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Abstract. Large-scale hydrological models (LHMs) are commonly used for regional and global assessment of future water 

shortage outcomes under climate and socioeconomic scenarios. The irrigation of croplands, which accounts for the lion’s 

share of human water consumption, is critical in understanding these water shortage trajectories. Despite irrigation’s defining 

role, LHM frameworks typically impose trajectories of land use that underlie irrigation demand, neglecting potential 10 

dynamic feedbacks in the form of human instigation of and subsequent adaptation to water shortage via irrigated crop area 

changes. We extend an LHM, MOSART-WM, with adaptive farmer agents, applying the model to the Continental United 

States to explore water shortage outcomes that emerge from the interplay between hydrologic-driven surface water 

availability, reservoir management, and farmer irrigated crop area adaptation. The extended modeling framework is used to 

conduct a hypothetical computational experiment comparing differences between a model run with and without the 15 

incorporation of adaptive farmer agents. These comparative simulations reveal that accounting for farmer adaptation via 

irrigated crop area changes substantially alters modeled water shortage outcomes, with U.S.-wide annual water shortage 

reduced by as much as 42 percent when comparing adaptive and non-adaptive versions of the model forced with U.S. 

climatology from 1950-2009. 

1 Introduction 20 

Threats to water security are a paramount global concern, driven by growing demographic pressures on scarce water 

resources and a changing climate (Vorosmarty et al., 2000; Oki and Kanae; 2006; Vorosmarty et al., 2010; Schewe et al., 

2014; Liu et al., 2017; Huang et al., 2019). Regional and global water security outcomes are commonly framed in terms of 

depletion to groundwater (GW) and surface water (SW) resources (Wada et al., 2010) or through water shortage, defined as 

the gap between water resources availability and human water demand (Hoekstra et al., 2012; Brauman et al., 2016). In 25 

modeling studies evaluating water shortage, human water demand is commonly identified as the primary driver in 

undesirable future water security outcomes (Vorosmarty et al., 2000; Hejazi et al. 2015; Voisin et al. 2016; Hadjimichael et 

al., 2020; Yoon et al., 2021). 
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Of the activities underlying human water consumption, irrigation accounts for the lion’s share (Doll and Siebert, 2002; 30 

Brauman et al., 2016, Huang et al., 2018). Over the 20th century, the pace of irrigation expansion has been remarkable, with 

a six-fold increase in irrigated areas (Siebert et al., 2015). Opportunities for further irrigation expansion have been identified 

as a means to bolster agricultural productivity in the face of climate change (Elliott et al., 2014), though dwindling water 

supplies and inter-sectoral competition for water resources may curb this potential (Rosegrant et al., 2002). The role of dams 

on the enablement of irrigation has been a particular focus of several large-scale modeling analyses (Hanasaki et al., 2006; 35 

Fekete et al., 2010; Biemans et al., 2011; Voisin et al., 2013a; Haddeland et al., 2014). 

 

Despite irrigation’s defining role, existing large-scale hydrological modeling (LHM) frameworks for national to global 

assessment of water shortage (Vorosmarty et al., 2000; Doll et al., 2003; Hanasaki et al., 2008; Pokhrel et al., 2016; 

Sutanudjaja et al., 2018; Grogan et al., 2022) often exogenously impose trajectories of human land use that underlie 40 

irrigation demand in models, neglecting potential natural to human system feedbacks (Wada et al., 2017; Huang et al., 2019) 

such as human instigation of and subsequent adaptation to water scarcity (Turner et al., 2019; Dolan et al., 2021). Regional 

analyses for example indicate that drought conditions and reduced water supplies can lead to fallowing of land and reduction 

of irrigated areas, such as during the 2012-2016 California drought (Howitt et al., 2014). Evaluation of the interplay between 

surface water reservoir management and irrigation demand via the “reservoir effect” (Baldassarre et al., 2018) and similar 45 

dynamics is also precluded in large-scale water shortage analysis due to the lack of dynamic cropping adaptation in LHMs.  

While cropping “migrations” have recently garnered attention in the agricultural climate adaptation literature (Sloat et al., 

2020), the inability of LHMs to represent such dynamics risks potential misdiagnosis of water shortage outcomes. The 

representation of dynamic irrigated crop area adaptation in LHM frameworks for national to global scale water shortage 

analysis remains a major gap. 50 

 

Here we present a new modeling framework, WM-ABM, to evaluate water shortage outcomes that emerge from the 

interplay between climate-driven surface water availability, reservoir management, and farmer irrigated crop area adaptation. 

The integrated model extends a large-scale grid-based river routing, reservoir management, and water allocation model, 

MOSART-WM (Voisin et al, 2013b), with a multi-agent farmer model of crop choice developed using a positive 55 

mathematical programming (PMP) approach (Howitt, 1995). While the PMP is an optimization-based simulation model, the 

approach allows for automated calibration to observed cropping, economic, and hydrologic data, capturing realistic crop 

patterning of farms (Heckelei et al., 2012) and flexibly accommodating local, regional, or national calibration datasets. The 

model is deployed to conduct a hypothetical computational experiment at 1/8th degree (~12 km) spatial resolution over the 

continental United States (CONUS) (~50,000 grid cells),  60 

https://doi.org/10.5194/egusphere-2023-1604
Preprint. Discussion started: 20 July 2023
c© Author(s) 2023. CC BY 4.0 License.



3 

 

2 Methods 

2.1 Integrated Modeling Approach 

The large-scale spatially distributed modeling framework, WM-ABM, integrates a farmer cropping adaptation model into a 

large-scale river routing water management model.  For the latter, an agent-based model (ABM) approach is adopted with a 

representative farmer implemented for each model grid cell. The farmer agent crop selection and irrigation decisions are 65 

based on a Positive Mathematical Programming (PMP) approach, a method for calibrating agricultural production functions 

to observed data. Farmer decisions are based on water availability provided by the large-scale water management model, 

MOSART-WM, which simulates surface water availability for irrigation. The ABM and MOSART-WM models exchange 

information on an annual basis, with farmers looking to past simulated water availability from MOSART-WM at the onset of 

each calendar year and providing an updated water demand based on cropping decisions to MOSART-WM for the upcoming 70 

year. Following this annual update of demand, MOSART-WM proceeds on a daily timestep until the following calendar 

year, at which time farmers once again update their water availability forecasts, crop areas, and irrigation demand. A 

schematic illustrating a single year of the model run is shown on Figure 1. The framework is applied to the continental 

United States at 1/8th degree spatial and daily temporal resolution, with model output aggregated and reported on an annual 

and monthly basis. The two primary sub-models of the integrated model, the farmer cropping sub-model and the water 75 

availability sub-model, along with their coupling and various data inputs are described further in the following sections. 

2.2 Agent-based Model of Farmer Cropping Decisions 

The ABM entails agricultural agents, where each agent serves as an aggregated farm, representing all real-world farms that 

are located within a 1/8 degree grid cell (resulting in 53,835 representative farm agents over the entire model domain). The 

agents are involved in determining the types of crops to be grown over the 1/8 degree grid cell and the areas for each crop, 80 

taking into consideration the associated water requirements to meet the irrigation needs for the selected crop patterning. The 

agents further determine how much surface water and groundwater to use for irrigation based on the relative cost and 

availability of each water source. As the MOSART-WM model focuses on simulating surface water availability, 

groundwater availability for irrigation is assumed to remain steady at the availability and cost estimated for the baseline 

period. 85 

 

Farmers update their crop choices on an annual basis at the start of the calendar year based on an imperfect forecast of future 

surface water conditions for the coming year. For the current experiment, farms forecast future surface water availability for 

irrigation through tracking the state of hydrological proxies from MOSART-WM, which are then processed through a 

memory decay function (Tamburino et al., 2020) to determine a forecasted water demand for the following year. This annual 90 

demand forecast is further partitioned to individual months following the water use disaggregation method and dataset 

described in Moore et al. (2015), which utilizes a phenological approach to disaggregate annual irrigation water demand to 
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monthly demand at 1/8 degree resolution over CONUS. Specifically, farmers adopt the following steps at the start of each 

model year (January 1): 

 95 

1. Identify the average state of the hydrological proxy for the most recent simulated year (Ht). 

a. For farmers within 4 grid cells (~50 km) of a river impounded by reservoirs (see MOSART-WM section 

below), the hydrological proxy is the sum (and associated annual deviations) of simulated storage volumes 

across upstream reservoirs impounding this river. 

b. For farmers not relying on upstream reservoirs, the hydrological proxy is the river discharge in the 100 

coincident MOSART-WM grid cell. 

2. Determine an adjusted surface water demand (Demadj) by dividing the updated hydrological proxy by the 

hydrological proxy during the calibration period (Hb) and multiplying by the surface water demand during the 

calibration period (Demb) 

𝐷𝑒𝑚𝑎𝑑𝑗 = (𝐻𝑡 𝐻𝑏⁄ ) ∗  𝐷𝑒𝑚𝑏  105 

 

3. Process the adjusted surface water demand through a memory decay equation to calculate forecasted surface water 

demand (Demf) 

𝐷𝑒𝑚𝑓 = [(1 −  𝜇) ×  𝐷𝑒𝑚𝑓,𝑡−1] + (𝜇 ×  𝐷𝑒𝑚𝑎𝑑𝑗) 

 where: 110 

 µ - memory decay factor between 0 and 1 

 Demf,t-1 – surface water demand forecast from previous timestep (or Demb if initial  

timestep) 

 

The memory decay factor, µ, determines how much the farmer agent weighs distant versus recent experience (with higher 115 

values indicating a higher weighting of recent experience). As a default, the factor is set at 0.2 (which weights the most 

recent year by 0.20, the year before that by 0.18, and so forth) with different values explored during sensitivity analysis. A 

figure illustrating the effect of µ on the relative influence of previous year experience is included in the supplemental 

materials. 

 120 

For the implementation of adaptive crop choice and irrigation decision making under dynamic expectations of water 

availability, agricultural agents are assumed to behave as profit maximizing firms, implemented and calibrated using a 

positive mathematical programming (PMP) approach. The PMP approach, introduced by Howitt (1995) has been widely 

using in agricultural policy modeling studies (de Frahan et al., 2007; Heckelei et al., 2012). In the adopted PMP framework, 

an agricultural agent’s crop choice decisions, including types of crops and areas (and associated crop production inputs), are 125 
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framed as a quadratic optimization problem in which the farm agent maximizes profit subject to land and water availability 

constraints. Two “unobserved” cost terms (one linear and one quadratic) are added to the profit maximization formulation, 

with the coefficient for these terms calibrated such that the model reproduces observed land use under known historical 

conditions. Conceptually, these unobserved costs can abstractly represent a range of factors not explicitly accounted for in 

the agent’s profit maximization formulation, such as marketing, risk aversion, crop conversion, and transaction costs.  130 

 

The PMP procedure generally follows a two-phase process. In the first calibration phase, the coefficients for the unobserved 

cost terms are solved using a linear optimization such that observed crop areas are reproduced under known historical 

conditions (i.e., known conditions of production costs, prices, land availability, and water availability). The development of 

input data sets for this calibration phase are described further in the following sub-sections. In the second simulation phase, 135 

the calibrated optimization model is then used to simulate farm agent cropping decisions for scenarios which include 

changes in economic (e.g., costs and prices) and physical (e.g., water availability) conditions, in our case the simulation 

phase entailing the coupled MOSART-WM runs. Specifically, each agricultural agent seeks to maximize profit according to 

the following formulation: 

 140 

maximize: 𝑝𝑟𝑜𝑓𝑖𝑡 =  ∑ (𝑝𝑟𝑖𝑐𝑒𝑖 × 𝑦𝑖𝑒𝑙𝑑𝑖 × 𝑎𝑟𝑒𝑎𝑖𝑟𝑟𝑡𝑜𝑡𝑎𝑙𝑖) − (𝑙𝑎𝑛𝑑𝑐𝑜𝑠𝑡𝑖 ×  𝑎𝑟𝑒𝑎𝑖𝑟𝑟𝑡𝑜𝑡𝑎𝑙𝑖)𝑖 −
                                                   (𝛼𝑖 ×  𝑎𝑟𝑒𝑎𝑖𝑟𝑟𝑡𝑜𝑡𝑎𝑙𝑖) − (0.5 ×  𝛽𝑖  ×  𝑎𝑟𝑒𝑎𝑖𝑟𝑟𝑡𝑜𝑡𝑎𝑙𝑖

2) −
                                                   (𝑠𝑤𝑐𝑜𝑠𝑡 × 𝑎𝑟𝑒𝑎𝑖𝑟𝑟𝑠𝑤𝑖) − (𝑔𝑤𝑐𝑜𝑠𝑡 × 𝑎𝑟𝑒𝑎𝑖𝑟𝑟𝑔𝑤𝑖) 

 

subject to: ∑ 𝑎𝑟𝑒𝑎𝑖𝑟𝑟𝑡𝑜𝑡𝑎𝑙𝑖 ≤ 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑎𝑟𝑒𝑎𝑖  145 

                           𝑐𝑖𝑟𝑖 ×  𝑎𝑟𝑒𝑎𝑖𝑟𝑟𝑠𝑤𝑖 ≤ 𝑠𝑤𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

                           𝑐𝑖𝑟𝑖 ×  𝑎𝑟𝑒𝑎𝑖𝑟𝑟𝑔𝑤𝑖 ≤ 𝑔𝑤𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

                           𝑎𝑟𝑒𝑎𝑖𝑟𝑟𝑠𝑤𝑖 + 𝑎𝑟𝑒𝑎𝑖𝑟𝑟𝑔𝑤𝑖 = 𝑎𝑟𝑒𝑎𝑖𝑟𝑟𝑡𝑜𝑡𝑎𝑙𝑖  

where: 

 i – index for crop categories 150 

 price – unit farm-gate price which farmers receive for the sale of crop i ($/ton) 

 yield – amount of crop produced per land area of crop planted (ton/acre) 

 areairrtotal – total irrigated planted crop area (acres) 

 areairrgw – total planted crop area irrigated with groundwater (acres) 

 areairrsw – total planted crop area irrigated with surface water (acres) 155 

 cir – crop irrigation requirement (cubic meters / acre) 

 landcost – unit cost for land-based inputs excluding water ($/acre) 

 swcost – unit cost for surface water ($/acre) 

gwcost – unit cost for groundwater ($/acre) 

 α – first PMP calibration coefficient 160 

 β – second PMP calibration coefficient 
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 swavailability – expected surface water availability (as processed through MOSART-WM) 

gwavailability – expected groundwater availability (set at groundwater production volume estimated for the 

calibration period) 

 165 

The first term in the profit maximization formulation above represents the farmer’s revenues from crop sales, the second 

term represents known land-based costs for producing crops, the third and fourth terms are the calibrated unobserved crop 

production costs, and the fifth and sixth terms are costs for surface water and groundwater production for irrigation. The 

unobserved costs have a modulating effect on the degree of simulated crop divergence from historical patterns, tending to 

“pull” agents towards selecting crops observed in the calibration period while changes in modeled conditions (prices, 170 

resource availability, etc.) potentially “push” agents towards new crops. The data sources and processing for the agent 

calibration are described further in the “Data Sources and Processing” sub-section below. 

2.3 Farm Data for PMP Calibration 

The first stage of the PMP model development process involves calibration of agricultural agents’ unobserved cost 

coefficients over a historical period. Specifically, coefficients for the unobserved cost terms in the farm agents’ profit 175 

maximization formulation are calibrated such that the agents reproduce observed crop areas under a known set of historical 

prices, costs, and resource constraints (e.g., water and land availability). For the current effort, we aggregate farm agents at 

1/8th degree grid resolution over the continental United States, following the North American Land Data Assimilation 

System (NLDAS) grid. In view of future work evaluating global change conditions, we adopt crop categories from the 

Global Change Analysis Model (GCAM) (Calvin et al. 2019), a country-scale and global scale multisectoral partial 180 

equilibrium model used by the community to answer what-if science questions around energy-water-land interactions under 

policy, climate, and technology change. 

 

The PMP calibration procedure assumes that observed crop areas are the outcome of conditions representative of a specific 

period of time. As such, the PMP calibration benefits from identifying data sources that are available for a coincident time 185 

period. Given the large spatial extent of our model, data for the PMP calibration has been drawn from several disparate data 

sources that often do not precisely align in terms of the date of data collection. For our purposes, we assume that these 

various data sources are an averaged representation of the 2010-2013 historical period, though we recognize that the data 

sets are drawn from different years and that conditions may be variable within this time period. Exploring the sensitivity of 

PMP parameters and model behavior to the choice and uncertainty of these input datasets is an important future research 190 

direction. 

 

To calibrate the PMP model, estimates of the following data at 1/8 degree resolution for each GCAM crop category 

representative of the historical calibration period (2010-2013) are required: crop land area, crop prices, crop land-based 
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costs, water-based costs, crop yield, and proportion of cropped area that is irrigated. Development of these data sets based 195 

upon United States Department of Agriculture (USDA) and other agricultural data sources is described further in the sub-

sections to follow. We further note that we largely rely on nationally-available datasets for consistency in calibration input 

across the model domain, though the PMP automated calibration approach could readily accommodate other datasets (e.g., 

local agricultural datasets). 

2.3.1 Crop Land Area Data for PMP Calibration 200 

Observed cropped land area data for the continental United States used during the PMP calibration are estimated at 1/8 

degree resolution combining data from the 2013 USDA Farm and Ranch Irrigation Survey (FRIS) (USDA, 2013), which 

reports official cropped areas at the state-level, and the Cropland Data Layer (CDL) (USDA, 2019), which provides 

additional estimates of observed land cover classifications at 30-meter resolution across the continental United States on an 

annual basis since 2008. To further determine proportions of irrigated versus non-irrigated crops and for those crops that are 205 

irrigated, proportions of groundwater irrigated to surface water irrigated crops, we leverage the FAO’s global map of 

irrigated areas (Siebert et al., 2013). The approach generally relies on the USDA irrigation survey data for acres irrigated by 

crop at the state level, then distributes these total areas within a state at 1/8 degree resolution following the distribution 

observed in the CDL data. The FAO global map of irrigated areas is used to further distinguish cropped areas by the portion 

of area that is non-irrigated versus irrigated, and for the latter, the portion of area that is irrigated with surface water versus 210 

groundwater. 

 

As the FRIS, CDL, and GCAM crop categories differ, the first step in data processing involves developing a mapping 

between the crop categories for each source (included in the supplemental materials). Using the mapping, each FRIS and 

CDL crop category is assigned to a more general GCAM crop category.  Subsequently, the area of irrigated crops (following 215 

the GCAM crop categories), distinguished by surface water and groundwater irrigation, are calculated for each 1/8th degree 

grid cell using the following general sequence (for each State): 

 

1. Determine summed area of CDL pixels assigned to each crop category for each 1/8 degree grid cell. 

2. For each grid cell, determine the area of each crop category that is irrigated with groundwater, irrigated with 220 

surface-water, and non-irrigated based on percentages reported in the FAO global map of irrigated areas dataset.  

3. Sum the total irrigated area for all crop categories across the State. 

4. Apply a scaling correction factor (uniform for all 1/8 degree grid cells across the State) to the irrigated areas 

calculated in step 2, such that the total State-wide irrigated area (calculated in step 3) matches the irrigated areas 

reported in the USDA Farm Ranch and Irrigation Survey. 225 
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The full implementation and code is provided in the project meta-repository. The approach assumes that the USDA 2013 

FRIS dataset reported at the state-level is an accurate representation of total area of cropped land across the state, while the 

CDL maps which are based upon classification of satellite images effectively capture the spatial distribution of cropped area 

within a state (though are a less reliable indicator of total cropped area compared to the USDA irrigation survey) and the 

FAO global irrigation maps provide a reasonable spatial distribution of irrigated vs. non-irrigated and groundwater vs. 230 

surface water irrigated areas. 

In some cases, the method above results in total crop areas that exceed the total available land area of a 1/8 degree grid cell. 

For these cells, we set the available land area constraints in the farm-level optimization (see above) to this total observed 

crop area such that the PMP can reproduce the calculated total land areas but are unable to exceed them in simulation mode.  

For land areas constraints set for each farm, we assume that areas assigned to the following land use categories based upon 235 

the CDL remain fixed throughout the model run and are unavailable for cropping: “NotAvailable”, “RockIceDesert”, and 

“UrbanLand”. To determine the land area constraint that enters the PMP formulation for each NLDAS grid cell, we take the 

maximum of: 1) The total land area in the grid cell subtracted by the categories described above and 2) the total land area 

allocated to irrigated crops determined from the data processing workflow described above. 

2.3.2 Baseline Water Demand Estimation 240 

The water demand estimation for the baseline calibration period is calculated by taking observed crop-specific irrigated areas 

(see section above) and multiplying these by a region-specific irrigation requirement based on the 2013 USDA Farm and 

Ranch Irrigation Survey (FRIS) (USDA, 2013). Specifically, the average acre-ft/year of irrigation water applied per acre of 

land is obtained for each state on a crop-specific basis, which is assumed to be consistent with the crop irrigation 

requirement. For each 1/8 degree grid cell, the baseline demand is subsequently determined by multiplying the estimated 245 

irrigated crop areas with their associated crop irrigation requirements and summing across all crops. A table of the state-level 

irrigation requirements on a crop-specific basis is included in the project meta-repository. In an adaptive model simulation, 

agents are initialized with their baseline water demands, and subsequently adjust their water demands as they adapt to 

changing water availability conditions as the model steps through time. As the baseline water demands are based on actual 

applied water data, these demands are assumed to account for state-to-state and crop-to-crop variation in climatology, 250 

irrigation technology, water use efficiency, and other factors that influence crop irrigation requirements. 

2.3.3 Crop Prices, Costs, and Yields 

Crop prices and costs are obtained from the USDA Economic Research Service’s (ERS) commodity costs and returns 

datasets, which are produced by the USDA on an annual basis. Prices and costs in these datasets are aggregated to 9 ERS 

farm resource regions across the United States. Similar to the USDA irrigation survey, ERS crop categories are mapped to 255 

more general crop categories to enhance compatibility with other global models (as detailed in the supplemental materials). 
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Each NLDAS grid cell then uses the economic information of ERS farm region that it is located within. Specific economic 

price and cost data derived from the ERS datasets for each ERS farm region and GCAM crop category include: total cost of 

production ($ / acre), crop yield (bushels or tons / acre), the opportunity cost of labor ($ / acre), and the opportunity cost of 

land ($ / acre). For the acreage-based inputs, the ERS costs are generally estimated through surveys that ask the farmer how 260 

much was paid on a per acre basis for the various inputs, which we assume to be on a planted area basis. For empirical 

reasons we remove the USDA estimates of unpaid labor costs and imputed opportunity costs of land, as the PMP calibration 

terms are better able to capture the relevance and heterogeneity of these non-monetary production costs. The full cost tables 

are included as part of the data and code meta-repository included with this manuscript. 

2.3.4 Irrigation Water Sources and Costs 265 

Irrigation water sources and costs are derived from the 2013 FRIS database. The survey provides state-level estimates of 

irrigation water volumes assigned to three water source categories: 1) groundwater, 2) on-farm surface water and, 3) off-farm 

surface water. The FRIS database also provides state-level estimates of water purchase costs for off-farm surface water ($ / 

acre-ft) and average energy pumping costs for farms that utilize on-farm groundwater for irrigation ($ / acre-ft). These per 

unit water production costs are assigned to each NLDAS grid cell based upon the state that the cell falls within. On-farm 270 

surface water is assumed to be free. 

2.3.5 Partitioning Land and Water Based Costs 

To partition land and water based costs in our farm agent’s economic profit formulation, we adopt the following procedure 

reconciling data reported in the ERS commodity costs and returns dataset and the 2013 FRIS database (the latter which 

reports costs specifically for irrigation water supply), while also enforcing a minimum agent profitability threshold: 275 

1. Calculate perceived crop production costs as: 

𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑𝐶𝑜𝑠𝑡𝑛,𝑐 = 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑛,𝑐 − 𝑂𝑝𝑝𝐶𝑜𝑠𝑡𝐿𝑎𝑏𝑜𝑟𝑛,𝑐 − 𝑂𝑝𝑝𝐶𝑜𝑠𝑡𝐿𝑎𝑛𝑑𝑛,𝑐 

 

 where: 

 PerceivedCost – The perceived cost of production ($/acre) 280 

 TotalCost – The total cost of crop production as reported in 2013 FRIS ($/acre) 

OppCostLabor – The opportunity cost of labor for crop production as reported in 2013 FRIS ($/acre) 

OppCostLand – The opportunity cost of land for crop production as reported in 2013 FRIS ($/acre) 

 

2. Calculate the perceived profit for crops: 285 

𝑃𝑟𝑜𝑓𝑖𝑡𝑛,𝑐 = (𝑌𝑖𝑒𝑙𝑑𝑛,𝑐 ∗ 𝑃𝑟𝑖𝑐𝑒𝑛,𝑐) − 𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑𝑃𝑟𝑜𝑓𝑖𝑡𝑛,𝑐 

 

where: 

 Profit – The profit obtained from selling crops ($/acre) 
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 Yield – The yield of crop production as reported in 2013 FRIS (ton/acre) 290 

 Price – The farm gate price for selling crops as reported in 2013 FRIS ($/ton) 

 

3. Calculate an adjusted perceived cost of production (PerceivedCostAdj) which forces a minimum profit margin of  

10 percent. This step is applied such that all observed crop production is assumed to be profitable. 

 295 

4. Partition total crop production costs into land based costs and water based costs assuming: 

𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑𝐶𝑜𝑠𝑡𝐴𝑑𝑗 = 𝐿𝑎𝑛𝑑𝐶𝑜𝑠𝑡 + 𝐺𝑟𝑜𝑢𝑛𝑑𝑤𝑎𝑡𝑒𝑟𝐶𝑜𝑠𝑡 + 𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝑊𝑎𝑡𝑒𝑟𝐶𝑜𝑠𝑡 

 

where: 

 LandCost – Land based crop production costs ($/acre) 300 

 GroundwaterCost – Cost of groundwater based upon 2013 FRIS ($/acre) 

 SurfaceWaterCost– Cost of surface water based upon 2013 FRIS ($/acre) 

 

5. For instances in which the sum of groundwater cost (GroundwaterCost) and surface water cost (SurfaceWaterCost) 

exceeds the total cost of crop production as reported in 2013 FRIS, adjust the GroundwaterCost and 305 

SurfaceWaterCost to assume that they comprise the same proportion of the total cost of crop production as the 

United States average.  

2.3.6 Crop Irrigation Requirement and MOSART-WM Water Availability Bias Correction 

During the calibration phase of the PMP model, we assume that agent’s water availability constraints are non-binding (i.e., 

the irrigation water required to produce the observed surface-water irrigated crop area estimates were available during the 310 

calibration period). To account for potential inconsistencies between the estimated surface water irrigation demand (as 

estimated via the data sources and procedures described above) and VIC-MOSART-WM simulated irrigation water 

availability for the calibration period, we then apply a bias correction factor to the crop irrigation requirements on a cell-by-

cell basis such that total irrigation demand matches VIC-MOSART-WM simulated water availability for the historical 

calibration period. Such a treatment attempts to reconcile potential inconsistencies between estimated irrigation requirement 315 

calculated from the data assimilation process described throughout the sub-sections above and actual irrigation water 

availability modeled by VIC-MOSART-WM for the baseline period.  The additive cell-specific bias correction factor is 

subsequently applied in simulation mode for each simulated time period. This approach addresses potential biases in VIC-

MOSART-WM’s estimates of irrigation water availability for baseline conditions, and assumes these biases are maintained 

in the ABM simulations that depart from baseline conditions while relying on modeled results to estimate changes in water 320 

availability relative to the baseline condition. 
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2.4 Large-Scale Modeling of Water Availability 

Surface water availability that feeds into the farm agents’ cropping and irrigation decisions is dynamically provided by 

MOSART-WM. MOSART-WM is a spatially distributed large-scale water management model consisting of a physically 

based river-routing model (MOSART, Li et al., 2013) coupled with a generalized water-management model (WM, Voisin et 325 

al. 2013b) for seasonal to long term studies. In the river-routing component, daily surface runoff is an input that is first 

routed across hill slopes and then discharged into a tributary subnetwork within each grid cell before entering the main 

channel for transport across grid cells. WM has two components – reservoir operations which influence the seasonality of 

flow and river storage, and water supply management which allocates supply from reservoirs to spatially distributed 

demands across grid cells. Our CONUS set up of MOSART-WM model includes all (1,848) reservoirs with a storage 330 

capacity larger than 10 million m3, i.e. focusing on reservoirs that most influence river discharge. The reservoir database and 

locations are obtained from the Global Reservoir and Dam Database (GRanD) reservoir database (Lehner et al., 2011). For 

daily reservoir storage and release operations, MOSART-WM adopts generic operating rules that mimic monthly release and 

storage patterns based on the objective of the reservoir (e.g., flood control, irrigation, etc.), its physical characteristics 

(storage) and monthly climatologies of inflow and demand, and follows daily constraints for minimum environmental flow, 335 

and minimum and maximum storage volumes.  

 

The reservoir model builds upon generic operating rules first detailed in Biemans et al. (2011) and Hanasaki et al. (2006) and 

improved for multi objective operations (Voisin et al. 2013b). While called generic rules due to a common set of equations, 

each reservoir’s operating rules are individually parameterized. In brief, monthly target releases are pre-defined for different 340 

reservoir purposes (e.g., flood control, water supply, hydropower and navigation, and irrigation). For example, reservoirs 

with substantial storage and operated for flood control and irrigation tend to have a steady release following mean annual 

flow and monthly demand patterns which tends to drop reservoir storage just prior to the Spring freshet and fills up storage 

just before the irrigation season. Reservoirs with less storage capacity see their monthly inflow having more influence on the 

pre-release computation. These pre-release targets are then adjusted annually to account for inter-annual hydrological 345 

variability, thus accounting for drought conditions. The modeling framework also includes daily rules for initiating reservoir 

spilling when the maximum capacity of a reservoir is reached, as well as generic rules that are initiated to adjust releases in 

order for a reservoir to avoid dropping below a minimum storage threshold.  

 

The water supply allocation component includes a dependency database for associating spatially distributed daily water 350 

demands with various reservoirs (implemented using a general rule based on topography and distance), as well as an 

allocation algorithm that associates individual grid cells’ water demand to reservoirs with the most storage capacity and 

operated for water supply. A series of reservoirs is typically involved in supply management, and the demand from 

individual grid cells thus influences the releases from multiple reservoirs. The water supply (available withdrawal) from an 
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individual reservoir’s release is then further allocated daily, and is proportionally pro-rated through all dependent requesting 355 

grid cells when the cumulated water demand cannot be fully met. This conceptual approach differs from operational water 

management models with strict withdrawal locations, user priority rules, and complex operating rules. The generalized 

approach reasonably captures overall water scarcity at large-scales associated with water demand and supply management. A 

complete description of the MOSART-WM model, including detailed description of the generic reservoir operating rules, is 

provided in Voisin et al. (2013b) and the CONUS set up adopted for this effort is described in Hejazi et al. (2015). 360 

3 Design of Computational Experiment 

To evaluate the impact of farming cropping adaptation on model outcomes, the model is deployed to conduct comparative 

simulations at 1/8th  degree spatial resolution across CONUS with and without incorporation of the adaptive farmer agents. 

To capture a realistic sequence of hydrologic conditions, we conduct an experiment that mimics the 1950-2009 hydrological 

record, using simulated runoff derived with the VIC hydrology model (Liang et al., 1994). Henceforth, we number model 365 

years between 1-60, referring to a model year as MY and its associated historical hydrological calendar year as CY (e.g., MY 

1 is associated with CY 1950). The CY 1950-2009 period is specifically selected to capture a range of hydrologic conditions 

as VIC outputs are available over this time period for a simulation that has been calibrated and is considered a benchmark for 

the United States Bureau of Reclamation (USBR), as used in the Secure Water Act (see Reclamation, 2014 for additional 

details on VIC simulations and calibration results). 370 

 

To distinguish the effect of farmer adaptation to hydrological change on water shortage outcomes, we compare model results 

between a non-adaptive run and an adaptive run, herein referred to as the “baseline” and “adaptive” runs respectively. In the 

baseline run, the surface water and groundwater irrigated crop areas are exogenous and static (to the baseline 2010-2013 

conditions), as is common in the LHM literature. In the adaptive run, farmer agents are initialized using the baseline 2010-375 

2013 conditions and subsequently endogenously determine their irrigated cropped areas for 10 general crop categories on an 

annual basis based on dynamically updated expectations of surface water availability (both local runoff and reservoir 

storage). The water shortage analytics for both runs are then calculated using unmet demand for surface water (i.e., the 

amount of water demanded subtracted by the amount of water supplied). For the adaptive run, expected agricultural profits 

are also calculated for each year based on the farms’ cropping decisions. With the adaptive farmer agents online, we 380 

additionally conduct sensitivity runs where we adjust the farmer agent memory decay parameter allowing us to evaluate the 

impact of the strength of agent memory on water shortage outcomes. 

 

We note that the study is designed as a hypothetical experiment to evaluate the influence of farmer cropping adaptation on 

modeled water shortage outcomes rather than an attempt at a historical reconstruction of actual cropping and water use 385 

patterns, as other non-hydrological influences such as crop prices, areas equipped with irrigation, and crop-specific irrigation 
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requirements remain static over the model run. The hypothetical experiment is rather designed to identify the potential 

cropping adaptation response to hydrologically-driven changes in water availability (using the 1950-2009 record as a 

reasonable window of hydrological variability), holding all other influences constant.  

4 Results 390 

4.1 The Influence of Farmer Cropping Adaptation on Water Shortage Outcomes 

Accounting for farmer irrigated crop area adaptation substantially alleviates simulated annual water shortages, especially 

during periods of severe regional drought (Fig. 2, see Fig. S2 for monthly details). Water shortage alleviation due to 

adaptation is especially prevalent across the Western United States (Fig. 1b) and most evident during periods of drought 

(Fig. 2a), with the California Hydrologic Unit Code (HUC) 2 region by far exhibiting the largest shortage differences due to 395 

adaptation. For example, water availability conditions from MY 38-43 (CY 1987-1992) were one of the driest in California’s 

recorded climate history. From the onset of these dry conditions to their culmination, modeled results indicate that cropping 

adaptation increasingly reduces water shortages, reaching a decrease in average annual water shortage of ~107 m3/s when 

comparing the adaptive run to the baseline for MY 42 (monthly shortage decrease reaches a peak of 299 m3/s for August MY 

1992). Neglecting farmer adaptation potentially overestimates water shortage by over a factor of 2 for MY 42-43 (the CY 400 

1991-1992 drought years in California). Similar effects arise when accounting for farmer adaptation in response to the 

droughts in the Missouri region at the onset of MY 50 (CY 2000s), the Upper Colorado region in MY 27-28 (the CY 1976-

1977), and the Pacific Northwest region MY 38-43 (CY 1987-1992 Snake River low flow period). In the Missouri HUC 2 

region decreases in water shortage reach 2.4 m3/s in MY 53 (CY 2002) when comparing the adaptive run to the baseline (or 

32 percent of the shortage in the baseline run). In the Pacific Northwest region, water shortage is reduced by 15 m3/s in MY 405 

43 (or 66 percent of the shortage in the baseline run) due to the preceding 5 year low flow period (CY 1987-1992 low flow 

period in the Snake River basin). 

 

The evaluation of water shortages on a monthly basis (see supplemental materials) indicates that water shortage differences 

between the adaptive model runs are concentrated in the peak irrigation months in regions that regularly experience water 410 

shortage. In the California region for example, water shortage difference between the adaptive and baseline runs in July 

reaches a peak of 299 m3/s for MY 43 (~3x the annual MY 43 shortage difference rate). For the Pacific Northwest region, 

peak water shortage difference between the runs reaches 126 m3/s in MY 43 (~8x the annual MY 43 shortage difference 

rate). 

 415 

While accounting for farmer irrigated crop area adaptation primarily results in lower water shortages across the Western 

United States, there are also regions and periods in which cropping adaptation exacerbates simulated water shortage 

compared to non-adaptation. Increases in simulated water shortage are notable in the headwaters of the Middle Gila River 
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Basin in Arizona, the Bear Watershed northeast of the Great Salt Lake in Utah, and the southern end of the Central Valley in 

California. Such increases in peak shortages with adaptation are expected over regions which tend to experience sequences 420 

of increasing water availability (along with increasing farmer expectations of water availability), interspersed by low water 

availability years which result in more severe shortage due to farmers increased water availability expectations. We also note 

that lack of representation of long-distance inter-basin transfers may account for these increases in peak shortage for regions 

like the Southern Central Valley of California and the Middle Gila River basin in Arizona, a limitation which is addressed 

further in the discussions. 425 

 

Across the eastern United States (east of the Mississippi River), water shortage differences between the adaptive run and the 

baseline run are subdued, with significant changes isolated to southern pockets of the Texas Gulf, Lower Mississippi, and 

South-Atlantic Gulf regions. For both runs, the U.S. wide peak water shortage occurs in MY 28 (CY 1977), with a 364 m3/s 

peak for the baseline run and a 332 m3/s peak for the adaptive run, a 32 m3/s difference between the two. 430 

4.2 Farmer Cropping Adaptation via Acreage Changes versus Crop Switching 

In the most prominent regions of water shortage, the modeling experiment results indicate that farmers primarily adapt 

through the contraction of irrigated cropped areas with crop switching playing a secondary role. Figure 3a-d shows simulated 

changes in total SW-irrigated crop areas for four representative regions with prominent shortage (California, Missouri, 

Upper Colorado, Pacific Northwest), while Figure 3e-h assigns farms to crop adaptation categories based on the amount of 435 

crop adaptation simulated over the model period. For the latter, agents are assigned to one of four categories depending upon 

the level of crop adaptation activity: 1) “crop expansion/contraction” if the ratio of an agent’s annual minimum surface-water 

irrigated crop area is less than 80 percent of the annual maximum surface-water irrigated crop area, 2) “ crop switching” if 

the predominant crop’s share of the total crop makeup for any given agent (measured in terms of crop area) changes by at 

least 5 percent between any two years of the model run (which do not need to be consecutive), 3) “both” if the agent satisfies 440 

both criteria 1 and 2 above, and 4) “none” if the agent satisfies none of these criteria.   

 

Model results indicate that irrigated crop adaptation activity is heavily concentrated in the Western United States, with 

relatively subdued activity in the Eastern United States outside of the Lower Mississippi and South Atlantic-Gulf regions. 

Across the Western United States, irrigated crop adaptation largely takes the form of overall crop expansion and contraction, 445 

with notable hot spots of adaptation including the California Central Valley, Snake River Basin, and the Western Missouri 

regions.  

In California, total SW-irrigated cropped areas fluctuate substantially. Preceding the MY 38-43 drought (CY 1987-1992), 

SW-irrigated crop areas reach a maximum of 3.6M acres in MY 36 dropping to 2.5M acres by the end of the drought in MY 

42, a 31 percent decline in SW-irrigated areas over an 8-year period. Crop makeup (in terms of the percentage each crop 450 
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accounts for among all SW-irrigated crops) remains steady, with a slight shift away from rice crops (a decrease from 13.7 

percent of all SW-irrigated crops to 11.8 percent). Crop adaptation in response to shortage is pronounced in the Central 

Valley (Fig. 3e), with farmer agents predominately adapting to water shortage through crop area contractions (blue cells)  

In the Missouri region, widespread declines in SW-irrigated areas are simulated over the course of the first 10 years of the 

model run (CY 1950s drought) across all crop categories. During this period, SW-irrigated areas peak at 3.2M acres in MY 455 

4, decreasing 25 percent to 2.4M acres in MY 13. Over this period, the relative proportion of crops remains nearly stable, 

with slight decreases in fodder grass as a relative share of total SW-irrigated crops (dropping from 48 percent of SW-

irrigated crops in MY 4 to 43 percent in MY 13). The relative drop in fodder grass is accompanied by a relative increase in 

grains and miscellaneous crops. Additional major cycles of crop area contraction and expansion are observed over the 

simulation period (e.g., expansion starting around MY 45 and subsequent contraction starting around MY 50). The Upper 460 

Colorado similarly experiences a steady reduction of SW-irrigated areas over the first several years of the simulation, 

reaching a minimum during MY 27-28 (the CY 1976-1977 drought) followed by cycles of crop expansion and contraction 

during the latter half of the simulation period. 

For the Pacific Northwest region, marked contractions in SW-irrigated cropped areas as well as crop switching are simulated 

over the course of a major low-flow period in the Snake River basin from MY 38-43 (CY 1987-1992). From a SW-irrigated 465 

area of 4.3M acres in MY 38, SW-irrigated area drops to a minimum of 3.3M acres in MY 43, a 24 percent decline in area. 

Substantial crop switching is also simulated over this period, with fodder grass giving way to miscellaneous crop, root tuber, 

and wheat in terms of relative share of total SW-irrigated crop areas. 

Farmer adaptation to declining water availability via total SW-irrigated crop area contractions and crop switching lead to 

associated declines in expected agricultural profits, though these declines are typically more subdued than the associated 470 

decrease in expected water availability or SW-irrigated crop areas. For the California region over the MY 36-44 (CY 1985-

1993) period, expected agricultural profits (totaled over both SW and GW irrigated areas) decline from $1.84B dollars to 

$1.68B dollars (an 8 percent decline), in spite of a 31 percent decline in SW-irrigated areas. The subdued profit impact is 

attributable to both crop switching and groundwater availability remaining steady, which comprises a significant percentage 

of irrigation water needs in California. In the Missouri region over MY 4-13 (CY 1953-1962), agricultural profits decline 475 

from $2.53B in MY 4 to $2.50B in MY 13, a mere 1 percent decline in spite of a 25 percent decline in SW-irrigated crop 

areas, reflecting the predominant role of groundwater over surface water for irrigation water in this region. In the Pacific 

Northwest region, expected agricultural profits decrease from $1.60B in MY 38 (CY 1987) to $1.54B in MY 46 (CY 1995), 

a 5 percent decline associated with a 24 percent decline in SW-irrigated area. 
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4.3 The sensitivity of water shortage outcomes to farmer agent’s memory of water availability 480 

Figure 4 indicates the annual average shortage percentage (shortage divided by demand) for the baseline run (blue dots) and 

four sensitivity runs with varying agent memory parameterizations (red dots) for several HUC 2 watersheds. The model 

years are ranked in descending order by year of shortage (as simulated in the baseline run) to evaluate the impact of agent 

memory for varying relative levels of shortages. The four sensitivity runs serve to assess the robustness of results to varying 

strength of agent’s memory to past water availability, with the adaptive run described in the results above (µ02) colored in 485 

the darkest shade of red and indicating relatively “long” memory, while lighter shades of red indicate decreasing strength of  

agent memory (i.e., increased agent reactivity to more recent experiences of water availability with higher values of µ).  

Across regions, shortage in the baseline run typically falls on one extreme of the adaptive runs for a given year (i.e. for a 

given year and region, the four adaptivity runs are either consistently higher or consistently lower than the baseline run, with 

some exceptions). The spread in shortage between the adaptive runs for any given year and region is also typically well 490 

constrained, with the largest spread between the sensitivity runs occurring during the higher shortage years in the California, 

Upper Colorado, and Pacific Northwest regions. These findings indicate that the comparative evaluation between the 

baseline and adaptive runs (in terms of the direction of water shortage change between the two runs) is largely robust to 

assumptions regarding the strength of agent memory, though the parameterization of agent memory can control the 

magnitude of the shortage difference between the baseline and adaptive runs. 495 

Comparing the baseline results versus the adaptive results, we further observe that the largest reductions in water shortage 

due to adaptation tend to occur in the years of highest of water shortage. California provides the most prominent example, in 

which the shortage difference between the baseline run and the adaptive runs is readily apparent during the 10 highest years 

of shortage (i.e., the first 10 years on the x-axis of Figure 4). Beyond the 15th highest shortage year in California, this pattern 

reverses with the adaptive runs typically indicating slightly higher shortages than the baseline run. Similar patterns are 500 

observed for the Pacific Northwest and Upper Colorado regions. For the Missouri and South Atlantic-Gulf Regions, agent 

adaptation tends to lead to higher shortages, irrespective of the degree of shortage in any given year. 

5 Discussion and Conclusion 

We demonstrate the representation of farmer irrigated crop area adaptation to changing water availability in a large-scale 

hydrological modeling framework, with farmer agents’ adaptivity specified using a positive economic calibration approach. 505 

The modeling framework allows for the evaluation of dynamic feedbacks between irrigated cropping areas, reservoir 

management, and water availability, and reveal that these interactions strongly shape national-scale water shortage 

outcomes. In a comparative hypothetical experiment conducted for all of CONUS, annual water shortages decrease by as 

much as 42 percent when accounting for farmer cropping adaptation, with differences due to adaptation even further 

pronounced in regions prone to water shortage such as California (where neglecting farmer adaptation results in an 510 
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overestimate of water shortage by a factor of 2 during the year of highest shortage). Our hypothetical modeling experiment 

indicates that traditional large-scale modeling efforts that neglect adaptive cropping adaptation may be liable to misdiagnosis 

of water shortage outcomes. While farmer adaptation to decreasing surface water availability is accompanied by an 

associated loss in expected agricultural profit, this loss is buffered by the ability to switch crops and reallocate groundwater 

to more profitable crops to compensate for surface water shortages. 515 

 

Particularly in agricultural hotspots with highly variable or declining water availability, the assumption of non-adaptive 

behavior most common in LHMs leads to overestimation of water shortages in our experiment. By isolating the effects of 

changing water availability on farmer cropping through comparing hypothetical adaptive and non-adaptive runs, our findings 

suggest that adaptation can significantly alleviate water shortage and put into question the severity of water shortage 520 

outcomes indicated by global water security analyses that neglect such adaptation, especially for regions such as the Western 

U.S. in which water availability is expected to decline due to climate change (Dettinger et al., 2015). For such regions with 

declining water availability trends, representative farm agents systematically overestimate water availability when they do 

not adapt their cropping based on changing hydrological conditions, resulting in higher shortages.  

 525 

While initial sensitivity tests indicate that our results are robust to assumptions regarding agent memory of water availability, 

additional uncertainty characterization and sensitivity experiments on agent behavioral formulation and parameterization 

offer a promising direction for future research. Such uncertainty analysis could either be conducted at the level of the source 

PMP calibration data inputs, at the level of the PMP parameters themselves, or via alternate structural representations of 

farmer cropping decisions (Yoon et al., 2023). For example, estimation of the PMP parameters using alternative data sources 530 

or implementation in a data assimilation framework (Maneta and Howitt, 2014) could be conducted to further explore the 

implications of agent parameterization on water shortage outcomes. 

 

While our study focuses on irrigated crop area changes, the modeling framework could further be extended to consider 

additional farm-level adaptive mechanisms and considerations such as deficit irrigation, adoption of technological 535 

innovations (e.g., crop varietals, improved irrigation technologies, etc.), and costs for crop switching. New typologies for 

representing such adaptive action in human systems models (Yoon et al, 2022) could serve to design and organize such 

formulations. The hydroeconomic formulation of farmer agent crop choices could further enable the investigation of 

economy-wide, multi-sector interactions. For example, future research could link WM-ABM with computable general 

equilibrium or partial equilibrium models, exploring economy-wide consequences and feedbacks of water shortage induced 540 

cropping adaptation (in the fashion of Turner et al., 2019; Dolan et al., 2021; Basheer, et al., 2021) that account for the 

hydrological, water management, and farmer processes represented in WM-ABM. Such feedbacks may serve to further alter 

water shortage induced crop area impacts (e.g., via crop price signals that shift crop production to more water rich areas). 
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We further note additional key limitations of the current modeling framework. The ability of farms to increase groundwater 545 

extraction in response to surface water shortage, as well as changes in the availability and cost of groundwater (e.g., due to 

depletion of groundwater in stressed aquifers) are not currently represented in our modeling framework. These potential 

responses may either mute the simulated water shortage changes (e.g., instances in which farmers increase groundwater 

pumping to accommodate surface water shortage) or heighten them (e.g., instances in which increasing groundwater 

depletion results in even higher shortages and ensuing adaptive responses).  550 

 

The absence of inter-basin water transfers in the modeling framework further limits the analysis, with some instances of 

increased shortage with adaptation (e.g., in the southern California Central Valley and the Middle Gila River basin which are 

recipients of large inter-basin transfers in reality) appearing to be artifacts of this modeling limitation. In these regions, farms 

in the model base expectations of water availability on local runoff, while in reality they are able to receive water from 555 

distant water sources via inter-basin water transfers. We note that inter-basin transfers are largely absent in LHM 

applications (Wada et al., 2017) due to data limitations at large scales, and suggest that the development and incorporation of 

national (e.g., Siddik et al., 2023) and global inter-basin transfer datasets offers a promising next step for continued LHM 

improvement. 

 560 

The hypothetical experiment presented here rather intentionally focus on isolating farmer cropping response to surface water 

availability changes, tracing complex dynamic feedbacks between hydrological variability, surface water reservoir 

management, farmer crop choice, and irrigation demand. Our findings indicate that these interactions can shape the 

geographic distribution of crops and alter the magnitude of simulated water shortages, with the coupled MOSART-WM and 

farm ABM modeling framework providing a foundation from which to account for dynamic cropping adaptation amidst 565 

climate and socioeconomic change in future large-scale water security assessments. 
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 725 

Figure 1: A model schematic of WM-ABM distinguishing between exogenous inputs (orange), model processes (green/blue), and model 

outputs (brown). The model processes are further distinguished between the two interacting sub-models that constitute the integrated 

model: the farmer cropping sub-model based on PMP and the water availability sub-model based on MOSART-WM. For any given year, 

farms first update water availability expectations (using dynamic flow and storage states provided from the water availability sub-model) 

and make crop choice decisions. These decisions result in updated irrigation demands which are fed to the water availability sub-model, 730 
which subsequently routes surface water through the river network, determines reservoir releases, and allocates water supply to demand. 

Model outputs from various processes are indicated in brown, with the granularity of model output described in brackets. 
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Figure 4. A model schematic distinguishing between exogenous inputs (orange), model processes (green/blue), and 
model outputs (brown). The model processes are further distinguished between the two interacting sub-models that 
constitute the integrated model: the farmer cropping sub-model based on PMP and the water availability sub-model 
based on MOSART-WM. For any given year, farms first update water availability expectations (using dynamic flow and 
storage states provided from the water availability sub-model) and make crop choice decisions. These decisions result in 
updated irrigation demands which are fed to the water availability sub-model, which subsequently routes surface water 
through the river network, determines reservoir releases, and allocates water supply to demand. Model outputs from 
various processes are indicated in brown, with the granularity of model output described in brackets.
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Figure 2: Comparative water shortage results from a hypothetical comparative model experiment mimicking 1950-2009 hydrology. (a) 

Shows the annual difference in water shortage between the adaptive and baseline versions of the model (annual water shortage in the 735 
adaptive run subtracted by annual water shortage in the baseline run), aggregated for four HUC 2 regions. (b) Identifies the peak annual 

water shortage (across all model years) for farm agents across the western United States for both the adaptive and baseline runs. The ratio 

of peak annual water shortage of the adaptive and baseline runs (i.e., peak annual water shortage of the adaptive divided by that of the 

baseline) is shown on the figure. For both (a) and (b), blue colors indicate reduced shortages with adaptation and orange colors indicate 

increased shortages with adaptation. Accounting for farmer cropping adaptivity results in substantial alterations in simulated water 740 
shortage across the Western United States, with a strong tendency towards mitigation of shortage. During extended periods of drought 

conditions in the California, Missouri, Upper Colorado, and Pacific Northwest regions, shortage is substantially reduced when taking 

adaptation into account (a). Peak annual shortage across the modeled time period is regularly only half of that experienced in the baseline 

run when accounting for adaptation (b). While shortage is curbed in most areas due to adaptation, some areas in the Great Basin, 

California, and Lower Colorado show an increase (indicated with orange colors). 745 
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Figure 3: Farmer cropping results from a hypothetical comparative model experiment mimicking 1950-2009 hydrology. (a-d) Shows 

changes in surface-water irrigated acreages by crop for the adaptive model run, aggregated for the four HUC 2 regions of interest shown 

(California, Missouri, Upper Colorado, and Pacific Northwest). (e-h) classifies individual farm agents in the adaptive model run with 

significant irrigation into one of four categories based upon their level of cropping adaptation (classified over the entire model period): 750 
those agents that exhibit significant expansion/contraction of crops are indicated in blue, those that exhibit significant switching behavior 

between crops in green, and those that exhibit both behaviors in purple (see Methods for additional details on classification). Farm agents 

that experience significant water shortage, likewise evaluated over the entire model run, are indicated with a red outline. Expansions and 

contractions in irrigated cropped areas are simulated in response to major hydrological events (a-d). Farmer agents in the model largely 

adapt (e-h) to drought through crop contraction (blue cells with red outline), whereas crop switching (green cells) plays a less prominent 755 
role and is more prevalent in non-shortage areas. Some agents do not adapt in spite of shortage (orange cells w/ red outline). 

 

 

Figure 4: Farmer agent sensitivity runs with the annual water shortage percentage (defined as unmet water demand divided by water 

demand) aggregated for six HUC 2 regions and ranked by year of shortage. For each year, results from five different experiments are 760 
shown, the baseline run (indicated in blue) and four adaptive runs in which the strength of agent memory as defined through a memory 

decay factor µ (see methods for details) is adjusted between 0.2-0.8 (indicated in shades of red, with lighter shades of red indicating 

shorter agent memory, i.e., higher reactivity to more recent events). The largest reductions in water shortage due to farmer cropping 

adaptation occur in the highest shortage years, as most notably evidenced by the difference in the baseline and adaptive shortages for the 

highest shortage years (left sides of the charts) in the California, Pacific Northwest, and the Upper Colorado regions. Results are largely 765 
robust across agent memory sensitivity runs, with the general direction of difference between the baseline run (blue) and the agent 

adaptation runs (shaded red) usually remaining consistent (i.e., the blue dot usually lies on one end of the shaded red dots for any given 

region/year). 
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the formulation of their water availability forecasts. Average total percent shortages (shortages divided by demand) are shown for 6 

HUC-2 regions in which shortage and crop adaptation is prevalent, plus one east coast region (South Atlantic-Gulf). Results are 

largely robust across sensitivity runs, with the general direction of difference between the baseline run (blue) and the agent 

adaptation runs (shaded red) usually remaining consistent (i.e., the blue dot usually lies on one end of the shaded red dots for any 

given region/year). 
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