
Referee #1

This is a review of “Parallel SnowModel (v1.0): a parallel implementation of a Distributed
Snow-Evolution Modeling System (SnowModel)” where the authors describe
imporovements made to Snowmodel by including a distributed parallel scheme. These
improvements allow for running over large spatial extents and for longer temporal periods.

Broadly, I like what the authors have done to use CAF to bring parallelism to an existing
code. Hydrology has long lacked HPC-aware models and the science has been poorer for
it.

However, I struggle to follow aspects of this manuscript and I do not find the scaling results
convincing. Finally, the lack of any validation against observations gives me pause,
especially given the SWE results shown are almost certainly wrong for large portions of the
domain in Figure 11. I will detail these concerns below.

We appreciate your support of this work and concern for some of the
results. In terms of scaling, we will rerun the scaling results for a
time period from 2017-09-01 to 2018-09-01 (2928 timesteps vs. the
previous 16 timesteps) for more realistic timing comparisons. We will
also extend our validation time period to incorporate both
accumulation and ablation over the two domains.

In terms of the lack of validation, your comment made us dig into
simulated SWE values from Figure 11 near Calgary in Alberta and
identify a binning issue with how the data is being visualized.
Therefore, most of Alberta should actually be represented as the 0.01
– 0.10m SWE bin. Thank you very much for this comment and apologies
for the error. We will update the figure but acknowledge that it
still might be error prone. However, this study focuses on
parallelizing the algorithm, verifying that results are identical to
simulations using the serial version of the code and demonstrating
performance through strong scaling and CONUS simulations. We added an
additional few sentences referencing how extensively the serial code
has been validated. However, it is beyond the scope of this study to
adequately validate Parallel SnowModel output on a CONUS scale.

First, the introduction essentially fails to cite any of the European or Canadian literature on
snow dynamics, blowing snow, and the existing model developments that have been made.
Notable contributions from Mott, Durand, Lehning, Vionnet, Marsh, Pomeroy, Musselman,
MacDonald, Morin, Fang, and Essery to name but a few are all missing and would provide
valuable context to the Liston, et al modelling efforts.



Thank you for addressing this oversight. We will add the following
paragraph to the introduction.

Many physical snow models have been developed either in stand-alone algorithms

or larger LSMs with varying degrees of complexity. The more advanced algorithms

attempt to accurately simulate snow properties at higher resolution especially

in regions where snow interacts with topography, vegetation, and/or wind.

Wind-induced snow transport occurs in regions permanently or temporarily

covered by snow and greatly influences snow heterogeneity, sublimation,

avalanches, and melt timing. Models that have incorporated wind-induced physics

generally require components to both develop the snow mass balance and

incorporate atmospheric inputs of the wind field. However, there often exists a

tradeoff between the accuracy of simulating wind-induced snow transport and the

computational requirements for downscaling and developing the wind fields over

the gridded domain (Reynold et al., 2021). Therefore, simplifying assumptions

of uniform wind direction have been applied in models like a Distributed

Blowing Snow Model (DBSM; Essery et al., 1999; Fang & Pomeroy, 2009). More

advanced models have utilized advection-diffusion equations over spatially

distributed uniform gridded wind fields, like SnowTran3D (Liston & Sturn, 1998)

and the Prairie Blowing Snow Model (Pomeroy et al., 1993) and unstructured

grids using finite volume methods in DBSM (Marsh et al., 2020). Additionally,

1D boundary layer algorithms have been used to model wind-induced transport

(Xia et al., 2000; Dery et al., 2001; Yang et al., 2008). However, the most

complex models consider nonsteady turbulence which utilize three-dimensional

wind fields from atmospheric models to simulate blowing snow transport and

sublimation; for example, SURFEX in Meso-NH/Crocus (Vionnet et al., 2014,

2017), wind fields from the atmospheric model ARPS (Xue et al., 2000) being

incorporated into Alpine3D (Mott and Lehning, 2010; Mott et al., 2010; Lehning

et al., 2008), CRYOWRF (Sharma et al., 2023), and SnowDrift3D (Schneiderbauer &

Prokop, 2021). Incorporating wind-induced physics into snow models is

computationally expensive; thus, parallelizing the serial algorithms would

likely be beneficial to many of these models.

Secondly, I find the mixing of methods and results to be very confusing. This is
exceptionally bad in the Parallel Performance (S4.2) section where multiple code revisions
are described. It is not at all clear where the different ‘Distributed high Sync’, etc are coming
from. In some of these, the results presented are trivial — of course one would expect
increased synchronization across more processes to incure scaling limitations. It is not clear
if the SnowTran-3D plateau at 36-processes is the final code, or was a WIP code. I get the
impression the authors are attempting to convey their profiling journey to optimize their
code, but a) a general audience likely is not interested in all the specifics and b) it’s



confusing laid out leaving an interested reader muddled. For example on line 386, it is
unclear /what/ versions of the code were even used. This section strikes me as the crux of
the results, and is therefore an important section. However, I struggled to make my way
through it. I would strongly sugges the authors split the methodology out and well describe
what was profiled, etc and how this shaped the CAF implimentation. And then in the results,
clearly and simply show “it is faster by XYZ for domains PQR”.

Thank you for addressing this confusion, and we agree that the
methods and results could be structured in a clearer way. We will
restructure the methods to more briefly discuss the parallelization
approach (e.g. 3.1 Parallel Implementation) and then introduce the
different simulation experiments before discussing Results in Section
4. An updated structure for the methods and results is as follows:

3.Methods

3.1. Parallel Implementation

3.1.1. Partitioning Algorithm

3.1.2. Non-trivial Parallelization

3.1.2.1. Topography – Wind and Solar Radiation

3.1.2.2. Snow Redistribution

3.1.3. File I/O

3.1.3.1. Parallel Inputs

3.1.3.2. Parallel Outputs

3.2. Simulation Experiments

3.2.1. Parallel SnowModel Validation

3.2.2. Parallel SnowModel Performance

3.2.2.1. Strong Scaling

3.2.2.2. Code Profiling

3.2.2.3. CONUS Simulations

4.Results

4.1. Parallel SnowModel Validation

4.2. Parallel SnowModel Performance

4.2.1. Strong Scaling

4.2.2. Code Profiling

4.2.3. CONUS Simulations



After restructuring the methods and results, we will simplify the
Code Progression or code profiling journey to see if the confusion
can be alleviated. If not, we may add this to a supplemental section
of the manuscript, instead. However, we do believe that these are
important tools and results that can help others in their journey to
parallelize legacy code.

In addition, the 16 timesteps are really not compelling as currently presented. I am
sympathetic to the computational constraints. However, without code coverage, is there any
guarantee that the code was tested in a representative manner? For example, if there were
few or no melt / blowing snow (or if there was any snow!) then the results would not be
typical of a run. This criticism exists for the 1 month serial v. distributed period (L333) as
well. Is this a representative period of time viz a viz excercising the toughest numerical code
paths (e.g., blowing snow and multilayer snowpacts, canopy interception) and highest sync
code paths?

Thank you for this concern. We very much agree that this is not the
best representation of scaling results. Therefore, we are going to
run the six domains for 2928 timesteps (2017/09/01 - 2018/09/01)
instead of the previous 16 timesteps. While this will affect the
minimum number of processes that can be used, we believe this will be
representative of sufficient synchronization opportunities across all
domains.

My read is that Figure 10 is the “final” code that is evaluated for scaling testing. My following
comments are through this lens. I do not find Figure 10 convincing of strong scaling. I would
expect PNW to be the most difficult to simulate region with deep snow covers, and many
blowing snow events. It performs weakly, with essentially plateaued scaling at 750
processes. As more non-blowing snow (and non-snow) cells are added in the CONUS
domain, the scaling increases (shown in Figure 11). Essentially my read is the more
non-snow cells that are added, the better the scaling. This is not a strong scaling result.
Rephrased, over domains with significant snow processes, the scaling is poor.

Correct, Figure 10 represents the “final” code. We will make that
more clear as we restructure the methodology for the simulation
experiments. As mentioned, we are going to rerun the scaling results
for 2928 timesteps (2017/09/01 - 2018/09/01) instead of the previous
16 timesteps. Thus, we will have to reevaluate the strong scaling
results. Additionally, we will look at code profiling plots and more
explicit communication timing profilers to see if we can identify how
the domain decomposition affects communication requirements and thus
scaling.



The simulated SWE results presented in Figure 11 are suspect. This is total SWE on the
ground in Feb, correct? In the middle of the winter (Feb) there is snow covering much of
Canada — the foothills of Alberta, the Priaries of AB, SK, MB, and the Boreal forests of AB,
SK, and MB. In the simulation results shown in Figure 11a, the domain east of continental
divid, including the eastern Rockies, is shown as having zero SWE. This is almost certainly
not correct. The authors note that an evaluation of the SWE data will be done at a later
point, but if this number of no-op grid cells are being used for the scaling evaluation, then
the scaling evaluation is not representative of a real winter simulation.

As mentioned, we really appreciate this insight as it pointed us to a
bug in our binning algorithm for visualizing the results. We will
update the distributed plots of SWE figures (a) and (b) to reflect
correct binning and a different color visualization to make the bins
more easily distinguishable. As a result, we are observing SWE values
between 0.01 and 0.10 m outside of Calgary and much of Alberta, for
example. We also appreciate the implications of not simulating SWE
correctly as it comes to scaling due to potential communication
requirements across processes. Furthermore, we will add some
discussion to this point as a limitation of our study. However,
validating Parallel SnowModel for the simulated time period across
CONUS is outside the scope of this study. We will focus on validating
the serial and parallel versions of the code and highlight the many
other studies that have validated the serial version code to insitu
observations.

Figure 11e shows the erosion and then deposition across a ridgeline. However, in most
mountain regions, this deposited snow will avalanche to a lower elevation. Given there is no
avalanche model in this code and no avalanche literature is cited, these results are not
compelling. Perhaps this is a ridgeline that doesn’t have avalanches. But this needs to be
noted if true.

Thank you for that observation. Correct, SnowModel does not contain
an avalanche model. We will note that these time series and spatial
results may be unrealistic of SWE because Parallel SnowModel lacks an
avalanche model.

In conclusion, I like that the authors are describing making the code HPC-aware by using
CAF with a simple halo exchange. I think there is value in showing the community that
“legacy” models can be updated and that it is “not that hard.” Such messaging has the
potential to help normalize HPC-aware code development. However, the scaling results



seem to show significant limitations in the scaling and the better CONUS scaling is almost
certainly due to not simulating snow (in places erroneously). As a result I feel that the
authors have over-stated their results that the model has strong-scaling and scales
efficiently. I am also concerned that the model is not producing reasonable SWE.

Thank you referee #1 for your support and comments. We appreciate
your concern about running scaling experiments using 16 timesteps and
believe the new results displaying 2928 timesteps over a snow season
should suffice, especially given the more accurate depiction of CONUS
SWE.

L9 100’s -> 100s (not possessive)

“1 m to 100s of meters”

L21 1800 cores contradicts 2304 listed above?

2304 was the maximum number of processes used for scaling, while 1800
was the number of processes used for the CONUS simulations based on
the Discover supercomputer architecture and resources. We will
clarify this difference.

L34 meters -> write out the order of magnitude. Just meters could be 1000s!

“(1-meter)”

L51 “can be” is a bit hedgy. I think this would be stronger to state what aspects of
snowmodel result in it being computationally expensive — physically based, 2 layer snow
model with energy balance with lateral transport.

“Physically derived snow algorithms, like SnowModel, that model the
energy balance, multilayer snow physics, and lateral snow transport
are computationally expensive.”

L71 dimensional?

“…where each grid cell represents a point, or a one-dimensional
snowpack model, that is not influenced by nearby grid cells)”

L89 “properties” rather, these are states and fluxes

to model snow states (e.g., snow depth, SWE, snow melt, snow
density) and fluxes over different landscapes and climates



L91 This is unclear — is parallel input the only thing holding it back?

Thanks for your comment. We changed the wording to the following:

While many snow modeling systems exist, SnowModel will benefit from
parallelization because of its ability to simulate snow processes on a high
resolution grid through downscaling meteorological inputs and modeling snow
redistribution.

L104 missing closing ]

adding in missing ]

L131 The 23-24 period is unclear. It is perhaps made more clear in the results section, but
my notes here were asking if this was the sim period or just a subset of the full year
extracted? If the former, what are the initial conditions?

L147 “we hope to” I would be more firm in “we show” or similar

“we show its ability to efficiently run regional to continental sized
simulations.”

L166 “CAF syntax…” not clear that this ads much — other aspects of Fortran syntax are not
noted. Is this just for algorithm readability later on? If the authors keep this, I suggest
tightening this section as much as possible

After reviewing both of the referee’s comments, we ended up deleting
most of the algorithm references within the figures to simplify some
of the details. Therefore, I also deleted this section and figure
because it became less relevant. Thanks.

L195 Throughout, “process’s” should be “process’” as per -> “possessive of a plural noun is
formed by adding only an apostrophe when the noun ends in _s_”

Changed, thank you.

L199 I know that HX has been defined by here, but I’d forgotten what this was and I would
suggest considering writing it out again. Or just keep writing it out.

Halo-exchange is no longer abbreviated as HX in manuscript, thanks.

L200 “images” -> processes



Changed, thanks.

L202 “some CAF implementations” Which ones? Why not just not support them / avoid
them?

We have found limitations with the Cray compiler. We didn’t really
want to call that out b/c other compilers may have similar issues.

L215 is this spatially variable? if not, how do you select a representative value for
something like CONUS domain?

It is not spatially variable. We used a value of 200.0 for all
simulation experiments. Further testing of this parameter was beyond
the scope of the study.

L221 I would suggest using monospace fonts instead of italics to refer to algorithm variables

Implemented this change, thank you.

L230 I would clearly note it’s slow because of the comms overhead + mem transfer

Thank you. Changed to the following.

However, synchronization statements have an associated cost of decreasing the
speed and efficiency of an algorithm due to communication overhead and memory
transfer and therefore should be minimized…

L260 What happens if there is a wind direction discontinuity between the HX boundaries?

See sentence in previous paragraph. “To calculate the saltation flux,
SnowModel iterates over continuous sections (jstart and jend) of the
same wind direction,….” The continuous section is determined by
subsequent grid cells with the same wind direction at a given
timestep, allowing for wind direction discontinuities.

L285 Why maintain the serial portion if it makes the parallel code less optimal?

Thanks for your comment. In response we added this sentence
description:

A future goal of this work is to be able to merge the serial and parallel
versions of the code into one code base that can be easily maintained and
utilized by different users with different computational resources. Therefore,
we want to maintain both centralized and distributed approaches. However, for
optimal parallel performance over larger simulation domains,…



L286 Reading past here I think I figured out centralized, but it’s not super clear. My notes at
this point were confused. The coorindation of all the processes working on this is not very
clear to me and would benefit from a description.

Thanks for noting this confusion. Here is the text that describes the
difference between centralized and distributed. It also references
Figure 8.

Parallel implementations that are less memory restricted commonly use local to
global mapping strategies, or a centralized approach for file I/O (Fig. 8a).
However, this approach requires that each process stores global arrays for
input and output variables and creates a substantial bottleneck as the domain
size scales (Sect. 4.2). To improve performance, distributed file I/O can be
implemented, where input and output files are directly and concurrently
assessed by each process (Fig. 8b).

L297 I’m not sure describing the non-parallel ASCII files is worth while. Why not simply
state it needs binary files?

Changed paragraph to:

Parallel SnowModel’s primary static spatial inputs include topography and
vegetation data. However, depending on the simulation configuration, additional
spatial inputs representing gridded values of latitude and longitude may be
required. While acceptable static input file types include binary, netcdf, and
ASCII files for the serial version of the code, optimizing the efficiency of
Parallel SnowModel requires static inputs from binary or netcdf files that can
be accessed concurrently by indexing the starting byte and length of bytes
commensurate to a process local domain. Therefore, each process only reads its
own portion of the static input data. The CONUS simulation could not be
simulated using a centralized approach because each process would be holding
global arrays of topography and vegetation in memory, each of which would be
approximately 5.2 GB of memory.

L300 process’

Changed, thank you.

L315 How slow/bottleneck/compute intensive is this step?

It depends on the spatial and temporal resolution of the simulations.

L333 this needs code coverage to convince the reader that the compute intensive code
paths have been stressed such that these are representative results.



Now that the Derecho supercomputer is accessible, we are able to
execute simulations faster and thus achieve longer simulations within
the 12-hour wall clock. Therefore, we anticipate being able to run
the CO Headwaters validation experiment for 5 months and thus provide
better validation confidence. We will run a CO Headwaters experiment
from February through June to account for both periods of
accumulation and ablation.

L364 I struggled with this section to understand what code version was what, how it was
related to the final code, how different it was, etc. Suggest cutting or at a minimum tighten
significantly. I would also move the methodology descriptions into the methodology section.

Thank you. We will move the experiment description into the
methodology section and tighten up the labeling to make it clearer.

L386 what are these different code versions?

We appreciate you voicing your confusion here. Previous code versions
were used to investigate the scaling and profiling journey of the
code through its development. These versions are referenced in the
github. The “current” code is the latest version of the code within
the github. This version is used for the scaling analysis across the
different domains. We will make this more clear as we add more proper
methodology for the simulation experiments.

L390 same code coverage criticism here

Thank you. See above comment.

L431 “SWE-melt” suggest “ablation”

Thank you. Changed to ablation.

L432 Good to validate in the future, but as noted above the results as presented do not look
right for mid winter across the northern US and especially Canada

See comment above about incorrect CONUS visualization.

L465 I believe this is over-stated

We will reassess this comment after we get the updated scaling
results back for experiments conducted over one year.



L526 Why are these scripts not available? It should be included so-as to make the
experiments reproducible. Where can one obtain the input met forcing?

Our apologies, We will include all relevant scripts needed to
generate the experiments.


