
1

Parallel SnowModel (v1.0): a parallel implementation of a 1

Distributed Snow-Evolution Modeling System (SnowModel) 2

Ross Mower1,2, Ethan D. Gutmann1, Glen E. Liston3, Jessica Lundquist2, Soren Rasmussen1 3
1The NSF National Center for Atmospheric Research, Boulder, Colorado, USA 4
2Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA 5
3Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado, USA 6

Correspondence to: Ross Mower (rossamower@ucar.edu) 7

Abstract. SnowModel, a spatially distributed, snow-evolution modeling system, was parallelized using Coarray Fortran for 8

high-performance computing architectures to allow high-resolution (1 m to 100s of meters) simulations over large, regional 9

to continental scale, domains. In the parallel algorithm, the model domain was split into smaller rectangular sub-domains that 10

are distributed over multiple processor cores using one-dimensional decomposition. All the memory allocations from the 11

original code were reduced to the size of the local sub-domains, allowing each core to perform fewer computations and 12

requiring less memory for each process. Most of the subroutines in SnowModel were simple to parallelize; however, there 13

were certain physical processes, including blowing snow redistribution and components within the solar radiation and wind 14

models, that required non-trivial parallelization using halo-exchange patterns. To validate the parallel algorithm and assess 15

parallel scaling characteristics, high-resolution (100 m grid) simulations were performed over several western United States 16

domains and over the contiguous United States (CONUS) for a year. The CONUS scaling experiment had approximately 17

70% parallel efficiency; runtime decreased by a factor of 1.9 running on 1800 cores relative to 648 cores (the minimum 18

number of cores that could be used to run such a large domain because of memory and time limitations). CONUS 100 m 19

simulations were performed for 21 years (2000 – 2021) using 46,238 and 28,260 grid cells in the x and y dimensions, 20

respectively. Each year was simulated using 1800 cores and took approximately 5 hours to run. 21

1 Introduction 22

The cryosphere (snow and ice) is an essential component of Arctic, mountain, and downstream ecosystems, Earth’s surface 23

energy balance, and freshwater resource storage (Huss et al., 2017). Globally, half the world’s population depends on 24

snowmelt (Beniston, 2003). In snow-dominated regions like the Western United States, snowmelt contributes to 25

approximately 70% of the total annual water supply (Foster et al., 2011). In these regions, late-season streamflow is 26

dependent on the deepest snow drifts and therefore longest-lasting snow (Pflug and Lundquist, 2020). Since modeling snow-27

fed streamflow accurately is largely dependent on our ability to predict snow quantities and the associated spatial and 28

temporal variability (Clark and Hay, 2004), high-temporal and -spatial resolution snow datasets are important for predicting 29

flood hazards and managing freshwater resources (Immerzeel et al., 2020). 30

2

The spatial and temporal seasonal snow characteristics also have significant implications outside of water resources. 31

Changes in fractional snow-covered area affect albedo and thus atmospheric dynamics (Liston, 2004; Liston and Hall, 1995). 32

Avalanches pose safety hazards to both transportation and recreational activities in mountainous terrain; the prediction of 33

which requires high-resolution (meters) snow datasets (Morin et al., 2020; Richter et al., 2021). Additionally, the timing and 34

duration of snow-covered landscapes strongly influence how species adapt, migrate, and survive (Boelman et al., 2019; 35

Liston et al., 2016; Mahoney et al., 2018). 36

To date, the primary modes for estimating snow properties and storage have come from observation networks, satellite-based 37

sensors, and physically derived snow algorithms in land surface models (LSMs). However, despite the importance of 38

regional, continental, and global snow, estimates of snow properties over these scales remain uncertain, especially in alpine 39

regions where wind, snow, and topography interact (Boelman et al., 2019; Dozier et al., 2016; Mudryk et al., 2015). 40

Observation datasets used for spatial interpolation of snow properties and forcing datasets used in LSMs are often too sparse 41

in mountainous terrain to accurately resolve snow spatial heterogeneities (Dozier et al., 2016; Renwick, 2014). Additionally, 42

remotely sensed products have shown deficiencies in measuring snowfall rate (Skofronick-Jackson et al., 2013), snow-water 43

equivalent (SWE), and snow depth (Nolin, 2010), especially in mountainous terrain where conditions of deep snow, wet 44

snow, and/or dense vegetation may be present (Lettenmaier et al., 2015; Takala et al., 2011; Vuyovich et al., 2014). 45

However, LSMs using high-resolution inputs, including forcing datasets from regional climate models (RCMs), have 46

demonstrated realistic spatial distributions of snow properties (Wrzesien et al., 2018). 47

Many physical snow models have been developed either in stand-alone algorithms or larger LSMs with varying degrees of 48

complexity based on their application. The more advanced algorithms attempt to accurately model snow properties at higher 49

resolution especially in regions where snow interacts with topography, vegetation, and/or wind. Wind-induced snow 50

transport is one such complexity of snow that represents an important interaction between the cryosphere and atmosphere. It 51

occurs in regions permanently or temporarily covered by snow and greatly influences snow heterogeneity, sublimation, 52

avalanches, and melt timing. Models that have incorporated wind-induced physics generally require components to both 53

develop the snow mass balance and incorporate atmospheric inputs of the wind field. However, there often exists a trade-off 54

between the accuracy of simulating wind-induced snow transport and the computational requirements for downscaling and 55

developing the wind fields over the gridded domain (Reynolds et al., 2021; Vionnet et al., 2014). Therefore, simplifying 56

assumptions of uniform wind direction has been applied in models like Distributed Blowing Snow Model (DBSM) (Essery 57

et al., 1999; Fang and Pomeroy, 2009). More advanced models have utilized advection-diffusion equations, like Alpine3D 58

(Lehning et al., 2006) or spatial distributed formulations like SnowTran-3D (Liston and Sturm, 1998). Finite volume 59

methods for more efficiently discretizing wind fields have been applied to models such as DBSM (Marsh et al., 2020). The 60

most complex models consider nonsteady turbulence which utilize three-dimensional wind fields from atmospheric models 61

to simulate blowing snow transport and sublimation; for example, SURFEX in Meso-NH/Crocus (Vionnet et al., 2014; 62

Vionnet et al., 2017), wind fields from the atmospheric model ARPS (Xue et al., 2000) being incorporated into Alpine3D 63

(Mott and Lehning, 2010; Mott et al., 2010; Lehning et al., 2008), and SnowDrift3D (Prokop and Schneiderbauer, 2011). 64

3

Incorporating wind-induced physics into snow models is computationally expensive; thus, parallelizing the serial algorithms 65

would likely be beneficial to many models. 66

For several decades, a distributed snow-evolution modeling system (SnowModel) has been developed, enhanced, and tested 67

to accurately simulate snow properties across a wide range of landscapes, climates, and conditions (Liston and Elder, 2006a; 68

Liston et al., 2020). To date, SnowModel has been used in over 200 refereed journal publications; a short listing of these is 69

provided by Liston et al. (2020). Physically derived snow algorithms, as used in SnowModel, that model the energy balance, 70

multilayer snow physics, and lateral snow transport are computationally expensive. In these models, the required 71

computational power increases with the number of grid cells covering the simulation domain. Finer grid resolutions usually 72

imply more grid cells and higher accuracy resulting from improved representation of process physics at higher resolutions. 73

The original serial SnowModel code was written in Fortran 77 and could not be executed in parallel using multiple processor 74

cores. As a result, SnowModel’s spatial and temporal simulation domains (number of grid cells and time steps) were 75

previously limited by the speed of one core and the memory available on the single computer. Note that a “processor” refers 76

to a single central processing unit (CPU) and typically consists of multiple cores, each core can run one or more processes in 77

parallel. 78

Recent advancements in multiprocessor computer technologies and architectures have allowed for increased performance in 79

simulating complex natural systems at high resolutions. Parallel computing has been used on many LSMs to reduce compute 80

time and allow for higher accuracy results from finer grid simulations (Hamman et al., 2018; Miller et al., 2014; Sharma et 81

al., 2004). Our goal was to develop a parallel version of SnowModel (Parallel SnowModel) using Coarray Fortran (CAF) 82

syntax without making significant changes to the original SnowModel code physics or structure. CAF is a Partitioned Global 83

Address Space (PGAS) programming model and has been used to run atmospheric models on 100,000 cores (Rouson et al., 84

2017). 85

In parallelizing numerical models, a common strategy is to decompose the domain into smaller sub-domains that get 86

distributed across multiple processes (Dennis, 2007; Hamman et al., 2018). For rectangular gridded domains (like 87

SnowModel), this preserves the original structure of the spatial loops and utilizes direct referencing of neighboring grids 88

(Perezhogin et al., 2021). The parallelization of many LSMs involve “embarrassingly parallel” problems requiring minimal 89

to no processor communication (Parhami, 1995); in this case, adjacent grid cells do not communicate with each other (an 90

example of this would be where each grid cell represents a point, or one-dimension, snowpack model that is not influenced 91

by nearby grid cells). 92

While much of the SnowModel’s logic can be considered “embarrassingly parallel”, SnowModel also contains “non-trivial” 93

algorithms within the solar radiation, wind, and snow redistribution models. Calculations within these algorithms often 94

require information from neighboring grid cells, either for spatial derivative calculations or for horizontal fluxes of mass 95

(e.g., saltating or turbulent-suspended snow) across the domain. Therefore, non-trivial parallelization requires implementing 96

algorithm changes that allow computer processes to communicate and exchange data. The novelty of the work presented 97

here includes 1) the presentation of Parallel SnowModel, high-resolution (100 m) distributed snow datasets over CONUS, 98

4

and an analysis of the performance of the parallel algorithm; 2) demonstrating how a simplified parallelization approach 99

using CAF and one-dimensional decomposition can be implemented in geoscientific algorithms to scale over large domains; 100

and 3) demonstrating an approach for non-trivial parallelization algorithms that involve spatial derivatives and fluxes using 101

halo-exchange techniques. 102

In Sect. 2, we provide background information on SnowModel, parallelization using CAF, data and domains used in this 103

study, and a motivation for this work. In Sect. 3, we explain our parallelization approach using CAF and introduce the 104

simulation experiments used to demonstrate the performance of Parallel SnowModel through strong scaling metrics and 105

CONUS simulations. In Sect. 4, we provide results of the simulation experiments introduced in Sect. 3. Lastly, we end with a 106

discussion in Sect. 5 and a conclusion in Sect. 6. 107

2 Background 108

2.1 SnowModel 109

SnowModel is a spatially distributed snow-evolution modeling system designed to model snow states (e.g., snow depth, 110

SWE, snow melt, snow density) and fluxes over different landscapes and climates (Liston and Elder, 2006a). The most 111

complete and up-to-date description of SnowModel can be found in the Appendices of Liston et al. (2020). While many 112

snow modelling systems exist, SnowModel will benefit from parallelization because of its ability to simulate snow processes 113

on a high-resolution grid through downscaling meteorological inputs and modelling snow redistribution. SnowModel is 114

designed to simulate domains on a structured grid with spatial resolutions ranging from 1 to 200 m (although it can simulate 115

coarser resolutions, as well) and temporal resolutions ranging from 10 m to 1 d. The primary modeled processes include 116

accumulation from frozen precipitation; blowing-snow redistribution and sublimation; interception, unloading, and 117

sublimation within forest canopies; snow-density and grain-size evolution; and snowpack ripening and melt. These processes 118

are distributed into four, core interacting submodules: MicroMet defines the meteorological forcing conditions (Liston and 119

Elder, 2006b), EnBal describes surface and energy exchanges (Liston, 1995; Liston et al., 1999), SnowPack-ML is a 120

multilayer snowpack sub-model that simulates the evolution of snow properties and the moisture and energy transfers 121

between layers (Liston and Hall, 1995; Liston and Mernild, 2012), and SnowTran-3D calculates snow redistribution by wind 122

(Liston et al., 2007). Additional simulation features include SnowDunes (Liston et al., 2018) and SnowAssim (Liston and 123

Hiemstra, 2008), which model sea-ice applications and data assimilation techniques, respectively. Figure 1 shows a 124

schematic of the core SnowModel toolkit. Additionally, the initialization submodules that read in the model parameters, 125

distribute inputs across the modeled grid, allocate arrays, etc., include PreProcess and ReadParam. Outputting arrays is 126

contained within the Outputs submodule. SnowModel incorporates first-order physics required to simulate snow evolution 127

within each of the global snow classes [e.g., Ice, Tundra, Boreal Forest, Montane Forest, Prairie, Maritime, and Ephemeral; 128

(Sturm and Liston, 2021; Liston and Sturm, 2021)]. 129

5

 130
Figure 1: Schematic modified by Pederson et al. (2015) providing an example of possible inputs, core submodules, and outputs of 131
SnowModel. 132

2.2 Coarray Fortran 133

CAF, formerly known as F-, (Iso/Iec, 2010; Numrich and Reid, 1998; Numrich et al., 1997) is the parallel language feature 134

of Fortran that was used to parallelize SnowModel. CAF is like Message Passing Interface (MPI) libraries in that it uses the 135

Single Program Multiple Data (SPMD) model where multiple independent cores simultaneously execute a program. SPMD 136

allows for distributed memory allocation and remote memory transfer. However, unlike MPI, CAF uses the PGAS parallel 137

programming model to handle the distribution of computational tasks amongst processes (Coarfa et al., 2005). In the PGAS 138

model, each process contains local memory that can be accessed directly by all other processes. While CAF and MPI syntax 139

often refers to processes as images or ranks, for consistency, we will continue to use the term “process”. Ultimately, CAF 140

offers a high-level syntax that exploits locality and scales effectively (Coarfa et al., 2005). For simulation comparisons, we 141

used OpenCoarrays, a library implementation of CAF (Fanfarillo et al., 2014) utilized by the gfortran compiler; intel and 142

cray compilers both have independent CAF implementations. 143

2.3 Model Domains, Data, and Computing Resources 144

The required inputs for SnowModel include 1) temporally varying meteorological variables of precipitation, wind speed and 145

direction, air temperature, and relative humidity taken from meteorological stations or atmospheric models and 2) spatially 146

distributed topography and land-cover type (Liston & Elder, 2006a). The following inputs were used for the experiments 147

introduced in Sect. 3: USGS National Elevation Dataset (NED) for topography (Gesch et al., 2018), The North American 148

Land Change Monitoring System (NALCMS) Land Cover 2015 map for vegetation (Homer et al., 2015; Jin et al., 2019; 149

Latifovic et al., 2016), and forcing variables from either the North American Land Data Assimilation System (NLDAS-2) 150

(Mitchell, 2004; Xia, 2012a, b) on a 1/8 degree (approximately 12 km) grid or a high-resolution Weather Research Forecast 151

(WRF) model from the National Center for Atmospheric Research (NCAR) on approximately a 4 km grid (Rasmussen et al., 152

2023). The high-performance computing architectures used include NCAR’s Cheyenne supercomputer, which is a 5.43-153

6

petaflop SGI ICE XA Cluster featuring 145,152 Intel Xeon processes in 4,032 dual-socket nodes and 313 TB of total 154

memory (Laboratory, 2019) and The National Aeronautics and Space Administration’s (NASA) Center for Climate 155

Simulation (NCCS) Discover supercomputer with a 1,560-teraflop SuperMicro Cluster featuring 20,800 Intel Xeon Skylake 156

processes in 520 dual-socket nodes and 99.84 TB of total memory. Simulation experiments were conducted over six domains 157

(Tuolumne, CO Headwaters, Idaho, PNW, Western US, and CONUS) throughout the United States at 100 m grid resolution. 158

The spatial location, domain dimensions (e.g., number of grids in the x and y dimensions), and memory requirements, 159

derived from the peak_memusage package (https://github.com/NCAR/peak_memusage), for the simulation experiments are 160

highlighted in Figure 2. 161

 162
Figure 2: (a) Spatial location of simulated domains on WRF’s lambert conformal projection (Rasmussen et al., 2023) and (b) 163
corresponding grid dimensions (Nx – number of grids in x dimension; Ny – number of grids in y dimension) and memory obtained 164
from peak_memusage package required for single-layer SnowModel simulation experiments. For reference, the dashed lines represent 165
the normal and large memory thresholds (55 and 109 GB) for Cheyenne’s SGI ICE XA cluster. 166

2.4 Parallelization Motivation 167

The answers to current snow science, remote sensing, and water management questions require high-resolution data that 168

covers large spatial and temporal domains. While modeling systems like SnowModel can be used to help provide these 169

datasets, running them on single-processor workstations imposes limits on the spatiotemporal extents of the produced 170

information. Serial simulations are limited by both execution time and memory requirements, where the memory limitation 171

is largely dependent on the size of the simulation domain. Up to the equivalent of 175 two-dimensional and 10 three-172

dimensional arrays are held in memory during a SnowModel simulation, depending on the model configuration. In analyzing 173

the performance of the Parallel SnowModel (Sect. 4), serial simulations were attempted over six domains throughout the 174

United States at 100 m grid resolution (Figure 2) for the 2018 water year (1 September 2017 to 1 September 2018). Only the 175

Tuolumne domain could be simulated in serial based on the memory (109 GB for a large memory node) and time (12 h wall-176

clock limit) constraints on Cheyenne. The CO Headwaters and Idaho domains could not be simulated in serial due to time 177

constraints, while the three largest domains (Pacific Northwest (PNW), Western U.S. and CONUS) could not be executed in 178

serial due to both exceedances of the 12 h wall-clock limit and memory availability. Furthermore, we estimate that using a 179

https://github.com/NCAR/peak_memusage

7

currently available, state of the art, single-processor workstation, would require approximately 120 d of computer time to 180

perform a 1 y model simulation over the CONUS domain. SnowModel is regularly used to perform multi-decade 181

simulations, for trend analyses, climate change studies, and retrospective analyses (Liston and Hiemstra, 2011; Liston et al., 182

2020; Liston et al., 2022). If this 1 y, 100 m, CONUS domain was simulated for a 40 y period (e.g., 1980 through present), it 183

would take approximately 4800 d, or over 13 y, of computer time. Clearly such simulations are not practical using single-184

processor computer hardware and software algorithms. 185

3 Methods 186

In parallelizing SnowModel and distributing computations and memory over multiple processes, we demonstrate its ability 187

to efficiently run regional to continental sized simulations. Some of the model configurations were not parallelized for 188

reasons including ongoing development in the serial code base and limitations to the parallelization approach. These 189

configurations are further discussed in Appendix A. This section introduces the syntax and framework used to parallelize 190

SnowModel and the simulation experiments used to assess the performance of the parallel algorithm. 191

3.1 Parallel Implementation 192

Changes to the SnowModel logic were made through the parallelization process and included the partitioning algorithm, 193

non-trivial communication via halo-exchange, and file input and output (I/O) schemes. 194

3.1.1 Partitioning Algorithm 195

The partitioning strategy identifies how the workload gets distributed amongst processes in a parallel algorithm. The 196

multidimensional arrays of SnowModel are stored in row-major order, meaning the x dimension is contiguous in memory. 197

Additionally, dominant wind directions and therefore predominant snow redistribution occurs in the east-west direction as 198

opposed to south-north directions. Therefore, both the data structures and physical processes involved in SnowModel justify 199

a one-dimensional decomposition strategy in the y dimension, where the computational global domain Nx x Ny is separated 200

into Nx x lny blocks.	 If Ny is evenly divisible by the total number of processes (N),	lny = Ny / N. If integer division is 201

not possible, the remaining rows are distributed evenly amongst the processes starting at the bottom of the computational 202

domain. Figure 3 demonstrates how a serial domain containing 10 grid cells in the x and y dimensions would be 203

decomposed with four processes using our partitioning strategy. 204

8

 205
Figure 3: Example 10 x 10 global domain and partitioning for (a) serial simulation and (b) parallel simulation using four processes. 206

3.1.2 Non-trivial Parallelization 207

Each process has sufficient information to correctly execute most of the physical computations within SnowModel. 208

However, there are certain subroutines where grid computations require information from neighboring grid cells (e.g., data 209

dependencies) and therefore information outside of the local domain of a process. For SnowModel, these subroutines 210

typically involve the transfer of blowing snow or calculations requiring spatial derivatives. Furthermore, with our one-211

dimensional decomposition approach, each grid cell within a process local domain has sufficient information from its 212

neighboring grid cells in the x dimension but potentially lacks information from neighboring grid cells in the y dimension. As 213

a regular grid method, SnowModel lends itself to process communication via halo-exchange where coarrays are used in 214

remote calls. Halo-exchange using CAF involves copying boundary data into coarrays on neighboring processes and using 215

information from the coarrays to complete computations (Figure 4). Although the entire local array could be declared a 216

coarray and accessed by remote processes more directly, some CAF implementations, (e.g. Cray) impose additional 217

constraints upon coarray memory allocations that can be problematic for such large allocations. 218

 219
Figure 4: Schematic showing halo-exchange using coarrays. The steps include: (a) initial gridded representation of local arrays for 220
three processes, (b) P2 copying boundary data into coarrays for remote access, (c) neighboring processes (P1 and P3) stitching coarray 221
to local domains. 222

9

3.1.2.1 Topography – Wind and Solar Radiation Models 223

The wind and solar radiation models in MicroMet require information about surrounding surface topography (Liston and 224

Elder, 2006b). The wind model requires surface curvature, and the solar radiation model requires surface slope and aspect. 225

These vary at each timestep as snow accumulates and melts because the defined surface includes the snow surface on top of 226

the landscape. The surface curvature, for example, is computed at each model grid cell using the spatial gradient of the 227

topographic elevation of eight neighboring grid cells. Using the parallelization approach discussed above, processes lack 228

sufficient information to make curvature calculations for the bordering grid cells along the top and/or bottom row(s) within 229

their local domains. Note that the number of row(s) (inc) is determined by a predefined parameter that represents the 230

wavelength of topographic features within a domain. Future work should permit this parameter to vary spatially to account 231

for changes in the length scale across the domain. For example, all grid cells along the top row of P1 will be missing 232

information from nearby grid cells to the north and require topographic elevation (topo) information from the bottom 233

row(s) of the local domain of P2 to make the calculation (Figure 5a). Halo-exchange is performed to distribute row(s) of data 234

to each process that is missing that information in their local domains (Figure 5b). Processes whose local domains are 235

positioned in the bottom or top of the global domain will only perform one halo-exchange with their interior neighbor, while 236

interior processes will perform two halo-exchanges. By combining and appropriately indexing information from the process 237

local array and received coarrays of topographic elevation, an accurate curvature calculation can be performed using this 238

parallel approach (Figure 5c). 239

 240
Figure 5: Schematic for halo-exchange used in the curvature calculation by P1, where inc = 2. (a) Prior to halo-exchange, P1 241
contains insufficient information to perform the curvature calculation, (b) grid cells (halo) within the local domain of P2 are (c) 242
transferred to P1 via coarrays. At this point, P1 has sufficient information to make the curvature calculation. 243

3.1.2.2 Snow Redistribution 244

Wind influences the mass balance of the snowpack by suspending and transporting snow particles in the air (turbulent-245

suspension) and by causing snow grains to bounce on top of the snow surface (saltation). In SnowModel, the saltation and 246

suspension algorithms are separated into northerly, southerly, easterly, and westerly fluxes based on the u and v components 247

of wind direction for each grid cell. Figure 6 shows a simplified schematic for the saltation flux from a southerly wind. In the 248

10

serial algorithm (Figure 6a), SnowModel initializes the saltation flux based on the wind speed at that time step (initial 249

flux). To calculate the final saltation flux (updated flux), SnowModel steps through regions of continuous wind 250

direction (delineated by the indices: jstart and jend), updates the change in saltation fluxes from upwind grid cells and 251

the change in saltation flux from the given wind direction, and makes adjustments to these fluxes based on the soft snow 252

availability above the vegetation height (Liston and Elder, 2006a). Similar logic is used for the parallel implementation of 253

the saltation and suspension fluxes with an additional iteration (salt iter) that updates the boundary condition for each 254

process via halo-exchange. This allows the fluxes to be communicated from the local domain of one process to another. To 255

minimize the number of iterations, salt iter was provided a maximum bound that is equivalent to snow being 256

transported 15 km via saltation or suspension. This number was chosen based off prior field measurements (Tabler, 1975) 257

and simulation experiments. It is possible that in other environments an even larger length may be required, to be guaranteed 258

to match the serial results in all cases, the number of iterations would have to be equal to the number of processes; however, 259

this would result in no parallel speed up and has no practical benefit. A schematic of the parallel calculation of the change in 260

saltation due to southerly winds is illustrated in Figure 6b. The bc_halo_exchange represents a halo-exchange of grid 261

cells from upwind processes, allowing the saltation flux to be transported from one process local domain to the next. 262

 263
Figure 6: (a) Schematic of the serial and (b) parallel redistribution algorithm showing the change in saltation flux due to southerly 264
winds over a gridded domain for Nx = 1. The parallel schematic demonstrates how three processes (P1, P2, P3) use an additional 265
iteration (salt iter) to perform a halo-exchange and update the boundary condition of the saltation flux. 266

3.1.3 File I/O 267

File I/O management can be a significant bottleneck in parallel applications. Parallel implementations that are less memory 268

restricted commonly use local to global mapping strategies, or a Centralized approach for file I/O (Figure 7a). This approach 269

requires that one or more processes stores global arrays for input variables and that one process (Process 1; Figure 7a) stores 270

global arrays for all output variables. As the domain size increases, the mapping of local variables to global variables for 271

11

outputting creates a substantial bottleneck. To improve performance, Distributed file I/O can be implemented, where input 272

and output files are directly and concurrently accessed by each process (Figure 7b). 273

 274
Figure 7: (a) Schematic of global to local mapping for file I/O using a Centralized approach with four processes, and (b) Distributed 275
file I/O where each process reads and writes data corresponding to its local domain. 276

SnowModel contains static spatial inputs that do not vary over time, e.g., topography and land cover, and dynamic spatial 277

inputs, e.g., air temperature and precipitation, that vary spatially and temporally. The static inputs are of a higher resolution 278

compared to the dynamic inputs (cf., topography is on the model grid, while atmospheric forcing is almost always more 279

widely spaced). To balance performance and consistency with the serial logic of the code, we used a mixed parallel file I/O 280

approach. A goal of this work was to maintain nearly identical serial and parallel versions of the code in one code base that 281

can be easily maintained and utilized by previous, current, and future SnowModel users with different computational 282

resources and skills. Therefore, we wanted to maintain both the Centralized and Distributed file I/O approaches. However, 283

for optimal parallel performance over larger simulation domains, file input (reading) is performed in a Distributed way for 284

the static inputs and in a Centralized way for dynamic inputs, while file output (writing) is performed in a Distributed way, 285

as described further below. This permits the new version of the code to be a drop in replacement for the original serial code 286

without requiring users to install new software libraries or manage hundreds of output files, while enabling users who wish 287

to take advantage of the parallel nature of the code to do so with minimal additional work and no changes to the underlying 288

code. 289

3.1.3.1 Parallel Inputs 290

As noted above, SnowModel has two primary types of input files, temporally static files such as vegetation and topography 291

and transient inputs such as meteorological forcing data. While acceptable static input file types include flat binary, NetCDF, 292

and ASCII files for the serial version of the code, optimizing the efficiency of Parallel SnowModel requires static inputs 293

12

from binary files that can be accessed concurrently and directly subset by indexing the starting byte and length of bytes 294

commensurate to a process local domain. Therefore, each process can read its own portion of the static input data. For very 295

large domains, the available memory becomes a limitation when using the centralized approach. For example, the CONUS 296

simulation could not be simulated using a centralized file I/O approach because each process would be holding global arrays 297

of topography and vegetation in memory, each of which would require approximately 5.2 GB of memory per process. 298

Reading of meteorological forcing variables (wind speed, wind direction, relative humidity, temperature, and precipitation) 299

can be performed in parallel with either binary or NetCDF files. Depending on the forcing dataset, the grid spacing of the 300

meteorological variables typically ranges from 1 to 30 km and therefore often requires a smaller memory footprint than static 301

inputs for high-resolution simulations. For example, the resolution of NLDAS-2 meteorological forcing has a grid of 302

approximately 11 km, while the high-resolution WRF model used has a 4 km grid. At each timestep, processes read in the 303

forcing data from every station within the domain into a one-dimensional array, index the nearest locations for each 304

SnowModel grid, and interpolate the data to create forcing variables over the local domain. All processes perform the same 305

operation and store common information; however, since the resolutions of the forcing datasets are significantly coarser than 306

the model grid for high-resolution simulations, the dynamic forcing input array size remains comparable to other local arrays 307

and does not impose significant memory limitations for simulations performed to date. While more efficient parallel file 308

input schemes could improve performance, we decided to keep this logic in part to maintain consistency with the serial 309

version of the code and minimize code changes. 310

3.1.3.2 Parallel Outputs 311

To eliminate the use of local to global mapping commonly used to output variables (Figure 7a), each process writes its own 312

output file (Figure 7b). A postprocessing script is then used to concatenate files from each process into one file that 313

represents the output for the global domain. Modern high-performance computing architectures have highly parallelized 314

storage systems making file output using a distributed approach significantly faster than the centralized approach. Therefore, 315

file output in this manner reduces time and memory requirements. Future work could leverage other established parallel I/O 316

libraries at the cost of additional installation requirements. 317

3.2 Simulation Experiments 318

Parallel SnowModel experiments were conducted to both evaluate the effectiveness of the parallelization approach used in 319

this study (Sect. 3.1) and to produce a high-resolution snow dataset over CONUS. All experiments were executed with a 100 320

m grid increment, a 3 h time step, a single-layer snowpack configuration, and included the primary SnowModel modules 321

(MicroMet, EnBal, SnowPack, and SnowTran-3D). These experiments are further described below, with results provided in 322

Sect. 4. 323

Validation experiments comparing output from the original serial version of the code to the parallel version were conducted 324

continuously throughout the parallel algorithm development to assess the reproducibility of the results. Additionally, a more 325

thorough validation effort was performed at the end of the study that compared output from the serial algorithm to that of the 326

13

parallel algorithm, while varying the domain size, the number of processes, and therefore the domain decomposition. Results 327

from all of these validation experiments produced root mean squared error (RMSE) values of 10-6, which is at the limit of 328

machine precision, when compared to serial simulation results. See Appendix B for more details on the validation 329

experiments. The serial version of SnowModel has been evaluated in many studies across different snow classes (Sturm and 330

Liston, 2021; Liston and Sturm, 2021), time periods, and snow properties. Evaluations ranged from snow cover (Pedersen et 331

al., 2016; Randin et al., 2015), snow depth (Szczypta et al., 2013; Wagner et al., 2023), SWE (Freudiger et al., 2017; 332

Hammond et al., 2023; Mortezapour et al., 2020; Voordendag et al., 2021), and SWE-melt (Hoppinen et al., 2023; Lund et 333

al., 2022), using field observations, snow-telemetry stations, and remote sensing products. A full comparison of the Parallel 334

SnowModel simulations presented here with observations across CONUS is beyond the scope of the present work. 335

Incorrectly simulated SWE could affect the scaling results and CONUS visualizations presented in Sect. 3.2.1.1, 3.2.1.2, and 336

3.2.2; for example, if zero SWE were incorrectly simulated in many locations, processing time would be less than if SWE 337

had been simulated and tracked. However, based on the scale of these analyses and the fact that SnowModel has been 338

previously evaluated in a wide range of locations, we believe the impacts of this limitation on the computational results 339

presented here are minimal. 340

3.2.1 Parallel Performance 341

In high performance computing, scalability attempts to assess the effectiveness of running a parallel algorithm with an 342

increasing number of processes. Thus, scalability can be used to identify the optimal number of processes for a fixed domain, 343

understand the limitations of a parallel algorithm as a function of domain size and number of processes, and estimate the 344

efficiency of the parallel algorithm on new domains or computing architectures. Speedup, efficiency, and code profiling 345

were tools used to assess the scalability and performance of Parallel SnowModel on fixed domains. Speedup (S; Eq. 1), a 346

metric of strong scaling, is defined as the ratio of the serial execution time, T(1), over the execution time using N processes, 347

T(N). Optimally, parallel algorithms will experience a doubling of speedup as the number of processes is doubled. Some 348

reasons why parallel algorithms do not follow ideal scaling include the degree of concurrency possible and overhead costs 349

due to communication. Synchronization statements have an associated cost of decreasing the speed and efficiency of an 350

algorithm due to communication overhead and requirements for one process to sit idle while waiting for another to reach the 351

synchronization point. Furthermore, speedup tends to peak or plateau at a certain limit on a given computing architecture and 352

domain because either the overheads grow with an increasing number of processes, or the number of processes exceeds the 353

degree of concurrency inherent in the algorithm (Kumar and Gupta, 1991). For large domains, where serial simulations 354

cannot be performed either due to wall-clock or memory limitations, relative speedup, (S"; Eq. 2), is commonly used. 355

Relative speedup is estimated as a ratio of the execution time, T(P"), of the minimum number of processes, (P"), that can be 356

simulated on a given domain over T(N). An additional speedup metric, approximate speedup (S̈; Eq. 3), is introduced to 357

estimate S by assuming perfect scaling from P" to a single process. While this is only an approximation, it is helpful to 358

14

compare the S̈ across the different domains on a similar scale. Additionally, efficiency (E; Eq. 4), and approximate 359

efficiency (Ë; Eq. 5) are the ratios of S to N and S̈ to N, respectively. A simulation that demonstrates ideal scaling, would 360

have 100% efficiency. Additionally, code profiling evaluates the cumulative execution time of individual submodules (e.g. 361

Preprocess, Readparam, MicroMet, Enbal, SnowPack, SnowTran-3D, and Output) as a function of the number of processes. 362

Together, code profiling and strong scaling can be used to understand locations of bottlenecks in the algorithm and how 363

changes to the code enhance performance. 364

 365

𝑺(𝑵) =
𝑻(𝟏)
𝑻(𝑵)

Eq. 1

𝑺0(𝑵) =
𝑻(𝑷0)
𝑻(𝑵)

Eq. 2

𝑺̈(𝑵) =
𝑻(𝑷0)
𝑻(𝑵) 	∗ 𝑷

0 Eq. 3

𝑬(𝑵) =
𝑺
𝑵	∗ 𝟏𝟎𝟎% Eq. 4

𝑬̈(𝑵) =
𝑺̈
𝑵 ∗ 𝟏𝟎𝟎% Eq. 5

3.2.1.1 Parallel Improvement 366

To better understand how changes to the Parallel SnowModel code have affected its performance, speedup and code 367

profiling plots were assessed for simulations using three distinct versions of the code. These versions represent snapshots of 368

the algorithms development and quantify the contributions of different types of code modifications to the final performance 369

of the model. These versions were identified by different GitHub commits (Mower et al., 2023) and can be summarized as 370

follows. The first or baseline version represents an early commit of Parallel SnowModel, where file I/O is performed in a 371

Centralized way, as described in Sect. 3.1.3. Each process stores both a local and global array in memory for all input 372

variables, makes updates to its local arrays, distributes that updated information into global arrays used by one process to 373

write each output variable. The embarrassingly parallel portion of the physics code has been parallelized, but the snow 374

redistribution step is not efficiently parallelized, it has a larger number of synchronizations and memory transfers. Therefore, 375

this approach has significant time and memory constraints. The Distributed version represents an instance of the code where 376

distributed file I/O (Sect. 3.1.3) had first been implemented. In this version, each process reads and writes input and output 377

variables for its local domain only. Global arrays and the communication required to update these variables are no longer 378

needed; this alleviates memory constraints and shows the value of parallelizing I/O in scientific applications. Lastly, the 379

Final version represents the most recent version of Parallel SnowModel, (at the time of this publication) where the snow 380

transport algorithm had been optimized to run efficiently. This was done by reducing unnecessary memory allocations, 381

reducing the transfer of data via coarrays, and optimizing memory transfers to reduce synchronization calls. This shows the 382

15

value of focused development on a single hotspot of the code base. The simulations were executed on the CO Headwaters 383

domain (Figure 2) using 1, 2, 4, 16, 36, 52, 108, and 144 processes, outputted only a single variable, and were forced with 384

NLDAS-2 data from 23-24 March 2018. While 2-days is a short period to perform scaling experiments, a significant amount 385

of wind and frozen precipitation was observed over the CO Headwaters domain during the simulation to activate some of the 386

snow redistribution schemes in SnowTran-3D. Furthermore, to avoid disproportionately weighing the initialization of the 387

algorithm, we removed the timing values from the ReadParam and Preprocess submodules from the total execution time 388

used in the speedup analysis. Results from these experiments are provided in Sect. 4.1. 389

3.2.1.2 Strong Scaling 390

Strong scaling experiments of Parallel SnowModel were evaluated by comparing the approximate speedup and efficiency (S̈ 391

and Ë) over six different size domains across the United States, all with a 100 m grid spacing [Tuolumne, CO Headwaters, 392

Idaho, PNW, Western U.S., and CONUS] (Figure 2). These experiments use the Final version of the code according to Sect. 393

3.2.1.1. The simulations were forced with NLDAS-2 data for 2928 timesteps from 1 September 2017 to 1 September 2018 394

and output one variable (SWE). The number of processes used in these simulations varied by domain based on the 12 h wall-395

clock and memory constraints on Cheyenne. Results from these experiments are provided in Sect. 4.2. 396

3.2.2 CONUS Simulations 397

A primary goal of this work was to run Parallel SnowModel simulations for 21 years (2000 – 2021) over the CONUS 398

domain (Figure 2) on a 100 m grid, while resolving the diurnal cycle in the model physics and creating a daily dataset of 399

snow properties, including snow depth, SWE, melt rate, and sublimation. Future work will analyze results from these 400

simulations. The CONUS domain contained 46,238 and 28,260 grid cells in the x and y dimensions, respectively. 401

Simulations were performed on a 3 h time step and forced with the WRF dataset. All simulations were executed on Discover 402

using 1800 processes with a total compute time of approximately 192,600 core hours, or approximately 5 wall-clock hours 403

per year. 404

4 Results 405

4.1 Parallel Improvement 406

Figure 8 demonstrates how the scalability of Parallel SnowModel evolved, as shown through code profiling (top row; Figure 407

8) and speedup (bottom row; Figure 8) plots at three different stages (Centralized, Distributed, and Final) of the code 408

development. The code profiling plots display the cumulative execution time of each submodule on a logarithmic scale as a 409

function of the N. The strong scaling plots show the total execution time (T(N)) and the speedup (S(N); Eq. 1) as a 410

function of N on the primary y-axis and secondary y-axis, respectively. As mentioned previously, the initialization timing 411

was removed from these values. The speedup of the Centralized version of the code quickly plateaus at approximately 10 412

16

processes. While the Enbal, SnowPack, and MicroMet subroutines scale with the number of processes (execution time 413

decreases proportional to the increase in the number of processes), the ReadParam, Preprocess, and Output subroutines, 414

which all perform file I/O or memory allocation, require a fixed execution time regardless of the number of processes used, 415

and the execution time of the SnowTran-3D submodule increases beyond 16 processes. This highlights the large bottleneck 416

that often occurs during the file I/O step in scientific code and the importance of code infrastructure outside of the physics 417

routines. In contrast, all of the submodules in the Distributed version of the code, scale up to 36 processes, at which point the 418

inefficient parallelization of the SnowTran-3D submodule causes a significant slowdown, an increase in execution time as 419

the number of processes increases. This results in a speedup that plateaus at 52 processes and decreases beyond 108 420

processes. In the Final version of the code, scalability is observed well beyond 36 processes, with a maximum speedup of 421

100 observed using 144 processes. The execution time of all the submodules decreases as the number of processors 422

increases. This work highlights the value of going beyond the rudimentary parallelization of a scientific code base by 423

profiling and identifying individual elements that would benefit the most from additional optimization. This is a well-known 424

best practice in software engineering but often underappreciated in high-performance scientific computing. In Parallel 425

SnowModel, the improvement of these communication bottlenecks is primarily attributed to utilizing a distributed file I/O 426

scheme and minimizing processor communication by limiting the use of coarrays and synchronization calls. Ultimately, 427

without these improvements, the CONUS domain could not be simulated using Parallel SnowModel. 428

 429
Figure 8: Code profiling (top row) and strong scaling (bottom row) results demonstrating the progression of Parallel SnowModel, 430
which includes a version of the code with centralized file I/O (Centralized; first column), a version of the code with distributed file 431
I/O (Distributed; second column), and a final version of the code at the time of this publication (Final; third column). These 432
versions can be found as different commits within the GitHub repository (Mower et al., 2023). The code profiling plots display the 433

17

cumulative execution time of each submodule on a logarithmic scale as a function of the number of processes (N). The arrow in the 434
code profiling plots of Distributed and Final indicates the ReadParam timing is below the y-axis at approximately 0.3 seconds and 435
0.003 seconds, respectively. The strong scaling plots show the total execution time (T(N)) against N on the primary y-axis and the 436
speedup (S) against N on the secondary y-axis. 437

4.2 Strong Scaling 438

In addition to the parallel improvement analysis, strong scaling was also performed on six domains for the 2018 water year 439

to better understand how Parallel SnowModel scales across different domain sizes and decompositions. Figure 9 displays the 440

approximate speedup (S̈; Eq. 3) of Parallel SnowModel for three local/state domains (Tuolumne, CO Headwaters, and Idaho) 441

and three regional/continental domains (PNW, Western US, and CONUS). Additionally, Table 1 contains information about 442

the minimum and maximum number of processors (P" and P*, respectively) simulated on each domain and their 443

corresponding execution time, relative speedup (S"; Eq. 2), approximate speedup (S̈; Eq. 3), and approximate efficiency (Ë; 444

Eq. 5). As mentioned previously, simulations were constrained by both the 12 h wall-clock and 109 GB of memory per node 445

on the Cheyenne supercomputer. In strong scaling, the number of processes is increased while the problem size remains 446

constant; therefore, it represents a reduced workload per process. Local-sized domains, e.g., Tuolumne, likely do not warrant 447

the need for parallel resources because they have small serial runtimes (e.g., using 52 processes, Tuolumne had an Ë of 38%; 448

Table 1). However, state, regional, and continental domains stand to benefit more significantly from parallelization. The 449

CONUS runtime decreased by a factor of 2.6 running on 3456 processes relative to 648 processes. Based on our approximate 450

speedup assumption, we would estimate a CONUS S̈ of 1690 times on 3456 processes compared to one process, with an Ë of 451

49%. The Western US and PNW domains display very similar scalability results (Figure 9), which is attributed to the similar 452

number of grid cells in the y dimension (Figure 2; and Table 1) and thus parallel decomposition for each domain. 453

Furthermore, these domains may also have a similar proportion of snow-covered grid cells. While the PNW likely has more 454

terrestrial grid cells that are covered by snow for a longer period throughout the water year, it also has a significant number 455

of ocean grid cells where snow redistribution would not be activated. 456

18

 457
Figure 9: The left panel displays approximate speedup (S̈; Eq. 3) as a function of the number of processes (N) for local and state 458
sized simulations (Tuolumne, CO Headwaters, and Idaho), while the right panel shows S̈ for the regional and continental sized 459
domains (PNW, Western US, and CONUS). 460

 461
Table 1: Strong scaling results containing grid dimensions (Nx and Ny), number of processes, execution time, relative speedup, 462

approximate speedup, and approximate efficiency of simulations executed with the minimum and maximum number of processes 463
for the Tuolumne, CO Headwaters, Idaho, PNW, Western US, and CONUS domains. 464

Strong scaling analysis is useful for I/O and memory bound applications to identify a setup that results in a reasonable 465

runtime and moderate resource costs. Based on these scaling results, Figure 10 contains the relationship between the number 466

of processes (N) at which each domain is estimated to reach 50% Ë (using linear interpolation) with the total number of grid 467

cells in the y dimension (Ny) and the average number of grid cells in the y dimension per process (lny; inset Figure 10). At 468

this level of efficiency, it is notable the consistency of both the linear relationship between Ny and N (8.7:1 ratio) and the 469

values of lny (5 to 11) for these year-long simulations that vary in both domain size and the proportion of snow-covered 470

area. Similar relationships (Figure 10) can be used to approximate the scalability of Parallel SnowModel on different sized 471

domains and can be adjusted for the desired level of efficiency. For example, we decided to run the CONUS simulations 472

(Sect. 4.3) using 1800 processes based on its 70% approximate efficiency. 473

19

 474
Figure 10: Relationship between the number of grid cells in the y dimension (Ny) and the number of processes (N) for each domain 475
at which 50% approximate efficiency is estimated using the strong scaling analysis. The dashed line represents the best fit line for 476
this relationship using OLS regression. The inset figure displays a similar relationship but compares N to the average number of 477

grid cells in the y dimension per process (lny), instead of Ny. 478

4.3 CONUS Simulations 479

Spatial results of SWE on 12 February 2011 over the CONUS domain and a sub-domain located in the Indian Peaks west of 480

Boulder, Colorado are displayed in Figure 11. On this date, simulated SWE was observed throughout the northern portion of 481

the CONUS domain with the largest values concentrated in the mountain ranges (Figure 11a). The Indian Peaks sub-domains 482

of distributed SWE (Figure 11b) with reference topography (Figure 11c) underscores the ability of the large dataset to 483

capture snow processes in a local alpine environment. It is important to note that while SnowModel does simulate snow 484

redistribution, it does not currently have an avalanche model, which may be a limitation of accurately simulating SWE 485

within this sub-domain. Additionally, Figure 11b highlights two grid cells located 200 m apart on a peak. Figures 11d and 486

11e display the SWE evolution of these two grid cells over the entire dataset (water years 2000 – 2021) and the 2011 water 487

year, respectively, further demonstrating the ability of Parallel SnowModel to capture fine-scale snow properties even when 488

simulating continental domains. The upwind (western) grid cell is scoured by wind, and snow is transported to the downwind 489

(eastern) grid cells where a snow drift forms. The information and insight available in this high-resolution dataset will have 490

important implications for many applications from hydrology, to wildlife and ecosystems, to weather and climate, and many 491

more. 492

20

 493
Figure 11: Simulation results of Parallel SnowModel over CONUS using the WRF projection. (a) Spatial patterns of SWE over the 494
CONUS domain for 12 February 2011, (b) highlighting the SWE distribution (c) and topography with an applied hillshade of a sub-495
domain near Apache Peak in the Indian Peaks west of Boulder, CO. (d) Time series of SWE from 2000-2021 and (e) over the 2011 496
water year for grid cells (“erode” and “deposit”) identified in panel (b). The “erode” and “deposit” grid cells highlight areas of similar 497
elevation but significant differences in SWE evolution resulting from blowing-snow redistribution processes. 498

5 Discussion 499

Parallelizing numerical models often involves two-dimensional decomposition in both the x and y dimensions. While many 500

benefits have been demonstrated by this approach, including improved load balancing (Dennis, 2007; Hamman et al., 2018), 501

it comes with increased complication of the parallel algorithms, including the partitioning algorithm, file I/O, and process 502

communication. The demonstrated speedup (Figure 9), suggests that Parallel SnowModel scales effectively over regional to 503

continental domains using the one-dimensional decomposition approach. The added benefits obtained from two-dimensional 504

decomposition strategies might not outweigh the costs of development, testing, and minimizing changes to the code structure 505

and logic for applications such as SnowModel. Ultimately, our simplified parallelization approach can be implemented by 506

other geoscience schemes as a first step to enhance simulation size and resolution. 507

Simulation experiments were conducted using Parallel SnowModel to validate the parallel logic, interpret its performance 508

across different algorithm versions and across different domains sizes, and demonstrate its ability to simulate continental 509

domains at high-resolution. Code profiling and speedup analyses over the CO Headwaters domain helped identify 510

bottlenecks in file I/O and processor communication in SnowTran-3D during the development of the parallel algorithm 511

21

(Sect. 4.1). Corrections to the referred bottlenecks allowed Parallel SnowModel to scale up to regional and continental sized 512

simulations and highlights the value of optimizing scientific code. The scalability analyses showed the effectiveness of 513

running Parallel SnowModel with an increasing number of processes on state, regional, and continental domains that contain 514

different proportions in both size (Nx and Ny) and snow-covered grid cells (Sect 4.2). For Parallel SnowModel scalability is 515

primarily dependent on the number of grid cells per process (Nx and lny) and is affected by snow redistribution, which is 516

dependent on the proportion of terrestrial grid cells with sufficient winds and available soft snow to be redistributed (Sect. 517

3.1.2.2). For example, a maritime snowpack (e.g. PNW) as compared to a continental snowpack (e.g. CO Headwaters), may 518

be deeper and more spatially extensive but potentially lacks a high frequency of soft snow above tree-line to activate snow 519

redistribution. Furthermore, the similar relationships among efficiency and domain decomposition observed on the simulated 520

domains that vary in size, topography, vegetation, and snow classes (Sturm and Liston, 2021; Liston and Sturm, 2021) (Fig. 521

10), make it reasonable to extrapolate the results from these simulation experiments to other domains within CONUS. 522

Additionally, these experiments emphasize the relationships among speed, memory, and computing resources for Parallel 523

SnowModel. A common laptop (~ 4 processes) has sufficient CPUs to run local sized domains within a reasonable amount 524

of time, but likely does not have sufficient memory for state-sized simulations. Similarly, the minimum memory (1160 GB; 525

Fig. 1) required to run the CONUS domain, could be simulated on a large server (~ 128 processes) with one process per 526

node. However, extrapolating from our scaling results on Cheyenne (Figure 9), we estimate it would take over 2.5 days to 527

run a CONUS simulation for one water year with this configuration. In contrast, it took approximately 5 hours for CONUS 528

to run on the Discover supercomputer using 1800 processes. Therefore, by the time it took the large server to complete a 529

CONUS simulation for one water year, 12 water years could have been simulated on a supercomputer. Lastly, results from 530

the CONUS simulation highlight the ability of Parallel SnowModel to run high-resolution continental simulations, while 531

maintaining fine-scale snow processes that occur at a local level (Sect. 4.3). 532

SnowModel can simulate high-resolution outputs of snow depth, density, SWE, grain size, thermal resistance, snow strength, 533

snow albedo, landscape albedo, meltwater production, snow-water runoff, blowing snow flux, visibility, peak winter SWE, 534

snow-season length, snow onset date, snow-free date, and more, all produced by a physical model that maintains consistency 535

among variables. While several snow data products exist, few capture the suite of snow properties along with the spatio-536

temporal extents and resolutions that can benefit a wide variety of applications. For example, current snow information 537

products include the NASA daily SWE distributions globally for dry (non-melting) snow on a 25 km grid (Tedesco and 538

Jeyaratnam, 2019), a NASA snow-cover product on a 500 m grid (Hall et al., 2006) that is missing information due to clouds 539

approximately 50% of the time (Moody et al., 2005), and the Snow Data Assimilation System (SNODAS) daily snow 540

information provided by the National Oceanic and Atmospheric Administration (NOAA) and the National Weather Service 541

(NWS) National Operational Hydrologic Remote Sensing Center (NOHRSC) on a 1 km grid (Center, 2004), which is itself 542

model derived and has limited geographic coverage and snow properties. The Airborne Snow Observatory (ASO) provides 543

the highest resolution data with direct measurements of snow depth on a 3 m grid, and derived values of SWE on a 50 m grid 544

(Painter et al., 2016), but has limited spatio-temporal coverage and a high cost of acquisition. Furthermore, there are many 545

22

fields of study that can benefit from 100 m resolution information of internally consistent snow variables, including wildlife 546

and ecosystem, military, hydrology, weather and climate, cryosphere, recreation, remote sensing, engineering and civil 547

works, and industrial applications. The new Parallel SnowModel described here permits the application of this modeling 548

system to very large domains without sacrificing spatial resolution. 549

6 Conclusions 550

In this paper, we present a relatively simple parallelization approach that allows SnowModel to perform high-resolution 551

simulations over regional to continental sized domains. The code within the core submodules (EnBal, MicroMet, SnowPack, 552

and SnowTran-3D) and model configurations (single-layer snowpack, multi-layer snowpack, binary input files, etc.) was 553

parallelized and modularized in this study. This allows SnowModel to be compiled with a range of Fortran compilers, 554

including modern compilers that support parallel CAF either internally or through libraries, such as OpenCoarrays 555

(Fanfarillo et al., 2014). Additionally, it provides the structure for other parallelization logic (e.g., MPI) to be more easily 556

added to the code base. The parallel module contains a simple approach to decomposing the computational domain in the y 557

dimension into smaller rectangular sub-domains. These sub-domains are distributed across processes to perform 558

asynchronous calculations. The parallelization module also contains logic for communicating information among processes 559

using halo-exchange coarrays for the wind and solar radiation models, as well as for snow redistribution. The scalability of 560

Parallel SnowModel was demonstrated over different sized domains, and the new code enables the creation of high-561

resolution simulated snow datasets on continental scales. This parallelization approach can be adopted in other 562

parallelization efforts where spatial derivatives are calculated or fluxes are transported across gridded domains. 563

Appendix A 564

Some of the configuration combinations were not parallelized during this study for reasons including ongoing development 565

in the serial code base and limitations to the parallelization approach. These include simulations involving tabler surfaces 566

(Tabler, 1975), I/O using ASCII files, Lagrangian seaice tracking, and data assimilation. 567

Appendix B 568

Validation SnowModel experiments were run in serial and in parallel over the Tuolumne and CO Headwaters domains (Sect. 569

4.1) using the RMSE statistic (Eq. 3). Important output variables from EnBal, MicroMet, SnowPack, and SnowTran-3D 570

demonstrated similar, if not identical values, when compared to serial results for all timesteps during the simulations; RMSE 571

values were within machine precision (~10-6) regardless of the output variable, domain, or number of processes used. The 572

validated output variables include albedo [%], precipitation [𝑚], emitted longwave radiation [𝑊 ∗𝑚!"], incoming longwave 573

23

radiation reaching the surface [𝑊 ∗𝑚!"], incoming solar radiation reaching the surface [𝑊 ∗𝑚!"], relative humidity [%], 574

runoff from base of snowpack [𝑚 ∗ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝], rain precipitation [𝑚], snow density [𝑘𝑔 ∗ 𝑚!#], snow-water equivalent melt 575

[𝑚], snow depth [𝑚], snow precipitation [𝑚], static-surface sublimation [𝑚], snow-water equivalent [𝑚], air temperature 576

[°𝐶], wind direction [°], and wind speed [𝑚 ∗ 𝑠!$]. Ultimately, we feel confident that Parallel SnowModel is producing the 577

same results as the original serial algorithm. 578

Code, data availability, and supplement 579

The Parallel SnowModel code and the data used in Sect. 4 is available through a public GitHub repository (Mower et al., 580

2023). For more information about the serial version of SnowModel, refer to Liston and Elder (2006a). The data includes 581

figures and SnowModel output files that contain the necessary information to recreate the simulations. The gridded output 582

variables themselves are not included due to storage limitations. Pending approval, we will submit our code to get a DOI. 583

Author contribution 584

EDG and GDL conceived the study. RM, EDG, GDL, and SR were integral in the code development. RM, EDG, and JL 585

were involved in the design, execution, and interpretation of the experiments. All authors discussed the results and 586

contributed to the final version of the draft. 587

Competing interests 588

The contact author has declared that none of the authors has any competing interests. 589

Disclaimer 590

Publisher’s note: Copernicus Publications remains neutral with regard to jurisdictional claims in published maps and 591

institutional affiliations. 592

Financial support 593

This material is based upon work supported by the NSF National Center for Atmospheric Research, which is a major facility 594

sponsored by the U.S. National Science Foundation under Cooperative Agreement No. 1852977. The authors would like to 595

acknowledge that this work has been performed under funding from NASA Earth Science Office (ESTO) Advanced 596

Information Systems Technology (AIST) Program (grant no. 80NSSC20K0207), support by the University of Washington’s 597

College of Engineering Fellowship, and computational support from NSF NCAR Computational and Information Systems 598

24

Lab (CISL) and NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at 599

Goddard Space Flight Center. 600

 601

Acknowledgements 602

We acknowledge Alessandro Fanfarillo in his help during the early stages of the Parallel SnowModel code development. We 603

are also grateful for the feedback from various team members involved in the AIST project, including Carrie Vuyovich, 604

Kristi Arsenault, Melissa Wrzesien, Adele Reinking, and Barton Forman. 605

References 606

Beniston, M.: Climatic Change in Mountain Regions: A Review of Possible Impacts, Climatic Change, 59, 5-31, 607

10.1023/A:1024458411589, 2003. 608

Boelman, N. T., Liston, G. E., Gurarie, E., Meddens, A. J. H., Mahoney, P. J., Kirchner, P. B., Bohrer, G., Brinkman, T. J., 609

Cosgrove, C. L., Eitel, J. U. H., Hebblewhite, M., Kimball, J. S., LaPoint, S., Nolin, A. W., Pedersen, S. H., Prugh, L. R., 610

Reinking, A. K., and Vierling, L. A.: Integrating snow science and wildlife ecology in Arctic-boreal North America, 611

Environmental Research Letters, 14, 010401, 10.1088/1748-9326/aaeec1, 2019. 612

Center, N. O. H. R. S.: Snow data assimilation system (SNODAS) data products at NSIDC, 2004. 613

Clark, M. P. and Hay, L. E.: Use of Medium-Range Numerical Weather Prediction Model Output to Produce Forecasts of 614

Streamflow, Journal of Hydrometeorology, 5, 15-32, 10.1175/1525-7541(2004)005<0015:Uomnwp>2.0.Co;2, 2004. 615

Coarfa, C., Dotsenko, Y., Mellor-Crummey, J., Cantonnet, F., El-Ghazawi, T., Mohanti, A., Yao, Y., and Chavarría-616

Miranda, D.: An evaluation of global address space languages: co-array fortran and unified parallel c, Proceedings of the 617

tenth ACM SIGPLAN symposium on Principles and practice of parallel programming, 36-47, 618

Dennis, J. M.: Inverse space-filling curve partitioning of a global ocean model, 2007 IEEE International Parallel and 619

Distributed Processing Symposium, 1-10, 620

Dozier, J., Bair, E. H., and Davis, R. E.: Estimating the spatial distribution of snow water equivalent in the world's 621

mountains, WIREs Water, 3, 461-474, https://doi.org/10.1002/wat2.1140, 2016. 622

https://doi.org/10.1002/wat2.1140

25

Essery, R., Li, L., and Pomeroy, J.: A distributed model of blowing snow over complex terrain, Hydrological Processes, 13, 623

2423-2438, https://doi.org/10.1002/(SICI)1099-1085(199910)13:14/15<2423::AID-HYP853>3.0.CO;2-U, 1999. 624

Fanfarillo, A., Burnus, T., Cardellini, V., Filippone, S., Nagle, D., and Rouson, D.: OpenCoarrays: open-source transport 625

layers supporting coarray Fortran compilers, Proceedings of the 8th International Conference on Partitioned Global Address 626

Space Programming Models, 1-11, 627

Fang, X. and Pomeroy, J.: Modeling blowing snow redistribution to prairie wetlands, Hydrological Processes, 23, 2557-628

2569, 10.1002/hyp.7348, 2009. 629

Foster, J. L., Hall, D. K., Eylander, J. B., Riggs, G. A., Nghiem, S. V., Tedesco, M., Kim, E., Montesano, P. M., Kelly, R. E. 630

J., Casey, K. A., and Choudhury, B.: A blended global snow product using visible, passive microwave and scatterometer 631

satellite data, International Journal of Remote Sensing, 32, 1371-1395, 10.1080/01431160903548013, 2011. 632

Freudiger, D., Kohn, I., Seibert, J., Stahl, K., and Weiler, M.: Snow redistribution for the hydrological modeling of alpine 633

catchments, WIREs Water, 4, e1232, https://doi.org/10.1002/wat2.1232, 2017. 634

Gesch, D. B., Evans, G. A., Oimoen, M. J., and Arundel, S.: The National Elevation Dataset, in, edited by: United States 635

Geological Survey, E. R. O. a. S. E. C., American Society for Photogrammetry and Remote Sensing, 83-110, 2018. 636

Hall, D., Riggs, G., and Salomonson, V.: MODIS/Terra Snow Cover 5-Min L2 Swath 500m, Version, 5, 2011167.2011750, 637

2006. 638

Hamman, J. J., Nijssen, B., Bohn, T. J., Gergel, D. R., and Mao, Y.: The Variable Infiltration Capacity model version 5 639

(VIC-5): Infrastructure improvements for new applications and reproducibility, Geoscientific Model Development, 11, 3481-640

3496, 2018. 641

Hammond, J. C., Sexstone, G. A., Putman, A. L., Barnhart, T. B., Rey, D. M., Driscoll, J. M., Liston, G. E., Rasmussen, K. 642

L., McGrath, D., Fassnacht, S. R., and Kampf, S. K.: High Resolution SnowModel Simulations Reveal Future Elevation-643

Dependent Snow Loss and Earlier, Flashier Surface Water Input for the Upper Colorado River Basin, Earth's Future, 11, 644

e2022EF003092, https://doi.org/10.1029/2022EF003092, 2023. 645

Homer, C., Dewitz, J., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N., Wickham, J., and Megown, K.: 646

Completion of the 2011 National Land Cover Database for the conterminous United States–representing a decade of land 647

cover change information, Photogrammetric Engineering & Remote Sensing, 81, 345-354, 2015. 648

https://doi.org/10.1002/(SICI)1099-1085(199910)13:14/15
https://doi.org/10.1002/wat2.1232
https://doi.org/10.1029/2022EF003092

26

Hoppinen, Z. M., Oveisgharan, S., Marshall, H.-P., Mower, R., Elder, K., and Vuyovich, C.: Snow Water Equivalent 649

Retrieval Over Idaho, Part B: Using L-band UAVSAR Repeat-Pass Interferometry, The Cryosphere Discussions, 2023, 1-24, 650

2023. 651

Huss, M., Bookhagen, B., Huggel, C., Jacobsen, D., Bradley, R. S., Clague, J. J., Vuille, M., Buytaert, W., Cayan, D. R., 652

Greenwood, G., Mark, B. G., Milner, A. M., Weingartner, R., and Winder, M.: Toward mountains without permanent snow 653

and ice, Earth's Future, 5, 418-435, https://doi.org/10.1002/2016EF000514, 2017. 654

Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T., Hyde, S., Brumby, S., Davies, B. J., Elmore, 655

A. C., Emmer, A., Feng, M., Fernández, A., Haritashya, U., Kargel, J. S., Koppes, M., Kraaijenbrink, P. D. A., Kulkarni, A. 656

V., Mayewski, P. A., Nepal, S., Pacheco, P., Painter, T. H., Pellicciotti, F., Rajaram, H., Rupper, S., Sinisalo, A., Shrestha, 657

A. B., Viviroli, D., Wada, Y., Xiao, C., Yao, T., and Baillie, J. E. M.: Importance and vulnerability of the world’s water 658

towers, Nature, 577, 364-369, 10.1038/s41586-019-1822-y, 2020. 659

ISO/IEC: Fortran Standard 2008; Technical report, Geneva, Switzerland, 2010. 660

Jin, S., Homer, C., Yang, L., Danielson, P., Dewitz, J., Li, C., Zhu, Z., Xian, G., and Howard, D.: Overall methodology 661

design for the United States national land cover database 2016 products, Remote Sensing, 11, 2971, 2019. 662

Kumar, V. and Gupta, A.: Analysis of scalability of parallel algorithms and architectures: A survey, Proceedings of the 5th 663

international conference on Supercomputing, 396-405, 664

Laboratory, C. a. I. S.: Cheyenne, 10.5065/D6RX99HX, 2019. 665

Latifovic, R., Homer, C., Ressl, R., Pouliot, D., Hossain, S. N., Colditz, R. R., Olthof, I., Giri, C. P., and Victoria, A.: 20 666

North American Land-Change Monitoring System, Remote sensing of land use and land cover, 303, 2016. 667

Lehning, M., Löwe, H., Ryser, M., and Raderschall, N.: Inhomogeneous precipitation distribution and snow transport in 668

steep terrain, Water Resources Research, 44, 2008. 669

Lehning, M., Völksch, I., Gustafsson, D., Nguyen, T., Stähli, M., and Zappa, M.: ALPINE3D: A detailed model of mountain 670

surface processes and its application to snow hydrology, Hydrological Processes, 20, 2111-2128, 10.1002/hyp.6204, 2006. 671

Lettenmaier, D. P., Alsdorf, D., Dozier, J., Huffman, G. J., Pan, M., and Wood, E. F.: Inroads of remote sensing into 672

hydrologic science during the WRR era, Water Resources Research, 51, 7309-7342, 673

https://doi.org/10.1002/2015WR017616, 2015. 674

https://doi.org/10.1002/2016EF000514
https://doi.org/10.1002/2015WR017616

27

Liston, G., Reinking, A. K., and Boleman, N.: Daily SnowModel Outputs Covering the ABoVE Core Domain, 3-km 675

Resolution, 1980-2020, 10.3334/ORNLDAAC/2105, 2022. 676

Liston, G. E.: Local advection of momentum, heat, and moisture during the melt of patchy snow covers, Journal of Applied 677

Meteorology and Climatology, 34, 1705-1715, 1995. 678

Liston, G. E.: Representing Subgrid Snow Cover Heterogeneities in Regional and Global Models, Journal of Climate, 17, 679

1381-1397, 10.1175/1520-0442(2004)017<1381:Rsschi>2.0.Co;2, 2004. 680

Liston, G. E. and Elder, K.: A distributed snow-evolution modeling system (SnowModel), Journal of Hydrometeorology, 7, 681

1259-1276, 2006a. 682

Liston, G. E. and Elder, K.: A Meteorological Distribution System for High-Resolution Terrestrial Modeling (MicroMet), 683

Journal of Hydrometeorology, 7, 217-234, 10.1175/jhm486.1, 2006b. 684

Liston, G. E. and Hall, D. K.: An energy-balance model of lake-ice evolution, Journal of Glaciology, 41, 373-382, 1995. 685

Liston, G. E. and Hiemstra, C. A.: A simple data assimilation system for complex snow distributions (SnowAssim), Journal 686

of Hydrometeorology, 9, 989-1004, 2008. 687

Liston, G. E. and Hiemstra, C. A.: The changing cryosphere: Pan-Arctic snow trends (1979–2009), Journal of Climate, 24, 688

5691-5712, 2011. 689

Liston, G. E. and Mernild, S. H.: Greenland freshwater runoff. Part I: A runoff routing model for glaciated and nonglaciated 690

landscapes (HydroFlow), Journal of Climate, 25, 5997-6014, 2012. 691

Liston, G. E. and Sturm, M.: A snow-transport model for complex terrain, Journal of Glaciology, 44, 498 - 516, 1998. 692

Liston, G. E. and Sturm, M.: Global Seasonal-Snow Classification, Version 1 [dataset], 2021. 693

Liston, G. E., Perham, C. J., Shideler, R. T., and Cheuvront, A. N.: Modeling snowdrift habitat for polar bear dens, 694

Ecological Modelling, 320, 114-134, https://doi.org/10.1016/j.ecolmodel.2015.09.010, 2016. 695

Liston, G. E., Winther, J.-G., Bruland, O., Elvehøy, H., and Sand, K.: Below-surface ice melt on the coastal Antarctic ice 696

sheet, Journal of Glaciology, 45, 273-285, 1999. 697

Liston, G. E., Haehnel, R. B., Sturm, M., Hiemstra, C. A., Berezovskaya, S., and Tabler, R. D.: Simulating complex snow 698

distributions in windy environments using SnowTran-3D, Journal of Glaciology, 53, 241-256, 2007. 699

https://doi.org/10.1016/j.ecolmodel.2015.09.010

28

Liston, G. E., Polashenski, C., Rösel, A., Itkin, P., King, J., Merkouriadi, I., and Haapala, J.: A distributed snow‐evolution 700

model for sea‐ice applications (SnowModel), Journal of Geophysical Research: Oceans, 123, 3786-3810, 2018. 701

Liston, G. E., Itkin, P., Stroeve, J., Tschudi, M., Stewart, J. S., Pedersen, S. H., Reinking, A. K., and Elder, K.: A Lagrangian 702

snow‐evolution system for sea‐ice applications (SnowModel‐LG): Part I—Model description, Journal of Geophysical 703

Research: Oceans, 125, e2019JC015913, 2020. 704

Lund, J., Forster, R. R., Deeb, E. J., Liston, G. E., Skiles, S. M., and Marshall, H.-P.: Interpreting Sentinel-1 SAR 705

Backscatter Signals of Snowpack Surface Melt/Freeze, Warming, and Ripening, through Field Measurements and 706

Physically-Based SnowModel, Remote Sensing, 14, 4002, 2022. 707

Mahoney, P. J., Liston, G. E., LaPoint, S., Gurarie, E., Mangipane, B., Wells, A. G., Brinkman, T. J., Eitel, J. U., 708

Hebblewhite, M., and Nolin, A. W.: Navigating snowscapes: scale‐dependent responses of mountain sheep to snowpack 709

properties, Ecological Applications, 28, 1715-1729, 2018. 710

Marsh, C. B., Pomeroy, J. W., Spiteri, R. J., and Wheater, H. S.: A Finite Volume Blowing Snow Model for Use With 711

Variable Resolution Meshes, Water Resources Research, 56, e2019WR025307, https://doi.org/10.1029/2019WR025307, 712

2020. 713

Miller, P., Robson, M., El-Masri, B., Barman, R., Zheng, G., Jain, A., and Kalé, L.: Scaling the isam land surface model 714

through parallelization of inter-component data transfer, 2014 43rd International Conference on Parallel Processing, 422-715

431, 716

Mitchell, K. E.: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP 717

products and partners in a continental distributed hydrological modeling system, J. Geophys. Res., 109, D07S90, 2004. 718

Moody, E. G., King, M. D., Platnick, S., Schaaf, C. B., and Gao, F.: Spatially complete global spectral surface albedos: 719

Value-added datasets derived from Terra MODIS land products, IEEE Transactions on Geoscience and Remote Sensing, 43, 720

144-158, 2005. 721

Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Gobiet, A., Hagenmuller, P., Lafaysse, M., Ližar, M., 722

Mitterer, C., Monti, F., Müller, K., Olefs, M., Snook, J. S., van Herwijnen, A., and Vionnet, V.: Application of physical 723

snowpack models in support of operational avalanche hazard forecasting: A status report on current implementations and 724

prospects for the future, Cold Regions Science and Technology, 170, 102910, 725

https://doi.org/10.1016/j.coldregions.2019.102910, 2020. 726

https://doi.org/10.1029/2019WR025307
https://doi.org/10.1016/j.coldregions.2019.102910

29

Mortezapour, M., Menounos, B., Jackson, P. L., Erler, A. R., and Pelto, B. M.: The role of meteorological forcing and snow 727

model complexity in winter glacier mass balance estimation, Columbia River basin, Canada, Hydrological Processes, 34, 728

5085-5103, https://doi.org/10.1002/hyp.13929, 2020. 729

Mott, R. and Lehning, M.: Meteorological Modeling of Very High-Resolution Wind Fields and Snow Deposition for 730

Mountains, Journal of Hydrometeorology, 11, 934-949, https://doi.org/10.1175/2010JHM1216.1, 2010. 731

Mott, R., Schirmer, M., Bavay, M., Grünewald, T., and Lehning, M.: Understanding snow-transport processes shaping the 732

mountain snow-cover, The Cryosphere, 4, 545-559, 10.5194/tc-4-545-2010, 2010. 733

Mower, R., Gutmann, E. D., and Liston, G. E.: Parallel-SnowModel 1.0 [code], https://github.com/NCAR/Parallel-734

SnowModel-1.0, 2023. 735

Mudryk, L. R., Derksen, C., Kushner, P. J., and Brown, R.: Characterization of Northern Hemisphere Snow Water 736

Equivalent Datasets, 1981–2010, Journal of Climate, 28, 8037-8051, 10.1175/jcli-d-15-0229.1, 2015. 737

Nolin, A. W.: Recent advances in remote sensing of seasonal snow, Journal of Glaciology, 56, 1141-1150, 738

10.3189/002214311796406077, 2010. 739

Numrich, R. W. and Reid, J.: Co-Array Fortran for parallel programming, ACM Sigplan Fortran Forum, 1-31, 740

Numrich, R. W., Steidel, J. L., Johnson, B. H., Dinechin, B. D. d., Elsesser, G., Fischer, G., and MacDonald, T.: Definition 741

of the F−− Extension to Fortran 90, International Workshop on Languages and Compilers for Parallel Computing, 292-306, 742

Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems, J. S., Gehrke, F., Hedrick, A., Joyce, M., Laidlaw, 743

R., and Marks, D.: The Airborne Snow Observatory: Fusion of scanning lidar, imaging spectrometer, and physically-based 744

modeling for mapping snow water equivalent and snow albedo, Remote Sensing of Environment, 184, 139-152, 2016. 745

Parhami, B.: SIMD machines: do they have a significant future?, ACM SIGARCH Computer Architecture News, 23, 19-22, 746

1995. 747

Pedersen, S. H., Liston, G. E., Tamstorf, M. P., Schmidt, N. M., and Abermann, J.: Linking vegetation greenness and 748

seasonal snow characteristics using field observations, SnowModel, and daily MODIS imagery in high-Arctic Greenland, 749

AGU Fall Meeting Abstracts, GC42A-07, 750

Pedersen, S. H., Liston, G. E., Tamstorf, M. P., Westergaard-Nielsen, A., and Schmidt, N. M.: Quantifying Episodic 751

Snowmelt Events in Arctic Ecosystems, Ecosystems, 18, 839-856, 10.1007/s10021-015-9867-8, 2015. 752

https://doi.org/10.1002/hyp.13929
https://doi.org/10.1175/2010JHM1216.1
https://github.com/NCAR/Parallel-SnowModel-1.0
https://github.com/NCAR/Parallel-SnowModel-1.0

30

Perezhogin, P., Chernov, I., and Iakovlev, N.: Advanced parallel implementation of the coupled ocean–ice model FEMAO 753

(version 2.0) with load balancing, Geoscientific Model Development, 14, 843-857, 2021. 754

Pflug, J. M. and Lundquist, J. D.: Inferring Distributed Snow Depth by Leveraging Snow Pattern Repeatability: Investigation 755

Using 47 Lidar Observations in the Tuolumne Watershed, Sierra Nevada, California, Water Resources Research, 56, 756

e2020WR027243, https://doi.org/10.1029/2020WR027243, 2020. 757

Prokop, A. and Schneiderbauer, S.: The atmospheric snow-transport model: SnowDrift3D, Journal of Glaciology, 57, 526-758

542, 10.3189/002214311796905677, 2011. 759

Randin, C. F., Dedieu, J.-P., Zappa, M., Long, L., and Dullinger, S.: Validation of and comparison between a semidistributed 760

rainfall–runoff hydrological model (PREVAH) and a spatially distributed snow-evolution model (SnowModel) for snow 761

cover prediction in mountain ecosystems, Ecohydrology, 8, 1181-1193, https://doi.org/10.1002/eco.1570, 2015. 762

Rasmussen, R. M., Liu, C., Ikeda, K., Chen, F., Kim, J.-H., Schneider, T., Gochis, D., Dugger, A., and Viger, R.: Four-763

kilometer long-term regional hydroclimate reanalysis over the conterminous United States (CONUS), 1979-2020, Research 764

Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory 765

[dataset], 10.5065/ZYY0-Y036, 2023. 766

Renwick, J.: MOUNTerrain: GEWEX mountainous terrain precipitation project, GEWEX news, 24, 5-6, 2014. 767

Reynolds, D. S., Pflug, J. M., and Lundquist, J. D.: Evaluating wind fields for use in basin‐scale distributed snow models, 768

Water Resources Research, 57, e2020WR028536, 2021. 769

Richter, B., Schweizer, J., Rotach, M. W., and van Herwijnen, A.: Modeling spatially distributed snow instability at a 770

regional scale using Alpine3D, Journal of Glaciology, 67, 1147-1162, 10.1017/jog.2021.61, 2021. 771

Rouson, D., Gutmann, E. D., Fanfarillo, A., and Friesen, B.: Performance portability of an intermediate-complexity 772

atmospheric research model in coarray Fortran, Proceedings of the Second Annual PGAS Applications Workshop, 1-4, 773

Sharma, V., Swayne, D., Lam, D., MacKay, M., Rouse, W., and Schertzer, W.: Functional Parallelization of a Land Surface 774

Model in Regional Climate Modeling, 2004. 775

Skofronick-Jackson, G. M., Johnson, B. T., and Munchak, S. J.: Detection Thresholds of Falling Snow From Satellite-Borne 776

Active and Passive Sensors, IEEE Transactions on Geoscience and Remote Sensing, 51, 4177-4189, 777

10.1109/TGRS.2012.2227763, 2013. 778

https://doi.org/10.1029/2020WR027243
https://doi.org/10.1002/eco.1570

31

Sturm, M. and Liston, G. E.: Revisiting the global seasonal snow classification: An updated dataset for earth system 779

applications, Journal of Hydrometeorology, 22, 2917-2938, 2021. 780

Szczypta, C., Gascoin, S., Houet, T., and Fanise, P.: Impact of climate versus land-use changes on snow cover in Bassiès, 781

Pyrenees, International Snow Science Workshop Grenoble â?? Chamonix Mont-Blanc, 1278-1281, 782

Tabler, R. D.: Estimating the transport and evaporation of blowing snow, Great Plains Agric Counc Publ, 1975. 783

Takala, M., Luojus, K., Pulliainen, J., Derksen, C., Lemmetyinen, J., Kärnä, J.-P., Koskinen, J., and Bojkov, B.: Estimating 784

northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and 785

ground-based measurements, Remote Sensing of Environment, 115, 3517-3529, https://doi.org/10.1016/j.rse.2011.08.014, 786

2011. 787

Tedesco, M. and Jeyaratnam, J.: AMSR-E/AMSR2 Unified L3 Global Daily 25 km EASE-Grid Snow Water Equivalent, 788

Version 1, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center, 2019. 789

Vionnet, V., Martin, E., Masson, V., Lac, C., Naaim Bouvet, F., and Guyomarc'h, G.: High‐resolution large eddy simulation 790

of snow accumulation in Alpine terrain, Journal of Geophysical Research: Atmospheres, 122, 11,005-011,021, 2017. 791

Vionnet, V., Martin, E., Masson, V., Guyomarc'h, G., Naaim-Bouvet, F., Prokop, A., Durand, Y., and Lac, C.: Simulation of 792

wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model, The 793

Cryosphere, 8, 395-415, 2014. 794

Voordendag, A., Réveillet, M., MacDonell, S., and Lhermitte, S.: Snow model comparison to simulate snow depth evolution 795

and sublimation at point scale in the semi-arid Andes of Chile, The Cryosphere, 15, 4241-4259, 2021. 796

Vuyovich, C. M., Jacobs, J. M., and Daly, S. F.: Comparison of passive microwave and modeled estimates of total watershed 797

SWE in the continental United States, Water Resources Research, 50, 9088-9102, https://doi.org/10.1002/2013WR014734, 798

2014. 799

Wagner, C., Hunsaker, A., and Jacobs, J.: UAV and SnowModel Estimates of Wind Driven Snow in Eastern USA 800

Avalanche Terrain, Copernicus Meetings, 2023. 801

Wrzesien, M. L., Durand, M. T., Pavelsky, T. M., Kapnick, S. B., Zhang, Y., Guo, J., and Shum, C. K.: A New Estimate of 802

North American Mountain Snow Accumulation From Regional Climate Model Simulations, Geophysical Research Letters, 803

45, 1423-1432, https://doi.org/10.1002/2017GL076664, 2018. 804

https://doi.org/10.1016/j.rse.2011.08.014
https://doi.org/10.1002/2013WR014734
https://doi.org/10.1002/2017GL076664

32

Xia, Y.: Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System 805

project phase 2 (NLDAS-2): 1. Intercomparison and application of model products, J. Geophys. Res., 117, D03109, 2012a. 806

Xia, Y.: Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System 807

project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow, J. Geophys. Res., 117, D03110, 2012b. 808

Xue, M., Droegemeier, K. K., and Wong, V.: The Advanced Regional Prediction System (ARPS) – A multi-scale 809

nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification, Meteorology and 810

Atmospheric Physics, 75, 161-193, 10.1007/s007030070003, 2000. 811

 812

