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Abstract. SnowModel, a spatially distributed, snow-evolution modeling system, was parallelized using Coarray Fortran for 8 

high-performance computing architectures to allow high-resolution (1 m to 100s of meters) simulations over large, regional 9 

to continental scale, domains. In the parallel algorithm, the model domain was split into smaller rectangular sub-domains that 10 

are distributed over multiple processor cores using one-dimensional decomposition. All the memory allocations from the 11 

original code were reduced to the size of the local sub-domains, allowing each core to perform fewer computations and 12 

requiring less memory for each process. Most of the subroutines in SnowModel were simple to parallelize; however, there 13 

were certain physical processes, including blowing snow redistribution and components within the solar radiation and wind 14 

models, that required non-trivial parallelization using halo-exchange patterns. To validate the parallel algorithm and assess 15 

parallel scaling characteristics, high-resolution (100 m grid) simulations were performed over several western United States 16 

domains and over the contiguous United States (CONUS) for a year. The CONUS scaling experiment had approximately 17 

70% parallel efficiency; runtime decreased by a factor of 1.9 running on 1800 cores relative to 648 cores (the minimum 18 

number of cores that could be used to run such a large domain because of memory and time limitations). CONUS 100 m 19 

simulations were performed for 21 years (2000 – 2021) using 46,238 and 28,260 grid cells in the x and y dimensions, 20 

respectively. Each year was simulated using 1800 cores and took approximately 5 hours to run. 21 

1 Introduction 22 

The cryosphere (snow and ice) is an essential component of Arctic, mountain, and downstream ecosystems, Earth’s surface 23 

energy balance, and freshwater resource storage (Huss et al., 2017). Globally, half the world’s population depends on 24 

snowmelt (Beniston, 2003). In snow-dominated regions like the Western United States, snowmelt contributes to 25 

approximately 70% of the total annual water supply (Foster et al., 2011). In these regions, late-season streamflow is 26 

dependent on the deepest snow drifts and therefore longest-lasting snow (Pflug and Lundquist, 2020). Since modeling snow-27 

fed streamflow accurately is largely dependent on our ability to predict snow quantities and the associated spatial and 28 

temporal variability (Clark and Hay, 2004), high-temporal and -spatial resolution snow datasets are important for predicting 29 

flood hazards and managing freshwater resources (Immerzeel et al., 2020).  30 



2 
 

The spatial and temporal seasonal snow characteristics also have significant implications outside of water resources. 31 

Changes in fractional snow-covered area affect albedo and thus atmospheric dynamics (Liston, 2004; Liston and Hall, 1995). 32 

Avalanches pose safety hazards to both transportation and recreational activities in mountainous terrain; the prediction of 33 

which requires high-resolution (meters) snow datasets (Morin et al., 2020; Richter et al., 2021). Additionally, the timing and 34 

duration of snow-covered landscapes strongly influence how species adapt, migrate, and survive (Boelman et al., 2019; 35 

Liston et al., 2016; Mahoney et al., 2018).  36 

To date, the primary modes for estimating snow properties and storage have come from observation networks, satellite-based 37 

sensors, and physically derived snow algorithms in land surface models (LSMs). However, despite the importance of 38 

regional, continental, and global snow, estimates of snow properties over these scales remain uncertain, especially in alpine 39 

regions where wind, snow, and topography interact (Boelman et al., 2019; Dozier et al., 2016; Mudryk et al., 2015). 40 

Observation datasets used for spatial interpolation of snow properties and forcing datasets used in LSMs are often too sparse 41 

in mountainous terrain to accurately resolve snow spatial heterogeneities (Dozier et al., 2016; Renwick, 2014). Additionally, 42 

remotely sensed products have shown deficiencies in measuring snowfall rate (Skofronick-Jackson et al., 2013), snow-water 43 

equivalent (SWE), and snow depth (Nolin, 2010), especially in mountainous terrain where conditions of deep snow, wet 44 

snow, and/or dense vegetation may be present (Lettenmaier et al., 2015; Takala et al., 2011; Vuyovich et al., 2014). 45 

However, LSMs using high-resolution inputs, including forcing datasets from regional climate models (RCMs), have 46 

demonstrated realistic spatial distributions of snow properties (Wrzesien et al., 2018). 47 

Many physical snow models have been developed either in stand-alone algorithms or larger LSMs with varying degrees of 48 

complexity based on their application. The more advanced algorithms attempt to accurately model snow properties at higher 49 

resolution especially in regions where snow interacts with topography, vegetation, and/or wind. Wind-induced snow 50 

transport is one such complexity of snow that represents an important interaction between the cryosphere and atmosphere. It 51 

occurs in regions permanently or temporarily covered by snow and greatly influences snow heterogeneity, sublimation, 52 

avalanches, and melt timing. Models that have incorporated wind-induced physics generally require components to both 53 

develop the snow mass balance and incorporate atmospheric inputs of the wind field. However, there often exists a trade-off 54 

between the accuracy of simulating wind-induced snow transport and the computational requirements for downscaling and 55 

developing the wind fields over the gridded domain (Reynolds et al., 2021; Vionnet et al., 2014). Therefore, simplifying 56 

assumptions of uniform wind direction has been applied in models like Distributed Blowing Snow Model (DBSM) (Essery 57 

et al., 1999; Fang and Pomeroy, 2009). More advanced models have utilized advection-diffusion equations, like Alpine3D 58 

(Lehning et al., 2006) or spatial distributed formulations like SnowTran-3D (Liston and Sturm, 1998). Finite volume 59 

methods for more efficiently discretizing wind fields have been applied to models such as DBSM (Marsh et al., 2020). The 60 

most complex models consider nonsteady turbulence which utilize three-dimensional wind fields from atmospheric models 61 

to simulate blowing snow transport and sublimation; for example, SURFEX in Meso-NH/Crocus (Vionnet et al., 2014; 62 

Vionnet et al., 2017), wind fields from the atmospheric model ARPS (Xue et al., 2000) being incorporated into Alpine3D 63 

(Mott and Lehning, 2010; Mott et al., 2010; Lehning et al., 2008), and SnowDrift3D (Prokop and Schneiderbauer, 2011). 64 
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Incorporating wind-induced physics into snow models is computationally expensive; thus, parallelizing the serial algorithms 65 

would likely be beneficial to many models. 66 

For several decades, a distributed snow-evolution modeling system (SnowModel) has been developed, enhanced, and tested 67 

to accurately simulate snow properties across a wide range of landscapes, climates, and conditions (Liston and Elder, 2006a; 68 

Liston et al., 2020). To date, SnowModel has been used in over 200 refereed journal publications; a short listing of these is 69 

provided by Liston et al. (2020). Physically derived snow algorithms, as used in SnowModel, that model the energy balance, 70 

multilayer snow physics, and lateral snow transport are computationally expensive. In these models, the required 71 

computational power increases with the number of grid cells covering the simulation domain. Finer grid resolutions usually 72 

imply more grid cells and higher accuracy resulting from improved representation of process physics at higher resolutions. 73 

The original serial SnowModel code was written in Fortran 77 and could not be executed in parallel using multiple processor 74 

cores. As a result, SnowModel’s spatial and temporal simulation domains (number of grid cells and time steps) were 75 

previously limited by the speed of one core and the memory available on the single computer. Note that a “processor” refers 76 

to a single central processing unit (CPU) and typically consists of multiple cores, each core can run one or more processes in 77 

parallel. 78 

Recent advancements in multiprocessor computer technologies and architectures have allowed for increased performance in 79 

simulating complex natural systems at high resolutions. Parallel computing has been used on many LSMs to reduce compute 80 

time and allow for higher accuracy results from finer grid simulations (Hamman et al., 2018; Miller et al., 2014; Sharma et 81 

al., 2004). Our goal was to develop a parallel version of SnowModel (Parallel SnowModel) using Coarray Fortran (CAF) 82 

syntax without making significant changes to the original SnowModel code physics or structure. CAF is a Partitioned Global 83 

Address Space (PGAS) programming model and has been used to run atmospheric models on 100,000 cores (Rouson et al., 84 

2017).  85 

In parallelizing numerical models, a common strategy is to decompose the domain into smaller sub-domains that get 86 

distributed across multiple processes (Dennis, 2007; Hamman et al., 2018). For rectangular gridded domains (like 87 

SnowModel), this preserves the original structure of the spatial loops and utilizes direct referencing of neighboring grids 88 

(Perezhogin et al., 2021). The parallelization of many LSMs involve “embarrassingly parallel” problems requiring minimal 89 

to no processor communication (Parhami, 1995); in this case, adjacent grid cells do not communicate with each other (an 90 

example of this would be where each grid cell represents a point, or one-dimension, snowpack model that is not influenced 91 

by nearby grid cells).  92 

While much of the SnowModel’s logic can be considered “embarrassingly parallel”, SnowModel also contains “non-trivial” 93 

algorithms within the solar radiation, wind, and snow redistribution models. Calculations within these algorithms often 94 

require information from neighboring grid cells, either for spatial derivative calculations or for horizontal fluxes of mass 95 

(e.g., saltating or turbulent-suspended snow) across the domain. Therefore, non-trivial parallelization requires implementing 96 

algorithm changes that allow computer processes to communicate and exchange data. The novelty of the work presented 97 

here includes 1) the presentation of Parallel SnowModel, high-resolution (100 m) distributed snow datasets over CONUS, 98 
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and an analysis of the performance of the parallel algorithm; 2) demonstrating how a simplified parallelization approach 99 

using CAF and one-dimensional decomposition can be implemented in geoscientific algorithms to scale over large domains; 100 

and 3) demonstrating an approach for non-trivial parallelization algorithms that involve spatial derivatives and fluxes using 101 

halo-exchange techniques.  102 

In Sect. 2, we provide background information on SnowModel, parallelization using CAF, data and domains used in this 103 

study, and a motivation for this work. In Sect. 3, we explain our parallelization approach using CAF and introduce the 104 

simulation experiments used to demonstrate the performance of Parallel SnowModel through strong scaling metrics and 105 

CONUS simulations. In Sect. 4, we provide results of the simulation experiments introduced in Sect. 3. Lastly, we end with a 106 

discussion in Sect. 5 and a conclusion in Sect. 6. 107 

2 Background 108 

2.1 SnowModel 109 

SnowModel is a spatially distributed snow-evolution modeling system designed to model snow states (e.g., snow depth, 110 

SWE, snow melt, snow density) and fluxes over different landscapes and climates (Liston and Elder, 2006a). The most 111 

complete and up-to-date description of SnowModel can be found in the Appendices of Liston et al. (2020). While many 112 

snow modelling systems exist, SnowModel will benefit from parallelization because of its ability to simulate snow processes 113 

on a high-resolution grid through downscaling meteorological inputs and modelling snow redistribution. SnowModel is 114 

designed to simulate domains on a structured grid with spatial resolutions ranging from 1 to 200 m (although it can simulate 115 

coarser resolutions, as well) and temporal resolutions ranging from 10 m to 1 d. The primary modeled processes include 116 

accumulation from frozen precipitation; blowing-snow redistribution and sublimation; interception, unloading, and 117 

sublimation within forest canopies; snow-density and grain-size evolution; and snowpack ripening and melt. These processes 118 

are distributed into four, core interacting submodules: MicroMet defines the meteorological forcing conditions (Liston and 119 

Elder, 2006b), EnBal describes surface and energy exchanges (Liston, 1995; Liston et al., 1999), SnowPack-ML is a 120 

multilayer snowpack sub-model that simulates the evolution of snow properties and the moisture and energy transfers 121 

between layers (Liston and Hall, 1995; Liston and Mernild, 2012), and SnowTran-3D calculates snow redistribution by wind 122 

(Liston et al., 2007). Additional simulation features include SnowDunes (Liston et al., 2018) and SnowAssim (Liston and 123 

Hiemstra, 2008), which model sea-ice applications and data assimilation techniques, respectively. Figure 1 shows a 124 

schematic of the core SnowModel toolkit. Additionally, the initialization submodules that read in the model parameters, 125 

distribute inputs across the modeled grid, allocate arrays, etc., include PreProcess and ReadParam. Outputting arrays is 126 

contained within the Outputs submodule. SnowModel incorporates first-order physics required to simulate snow evolution 127 

within each of the global snow classes [e.g., Ice, Tundra, Boreal Forest, Montane Forest, Prairie, Maritime, and Ephemeral; 128 

(Sturm and Liston, 2021; Liston and Sturm, 2021)].  129 
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 130 
Figure 1: Schematic modified by Pederson et al. (2015) providing an example of possible inputs, core submodules, and outputs of 131 
SnowModel. 132 

2.2 Coarray Fortran 133 

CAF, formerly known as F-, (Iso/Iec, 2010; Numrich and Reid, 1998; Numrich et al., 1997) is the parallel language feature 134 

of Fortran that was used to parallelize SnowModel. CAF is like Message Passing Interface (MPI) libraries in that it uses the 135 

Single Program Multiple Data (SPMD) model where multiple independent cores simultaneously execute a program. SPMD 136 

allows for distributed memory allocation and remote memory transfer. However, unlike MPI, CAF uses the PGAS parallel 137 

programming model to handle the distribution of computational tasks amongst processes (Coarfa et al., 2005). In the PGAS 138 

model, each process contains local memory that can be accessed directly by all other processes. While CAF and MPI syntax 139 

often refers to processes as images or ranks, for consistency, we will continue to use the term “process”. Ultimately, CAF 140 

offers a high-level syntax that exploits locality and scales effectively (Coarfa et al., 2005). For simulation comparisons, we 141 

used OpenCoarrays, a library implementation of CAF (Fanfarillo et al., 2014) utilized by the gfortran compiler; intel and 142 

cray compilers both have independent CAF implementations.  143 

2.3 Model Domains, Data, and Computing Resources 144 

The required inputs for SnowModel include 1) temporally varying meteorological variables of precipitation, wind speed and 145 

direction, air temperature, and relative humidity taken from meteorological stations or atmospheric models and 2) spatially 146 

distributed topography and land-cover type (Liston & Elder, 2006a). The following inputs were used for the experiments 147 

introduced in Sect. 3: USGS National Elevation Dataset (NED) for topography (Gesch et al., 2018), The North American 148 

Land Change Monitoring System (NALCMS) Land Cover 2015 map for vegetation (Homer et al., 2015; Jin et al., 2019; 149 

Latifovic et al., 2016), and forcing variables from either the North American Land Data Assimilation System (NLDAS-2)  150 

(Mitchell, 2004; Xia, 2012a, b) on a 1/8 degree (approximately 12 km) grid or a high-resolution Weather Research Forecast 151 

(WRF) model from the National Center for Atmospheric Research (NCAR) on approximately a 4 km grid (Rasmussen et al., 152 

2023). The high-performance computing architectures used include NCAR’s Cheyenne supercomputer, which is a 5.43-153 
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petaflop SGI ICE XA Cluster featuring 145,152 Intel Xeon processes in 4,032 dual-socket nodes and 313 TB of total 154 

memory (Laboratory, 2019) and The National Aeronautics and Space Administration’s (NASA) Center for Climate 155 

Simulation (NCCS) Discover supercomputer with a 1,560-teraflop SuperMicro Cluster featuring 20,800 Intel Xeon Skylake 156 

processes in 520 dual-socket nodes and 99.84 TB of total memory. Simulation experiments were conducted over six domains 157 

(Tuolumne, CO Headwaters, Idaho, PNW, Western US, and CONUS) throughout the United States at 100 m grid resolution. 158 

The spatial location, domain dimensions (e.g., number of grids in the x and y dimensions), and memory requirements, 159 

derived from the peak_memusage package (https://github.com/NCAR/peak_memusage), for the simulation experiments are 160 

highlighted in Figure 2. 161 

 162 
Figure 2: (a) Spatial location of simulated domains on WRF’s lambert conformal projection (Rasmussen et al., 2023) and (b) 163 
corresponding grid dimensions (Nx – number of grids in x dimension; Ny – number of grids in y dimension) and memory obtained 164 
from peak_memusage package required for single-layer SnowModel simulation experiments. For reference, the dashed lines represent 165 
the normal and large memory thresholds (55 and 109 GB) for Cheyenne’s SGI ICE XA cluster. 166 

2.4 Parallelization Motivation 167 

The answers to current snow science, remote sensing, and water management questions require high-resolution data that 168 

covers large spatial and temporal domains. While modeling systems like SnowModel can be used to help provide these 169 

datasets, running them on single-processor workstations imposes limits on the spatiotemporal extents of the produced 170 

information. Serial simulations are limited by both execution time and memory requirements, where the memory limitation 171 

is largely dependent on the size of the simulation domain. Up to the equivalent of 175 two-dimensional and 10 three-172 

dimensional arrays are held in memory during a SnowModel simulation, depending on the model configuration. In analyzing 173 

the performance of the Parallel SnowModel (Sect. 4), serial simulations were attempted over six domains throughout the 174 

United States at 100 m grid resolution (Figure 2) for the 2018 water year (1 September 2017 to 1 September 2018). Only the 175 

Tuolumne domain could be simulated in serial based on the memory (109 GB for a large memory node) and time (12 h wall-176 

clock limit) constraints on Cheyenne. The CO Headwaters and Idaho domains could not be simulated in serial due to time 177 

constraints, while the three largest domains (Pacific Northwest (PNW), Western U.S. and CONUS) could not be executed in 178 

serial due to both exceedances of the 12 h wall-clock limit and memory availability. Furthermore, we estimate that using a 179 

https://github.com/NCAR/peak_memusage
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currently available, state of the art, single-processor workstation, would require approximately 120 d of computer time to 180 

perform a 1 y model simulation over the CONUS domain. SnowModel is regularly used to perform multi-decade 181 

simulations, for trend analyses, climate change studies, and retrospective analyses (Liston and Hiemstra, 2011; Liston et al., 182 

2020; Liston et al., 2022). If this 1 y, 100 m, CONUS domain was simulated for a 40 y period (e.g., 1980 through present), it 183 

would take approximately 4800 d, or over 13 y, of computer time. Clearly such simulations are not practical using single-184 

processor computer hardware and software algorithms. 185 

3 Methods 186 

In parallelizing SnowModel and distributing computations and memory over multiple processes, we demonstrate its ability 187 

to efficiently run regional to continental sized simulations. Some of the model configurations were not parallelized for 188 

reasons including ongoing development in the serial code base and limitations to the parallelization approach. These 189 

configurations are further discussed in Appendix A. This section introduces the syntax and framework used to parallelize 190 

SnowModel and the simulation experiments used to assess the performance of the parallel algorithm. 191 

3.1 Parallel Implementation 192 

Changes to the SnowModel logic were made through the parallelization process and included the partitioning algorithm, 193 

non-trivial communication via halo-exchange, and file input and output (I/O) schemes. 194 

3.1.1 Partitioning Algorithm 195 

The partitioning strategy identifies how the workload gets distributed amongst processes in a parallel algorithm. The 196 

multidimensional arrays of SnowModel are stored in row-major order, meaning the x dimension is contiguous in memory. 197 

Additionally, dominant wind directions and therefore predominant snow redistribution occurs in the east-west direction as 198 

opposed to south-north directions. Therefore, both the data structures and physical processes involved in SnowModel justify 199 

a one-dimensional decomposition strategy in the y dimension, where the computational global domain Nx x Ny is separated 200 

into Nx x lny blocks.	 If Ny is evenly divisible by the total number of processes (N),	lny = Ny / N. If integer division is 201 

not possible, the remaining rows are distributed evenly amongst the processes starting at the bottom of the computational 202 

domain. Figure 3 demonstrates how a serial domain containing 10 grid cells in the x and y dimensions would be 203 

decomposed with four processes using our partitioning strategy.  204 
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 205 
Figure 3: Example 10 x 10 global domain and partitioning for (a) serial simulation and (b) parallel simulation using four processes. 206 

3.1.2 Non-trivial Parallelization 207 

Each process has sufficient information to correctly execute most of the physical computations within SnowModel. 208 

However, there are certain subroutines where grid computations require information from neighboring grid cells (e.g., data 209 

dependencies) and therefore information outside of the local domain of a process. For SnowModel, these subroutines 210 

typically involve the transfer of blowing snow or calculations requiring spatial derivatives. Furthermore, with our one-211 

dimensional decomposition approach, each grid cell within a process local domain has sufficient information from its 212 

neighboring grid cells in the x dimension but potentially lacks information from neighboring grid cells in the y dimension. As 213 

a regular grid method, SnowModel lends itself to process communication via halo-exchange where coarrays are used in 214 

remote calls. Halo-exchange using CAF involves copying boundary data into coarrays on neighboring processes and using 215 

information from the coarrays to complete computations (Figure 4). Although the entire local array could be declared a 216 

coarray and accessed by remote processes more directly, some CAF implementations, (e.g. Cray) impose additional 217 

constraints upon coarray memory allocations that can be problematic for such large allocations.  218 

 219 
Figure 4: Schematic showing halo-exchange using coarrays. The steps include: (a) initial gridded representation of local arrays for 220 
three processes, (b) P2 copying boundary data into coarrays for remote access, (c) neighboring processes (P1 and P3) stitching coarray 221 
to local domains. 222 
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3.1.2.1 Topography – Wind and Solar Radiation Models 223 

The wind and solar radiation models in MicroMet require information about surrounding surface topography (Liston and 224 

Elder, 2006b). The wind model requires surface curvature, and the solar radiation model requires surface slope and aspect. 225 

These vary at each timestep as snow accumulates and melts because the defined surface includes the snow surface on top of 226 

the landscape. The surface curvature, for example, is computed at each model grid cell using the spatial gradient of the 227 

topographic elevation of eight neighboring grid cells. Using the parallelization approach discussed above, processes lack 228 

sufficient information to make curvature calculations for the bordering grid cells along the top and/or bottom row(s) within 229 

their local domains. Note that the number of row(s) (inc) is determined by a predefined parameter that represents the 230 

wavelength of topographic features within a domain. Future work should permit this parameter to vary spatially to account 231 

for changes in the length scale across the domain. For example, all grid cells along the top row of P1 will be missing 232 

information from nearby grid cells to the north and require topographic elevation (topo) information from the bottom 233 

row(s) of the local domain of P2 to make the calculation (Figure 5a). Halo-exchange is performed to distribute row(s) of data 234 

to each process that is missing that information in their local domains (Figure 5b). Processes whose local domains are 235 

positioned in the bottom or top of the global domain will only perform one halo-exchange with their interior neighbor, while 236 

interior processes will perform two halo-exchanges. By combining and appropriately indexing information from the process 237 

local array and received coarrays of topographic elevation, an accurate curvature calculation can be performed using this 238 

parallel approach (Figure 5c).  239 

 240 
Figure 5: Schematic for halo-exchange used in the curvature calculation by P1, where inc = 2. (a) Prior to halo-exchange, P1 241 
contains insufficient information to perform the curvature calculation, (b) grid cells (halo) within the local domain of P2 are (c) 242 
transferred to P1 via coarrays. At this point, P1 has sufficient information to make the curvature calculation.  243 

3.1.2.2 Snow Redistribution 244 

Wind influences the mass balance of the snowpack by suspending and transporting snow particles in the air (turbulent-245 

suspension) and by causing snow grains to bounce on top of the snow surface (saltation). In SnowModel, the saltation and 246 

suspension algorithms are separated into northerly, southerly, easterly, and westerly fluxes based on the u and v components 247 

of wind direction for each grid cell. Figure 6 shows a simplified schematic for the saltation flux from a southerly wind. In the 248 
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serial algorithm (Figure 6a), SnowModel initializes the saltation flux based on the wind speed at that time step (initial 249 

flux). To calculate the final saltation flux (updated flux), SnowModel steps through regions of continuous wind 250 

direction (delineated by the indices: jstart and jend), updates the change in saltation fluxes from upwind grid cells and 251 

the change in saltation flux from the given wind direction, and makes adjustments to these fluxes based on the soft snow 252 

availability above the vegetation height (Liston and Elder, 2006a). Similar logic is used for the parallel implementation of 253 

the saltation and suspension fluxes with an additional iteration (salt iter) that updates the boundary condition for each 254 

process via halo-exchange. This allows the fluxes to be communicated from the local domain of one process to another. To 255 

minimize the number of iterations, salt iter was provided a maximum bound that is equivalent to snow being 256 

transported 15 km via saltation or suspension. This number was chosen based off prior field measurements (Tabler, 1975) 257 

and simulation experiments. It is possible that in other environments an even larger length may be required, to be guaranteed 258 

to match the serial results in all cases, the number of iterations would have to be equal to the number of processes; however, 259 

this would result in no parallel speed up and has no practical benefit. A schematic of the parallel calculation of the change in 260 

saltation due to southerly winds is illustrated in Figure 6b. The bc_halo_exchange represents a halo-exchange of grid 261 

cells from upwind processes, allowing the saltation flux to be transported from one process local domain to the next.  262 

 263 
Figure 6: (a) Schematic of the serial and (b) parallel redistribution algorithm showing the change in saltation flux due to southerly 264 
winds over a gridded domain for Nx = 1. The parallel schematic demonstrates how three processes (P1, P2, P3) use an additional 265 
iteration (salt iter) to perform a halo-exchange and update the boundary condition of the saltation flux. 266 

3.1.3 File I/O 267 

File I/O management can be a significant bottleneck in parallel applications. Parallel implementations that are less memory 268 

restricted commonly use local to global mapping strategies, or a Centralized approach for file I/O (Figure 7a). This approach 269 

requires that one or more processes stores global arrays for input variables and that one process (Process 1; Figure 7a) stores 270 

global arrays for all output variables. As the domain size increases, the mapping of local variables to global variables for 271 
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outputting creates a substantial bottleneck. To improve performance, Distributed file I/O can be implemented, where input 272 

and output files are directly and concurrently accessed by each process (Figure 7b). 273 

 274 
Figure 7: (a) Schematic of global to local mapping for file I/O using a Centralized approach with four processes, and (b) Distributed 275 
file I/O where each process reads and writes data corresponding to its local domain. 276 

SnowModel contains static spatial inputs that do not vary over time, e.g., topography and land cover, and dynamic spatial 277 

inputs, e.g., air temperature and precipitation, that vary spatially and temporally. The static inputs are of a higher resolution 278 

compared to the dynamic inputs (cf., topography is on the model grid, while atmospheric forcing is almost always more 279 

widely spaced). To balance performance and consistency with the serial logic of the code, we used a mixed parallel file I/O 280 

approach. A goal of this work was to maintain nearly identical serial and parallel versions of the code in one code base that 281 

can be easily maintained and utilized by previous, current, and future SnowModel users with different computational 282 

resources and skills. Therefore, we wanted to maintain both the Centralized and Distributed file I/O approaches. However, 283 

for optimal parallel performance over larger simulation domains, file input (reading) is performed in a Distributed way for 284 

the static inputs and in a Centralized way for dynamic inputs, while file output (writing) is performed in a Distributed way, 285 

as described further below. This permits the new version of the code to be a drop in replacement for the original serial code 286 

without requiring users to install new software libraries or manage hundreds of output files, while enabling users who wish 287 

to take advantage of the parallel nature of the code to do so with minimal additional work and no changes to the underlying 288 

code. 289 

3.1.3.1 Parallel Inputs 290 

As noted above, SnowModel has two primary types of input files, temporally static files such as vegetation and topography 291 

and transient inputs such as meteorological forcing data. While acceptable static input file types include flat binary, NetCDF, 292 

and ASCII files for the serial version of the code, optimizing the efficiency of Parallel SnowModel requires static inputs 293 
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from binary files that can be accessed concurrently and directly subset by indexing the starting byte and length of bytes 294 

commensurate to a process local domain. Therefore, each process can read its own portion of the static input data. For very 295 

large domains, the available memory becomes a limitation when using the centralized approach. For example, the CONUS 296 

simulation could not be simulated using a centralized file I/O approach because each process would be holding global arrays 297 

of topography and vegetation in memory, each of which would require approximately 5.2 GB of memory per process. 298 

Reading of meteorological forcing variables (wind speed, wind direction, relative humidity, temperature, and precipitation) 299 

can be performed in parallel with either binary or NetCDF files. Depending on the forcing dataset, the grid spacing of the 300 

meteorological variables typically ranges from 1 to 30 km and therefore often requires a smaller memory footprint than static 301 

inputs for high-resolution simulations. For example, the resolution of NLDAS-2 meteorological forcing has a grid of 302 

approximately 11 km, while the high-resolution WRF model used has a 4 km grid. At each timestep, processes read in the 303 

forcing data from every station within the domain into a one-dimensional array, index the nearest locations for each 304 

SnowModel grid, and interpolate the data to create forcing variables over the local domain. All processes perform the same 305 

operation and store common information; however, since the resolutions of the forcing datasets are significantly coarser than 306 

the model grid for high-resolution simulations, the dynamic forcing input array size remains comparable to other local arrays 307 

and does not impose significant memory limitations for simulations performed to date. While more efficient parallel file 308 

input schemes could improve performance, we decided to keep this logic in part to maintain consistency with the serial 309 

version of the code and minimize code changes.  310 

3.1.3.2 Parallel Outputs 311 

To eliminate the use of local to global mapping commonly used to output variables (Figure 7a), each process writes its own 312 

output file (Figure 7b). A postprocessing script is then used to concatenate files from each process into one file that 313 

represents the output for the global domain. Modern high-performance computing architectures have highly parallelized 314 

storage systems making file output using a distributed approach significantly faster than the centralized approach. Therefore, 315 

file output in this manner reduces time and memory requirements. Future work could leverage other established parallel I/O 316 

libraries at the cost of additional installation requirements. 317 

3.2 Simulation Experiments 318 

Parallel SnowModel experiments were conducted to both evaluate the effectiveness of the parallelization approach used in 319 

this study (Sect. 3.1) and to produce a high-resolution snow dataset over CONUS. All experiments were executed with a 100 320 

m grid increment, a 3 h time step, a single-layer snowpack configuration, and included the primary SnowModel modules 321 

(MicroMet, EnBal, SnowPack, and SnowTran-3D). These experiments are further described below, with results provided in 322 

Sect. 4. 323 

Validation experiments comparing output from the original serial version of the code to the parallel version were conducted 324 

continuously throughout the parallel algorithm development to assess the reproducibility of the results. Additionally, a more 325 

thorough validation effort was performed at the end of the study that compared output from the serial algorithm to that of the 326 
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parallel algorithm, while varying the domain size, the number of processes, and therefore the domain decomposition. Results 327 

from all of these validation experiments produced root mean squared error (RMSE) values of 10-6, which is at the limit of 328 

machine precision, when compared to serial simulation results. See Appendix B for more details on the validation 329 

experiments. The serial version of SnowModel has been evaluated in many studies across different snow classes (Sturm and 330 

Liston, 2021; Liston and Sturm, 2021), time periods, and snow properties. Evaluations ranged from snow cover (Pedersen et 331 

al., 2016; Randin et al., 2015), snow depth (Szczypta et al., 2013; Wagner et al., 2023), SWE (Freudiger et al., 2017; 332 

Hammond et al., 2023; Mortezapour et al., 2020; Voordendag et al., 2021), and SWE-melt (Hoppinen et al., 2023; Lund et 333 

al., 2022), using field observations, snow-telemetry stations, and remote sensing products. A full comparison of the Parallel 334 

SnowModel simulations presented here with observations across CONUS is beyond the scope of the present work. 335 

Incorrectly simulated SWE could affect the scaling results and CONUS visualizations presented in Sect. 3.2.1.1, 3.2.1.2, and 336 

3.2.2; for example, if zero SWE were incorrectly simulated in many locations, processing time would be less than if SWE 337 

had been simulated and tracked. However, based on the scale of these analyses and the fact that SnowModel has been 338 

previously evaluated in a wide range of locations, we believe the impacts of this limitation on the computational results 339 

presented here are minimal.  340 

3.2.1 Parallel Performance 341 

In high performance computing, scalability attempts to assess the effectiveness of running a parallel algorithm with an 342 

increasing number of processes. Thus, scalability can be used to identify the optimal number of processes for a fixed domain, 343 

understand the limitations of a parallel algorithm as a function of domain size and number of processes, and estimate the 344 

efficiency of the parallel algorithm on new domains or computing architectures. Speedup, efficiency, and code profiling 345 

were tools used to assess the scalability and performance of Parallel SnowModel on fixed domains. Speedup (S; Eq. 1), a 346 

metric of strong scaling, is defined as the ratio of the serial execution time, T(1), over the execution time using N processes, 347 

T(N). Optimally, parallel algorithms will experience a doubling of speedup as the number of processes is doubled. Some 348 

reasons why parallel algorithms do not follow ideal scaling include the degree of concurrency possible and overhead costs 349 

due to communication. Synchronization statements have an associated cost of decreasing the speed and efficiency of an 350 

algorithm due to communication overhead and requirements for one process to sit idle while waiting for another to reach the 351 

synchronization point. Furthermore, speedup tends to peak or plateau at a certain limit on a given computing architecture and 352 

domain because either the overheads grow with an increasing number of processes, or the number of processes exceeds the 353 

degree of concurrency inherent in the algorithm (Kumar and Gupta, 1991). For large domains, where serial simulations 354 

cannot be performed either due to wall-clock or memory limitations, relative speedup, (S"; Eq. 2), is commonly used. 355 

Relative speedup is estimated as a ratio of the execution time, T(P"), of the minimum number of processes, (P"), that can be 356 

simulated on a given domain over T(N). An additional speedup metric, approximate speedup (S̈; Eq. 3), is introduced to 357 

estimate S by assuming perfect scaling from P" to a single process. While this is only an approximation, it is helpful to 358 
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compare the S̈  across the different domains on a similar scale. Additionally, efficiency (E; Eq. 4), and approximate 359 

efficiency (Ë; Eq. 5) are the ratios of S to N and  S̈ to N, respectively. A simulation that demonstrates ideal scaling, would 360 

have 100% efficiency. Additionally, code profiling evaluates the cumulative execution time of individual submodules (e.g. 361 

Preprocess, Readparam, MicroMet, Enbal, SnowPack, SnowTran-3D, and Output) as a function of the number of processes. 362 

Together, code profiling and strong scaling can be used to understand locations of bottlenecks in the algorithm and how 363 

changes to the code enhance performance. 364 

 365 

𝑺(	𝑵	) =
𝑻(	𝟏	)
𝑻(	𝑵	) 

Eq. 1 

𝑺0(𝑵) =
𝑻(	𝑷0	)
𝑻(	𝑵	) 

Eq. 2 

𝑺̈(𝑵) =
𝑻(	𝑷0	)
𝑻(	𝑵	) 	∗ 𝑷

0 Eq. 3 

𝑬(𝑵) =
𝑺
𝑵	∗ 𝟏𝟎𝟎% Eq. 4 

𝑬̈(𝑵) =
𝑺̈
𝑵 ∗ 𝟏𝟎𝟎% Eq. 5 

3.2.1.1 Parallel Improvement 366 

To better understand how changes to the Parallel SnowModel code have affected its performance, speedup and code 367 

profiling plots were assessed for simulations using three distinct versions of the code. These versions represent snapshots of 368 

the algorithms development and quantify the contributions of different types of code modifications to the final performance 369 

of the model. These versions were identified by different GitHub commits (Mower et al., 2023) and can be summarized as 370 

follows. The first or baseline version represents an early commit of Parallel SnowModel, where file I/O is performed in a 371 

Centralized way, as described in Sect. 3.1.3. Each process stores both a local and global array in memory for all input 372 

variables, makes updates to its local arrays, distributes that updated information into global arrays used by one process to 373 

write each output variable. The embarrassingly parallel portion of the physics code has been parallelized, but the snow 374 

redistribution step is not efficiently parallelized, it has a larger number of synchronizations and memory transfers. Therefore, 375 

this approach has significant time and memory constraints. The Distributed version represents an instance of the code where 376 

distributed file I/O (Sect. 3.1.3) had first been implemented. In this version, each process reads and writes input and output 377 

variables for its local domain only. Global arrays and the communication required to update these variables are no longer 378 

needed; this alleviates memory constraints and shows the value of parallelizing I/O in scientific applications. Lastly, the 379 

Final version represents the most recent version of Parallel SnowModel, (at the time of this publication) where the snow 380 

transport algorithm had been optimized to run efficiently. This was done by reducing unnecessary memory allocations, 381 

reducing the transfer of data via coarrays, and optimizing memory transfers to reduce synchronization calls. This shows the 382 
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value of focused development on a single hotspot of the code base. The simulations were executed on the CO Headwaters 383 

domain (Figure 2) using 1, 2, 4, 16, 36, 52, 108, and 144 processes, outputted only a single variable, and were forced with 384 

NLDAS-2 data from 23-24 March 2018. While 2-days is a short period to perform scaling experiments, a significant amount 385 

of wind and frozen precipitation was observed over the CO Headwaters domain during the simulation to activate some of the 386 

snow redistribution schemes in SnowTran-3D. Furthermore, to avoid disproportionately weighing the initialization of the 387 

algorithm, we removed the timing values from the ReadParam and Preprocess submodules from the total execution time 388 

used in the speedup analysis. Results from these experiments are provided in Sect. 4.1. 389 

3.2.1.2 Strong Scaling 390 

Strong scaling experiments of Parallel SnowModel were evaluated by comparing the approximate speedup and efficiency (S̈ 391 

and Ë) over six different size domains across the United States, all with a 100 m grid spacing [Tuolumne, CO Headwaters, 392 

Idaho, PNW, Western U.S., and CONUS] (Figure 2). These experiments use the Final version of the code according to Sect. 393 

3.2.1.1. The simulations were forced with NLDAS-2 data for 2928 timesteps from 1 September 2017 to 1 September 2018 394 

and output one variable (SWE). The number of processes used in these simulations varied by domain based on the 12 h wall-395 

clock and memory constraints on Cheyenne. Results from these experiments are provided in Sect. 4.2. 396 

3.2.2 CONUS Simulations 397 

A primary goal of this work was to run Parallel SnowModel simulations for 21 years (2000 – 2021) over the CONUS 398 

domain (Figure 2) on a 100 m grid, while resolving the diurnal cycle in the model physics and creating a daily dataset of 399 

snow properties, including snow depth, SWE, melt rate, and sublimation. Future work will analyze results from these 400 

simulations. The CONUS domain contained 46,238 and 28,260 grid cells in the x and y dimensions, respectively. 401 

Simulations were performed on a 3 h time step and forced with the WRF dataset. All simulations were executed on Discover 402 

using 1800 processes with a total compute time of approximately 192,600 core hours, or approximately 5 wall-clock hours 403 

per year. 404 

4 Results 405 

4.1 Parallel Improvement 406 

Figure 8 demonstrates how the scalability of Parallel SnowModel evolved, as shown through code profiling (top row; Figure 407 

8) and speedup (bottom row; Figure 8) plots at three different stages (Centralized, Distributed, and Final) of the code 408 

development. The code profiling plots display the cumulative execution time of each submodule on a logarithmic scale as a 409 

function of the N. The strong scaling plots show the total execution time (T(N)) and the speedup (S(N); Eq. 1)  as a 410 

function of N on the primary y-axis and secondary y-axis, respectively. As mentioned previously, the initialization timing 411 

was removed from these values. The speedup of the Centralized version of the code quickly plateaus at approximately 10 412 
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processes. While the Enbal, SnowPack, and MicroMet subroutines scale with the number of processes (execution time 413 

decreases proportional to the increase in the number of processes), the ReadParam, Preprocess, and Output subroutines, 414 

which all perform file I/O or memory allocation, require a fixed execution time regardless of the number of processes used, 415 

and the execution time of the SnowTran-3D submodule increases beyond 16 processes. This highlights the large bottleneck 416 

that often occurs during the file I/O step in scientific code and the importance of code infrastructure outside of the physics 417 

routines. In contrast, all of the submodules in the Distributed version of the code, scale up to 36 processes, at which point the 418 

inefficient parallelization of the SnowTran-3D submodule causes a significant slowdown, an increase in execution time as 419 

the number of processes increases. This results in a speedup that plateaus at 52 processes and decreases beyond 108 420 

processes. In the Final version of the code, scalability is observed well beyond 36 processes, with a maximum speedup of 421 

100 observed using 144 processes. The execution time of all the submodules decreases as the number of processors 422 

increases. This work highlights the value of going beyond the rudimentary parallelization of a scientific code base by 423 

profiling and identifying individual elements that would benefit the most from additional optimization. This is a well-known 424 

best practice in software engineering but often underappreciated in high-performance scientific computing. In Parallel 425 

SnowModel, the improvement of these communication bottlenecks is primarily attributed to utilizing a distributed file I/O 426 

scheme and minimizing processor communication by limiting the use of coarrays and synchronization calls. Ultimately, 427 

without these improvements, the CONUS domain could not be simulated using Parallel SnowModel.  428 

 429 
Figure 8: Code profiling (top row) and strong scaling (bottom row) results demonstrating the progression of Parallel SnowModel, 430 
which includes a version of the code with centralized file I/O (Centralized; first column), a version of the code with distributed file 431 
I/O (Distributed; second column), and a final version of the code at the time of this publication (Final; third column). These 432 
versions can be found as different commits within the GitHub repository (Mower et al., 2023). The code profiling plots display the 433 
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cumulative execution time of each submodule on a logarithmic scale as a function of the number of processes (N). The arrow in the 434 
code profiling plots of Distributed and Final indicates the ReadParam timing is below the y-axis at approximately 0.3 seconds and 435 
0.003 seconds, respectively. The strong scaling plots show the total execution time (T(N)) against N on the primary y-axis and the 436 
speedup (S) against N on the secondary y-axis.  437 

4.2 Strong Scaling 438 

In addition to the parallel improvement analysis, strong scaling was also performed on six domains for the 2018 water year 439 

to better understand how Parallel SnowModel scales across different domain sizes and decompositions. Figure 9 displays the 440 

approximate speedup (S̈; Eq. 3) of Parallel SnowModel for three local/state domains (Tuolumne, CO Headwaters, and Idaho) 441 

and three regional/continental domains (PNW, Western US, and CONUS). Additionally, Table 1 contains information about 442 

the minimum and maximum number of processors (P"   and P*, respectively) simulated on each domain and their 443 

corresponding execution time, relative speedup (S"; Eq. 2), approximate speedup (S̈; Eq. 3), and approximate efficiency (Ë; 444 

Eq. 5). As mentioned previously, simulations were constrained by both the 12 h wall-clock and 109 GB of memory per node 445 

on the Cheyenne supercomputer. In strong scaling, the number of processes is increased while the problem size remains 446 

constant; therefore, it represents a reduced workload per process. Local-sized domains, e.g., Tuolumne, likely do not warrant 447 

the need for parallel resources because they have small serial runtimes (e.g., using 52 processes, Tuolumne had an Ë of 38%; 448 

Table 1). However, state, regional, and continental domains stand to benefit more significantly from parallelization. The 449 

CONUS runtime decreased by a factor of 2.6 running on 3456 processes relative to 648 processes. Based on our approximate 450 

speedup assumption, we would estimate a CONUS S̈ of 1690 times on 3456 processes compared to one process, with an Ë of 451 

49%. The Western US and PNW domains display very similar scalability results (Figure 9), which is attributed to the similar 452 

number of grid cells in the y dimension (Figure 2; and Table 1) and thus parallel decomposition for each domain. 453 

Furthermore, these domains may also have a similar proportion of snow-covered grid cells. While the PNW likely has more 454 

terrestrial grid cells that are covered by snow for a longer period throughout the water year, it also has a significant number 455 

of ocean grid cells where snow redistribution would not be activated.  456 
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 457 
Figure 9: The left panel displays approximate speedup (S̈; Eq. 3) as a function of the number of processes (N) for local and state 458 
sized simulations (Tuolumne, CO Headwaters, and Idaho), while the right panel shows S̈ for the regional and continental sized 459 
domains (PNW, Western US, and CONUS). 460 

 461 
Table 1: Strong scaling results containing grid dimensions (Nx and Ny), number of processes, execution time, relative speedup, 462 

approximate speedup, and approximate efficiency of simulations executed with the minimum and maximum number of processes 463 
for the Tuolumne, CO Headwaters, Idaho, PNW, Western US, and CONUS domains. 464 

Strong scaling analysis is useful for I/O and memory bound applications to identify a setup that results in a reasonable 465 

runtime and moderate resource costs. Based on these scaling results, Figure 10 contains the relationship between the number 466 

of processes (N) at which each domain is estimated to reach 50% Ë (using linear interpolation) with the total number of grid 467 

cells in the y dimension (Ny) and the average number of grid cells in the y dimension per process (lny; inset Figure 10). At 468 

this level of efficiency, it is notable the consistency of both the linear relationship between Ny and N (8.7:1 ratio) and the 469 

values of lny (5 to 11) for these year-long simulations that vary in both domain size and the proportion of snow-covered 470 

area. Similar relationships (Figure 10) can be used to approximate the scalability of Parallel SnowModel on different sized 471 

domains and can be adjusted for the desired level of efficiency. For example, we decided to run the CONUS simulations 472 

(Sect. 4.3) using 1800 processes based on its 70% approximate efficiency.  473 
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  474 
Figure 10: Relationship between the number of grid cells in the y dimension (Ny) and the number of processes (N) for each domain 475 
at which 50% approximate efficiency is estimated using the strong scaling analysis. The dashed line represents the best fit line for 476 
this relationship using OLS regression. The inset figure displays a similar relationship but compares N to the average number of 477 

grid cells in the y dimension per process (lny), instead of Ny. 478 

4.3 CONUS Simulations 479 

Spatial results of SWE on 12 February 2011 over the CONUS domain and a sub-domain located in the Indian Peaks west of 480 

Boulder, Colorado are displayed in Figure 11. On this date, simulated SWE was observed throughout the northern portion of 481 

the CONUS domain with the largest values concentrated in the mountain ranges (Figure 11a). The Indian Peaks sub-domains 482 

of distributed SWE (Figure 11b) with reference topography (Figure 11c) underscores the ability of the large dataset to 483 

capture snow processes in a local alpine environment. It is important to note that while SnowModel does simulate snow 484 

redistribution, it does not currently have an avalanche model, which may be a limitation of accurately simulating SWE 485 

within this sub-domain. Additionally, Figure 11b highlights two grid cells located 200 m apart on a peak. Figures 11d and 486 

11e display the SWE evolution of these two grid cells over the entire dataset (water years 2000 – 2021) and the 2011 water 487 

year, respectively, further demonstrating the ability of Parallel SnowModel to capture fine-scale snow properties even when 488 

simulating continental domains. The upwind (western) grid cell is scoured by wind, and snow is transported to the downwind 489 

(eastern) grid cells where a snow drift forms. The information and insight available in this high-resolution dataset will have 490 

important implications for many applications from hydrology, to wildlife and ecosystems, to weather and climate, and many 491 

more. 492 



20 
 

 493 
Figure 11: Simulation results of Parallel SnowModel over CONUS using the WRF projection. (a) Spatial patterns of SWE over the 494 
CONUS domain for 12 February 2011, (b) highlighting the SWE distribution (c) and topography with an applied hillshade of a sub-495 
domain near Apache Peak in the Indian Peaks west of Boulder, CO. (d) Time series of SWE from 2000-2021 and (e) over the 2011 496 
water year for grid cells (“erode” and “deposit”) identified in panel (b). The “erode” and “deposit” grid cells highlight areas of similar 497 
elevation but significant differences in SWE evolution resulting from blowing-snow redistribution processes. 498 

5 Discussion 499 

Parallelizing numerical models often involves two-dimensional decomposition in both the x and y dimensions. While many 500 

benefits have been demonstrated by this approach, including improved load balancing (Dennis, 2007; Hamman et al., 2018), 501 

it comes with increased complication of the parallel algorithms, including the partitioning algorithm, file I/O, and process 502 

communication. The demonstrated speedup (Figure 9), suggests that Parallel SnowModel scales effectively over regional to 503 

continental domains using the one-dimensional decomposition approach. The added benefits obtained from two-dimensional 504 

decomposition strategies might not outweigh the costs of development, testing, and minimizing changes to the code structure 505 

and logic for applications such as SnowModel. Ultimately, our simplified parallelization approach can be implemented by 506 

other geoscience schemes as a first step to enhance simulation size and resolution.  507 

Simulation experiments were conducted using Parallel SnowModel to validate the parallel logic, interpret its performance 508 

across different algorithm versions and across different domains sizes, and demonstrate its ability to simulate continental 509 

domains at high-resolution. Code profiling and speedup analyses over the CO Headwaters domain helped identify 510 

bottlenecks in file I/O and processor communication in SnowTran-3D during the development of the parallel algorithm 511 
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(Sect. 4.1). Corrections to the referred bottlenecks allowed Parallel SnowModel to scale up to regional and continental sized 512 

simulations and highlights the value of optimizing scientific code. The scalability analyses showed the effectiveness of 513 

running Parallel SnowModel with an increasing number of processes on state, regional, and continental domains that contain 514 

different proportions in both size (Nx and Ny) and snow-covered grid cells (Sect 4.2). For Parallel SnowModel scalability is 515 

primarily dependent on the number of grid cells per process (Nx and lny) and is affected by snow redistribution, which is 516 

dependent on the proportion of terrestrial grid cells with sufficient winds and available soft snow to be redistributed (Sect. 517 

3.1.2.2). For example, a maritime snowpack (e.g. PNW) as compared to a continental snowpack (e.g. CO Headwaters), may 518 

be deeper and more spatially extensive but potentially lacks a high frequency of soft snow above tree-line to activate snow 519 

redistribution. Furthermore, the similar relationships among efficiency and domain decomposition observed on the simulated 520 

domains that vary in size, topography, vegetation, and snow classes (Sturm and Liston, 2021; Liston and Sturm, 2021) (Fig. 521 

10), make it reasonable to extrapolate the results from these simulation experiments to other domains within CONUS.  522 

Additionally, these experiments emphasize the relationships among speed, memory, and computing resources for Parallel 523 

SnowModel. A common laptop (~ 4 processes) has sufficient CPUs to run local sized domains within a reasonable amount 524 

of time, but likely does not have sufficient memory for state-sized simulations. Similarly, the minimum memory (1160 GB; 525 

Fig. 1) required to run the CONUS domain, could be simulated on a large server (~ 128 processes) with one process per 526 

node. However, extrapolating from our scaling results on Cheyenne (Figure 9), we estimate it would take over 2.5 days to 527 

run a CONUS simulation for one water year with this configuration. In contrast, it took approximately 5 hours for CONUS 528 

to run on the Discover supercomputer using 1800 processes. Therefore, by the time it took the large server to complete a 529 

CONUS simulation for one water year, 12 water years could have been simulated on a supercomputer. Lastly, results from 530 

the CONUS simulation highlight the ability of Parallel SnowModel to run high-resolution continental simulations, while 531 

maintaining fine-scale snow processes that occur at a local level (Sect. 4.3).  532 

SnowModel can simulate high-resolution outputs of snow depth, density, SWE, grain size, thermal resistance, snow strength, 533 

snow albedo, landscape albedo, meltwater production, snow-water runoff, blowing snow flux, visibility, peak winter SWE, 534 

snow-season length, snow onset date, snow-free date, and more, all produced by a physical model that maintains consistency 535 

among variables. While several snow data products exist, few capture the suite of snow properties along with the spatio-536 

temporal extents and resolutions that can benefit a wide variety of applications. For example, current snow information 537 

products include the NASA daily SWE distributions globally for dry (non-melting) snow on a 25 km grid (Tedesco and 538 

Jeyaratnam, 2019), a NASA snow-cover product on a 500 m grid (Hall et al., 2006) that is missing information due to clouds 539 

approximately 50% of the time (Moody et al., 2005), and the Snow Data Assimilation System (SNODAS) daily snow 540 

information provided by the National Oceanic and Atmospheric Administration (NOAA) and the National Weather Service 541 

(NWS) National Operational Hydrologic Remote Sensing Center (NOHRSC) on a 1 km grid (Center, 2004), which is itself 542 

model derived and has limited geographic coverage and snow properties. The Airborne Snow Observatory (ASO) provides 543 

the highest resolution data with direct measurements of snow depth on a 3 m grid, and derived values of SWE on a 50 m grid 544 

(Painter et al., 2016), but has limited spatio-temporal coverage and a high cost of acquisition. Furthermore, there are many 545 
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fields of study that can benefit from 100 m resolution information of internally consistent snow variables, including wildlife 546 

and ecosystem, military, hydrology, weather and climate, cryosphere, recreation, remote sensing, engineering and civil 547 

works, and industrial applications. The new Parallel SnowModel described here permits the application of this modeling 548 

system to very large domains without sacrificing spatial resolution. 549 

6 Conclusions 550 

In this paper, we present a relatively simple parallelization approach that allows SnowModel to perform high-resolution 551 

simulations over regional to continental sized domains. The code within the core submodules (EnBal, MicroMet, SnowPack, 552 

and SnowTran-3D) and model configurations (single-layer snowpack, multi-layer snowpack, binary input files, etc.) was 553 

parallelized and modularized in this study. This allows SnowModel to be compiled with a range of Fortran compilers, 554 

including modern compilers that support parallel CAF either internally or through libraries, such as OpenCoarrays 555 

(Fanfarillo et al., 2014). Additionally, it provides the structure for other parallelization logic (e.g., MPI) to be more easily 556 

added to the code base. The parallel module contains a simple approach to decomposing the computational domain in the y 557 

dimension into smaller rectangular sub-domains. These sub-domains are distributed across processes to perform 558 

asynchronous calculations. The parallelization module also contains logic for communicating information among processes 559 

using halo-exchange coarrays for the wind and solar radiation models, as well as for snow redistribution. The scalability of 560 

Parallel SnowModel was demonstrated over different sized domains, and the new code enables the creation of high-561 

resolution simulated snow datasets on continental scales. This parallelization approach can be adopted in other 562 

parallelization efforts where spatial derivatives are calculated or fluxes are transported across gridded domains.  563 

Appendix A 564 

Some of the configuration combinations were not parallelized during this study for reasons including ongoing development 565 

in the serial code base and limitations to the parallelization approach. These include simulations involving tabler surfaces 566 

(Tabler, 1975), I/O using ASCII files, Lagrangian seaice tracking, and data assimilation. 567 

Appendix B 568 

Validation SnowModel experiments were run in serial and in parallel over the Tuolumne and CO Headwaters domains (Sect. 569 

4.1) using the RMSE statistic (Eq. 3). Important output variables from EnBal, MicroMet, SnowPack, and SnowTran-3D 570 

demonstrated similar, if not identical values, when compared to serial results for all timesteps during the simulations; RMSE 571 

values were within machine precision (~10-6) regardless of the output variable, domain, or number of processes used. The 572 

validated output variables include albedo [%], precipitation [𝑚], emitted longwave radiation [𝑊 ∗𝑚!"], incoming longwave 573 
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radiation reaching the surface [𝑊 ∗𝑚!"], incoming solar radiation reaching the surface [𝑊 ∗𝑚!"], relative humidity [%], 574 

runoff from base of snowpack [𝑚 ∗ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝], rain precipitation [𝑚], snow density [𝑘𝑔 ∗ 𝑚!#], snow-water equivalent melt 575 

[𝑚], snow depth [𝑚], snow precipitation [𝑚], static-surface sublimation [𝑚], snow-water equivalent [𝑚], air temperature 576 

[°𝐶], wind direction [°], and wind speed [𝑚 ∗ 𝑠!$]. Ultimately, we feel confident that Parallel SnowModel is producing the 577 

same results as the original serial algorithm. 578 
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