Final; third column). These 434
versions can be found as different commits within the GitHub repository (Mower et al., 2023). The code profiling plots display the 435
cumulative execution time of each submodule on a logarithmic scale as a function of the number of processes (N). The arrow in the 436

17

code profiling plots of Distributed and Final indicates the ReadParam timing is below the y-axis at approximately 0.3 seconds and 437
0.003 seconds, respectively. The strong scaling plots show the total execution time (T(N)) against N on the primary y-axis and the 438
speedup (S) against N on the secondary y-axis. 439

4.2 Strong Scaling 440

In addition to the parallel improvement analysis, strong scaling was also performed on six domains for the 2018 water year 441

to better understand how Parallel SnowModel scales across different domain sizes and decompositions. Figure 9 displays the 442

approximate speedup [S̈(N); Eq. (3)] of Parallel SnowModel for three local/state domains (Tuolumne, CO Headwaters, and 443

Idaho) and three regional/continental domains (PNW, Western US, and CONUS). Additionally, Table 1 contains information 444

about the minimum and maximum number of processors (P" and P*, respectively) simulated on each domain and their 445

corresponding execution time (T(N)[m]), relative speedup [S"(N); Eq. (2)], approximate speedup [S̈(N); Eq. (3)], and 446

approximate efficiency [Ë(N); Eq. (5)]. As mentioned previously, simulations were constrained by both the 12 h wall-clock 447

and 109 GB of memory per node on the Cheyenne supercomputer. In strong scaling, the number of processes is increased 448

while the problem size remains constant; therefore, it represents a reduced workload per process. Local-sized domains, e.g., 449

Tuolumne, likely do not warrant the need for parallel resources because they have small serial runtimes (e.g., using 52 450

processes, Tuolumne had an Ë of 38%; Table 1). However, state, regional, and continental domains stand to benefit more 451

significantly from parallelization. The CONUS runtime decreased by a factor of 3 running on 3456 processes relative to 648 452

processes. Based on our approximate speedup assumption, we would estimate a CONUS S̈ of 1690 times on 3456 processes 453

compared to one process, with an Ë of 49%. The Western US and PNW domains display very similar scalability results (Fig. 454

9), which is attributed to the similar number of grid cells in the y dimension (Fig. 2 and Table 1) and thus parallel 455

decomposition for each domain. Furthermore, these domains may also have a similar proportion of snow-covered grid cells. 456

While the PNW likely has more terrestrial grid cells that are covered by snow for a longer period throughout the water year, 457

it also has a significant number of ocean grid cells where snow redistribution would not be activated. 458

18

 459
Figure 9: The left panel displays approximate speedup as a function of the number of processes (N) for local and state sized 460
simulations (Tuolumne, CO Headwaters, and Idaho), while the right panel shows S̈ for the regional and continental sized domains 461
(PNW, Western US, and CONUS). 462

 463

Domain Nx Ny P! or P*

Number of

Processes

Execution

Time [m]

Relative

Speedup

Approximate

Speedup

Approximate

Efficiency

N T(N) S!(N) S̈(N) Ë(N)

Tuolumne 311 185
P! 1 13 --- --- 100

P* 52 1 20 20 38

CO Headwaters 3166 5167
P! 8 934 --- 8 100

P* 576 24 39 308 53

Idaho 6916 9107
P! 27 1068 --- 27 100

P* 1296 48 22 605 47

PNW 13677 16058
P! 84 1173 --- 84 100

P* 2304 105 11 941 41

Western US 17737 17878
P! 120 1187 --- 120 100

P* 3456 135 9 1058 31

CONUS 46238 28260
P! 648 1196 --- 648 100

P* 3456 459 3 1690 49

 464
Table 1: Parallel SnowModel strong scaling results containing grid dimensions (Nx and Ny), execution time [m], relative speedup, 465
approximate speedup, and approximate efficiency for simulations executed with the minimum and maximum number of processes 466

(P7 and P*, respectively) on the Tuolumne, CO Headwaters, Idaho, PNW, Western US, and CONUS domains. Values of the 467
timing, speedup, and efficiency variables are rounded to the nearest integer. 468

Strong scaling analysis is useful for I/O and memory bound applications to identify a setup that results in a reasonable 469

runtime and moderate resource costs. Based on these scaling results, Fig. 10 contains the relationship between the number of 470

processes (N) at which each domain is estimated to reach 50% Ë (using linear interpolation) with the total number of grid 471

19

cells in the y dimension (Ny) and the average number of grid cells in the y dimension per process (lny; inset Fig. 10). At 472

this level of efficiency, it is notable the consistency of both the linear relationship between Ny and N (8.7:1 ratio) and the 473

values of lny (5 to 11) for these year-long simulations that vary in both domain size and the proportion of snow-covered 474

area. Similar relationships (Fig. 10) can be used to approximate the scalability of Parallel SnowModel on different sized 475

domains and can be adjusted for the desired level of efficiency. For example, we decided to run the CONUS simulations 476

(Sect. 4.3) using 1800 processes based on its 70% approximate efficiency. 477

 478
Figure 10: Relationship between the number of grid cells in the y dimension (Ny) and the number of processes (N) for each domain 479
at which 50% approximate efficiency is estimated using the strong scaling analysis. The dashed line represents the best fit line for 480
this relationship using OLS regression. The inset figure displays a similar relationship but compares N to the average number of 481

grid cells in the y dimension per process (lny), instead of Ny. 482

4.3 CONUS Simulations 483

Spatial results of SWE on 12 February 2011 over the CONUS domain and a sub-domain located in the Indian Peaks west of 484

Boulder, Colorado are displayed in Fig. 11. On this date, simulated SWE was observed throughout the northern portion of 485

the CONUS domain with the largest values concentrated in the mountain ranges (Fig. 11a). The Indian Peaks sub-domains of 486

distributed SWE (Fig. 11b) with reference topography (Fig. 11c) underscores the ability of the large dataset to capture snow 487

processes in a local alpine environment. It is important to note that while SnowModel does simulate snow redistribution, it 488

does not currently have an avalanche model, which may be a limitation of accurately simulating SWE within this sub-489

domain. Additionally, Fig. 11b highlights two grid cells located 200 m apart on a peak. Figures 11d and 11e display the 490

SWE evolution of these two grid cells over the entire dataset (water years 2000 – 2021) and the 2011 water year, 491

respectively, further demonstrating the ability of Parallel SnowModel to capture fine-scale snow properties even when 492

simulating continental domains. The upwind (western) grid cell is scoured by wind, and snow is transported to the downwind 493

20

(eastern) grid cells where a snow drift forms. The information and insight available in this high-resolution dataset will have 494

important implications for many applications from hydrology, to wildlife and ecosystems, to weather and climate, and many 495

more. 496

 497
Figure 11: Simulation results of Parallel SnowModel over CONUS using the WRF projection. (a) Spatial patterns of SWE over the 498
CONUS domain for 12 February 2011, (b) highlighting the SWE distribution (c) and topography with an applied hillshade of a sub-499
domain near Apache Peak in the Indian Peaks west of Boulder, CO. (d) Time series of SWE from 2000-2021 and (e) over the 2011 500
water year for grid cells (“erode” and “deposit”) identified in panel (b). The “erode” and “deposit” grid cells highlight areas of similar 501
elevation but significant differences in SWE evolution resulting from blowing-snow redistribution processes. 502

5 Discussion 503

Parallelizing numerical models often involves two-dimensional decomposition in both the x and y dimensions. While many 504

benefits have been demonstrated by this approach, including improved load balancing (Dennis, 2007; Hamman et al., 2018), 505

it comes with increased complication of the parallel algorithms, including the partitioning algorithm, file I/O, and process 506

communication. The demonstrated speedup (Fig. 9) suggests Parallel SnowModel scales effectively over regional to 507

continental domains using the one-dimensional decomposition approach. The added benefits obtained from two-dimensional 508

decomposition strategies might not outweigh the costs of development, testing, and minimizing changes to the code structure 509

and logic for applications such as SnowModel. Ultimately, our simplified parallelization approach can be implemented by 510

other geoscience schemes as a first step to enhance simulation size and resolution. 511

21

Simulation experiments were conducted using Parallel SnowModel to validate the parallel logic, interpret its performance 512

across different algorithm versions and domain sizes, and demonstrate its ability to simulate continental domains at high-513

resolution. Code profiling and speedup analyses over the CO Headwaters domain helped identify bottlenecks in file I/O and 514

processor communication in SnowTran-3D during the development of the parallel algorithm (Sect. 4.1). Corrections to the 515

referred bottlenecks allowed Parallel SnowModel to scale up to regional and continental sized simulations and highlights the 516

value of optimizing scientific code. For Parallel SnowModel scalability is primarily dependent on the number of grid cells 517

per process (Nx and lny) but is also affected by the proportion of snow-covered grid cells with sufficient winds and soft 518

snow available to be redistributed (Sect. 3.1.2.2). The scalability analyses showed similar results across domains with 519

significant differences in size (Nx and Ny), topography, vegetation, and snow classifications (Sturm et al., 1995; Sturm and 520

Liston, 2021) (Sect 4.2), highlighting the effectiveness of Parallel SnowModel for running state, regional, and continental-521

sized domains. Furthermore, results from this analysis can be used to estimate the number of processors required to simulate 522

domains outside of the ones used in this study with a desired level of parallel efficiency (Fig. 10). 523

Additionally, these experiments emphasize the relationships among speed, memory, and computing resources for Parallel 524

SnowModel. A common laptop (~ 4 processes) has sufficient CPUs to run local sized domains within a reasonable amount 525

of time, but likely does not have sufficient memory for state-sized simulations. Similarly, the minimum memory (1160 GB; 526

Fig. 1) required to run the CONUS domain, could be simulated on a large server (~ 128 processes) with one process per 527

node. However, extrapolating from our scaling results on Cheyenne (Fig. 9), we estimate it would take over 2.5 days to run a 528

CONUS simulation for one water year with this configuration. In contrast, it took approximately 5 hours for CONUS to run 529

on the Discover supercomputer using 1800 processes. Therefore, by the time it took the large server to complete a CONUS 530

simulation for one water year, 12 water years could have been simulated on a supercomputer. Lastly, results from the 531

CONUS simulation highlight the ability of Parallel SnowModel to run high-resolution continental simulations, while 532

maintaining fine-scale snow processes that occur at a local level (Sect. 4.3). 533

SnowModel can simulate high-resolution outputs of snow depth, density, SWE, grain size, thermal resistance, snow strength, 534

snow albedo, landscape albedo, meltwater production, snow-water runoff, blowing snow flux, visibility, peak winter SWE, 535

snow-season length, snow onset date, snow-free date, and more, all produced by a physical model that maintains consistency 536

among variables. While several snow data products exist, few capture the suite of snow properties along with the spatio-537

temporal extents and resolutions that can benefit a wide variety of applications. For example, current snow information 538

products include the NASA daily SWE distributions globally for dry (non-melting) snow on a 25 km grid (Tedesco and 539

Jeyaratnam, 2019), a NASA snow-cover product on a 500 m grid (Hall et al., 2006) that is missing information due to clouds 540

approximately 50% of the time (Moody et al., 2005), and the Snow Data Assimilation System (SNODAS) daily snow 541

information provided by the National Oceanic and Atmospheric Administration (NOAA) and the National Weather Service 542

(NWS) National Operational Hydrologic Remote Sensing Center (NOHRSC) on a 1 km grid (Center, 2004), which is itself 543

model derived and has limited geographic coverage and snow properties. The Airborne Snow Observatory (ASO) provides 544

the highest resolution data with direct measurements of snow depth on a 3 m grid, and derived values of SWE on a 50 m grid 545

22

(Painter et al., 2016), but has limited spatio-temporal coverage and a high cost of acquisition. Furthermore, there are many 546

fields of study that can benefit from 100 m resolution information of internally consistent snow variables, including wildlife 547

and ecosystem, military, hydrology, weather and climate, cryosphere, recreation, remote sensing, engineering and civil 548

works, and industrial applications. The new Parallel SnowModel described here permits the application of this modeling 549

system to very large domains without sacrificing spatial resolution. 550

6 Conclusions 551

In this paper, we present a relatively simple parallelization approach that allows SnowModel to perform high-resolution 552

simulations over regional to continental sized domains. The code within the core submodules (EnBal, MicroMet, SnowPack, 553

and SnowTran-3D) and model configurations (single-layer snowpack, multi-layer snowpack, binary input files, etc.) was 554

parallelized and modularized in this study. This allows SnowModel to be compiled with a range of Fortran compilers, 555

including modern compilers that support parallel CAF either internally or through libraries, such as OpenCoarrays 556

(Fanfarillo et al., 2014). Additionally, it provides the structure for other parallelization logic (e.g., MPI) to be more easily 557

added to the code base. The parallel module contains a simple approach to decomposing the computational domain in the y 558

dimension into smaller rectangular sub-domains. These sub-domains are distributed across processes to perform 559

asynchronous calculations. The parallelization module also contains logic for communicating information among processes 560

using halo-exchange coarrays for the wind and solar radiation models, as well as for snow redistribution. The scalability of 561

Parallel SnowModel was demonstrated over different sized domains, and the new code enables the creation of high-562

resolution simulated snow datasets on continental scales. This parallelization approach can be adopted in other 563

parallelization efforts where spatial derivatives are calculated or fluxes are transported across gridded domains. 564

Appendix A 565

Some of the configuration combinations were not parallelized during this study for reasons including ongoing development 566

in the serial code base and limitations to the parallelization approach. These include simulations involving tabler surfaces 567

(Tabler, 1975), I/O using ASCII files, Lagrangian seaice tracking, and data assimilation. 568

Appendix B 569

Validation SnowModel experiments were run in serial and in parallel over the Tuolumne and CO Headwaters domains (Sect. 570

4.1) using the RMSE statistic. Important output variables from EnBal, MicroMet, SnowPack, and SnowTran-3D 571

demonstrated similar, if not identical values, when compared to serial results for all timesteps during the simulations; RMSE 572

values were within machine precision (~10-6) regardless of the output variable, domain, or number of processes used. The 573

23

validated output variables include albedo [%], precipitation [𝑚], emitted longwave radiation [𝑊 ∗𝑚!"], incoming longwave 574

radiation reaching the surface [𝑊 ∗𝑚!"], incoming solar radiation reaching the surface [𝑊 ∗𝑚!"], relative humidity [%], 575

runoff from base of snowpack [𝑚 ∗ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝], rain precipitation [𝑚], snow density [𝑘𝑔 ∗ 𝑚!#], snow-water equivalent melt 576

[𝑚], snow depth [𝑚], snow precipitation [𝑚], static-surface sublimation [𝑚], snow-water equivalent [𝑚], air temperature 577

[°𝐶], wind direction [°], and wind speed [𝑚 ∗ 𝑠!$]. Ultimately, we feel confident that Parallel SnowModel is producing the 578

same results as the original serial algorithm. 579

Code, data availability, and supplement 580

The Parallel SnowModel code and the data used in Sect. 4 is available through a public GitHub repository (Mower et al., 581

2023). For more information about the serial version of SnowModel, refer to Liston and Elder (2006a). The data includes 582

figures and SnowModel output files that contain the necessary information to recreate the simulations. The gridded output 583

variables themselves are not included due to storage limitations. Pending approval, we will submit our code to get a DOI. 584

Author contribution 585

EDG and GDL conceived the study. RM, EDG, GDL, and SR were integral in the code development. RM, EDG, and JL 586

were involved in the design, execution, and interpretation of the experiments. All authors discussed the results and 587

contributed to the final version of the draft. 588

Competing interests 589

The contact author has declared that none of the authors has any competing interests. 590

Disclaimer 591

Publisher’s note: Copernicus Publications remains neutral with regard to jurisdictional claims in published maps and 592

institutional affiliations. 593

Financial support 594

This material is based upon work supported by the NSF National Center for Atmospheric Research, which is a major facility 595

sponsored by the U.S. National Science Foundation under Cooperative Agreement No. 1852977. The authors would like to 596

acknowledge that this work has been performed under funding from NASA Earth Science Office (ESTO) Advanced 597

Information Systems Technology (AIST) Program (grant no. 80NSSC20K0207), support by the University of Washington’s 598

24

College of Engineering Fellowship, and computational support from NSF NCAR Computational and Information Systems 599

Lab (CISL) and NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at 600

Goddard Space Flight Center. 601

 602

Acknowledgements 603

We acknowledge Alessandro Fanfarillo in his help during the early stages of the Parallel SnowModel code development. We 604

are also grateful for the feedback from various team members involved in the AIST project, including Carrie Vuyovich, 605

Kristi Arsenault, Melissa Wrzesien, Adele Reinking, and Barton Forman. 606

References 607

Beniston, M.: Climatic Change in Mountain Regions: A Review of Possible Impacts, Climatic Change, 59, 5-31, 608

10.1023/A:1024458411589, 2003. 609

Bernhardt, M., Schulz, K., Liston, G. E., and Zängl, G.: The influence of lateral snow redistribution processes on snow melt 610

and sublimation in alpine regions, Journal of Hydrology, 424-425, 196-206, https://doi.org/10.1016/j.jhydrol.2012.01.001, 611

2012. 612

Boelman, N. T., Liston, G. E., Gurarie, E., Meddens, A. J. H., Mahoney, P. J., Kirchner, P. B., Bohrer, G., Brinkman, T. J., 613

Cosgrove, C. L., Eitel, J. U. H., Hebblewhite, M., Kimball, J. S., LaPoint, S., Nolin, A. W., Pedersen, S. H., Prugh, L. R., 614

Reinking, A. K., and Vierling, L. A.: Integrating snow science and wildlife ecology in Arctic-boreal North America, 615

Environmental Research Letters, 14, 010401, 10.1088/1748-9326/aaeec1, 2019. 616

Center, N. O. H. R. S.: Snow data assimilation system (SNODAS) data products at NSIDC, 2004. 617

Clark, M. P. and Hay, L. E.: Use of Medium-Range Numerical Weather Prediction Model Output to Produce Forecasts of 618

Streamflow, Journal of Hydrometeorology, 5, 15-32, 10.1175/1525-7541(2004)005<0015:Uomnwp>2.0.Co;2, 2004. 619

Coarfa, C., Dotsenko, Y., Mellor-Crummey, J., Cantonnet, F., El-Ghazawi, T., Mohanti, A., Yao, Y., and Chavarría-620

Miranda, D.: An evaluation of global address space languages: co-array fortran and unified parallel c, Proceedings of the 621

tenth ACM SIGPLAN symposium on Principles and practice of parallel programming, 36-47, 622

Dennis, J. M.: Inverse space-filling curve partitioning of a global ocean model, 2007 IEEE International Parallel and 623

Distributed Processing Symposium, 1-10, 624

https://doi.org/10.1016/j.jhydrol.2012.01.001

25

Dozier, J., Bair, E. H., and Davis, R. E.: Estimating the spatial distribution of snow water equivalent in the world's 625

mountains, WIREs Water, 3, 461-474, https://doi.org/10.1002/wat2.1140, 2016. 626

Essery, R., Li, L., and Pomeroy, J.: A distributed model of blowing snow over complex terrain, Hydrological Processes, 13, 627

2423-2438, https://doi.org/10.1002/(SICI)1099-1085(199910)13:14/15<2423::AID-HYP853>3.0.CO;2-U, 1999. 628

Fanfarillo, A., Burnus, T., Cardellini, V., Filippone, S., Nagle, D., and Rouson, D.: OpenCoarrays: open-source transport 629

layers supporting coarray Fortran compilers, Proceedings of the 8th International Conference on Partitioned Global Address 630

Space Programming Models, 1-11, 631

Fang, X. and Pomeroy, J.: Modeling blowing snow redistribution to prairie wetlands, Hydrological Processes, 23, 2557-632

2569, 10.1002/hyp.7348, 2009. 633

Foster, J. L., Hall, D. K., Eylander, J. B., Riggs, G. A., Nghiem, S. V., Tedesco, M., Kim, E., Montesano, P. M., Kelly, R. E. 634

J., Casey, K. A., and Choudhury, B.: A blended global snow product using visible, passive microwave and scatterometer 635

satellite data, International Journal of Remote Sensing, 32, 1371-1395, 10.1080/01431160903548013, 2011. 636

Freudiger, D., Kohn, I., Seibert, J., Stahl, K., and Weiler, M.: Snow redistribution for the hydrological modeling of alpine 637

catchments, WIREs Water, 4, e1232, https://doi.org/10.1002/wat2.1232, 2017. 638

Gesch, D. B., Evans, G. A., Oimoen, M. J., and Arundel, S.: The National Elevation Dataset, in, edited by: United States 639

Geological Survey, E. R. O. a. S. E. C., American Society for Photogrammetry and Remote Sensing, 83-110, 2018. 640

Hall, D., Riggs, G., and Salomonson, V.: MODIS/Terra Snow Cover 5-Min L2 Swath 500m, Version, 5, 2011167.2011750, 641

2006. 642

Hamman, J. J., Nijssen, B., Bohn, T. J., Gergel, D. R., and Mao, Y.: The Variable Infiltration Capacity model version 5 643

(VIC-5): Infrastructure improvements for new applications and reproducibility, Geoscientific Model Development, 11, 3481-644

3496, 2018. 645

Hammond, J. C., Sexstone, G. A., Putman, A. L., Barnhart, T. B., Rey, D. M., Driscoll, J. M., Liston, G. E., Rasmussen, K. 646

L., McGrath, D., Fassnacht, S. R., and Kampf, S. K.: High Resolution SnowModel Simulations Reveal Future Elevation-647

Dependent Snow Loss and Earlier, Flashier Surface Water Input for the Upper Colorado River Basin, Earth's Future, 11, 648

e2022EF003092, https://doi.org/10.1029/2022EF003092, 2023. 649

https://doi.org/10.1002/wat2.1140
https://doi.org/10.1002/(SICI)1099-1085(199910)13:14/15
https://doi.org/10.1002/wat2.1232
https://doi.org/10.1029/2022EF003092

26

Homer, C., Dewitz, J., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N., Wickham, J., and Megown, K.: 650

Completion of the 2011 National Land Cover Database for the conterminous United States–representing a decade of land 651

cover change information, Photogrammetric Engineering & Remote Sensing, 81, 345-354, 2015. 652

Hoppinen, Z. M., Oveisgharan, S., Marshall, H.-P., Mower, R., Elder, K., and Vuyovich, C.: Snow Water Equivalent 653

Retrieval Over Idaho, Part B: Using L-band UAVSAR Repeat-Pass Interferometry, The Cryosphere Discussions, 2023, 1-24, 654

2023. 655

Huss, M., Bookhagen, B., Huggel, C., Jacobsen, D., Bradley, R. S., Clague, J. J., Vuille, M., Buytaert, W., Cayan, D. R., 656

Greenwood, G., Mark, B. G., Milner, A. M., Weingartner, R., and Winder, M.: Toward mountains without permanent snow 657

and ice, Earth's Future, 5, 418-435, https://doi.org/10.1002/2016EF000514, 2017. 658

Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T., Hyde, S., Brumby, S., Davies, B. J., Elmore, 659

A. C., Emmer, A., Feng, M., Fernández, A., Haritashya, U., Kargel, J. S., Koppes, M., Kraaijenbrink, P. D. A., Kulkarni, A. 660

V., Mayewski, P. A., Nepal, S., Pacheco, P., Painter, T. H., Pellicciotti, F., Rajaram, H., Rupper, S., Sinisalo, A., Shrestha, 661

A. B., Viviroli, D., Wada, Y., Xiao, C., Yao, T., and Baillie, J. E. M.: Importance and vulnerability of the world’s water 662

towers, Nature, 577, 364-369, 10.1038/s41586-019-1822-y, 2020. 663

ISO/IEC: Fortran Standard 2008; Technical report, Geneva, Switzerland, 2010. 664

Jin, S., Homer, C., Yang, L., Danielson, P., Dewitz, J., Li, C., Zhu, Z., Xian, G., and Howard, D.: Overall methodology 665

design for the United States national land cover database 2016 products, Remote Sensing, 11, 2971, 2019. 666

Keenan, E., Wever, N., Lenaerts, J. T. M., and Medley, B.: A wind-driven snow redistribution module for Alpine3D v3.3.0: 667

adaptations designed for downscaling ice sheet surface mass balance, Geosci. Model Dev., 16, 3203-3219, 10.5194/gmd-16-668

3203-2023, 2023. 669

Kumar, V. and Gupta, A.: Analysis of scalability of parallel algorithms and architectures: A survey, Proceedings of the 5th 670

international conference on Supercomputing, 396-405, 671

Laboratory, C. a. I. S.: Cheyenne, 10.5065/D6RX99HX, 2019. 672

Latifovic, R., Homer, C., Ressl, R., Pouliot, D., Hossain, S. N., Colditz, R. R., Olthof, I., Giri, C. P., and Victoria, A.: 20 673

North American Land-Change Monitoring System, Remote sensing of land use and land cover, 303, 2016. 674

Lehning, M., Löwe, H., Ryser, M., and Raderschall, N.: Inhomogeneous precipitation distribution and snow transport in 675

steep terrain, Water Resources Research, 44, 2008. 676

https://doi.org/10.1002/2016EF000514

27

Lehning, M., Völksch, I., Gustafsson, D., Nguyen, T., Stähli, M., and Zappa, M.: ALPINE3D: A detailed model of mountain 677

surface processes and its application to snow hydrology, Hydrological Processes, 20, 2111-2128, 10.1002/hyp.6204, 2006. 678

Lettenmaier, D. P., Alsdorf, D., Dozier, J., Huffman, G. J., Pan, M., and Wood, E. F.: Inroads of remote sensing into 679

hydrologic science during the WRR era, Water Resources Research, 51, 7309-7342, 680

https://doi.org/10.1002/2015WR017616, 2015. 681

Liston, G., Reinking, A. K., and Boleman, N.: Daily SnowModel Outputs Covering the ABoVE Core Domain, 3-km 682

Resolution, 1980-2020, 10.3334/ORNLDAAC/2105, 2022. 683

Liston, G. E.: Local advection of momentum, heat, and moisture during the melt of patchy snow covers, Journal of Applied 684

Meteorology and Climatology, 34, 1705-1715, 1995. 685

Liston, G. E.: Representing Subgrid Snow Cover Heterogeneities in Regional and Global Models, Journal of Climate, 17, 686

1381-1397, 10.1175/1520-0442(2004)017<1381:Rsschi>2.0.Co;2, 2004. 687

Liston, G. E. and Elder, K.: A distributed snow-evolution modeling system (SnowModel), Journal of Hydrometeorology, 7, 688

1259-1276, 2006a. 689

Liston, G. E. and Elder, K.: A Meteorological Distribution System for High-Resolution Terrestrial Modeling (MicroMet), 690

Journal of Hydrometeorology, 7, 217-234, 10.1175/jhm486.1, 2006b. 691

Liston, G. E. and Hall, D. K.: An energy-balance model of lake-ice evolution, Journal of Glaciology, 41, 373-382, 1995. 692

Liston, G. E. and Hiemstra, C. A.: A simple data assimilation system for complex snow distributions (SnowAssim), Journal 693

of Hydrometeorology, 9, 989-1004, 2008. 694

Liston, G. E. and Hiemstra, C. A.: The changing cryosphere: Pan-Arctic snow trends (1979–2009), Journal of Climate, 24, 695

5691-5712, 2011. 696

Liston, G. E. and Mernild, S. H.: Greenland freshwater runoff. Part I: A runoff routing model for glaciated and nonglaciated 697

landscapes (HydroFlow), Journal of Climate, 25, 5997-6014, 2012. 698

Liston, G. E. and Sturm, M.: A snow-transport model for complex terrain, Journal of Glaciology, 44, 498 - 516, 1998. 699

Liston, G. E. and Sturm, M.: Global Seasonal-Snow Classification, Version 1 [dataset], 2021. 700

https://doi.org/10.1002/2015WR017616

28

Liston, G. E., Perham, C. J., Shideler, R. T., and Cheuvront, A. N.: Modeling snowdrift habitat for polar bear dens, 701

Ecological Modelling, 320, 114-134, https://doi.org/10.1016/j.ecolmodel.2015.09.010, 2016. 702

Liston, G. E., Winther, J.-G., Bruland, O., Elvehøy, H., and Sand, K.: Below-surface ice melt on the coastal Antarctic ice 703

sheet, Journal of Glaciology, 45, 273-285, 1999. 704

Liston, G. E., Haehnel, R. B., Sturm, M., Hiemstra, C. A., Berezovskaya, S., and Tabler, R. D.: Simulating complex snow 705

distributions in windy environments using SnowTran-3D, Journal of Glaciology, 53, 241-256, 2007. 706

Liston, G. E., Polashenski, C., Rösel, A., Itkin, P., King, J., Merkouriadi, I., and Haapala, J.: A distributed snow‐evolution 707

model for sea‐ice applications (SnowModel), Journal of Geophysical Research: Oceans, 123, 3786-3810, 2018. 708

Liston, G. E., Itkin, P., Stroeve, J., Tschudi, M., Stewart, J. S., Pedersen, S. H., Reinking, A. K., and Elder, K.: A Lagrangian 709

snow‐evolution system for sea‐ice applications (SnowModel‐LG): Part I—Model description, Journal of Geophysical 710

Research: Oceans, 125, e2019JC015913, 2020. 711

Lund, J., Forster, R. R., Deeb, E. J., Liston, G. E., Skiles, S. M., and Marshall, H.-P.: Interpreting Sentinel-1 SAR 712

Backscatter Signals of Snowpack Surface Melt/Freeze, Warming, and Ripening, through Field Measurements and 713

Physically-Based SnowModel, Remote Sensing, 14, 4002, 2022. 714

Mahoney, P. J., Liston, G. E., LaPoint, S., Gurarie, E., Mangipane, B., Wells, A. G., Brinkman, T. J., Eitel, J. U., 715

Hebblewhite, M., and Nolin, A. W.: Navigating snowscapes: scale‐dependent responses of mountain sheep to snowpack 716

properties, Ecological Applications, 28, 1715-1729, 2018. 717

Marsh, C. B., Pomeroy, J. W., Spiteri, R. J., and Wheater, H. S.: A Finite Volume Blowing Snow Model for Use With 718

Variable Resolution Meshes, Water Resources Research, 56, e2019WR025307, https://doi.org/10.1029/2019WR025307, 719

2020. 720

Miller, P., Robson, M., El-Masri, B., Barman, R., Zheng, G., Jain, A., and Kalé, L.: Scaling the isam land surface model 721

through parallelization of inter-component data transfer, 2014 43rd International Conference on Parallel Processing, 422-722

431, 723

Mitchell, K. E.: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP 724

products and partners in a continental distributed hydrological modeling system, J. Geophys. Res., 109, D07S90, 2004. 725

https://doi.org/10.1016/j.ecolmodel.2015.09.010
https://doi.org/10.1029/2019WR025307

29

Moody, E. G., King, M. D., Platnick, S., Schaaf, C. B., and Gao, F.: Spatially complete global spectral surface albedos: 726

Value-added datasets derived from Terra MODIS land products, IEEE Transactions on Geoscience and Remote Sensing, 43, 727

144-158, 2005. 728

Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Gobiet, A., Hagenmuller, P., Lafaysse, M., Ližar, M., 729

Mitterer, C., Monti, F., Müller, K., Olefs, M., Snook, J. S., van Herwijnen, A., and Vionnet, V.: Application of physical 730

snowpack models in support of operational avalanche hazard forecasting: A status report on current implementations and 731

prospects for the future, Cold Regions Science and Technology, 170, 102910, 732

https://doi.org/10.1016/j.coldregions.2019.102910, 2020. 733

Mortezapour, M., Menounos, B., Jackson, P. L., Erler, A. R., and Pelto, B. M.: The role of meteorological forcing and snow 734

model complexity in winter glacier mass balance estimation, Columbia River basin, Canada, Hydrological Processes, 34, 735

5085-5103, https://doi.org/10.1002/hyp.13929, 2020. 736

Mott, R. and Lehning, M.: Meteorological Modeling of Very High-Resolution Wind Fields and Snow Deposition for 737

Mountains, Journal of Hydrometeorology, 11, 934-949, https://doi.org/10.1175/2010JHM1216.1, 2010. 738

Mott, R., Schirmer, M., Bavay, M., Grünewald, T., and Lehning, M.: Understanding snow-transport processes shaping the 739

mountain snow-cover, The Cryosphere, 4, 545-559, 10.5194/tc-4-545-2010, 2010. 740

Mower, R., Gutmann, E. D., and Liston, G. E.: Parallel-SnowModel 1.0 [code], https://github.com/NCAR/Parallel-741

SnowModel-1.0, 2023. 742

Mudryk, L. R., Derksen, C., Kushner, P. J., and Brown, R.: Characterization of Northern Hemisphere Snow Water 743

Equivalent Datasets, 1981–2010, Journal of Climate, 28, 8037-8051, 10.1175/jcli-d-15-0229.1, 2015. 744

Nolin, A. W.: Recent advances in remote sensing of seasonal snow, Journal of Glaciology, 56, 1141-1150, 745

10.3189/002214311796406077, 2010. 746

Numrich, R. W. and Reid, J.: Co-Array Fortran for parallel programming, ACM Sigplan Fortran Forum, 1-31, 747

Numrich, R. W., Steidel, J. L., Johnson, B. H., Dinechin, B. D. d., Elsesser, G., Fischer, G., and MacDonald, T.: Definition 748

of the F−− Extension to Fortran 90, International Workshop on Languages and Compilers for Parallel Computing, 292-306, 749

Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems, J. S., Gehrke, F., Hedrick, A., Joyce, M., Laidlaw, 750

R., and Marks, D.: The Airborne Snow Observatory: Fusion of scanning lidar, imaging spectrometer, and physically-based 751

modeling for mapping snow water equivalent and snow albedo, Remote Sensing of Environment, 184, 139-152, 2016. 752

https://doi.org/10.1016/j.coldregions.2019.102910
https://doi.org/10.1002/hyp.13929
https://doi.org/10.1175/2010JHM1216.1
https://github.com/NCAR/Parallel-SnowModel-1.0
https://github.com/NCAR/Parallel-SnowModel-1.0

30

Parhami, B.: SIMD machines: do they have a significant future?, ACM SIGARCH Computer Architecture News, 23, 19-22, 753

1995. 754

Pedersen, S. H., Liston, G. E., Tamstorf, M. P., Schmidt, N. M., and Abermann, J.: Linking vegetation greenness and 755

seasonal snow characteristics using field observations, SnowModel, and daily MODIS imagery in high-Arctic Greenland, 756

AGU Fall Meeting Abstracts, GC42A-07, 757

Pedersen, S. H., Liston, G. E., Tamstorf, M. P., Westergaard-Nielsen, A., and Schmidt, N. M.: Quantifying Episodic 758

Snowmelt Events in Arctic Ecosystems, Ecosystems, 18, 839-856, 10.1007/s10021-015-9867-8, 2015. 759

Perezhogin, P., Chernov, I., and Iakovlev, N.: Advanced parallel implementation of the coupled ocean–ice model FEMAO 760

(version 2.0) with load balancing, Geoscientific Model Development, 14, 843-857, 2021. 761

Pflug, J. M. and Lundquist, J. D.: Inferring Distributed Snow Depth by Leveraging Snow Pattern Repeatability: Investigation 762

Using 47 Lidar Observations in the Tuolumne Watershed, Sierra Nevada, California, Water Resources Research, 56, 763

e2020WR027243, https://doi.org/10.1029/2020WR027243, 2020. 764

Prokop, A. and Schneiderbauer, S.: The atmospheric snow-transport model: SnowDrift3D, Journal of Glaciology, 57, 526-765

542, 10.3189/002214311796905677, 2011. 766

Quéno, L., Mott, R., Morin, P., Cluzet, B., Mazzotti, G., and Jonas, T.: Snow redistribution in an intermediate-complexity 767

snow hydrology modelling framework, EGUsphere, 2023, 1-32, 10.5194/egusphere-2023-2071, 2023. 768

Randin, C. F., Dedieu, J.-P., Zappa, M., Long, L., and Dullinger, S.: Validation of and comparison between a semidistributed 769

rainfall–runoff hydrological model (PREVAH) and a spatially distributed snow-evolution model (SnowModel) for snow 770

cover prediction in mountain ecosystems, Ecohydrology, 8, 1181-1193, https://doi.org/10.1002/eco.1570, 2015. 771

Rasmussen, R. M., Liu, C., Ikeda, K., Chen, F., Kim, J.-H., Schneider, T., Gochis, D., Dugger, A., and Viger, R.: Four-772

kilometer long-term regional hydroclimate reanalysis over the conterminous United States (CONUS), 1979-2020, Research 773

Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory 774

[dataset], 10.5065/ZYY0-Y036, 2023. 775

Renwick, J.: MOUNTerrain: GEWEX mountainous terrain precipitation project, GEWEX news, 24, 5-6, 2014. 776

Reynolds, D. S., Pflug, J. M., and Lundquist, J. D.: Evaluating wind fields for use in basin‐scale distributed snow models, 777

Water Resources Research, 57, e2020WR028536, 2021. 778

https://doi.org/10.1029/2020WR027243
https://doi.org/10.1002/eco.1570

31

Richter, B., Schweizer, J., Rotach, M. W., and van Herwijnen, A.: Modeling spatially distributed snow instability at a 779

regional scale using Alpine3D, Journal of Glaciology, 67, 1147-1162, 10.1017/jog.2021.61, 2021. 780

Rouson, D., Gutmann, E. D., Fanfarillo, A., and Friesen, B.: Performance portability of an intermediate-complexity 781

atmospheric research model in coarray Fortran, Proceedings of the Second Annual PGAS Applications Workshop, 1-4, 782

Skofronick-Jackson, G. M., Johnson, B. T., and Munchak, S. J.: Detection Thresholds of Falling Snow From Satellite-Borne 783

Active and Passive Sensors, IEEE Transactions on Geoscience and Remote Sensing, 51, 4177-4189, 784

10.1109/TGRS.2012.2227763, 2013. 785

Sturm, M. and Liston, G. E.: Revisiting the global seasonal snow classification: An updated dataset for earth system 786

applications, Journal of Hydrometeorology, 22, 2917-2938, 2021. 787

Sturm, M., Holmgren, J., and Liston, G. E.: A Seasonal Snow Cover Classification System for Local to Global Applications, 788

Journal of Climate, 8, 1261-1283, 10.1175/1520-0442(1995)008<1261:Assccs>2.0.Co;2, 1995. 789

Szczypta, C., Gascoin, S., Houet, T., and Fanise, P.: Impact of climate versus land-use changes on snow cover in Bassiès, 790

Pyrenees, International Snow Science Workshop Grenoble â?? Chamonix Mont-Blanc, 1278-1281, 791

Tabler, R. D.: Estimating the transport and evaporation of blowing snow, Great Plains Agric Counc Publ, 1975. 792

Takala, M., Luojus, K., Pulliainen, J., Derksen, C., Lemmetyinen, J., Kärnä, J.-P., Koskinen, J., and Bojkov, B.: Estimating 793

northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and 794

ground-based measurements, Remote Sensing of Environment, 115, 3517-3529, https://doi.org/10.1016/j.rse.2011.08.014, 795

2011. 796

Tedesco, M. and Jeyaratnam, J.: AMSR-E/AMSR2 Unified L3 Global Daily 25 km EASE-Grid Snow Water Equivalent, 797

Version 1, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center, 2019. 798

Vionnet, V., Martin, E., Masson, V., Lac, C., Naaim Bouvet, F., and Guyomarc'h, G.: High‐resolution large eddy simulation 799

of snow accumulation in Alpine terrain, Journal of Geophysical Research: Atmospheres, 122, 11,005-011,021, 2017. 800

Vionnet, V., Martin, E., Masson, V., Guyomarc'h, G., Naaim-Bouvet, F., Prokop, A., Durand, Y., and Lac, C.: Simulation of 801

wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model, The 802

Cryosphere, 8, 395-415, 2014. 803

https://doi.org/10.1016/j.rse.2011.08.014

32

Voordendag, A., Réveillet, M., MacDonell, S., and Lhermitte, S.: Snow model comparison to simulate snow depth evolution 804

and sublimation at point scale in the semi-arid Andes of Chile, The Cryosphere, 15, 4241-4259, 2021. 805

Vuyovich, C. M., Jacobs, J. M., and Daly, S. F.: Comparison of passive microwave and modeled estimates of total watershed 806

SWE in the continental United States, Water Resources Research, 50, 9088-9102, https://doi.org/10.1002/2013WR014734, 807

2014. 808

Wagner, C., Hunsaker, A., and Jacobs, J.: UAV and SnowModel Estimates of Wind Driven Snow in Eastern USA 809

Avalanche Terrain, Copernicus Meetings, 2023. 810

Wrzesien, M. L., Durand, M. T., Pavelsky, T. M., Kapnick, S. B., Zhang, Y., Guo, J., and Shum, C. K.: A New Estimate of 811

North American Mountain Snow Accumulation From Regional Climate Model Simulations, Geophysical Research Letters, 812

45, 1423-1432, https://doi.org/10.1002/2017GL076664, 2018. 813

Xia, Y.: Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System 814

project phase 2 (NLDAS-2): 1. Intercomparison and application of model products, J. Geophys. Res., 117, D03109, 2012a. 815

Xia, Y.: Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System 816

project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow, J. Geophys. Res., 117, D03110, 2012b. 817

Xue, M., Droegemeier, K. K., and Wong, V.: The Advanced Regional Prediction System (ARPS) – A multi-scale 818

nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification, Meteorology and 819

Atmospheric Physics, 75, 161-193, 10.1007/s007030070003, 2000. 820

 821

https://doi.org/10.1002/2013WR014734
https://doi.org/10.1002/2017GL076664

