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Short summary. 250 m estimates of snow water equivalent in the Western US and Canada are improved by assimilating 1 

observations representative of a snow-focused satellite mission with a land surface model. Here, by including a gap-filling 2 

strategy, snow estimates could be improved in forested regions where remote sensing is challenging. This approach improved 3 

estimates of winter maximum snow water volume to within 4%, on average, with persistent improvements to both spring snow 4 

and runoff in many regions. 5 
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Abstract. Snow is a vital component of the Earth system. Yet, no snow-focused satellite remote sensing platform currently 16 

exists. In this study, we investigate how synthetic observations of snow water equivalent (SWE) representative of a synthetic 17 

aperture radar remote sensing platform could improve spatiotemporal estimates of snowpack. We use a fraternal twin 18 

Observing System Simulation Experiment, specifically investigating how much snow simulated using widely used models and 19 

forcing data could be improved by assimilating synthetic observations of SWE. We focus this study across a 24°-by-37° 20 

domain in the Western United States (US) and Canada, simulating snow at 250 m resolution and hourly timesteps in water-21 

year 2019. We perform two data assimilation experiments, including: 1) a simulation excluding synthetic observations in 22 

forests where canopies obstruct remote sensing retrievals, and 2) a simulation inferring snow distribution in forested grid cells 23 

using synthetic observations from nearby canopy-free grid cells. Results found that, relative to a nature run, or assumed true 24 

simulation of snow evolution, assimilating synthetic SWE observations improved average SWE biases at maximum snowpack 25 

timing in shrub, grass, crop, bare-ground, and wetland land cover types from 14%, to within 1%. However, forested grid cells 26 

contained a disproportionate amount of SWE volume. In forests, SWE mean absolute errors at the time of maximum snow 27 

volume were 111 mm, and average SWE biases were on the order of 150%. Here, the data assimilation approach that estimated 28 

forest SWE using observations from the nearest canopy-free grid cells substantially improved these SWE biases (18%) and 29 

the SWE mean absolute error (27 mm). Simulations employing data assimilation also improved estimates of the temporal 30 

evolution of both SWE and runoff, even in spring snowmelt periods when melting snow and high snow liquid water content 31 

prevented synthetic SWE retrievals. In fact, in the Upper Colorado River region, melt-season SWE biases were improved from 32 

63% to within 1%, and the Nash Sutcliffe Efficiency of runoff improved from –2.59 to 0.22. These results demonstrate the 33 
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value of data assimilation and a snow-focused globally relevant remote sensing platform for improving the characterization of 34 

SWE and associated water availability. 35 

1 Introduction 36 

    Snow plays important roles in the Earth system by regulating global temperatures and cooling the land surface because of 37 

its reflective properties (Barry, 2002). Snow is also a major source of water storage for many regions, especially in areas that 38 

rely on snowpack to sustain water resources during the dry season. In fact, it has been estimated that more than 2 billion people 39 

around the world are reliant on seasonal snow melt for their water supply (Barnett et al., 2005). Snowpack is the natural 40 

'integrator' of climatic conditions and offers more predictability of water availability than variables with shorter memory, such 41 

as precipitation and streamflow (Terzago et al., 2023). Accurate wintertime estimates of snowpack are therefore critical for 42 

water management and agricultural planning (Koster et al., 2010). For example, in the Western US, where a vast majority of 43 

streamflow originates from snow (Li et al., 2017), it is common practice to use the April 1 snowpack, the historic date of 44 

maximum snowpack in that region, for developing water supply estimates for later in the season. However, climate change 45 

impacts have led to increased variability in the snow seasonality (Livneh and Badger, 2020), with warmer temperatures 46 

reducing the amount of snow accumulation and seasonal snow storage, and advancing the timing of the spring melt. Therefore, 47 

accurate characterization of winter snowpack and its variability is critically important for making informed water supply 48 

quantifications.  49 

    In recognition of the critical need to have spatially distributed measurements of snow mass, there have been several efforts 50 

to measure and estimate SWEfrom many different remote sensing platforms in the past several decades. Airborne lidar systems 51 

have been able to provide high resolution, accurate measurements of snow mass (Painter et al., 2016), but this approach has 52 

significant logistical barriers for global and frequent snow measurements, and the hydrological utility of a practical spaceborne 53 

lidar platform is limited (Kwon et al., 2021). In the past three decades, snow depth and SWE estimates have been derived from 54 

passive microwave remote sensing measurements, but these measurements are at coarse spatial resolutions, and have limited 55 

accuracies over deep and wet snow, complex terrain, and dense vegetation (Derksen et al., 2014; Foster et al., 2005). Active 56 

microwave remote sensing instruments such as Synthetic Aperture Radars (SARs) can provide finer spatial resolution 57 

measurements to help resolve some of these issues. For example, C-band SAR observations from the Sentinel-1 constellation 58 

have shown promise in obtaining high quality, moderate resolution (1km) observations in deep snow environments (Lievens 59 

et al., 2019). A volume scattering radar approach, using X- and Ku-band SAR, has also been demonstrated in several airborne 60 

campaigns and proposed for multiple snow mission concepts (Yueh et al 2009, Rott et al 2010) because of its potential to 61 

achieve high resolution and global coverage over a range of snow depths. While these microwave instruments can observe in 62 

night-time and cloudy conditions, they are still limited over areas with dense vegetation (Tsang et al., 2022). Further, all 63 

spaceborne instruments have inherent coverage gaps due to their orbital and revisit configurations. 64 
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    To overcome these limitations, modeling and data assimilation systems are needed that can extend the coverage and utility 65 

of available measurements to areas, times, and variables that are not directly observed. In this article, we present a novel 66 

approach through data assimilation, designed specifically to improve the usefulness of spaceborne SWE retrievals over forested 67 

areas. The approach is demonstrated using an observing system simulation experiment (OSSE; e.g., Cho et al., 2023; Errico et 68 

al., 2007) which is an approach used to formally assess the impact of the data to be collected from an anticipated mission. 69 

Several prior studies have examined the use of OSSEs for snow mission studies (Garnaud et al., 2019; Kwon et al., 2021; 70 

Wrzesien et al., 2022). Among them, SAR-focused OSSEs have been conducted by Garnaud et al. (2019) and Cho et al. (2023) 71 

to assess the utility of hypothetical snow observations. Garnaud et al. (2019) focused on a Ku-band SAR to quantify trade-offs 72 

between sensor configurations (e.g., various spatial resolutions and revisit frequencies) with retrieval algorithm accuracy and 73 

SWE performance in southern Quebec, Canada, where temperate forests are dominant with shallow and moderate snowpack 74 

conditions. Cho et al. (2023) conducted a X-/Ku-band SAR OSSE with an achievable sensor configuration (1 km spatial 75 

resolution, 7-day revisit frequency, and orbital configurations) focusing on mountainous environments in a western Colorado 76 

and testing the degree to which various SAR retrieval capabilities in different forest densities and snow volumes could improve 77 

observationally-based SWE estimates.  Here, we build on this prior research by developing an OSSE covering the entire 78 

western US and portions of Canada. We simulate finer-scale (250 m) synthetic SWE observations that could be provided from 79 

a future X-/Ku-band SAR mission, which are then incorporated within a land surface model through data assimilation to assess 80 

their capability to improve snow state estimates, and the integrated impact on hydrologic states in space and time. The 81 

assimilation experiments here are conducted with and without a novel strategy to extend SAR-based SWE estimates from 82 

unforested regions into forested landscapes where SAR retrievals of the snowpack may be obscured by the forest canopy. 83 

    The primary contribution of this paper is the development of a viable strategy for extending hypothetical remotely sensed 84 

SWE retrievals from a volume-scattering X-/Ku-band SAR satellite mission into difficult-to-observe forest landscapes. We 85 

specifically focus on addressing the following research questions: 1) what is the added utility of spaceborne active remote 86 

sensing SWE retrievals (assuming retrievals meet currently defined mission requirements) across the Western US and Canada? 87 

2) how much can spatiotemporal representations of SWE be improved by focusing on developing observationally based snow 88 

estimates over areas with dense vegetation, where SAR sensors may be limited? 3) How much added hydrological utility can 89 

be obtained through spaceborne active remote sensing measurements and data assimilation approaches, particularly when 90 

coverage over forested areas is improved?  91 

    Section 2 describes the study domain and OSSE modeling setup. This is followed by the description of the results (Sect. 3), 92 

a discussion of the findings (Sect. 4), and the study’s conclusions (Sect. 5).  93 

2.1 Study domain and OSSE setup 94 
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    An OSSE is used to assess the value of the data to be collected from an anticipated mission. OSSEs often consist of the 95 

following steps: 1) Developing a “nature run” that uses a state-of-the-art model employed with the best available boundary 96 

conditions (Sect. 2.1); 2) using the nature run to generate simulated remote sensing observations, accounting for sources of 97 

sensing limitations, sensing uncertainties, and orbital configurations (Sect. 2.2); 3) incorporating the simulated observations 98 

(often through data assimilation, Sect. 2.3) in a separate, “open loop” model configuration with accuracies representative of 99 

common modeling biases and uncertainties; and 4) evaluating how much the simulated remote sensing data improve the open 100 

loop model performance relative to the nature run. In addition to this OSSE approach, this study goes further by 1) testing the 101 

degree of improvement to both the remotely-sensed variable (i.e., SWE) and the resulting changes to land surface runoff in 102 

snowy covered regions, and 2) developing two separate data assimilation experiments, one which masks simulated 103 

observations in forested pixels where SAR retrievals may be most challenging, and the other including a novel approach for 104 

inferring SWE in forested pixels using simulated observations from nearby, unforested pixels (Sect. 2.4). The details of the 105 

OSSE setup used in this study are described in more depth throughout this section. 106 

    We employ the NASA Land Information System (LIS; Kumar et al., 2006), an infrastructure for high performance, 107 

ensemble-based land surface modelling and data assimilation to enable this OSSE.  LIS encompasses several advanced land 108 

surface models that can simulate terrestrial water, energy, and carbon balances and related states such as soil moisture, land 109 

surface temperature, and SWE, among others. These include different versions of community models such as Noah (Ek et al., 110 

2003), Variable Infiltration Capacity (VIC; Liang et al., 1994), Catchment (Koster et al., 2000), Joint UK Land Environment 111 

Simulator (JULES; Best et al., 2011), and Noah-MP (Niu et al., 2011). The LIS framework also includes support for specialized 112 

models that are designed to provide more detailed representations of certain land surface processes (e.g. snow), while enabling 113 

interaction with LSMs that solve for water, energy, and carbon balances at a macroscale. For example, the advanced snow 114 

physics model called SnowModel (Liston and Elder, 2006) has been incorporated within LIS in a manner that allows coupling 115 

to existing LSMs. This structure allows the use of the advanced snow physics from SnowModel while leveraging the existing 116 

process schemes (e.g., sub-surface, groundwater, canopy) within the LSMs. Here we utilize these unique capabilities for 117 

enabling the OSSE integrations. .  The study is conducted over a large domain (Fig. 1), covering the Western US and southern 118 

Canada from 31-55N and 93-130W at a 250 m spatial resolution. As shown in Fig. 1, this modeling domain encompasses a 119 

broad range of vegetation types, topographical regimes and water resources regions of the Pacific Northwest, California, Great 120 

Basin, and Upper Colorado. 22% of the domain is covered by forests, with grasslands, croplands, and shrublands accounting 121 

for 20%, 23%, and 26% of the domain, respectively. Forests dominate the coverage of areas with significant snowpack, 122 

occupying 58% of regions that are in the mid-elevation range of 2500-3500m, and 15% of the areas with elevations over 123 

3500m. From a modeling perspective, the domain extent of Fig. 1 (~83 million land grid points) is computationally challenging . 124 

The scalable high performance computational and parallel inputting and outputting capabilities of NASA LIS were leveraged 125 

to enable these simulations. A multiprocessor configuration involving approximately 1000 processors was employed to 126 

facilitate large model simulations for the nature run, open loop simulation, and two simulations with data assimilation.  127 
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128 
Figure 1:  Maps of the land and vegetation classes (A; left panel) and elevation (in meters) (B; right panel) used in the 129 

simulations. Outlines and labels in the left panel indicate regions discussed in the Results (Sect. 4). Red contours in the r ight 130 

panel indicate hydrologic regions used in the analysis. 131 

     Simulations in this study are conducted by forcing LIS LSMs with the surface meteorology from NASA’s Modern Era 132 

Retrospective Reanalysis, version 2 (MERRA-2; Gelaro et al., 2017) and ECMWF Reanalysis, version 5 (ERA5; Hersbach et 133 

al., 2020) products. The model integrations were conducted for the water year 2019 (September 2018 – September 2019), 134 

which was a wetter than normal year based on the long-term average meteorological conditions over this domain.  135 

    The open loop and data assimilation integrations performed in this study are conducted using the Noah land surface model 136 

with multi-parameterization (Noah-MP) version 4.0.1 (Niu et al., 2011) and forcing from ERA5.The Noah-MP model evolved 137 

from the Noah LSM, with multiple options for various land surface processes. It represents energy, water, and carbon balances 138 

at the land surface by accounting for processes related to infiltration, evaporation, transpiration, runoff generation and 139 

groundwater recharge. A TOPMODEL-based runoff model (Beven et al., 2021) is used to calculate surface runoff and 140 

groundwater discharge. Options for prognostic vegetation dynamics models that represent the growth and senescence of 141 

vegetation are also available within Noah-MP. A two-stream radiative transfer approach is employed to calculate surface 142 

energy processes. Finally, a multilayer snowpack model (with up to three layers) is used to account for snow melt 143 

metamorphisms, compaction by overlying snow, sublimation of canopy intercepted snow, and snowmelt-refreeze cycles within 144 

Noah-MP (Niu and Yang, 2004).  145 

    Snow states like snow depth and SWE were also modeled across the Western US (domain highlighted in Fig. 1) at 250 m 146 

resolution and hourly time steps using a state-of-the-art and physically based single-layer snow model(named SnowModel; 147 



 

6 

 

Liston and Elder, 2006), provided forcing from MERRA-2 with LIS-provided lapse rates and topography-based meteorological 148 

downscaling approaches, like incoming shortwave corrections based on topographical shading (Cosgrove et al., 2003; Kumar 149 

et al., 2013). SnowModel has seen widespread use in the snow community, demonstrating the capability to resolve snow 150 

evolution in a variety of landscapes and complex snow processes like the redistribution of snow via wind, and the resulting 151 

impact on snow distribution, melt season snow duration, glacier mass balance, and snow habitat for species like polar bears 152 

and Dall sheep (Hiemstra et al., 2002; Liston et al., 2016; Mahoney et al., 2018; Mernild et al., 2017; Sturm and Wagner, 153 

2010). In addition to wind redistribution, snow evolution within SnowModel accounts for a wide set of snow processes, 154 

including snow sublimation, snow grain size evolution, solar topographical shading, canopy shading, and canopy snow 155 

interception. Through the coupling within LIS, Noah-MP snow states and the resulting snow-driven runoff were updated using 156 

the SnowModel outputs at hourly timesteps for each grid cell.  157 

    Preliminary research has shown that relative to Noah-MP, LIS simulations coupling Noah-MP with SnowModel have 158 

improved the volume and spatial distribution of simulated snow depth and SWE (Arsenault et al., 2021; Wrzesien et al., 2022). 159 

Therefore, the coupled SnowModel and Noah-MP model was a prime candidate for the “nature run” in this study, or the 160 

simulation most representative of the true underlying spatiotemporal snow states from which simulated observations were 161 

derived (Sect. 2.2), and the assimilated model was compared against. Here, the nature run and open loop simulations detailed 162 

above were compared to a widely-used Western US snow reanalysis product (Fang et al., 2022) to ensure that 1) the nature 163 

run exhibited reasonable model accuracy, and 2) the departure between the open loop simulation and nature run are 164 

representative of common regional, continental, and global modeling efforts (Figure S1 and S2). The OSSE developed for this 165 

study is a “fraternal twin” OSSE, wherein two different models are used to simulate snow in the open loop (Noah-MP) and 166 

nature run (SnowModel) simulations. This approach is  selected since “identical twin” OSSEs, which use the same model, can 167 

result in less divergence in model states and information content, biasing the degree of model improvement that could come 168 

from assimilating an observation (e.g., Yu et al., 2019). More information on the difference between the open loop and nature 169 

run models can be found in Table S1. 170 

2.2 Observation simulator 171 

.   Synthetic SWE retrievals at 250 m spatial resolution, representative of a hypothetical X- and Ku-band SAR mission, are 172 

simulated from the nature run. To do this, the orbital swaths are simulated using TAT-C (Le Moigne et al., 2017). TAT-C is a 173 

NASA software system designed for future Distribution Spacecraft Missions (DSM), which enables us to explore a range of 174 

feasible design options (e.g., constellation vs. single, geostationary vs. polar-orbiting, low vs. high temporal frequencies) to 175 

estimate optimal gains for the given mission configuration. Previous OSSEs have been conducted to test the impact from 176 

different snow mission configurations (e.g. Garnaud et al 2019). Here we instead focus on demonstrating the value of a gap-177 

filling approach (Sect. 2.4) for estimating snow in forested landscapes where SAR retrievals may be most challenging. 178 

Therefore, we used TAT-C to design a conservative mission configuration consisting of a small constellation of X- and Ku-179 
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band SAR satellites. Using a 10-14 day revisit frequency, depending on latitude, TAT-C orbital swaths were applied to the 180 

nature run outputs to simulate the satellite viewing area. The remote sensing spatial coverage is simulated by extending the 181 

ground track to a swath width. The daily viewing extents are then simulated as a daily binary map (so-called “cookie cutter”) 182 

masking the surface as viewed or not at a 250 m spatial resolution.  183 

    Based on an error level of 20%, spatially and temporally uncorrelated random errors drawn from a Gaussian distribution are 184 

added to the synthetic SWE retrievals. This 20% error level is selected using a conservative estimate of SWE measurement 185 

uncertainty for a volume-scattering X-/Ku -band SAR mission based on developed mission design concepts and ground 186 

validation. For example, the ESA Cold Regions Hydrology High-Resolution Observatory (CoREH2O) mission expected to 187 

meet instrument and retrieval requirements of ±30 mm accuracies for SWE of 300 mm, ±10% for SWE greater than 300 mm 188 

(Rott et al 2010, 2012). Similarly, the Canadian Terrestrial Snow Mass Mission (TSMM) concept that is currently under 189 

development aims to achieve better than 20% measurement uncertainty for SWE greater than 50 mm, though it is expected to 190 

have higher uncertainties in deep snow conditions (e.g., ≥ 200 mm SWE)limited to SWE less than 200 mm due to the dual 191 

Ku-band system (Garnaud et al. 2019). Airborne and tower-based field data have demonstrated that a combination X- and Ku-192 

band system can provide SWE retrievals over a range of snow conditions at accuracies better than 20% (Zhu et al. 2018, 2021, 193 

Tsang et al 2022, Durand et al. 2023, Singh et al. 2023). However, we use an assumption of uniform error levels throughout 194 

the domain, whereas in reality, the errors are likely to be dependent on other factors, including the terrain characteristics , snow 195 

characteristics, and vegetation. This is discussed more in Section 4. 196 

2.3 Data assimilation setup 197 

    A one-dimensional ensemble Kalman Filter (EnKF; Reichle et al., 2002) is used to assimilate the synthetic observations 198 

within the open loop configuration of the model. EnKF is widely used for land data assimilation studies (Kumar et al., 2022), 199 

as it provides a flexible approach for the treatment of model and observation errors and non-linear models. An ensemble of 200 

model realizations is used by EnKF to assess and propagate model errors. In this instance, the ensemble requirement further 201 

adds to the significant computational requirements of the large model domain (Fig. 1) and fine spatial resolution of the 202 

simulations (250 m). Therefore, a 5-member ensemble with perturbations applied to the meteorological variables and model 203 

prognostic fields are used for simulating uncertainty in the modeled estimates. Table 1 details the parameters for meteorological 204 

and model state perturbations, which are based on recent snow data assimilation studies (Lahmers et al., 2022; Kwon et al., 205 

2021). Though a larger ensemble size is better for ensuring sufficient sampling density, our choice of five ensembles is 206 

reasonable given that the model state vector used in the assimilation only consists of two variables; the total SWE and snow 207 

depth. The assimilation setup employs a sequential update strategy, where at each time step an ensemble of model forecasts is  208 

propagated forward in time, followed by an update based on observational inputs. The model states are updated toward the 209 

observations based on the relative uncertainties in the model and observations using the following formulation, at a certain 210 

time 𝑘.  211 
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                                                                                 𝑥𝑘
𝑖+ = 𝑥𝑘

𝑖− + 𝐾𝑘[𝑦𝑘
𝑖 − 𝐻𝑘𝑥𝑘

𝑖−]                                                            Eq. (1) 212 

Where 𝑥𝑘 and 𝑦𝑘  are the model and observation state vectors, respectively. The term 𝐻𝑘 represents the observation operator 213 

that maps the model states to the observed variables. The superscripts 𝑖 − and 𝑖 + represent the 𝑖th ensemble member before 214 

and after the update, respectively. 𝐾𝑘 is the “Kalman gain” term, that allows the weighting of the observations and model 215 

forecasts is a function of the model and observation error covariances.  216 

Table 1. Model forcing and state-variable perturbations used by the 5-member ensemble of LIS simulations 217 

Variable Perturbation Type Std. 

Dev. 

Cross Correlation across variables 

Meteorological Forcing SW 

corr 

LW corr PCP 

corr 

T corr 

Downward Shortwave (SW) Multiplicative 0.2 1 −0.3 −0.5 0.3 

Downward Longwave (LW) Additive 30 −0.3 1 0.5 0.6 

Precipitation (PCP) Multiplicative 0.5 −0.5 0.5 1 −0.1 

Near surface Air Temperature (T) Additive 0.5 0.3 0.6 −0.1 1 

Noah-MP LSM snow states   SWE Snow depth   

SWE Multiplicative 0.01 1 0.9   

Snow depth Multiplicative 0.01 0.9 1   

 218 

    The data assimilation procedure detailed here assimilated the synthetic SWE retrievals (Sect. 2.2) with the open loop 219 

simulation. The degree to which the simulation with data assimilation approached SWE simulated by the nature run is intended 220 

to represent the extent to which a SAR remote sensing platform with the SWE retrieval characteristics from Sect. 2.2 could be 221 

combined with a land surface model to provide near real-time estimates of SWE at 250 m resolution. However, the SAR 222 

observations synthesized in this study have known issues with observing snow with high liquid water contents and dense forest 223 

cover. Therefore, synthetic observations at each timestep were masked at grid cells where the most-dominant landcover type 224 

from the North American Land Change Monitoring System (NALCMS; Latifovic et al., 2017) was forested, including 225 

deciduous, evergreen, and mixed forest cover (Fig. 1). Synthetic observations were also masked at grid cells where and when 226 
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snow was experiencing melt, identified by the presence of liquid water in the snowpack from the nature run. Although limited 227 

in area, grid cells with “ice” landcover (Fig. 1) were also excluded. In this study, this simulation which used assimilation only 228 

in unforested, non-melting, and ice-free grid cells is termed “Data Assimilation, without the forest strategy” (DA). In Sect. 2.4 229 

below, we present a novel approach used to infer SWE in grid cells with forests using the nearest canopy-free synthetic 230 

observations. 231 

2.4 Extending observations over forests 232 

    The 1-d EnKF approach employed here updated each model grid SWE from the open loop simulation based on the 233 

observations available at that grid point. Though studies have employed 3-d EnKF approaches to spatially propagate 234 

observational information to neighbouring grid cells (De Lannoy et al., 2012), here we relied on 1-d updates due to several 235 

factors. First, a 2-d update requires the knowledge of spatial error correlations and their variability, which is challenging to 236 

specify (Ying, 2020). Most prior studies using such schemes employ uniform specifications and are limited to small domains. 237 

Second, a 2-d update increases the size of the state vector and consequently requires the use of a larger ensemble. This, 238 

combined with the added computational expense of a 2-d analysis significantly increases the computational cost. Therefore, 239 

we employed an alternate approach that is computationally more efficient while allowing the extension of observations to 240 

nearby areas.  241 

    Assuming that the SWE retrievals from the hypothetical SAR instrument are limited over areas where the dominant 242 

vegetation type are forests (Fig. 1a), we employ a novel approach to extend the observations obtained in non-forested areas 243 

(Fig 2). For every forested location, valid retrievals over nearby non-forested locations within a radius of influence of 750 m 244 

are identified. An observation at the forested pixel is then estimated by scaling the model SWE by the ratio of the average 245 

observed SWE to modeled SWE over the ‘clearing’ areas (Fig. 2). This scaled observation is then used for assimilation over 246 

the forested pixel. Here we implicitly use the spatial correlations inherent in the model between forested and clearing areas to 247 

extend observational coverage over the clearing to forested locations. This simulation is termed “Data Assimilation, with the 248 

forest strategy” (symbolized by DA+F in Section 3). To evaluate the accuracy and added value of this scaling approach, we 249 

compare SWE and runoff from the nature run simulation, versus simulations with data assimilation both 1) employing the 250 

forest scaling strategy discussed here, and 2) masking synthetic observations in forested grid cells (Sect. 2.3).  251 

 252 
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 253 

Figure 2. Conceptual depiction and equations demonstrating the forest strategy used here, which estimates a SWE observation 254 

at a given grid cell (outlined box in blue color) based on the modeled SWE (𝑆𝑊𝐸𝑚𝑜𝑑𝑒𝑙,𝑓) and the ratio between the average 255 

synthetic SWE observations (𝑆𝑊𝐸𝑜𝑏𝑠,𝑐) and average modeled SWE (𝑆𝑊𝐸𝑚𝑜𝑑𝑒𝑙,𝑐) from grid cells within a 750 m radius 256 

(dashed box). The light gray shading represents the satellite swath, the tree icons indicate forested locations, and the snowflake 257 

icons represent grid cells with valid SWE retrievals at non-forested locations. The grid cell from this example is near the 258 

satellite swath edge, so observations are unavailable in the nearby regions South and East of this pixel. 259 

3 Results 260 

    In this section, we compute the difference between the open loop simulation, nature run, and the two open loop simulations 261 

with data assimilation, one masking synthetic observations over regions with forests, and time periods with melting snow, and 262 

ice, and the other applying the same data assimilation but extending snow estimates in forested regions using the strategy from 263 

Sect. 2.4 and Fig. 2. The differences between these simulations are detailed in Section 2 and Table S1. We focus on the 264 

differences between these four simulations using: 1) average SWE from the winter snow accumulation season (December, 265 

January, and February; DJF), when snowmelt is minimized and synthetic observations are masked by grid cells with liquid 266 

water content to the smallest degree, 2) spatially distributed SWE on 13 March, the date corresponding to the timing of 267 

maximum SWE volume in water-year 2019, and 3) daily average SWE and total runoff for each day in water-year 2019 over 268 

a number of selected hydrologic regions including the Pacific Northwest, California, Great Basin, and Upper Colorado (Fig. 269 

1b). 270 
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    The open loop and nature run simulations exhibited differences in both the volume and spatial distribution of average winter 271 

(December, January, and February; DJF) SWE (Fig. 3a and 3b). Relative to the nature run, the open loop simulation tended to 272 

simulate lower elevation winter SWE that was both larger in magnitude and persisted for longer before melting. In the Pacific  273 

Northwest domain (Fig. 4), DJF average snow cover (defined as grid cells with mean DJF SWE exceeding 5 mm), was 274 

approximately 12% larger for the open loop simulation than the nature run (Table 2). These snow extent biases were also 275 

apparent in the other hydrologic regions (Figs. S3 – S5), where open loop snow extents exceeded snow extents from the nature 276 

run by 26% in the Upper Colorado, 45% in the Great Basin, and 6% in California. Visually, the nature run had significant 277 

increases in the spatial variability of winter SWE, better representing the differences in SWE between mountain peaks and 278 

valleys, and the patchiness of  snow cover in regions with winter snowmelt and ephemeral snow cover (e.g., Fig. 4, Fig. S1). 279 

Relative to the nature run, DJF SWE from the open loop simulation was biased high across the full modeling region (Fig. 3) 280 

by approximately 26%, on average, with a mean absolute error of 41 mm and spatial coefficient of correlation of approximately 281 

0.74. Across  the Pacific Northwest (Fig. 4), DJF mean SWE biases were approximately 37%, with a mean absolute error of 282 

55 mm. Open loop model performance for the other hydrologic regions can be found in Table 2. 283 

 284 

Figure 3. Winter (December, January, and February) mean SWE simulated at 250 m resolution from the open loop (a), nature 285 

run (b), and data assimilation simulations, both with (d) and without (c) the forest strategy presented in Sect. 2.4.  286 
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 287 

Figure 4. Winter (December, January, and February) mean SWE in the Pacific Northwest region simulated at 250 m 288 

resolution from the open loop (a), nature run (b), and data assimilation simulations, both with (d) and without (c) the fores t 289 

strategy.  290 
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Table 2. Simulation performance, relative to the nature run simulation, for the open loop simulation (OL) and the 291 

simulations with data assimilation, both with (DA+F) and without (DA) the forest strategy. Statistics are presented for the 292 

full domain, the four hydrologic regions, and all forested and unforested grid cells. 293 

 

DJF* snow-

extent 

biases 

13 March 2019 SWE Seasonal SWE and runoff 

Mean bias 

SWE abs. 

error 

[mm] 

Coeff. of 

corr. 

MAM* 

mean SWE 

bias 

Nash-

Sutcliffe 

Efficiency 

Full study 

domain 

OL^ +22% +26% 41 0.74 - - 

DA^ +23% +9% 36 0.79 - - 

DA+F^ +22% +4% 17 0.91 - - 

Upper 

Colorado 

OL +26% +37% 55 0.74 +63% -2.59 

DA +28% +27% 50 0.74 +86% -3.71 

DA+F +28% +8% 23 0.90 < 1% 0.22 

Pacific 

Northwest 

OL  +12% +42% 89 0.69 +44% -0.17 

DA +13% +32% 80 0.74 +80% -0.34 

DA+F +13% +6% 35 0.89 +15% 0.39 

Great Basin 

OL  +45% +35% 38 0.62 -29% 0.58 

DA +46% +46% 32 0.75 +10% 0.58 

DA+F +46% +28% 23 0.83 -38% 0.53 

California 

OL +6% -34% 50 0.64 -50% 0.92 

DA +8% -6% 40 0.79 -15% 0.88 

DA+F +8% -6% 28 0.88 -26% 0.89 

Unforested 

OL +19% +14% 22 0.83 - - 

DA +20% < 1% 14 0.91 - - 

DA+F +20% < 1% 14 0.91 - - 

Forested 

OL +29% +150% 111 0.67 - - 

DA +30% +150% 111 0.67 - - 

DA+F +30% +18% 27 0.93 - - 
* DJF = December, January, and February; MAM = March, April, and May (averages) 
^ OL = open loop simulation; DA = data assimilation without the forest strategy; DA+F = data assimilation with the 

forest strategy 

    As expected, the simulations assimilating the synthetic SWE observations agreed with the nature run better than the open 294 

loop simulation. However, on 13 March 2019 (the date of maximum domain SWE volume), the simulation with data 295 

assimilation without the forest strategy had high-biased SWE across large portions of the Rocky Mountains and the Cascade 296 

Mountain range (Fig. 1, Fig. 5b and Fig. 5e). Low biased SWE was more common in Northernmost Canadian portions of the 297 

Rocky Mountains and Cascade Range, the Western montane regions in Washington State, the Northern portions of the Great 298 

Basin, and the lower-lying elevations of the California Sierra Nevada. Additionally, despite the assimilation, snow extents 299 

were still biased high relative to the nature run (Fig. 3) at magnitudes similar to the open loop simulation (Table 2). This was 300 

driven by the expansive snow extents of the open loop simulation, which were decreased by data assimilation, but still resulted 301 

in widespread early-season SWE increases for short periods of time between synthetic observations (at 10 – 14 day 302 
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frequencies), increasing to the number of grid cells with DJF SWE exceeding 5 mm (threshold used to define average winter 303 

snow extents in Fig. 3). 304 

    Assimilating the synthetic SAR observations without the forest strategy best improved SWE in shrub, grass, crop, bare, and 305 

wetland landcover types (Fig. 6b and 6c). For example, relative to the open loop simulation (Fig. 5a and 5d), data assimilation 306 

without the forest strategy (Fig. 5b and 5e) corrected the high SWE biases in the Great Plains (Fig. 1). While 13 March SWE 307 

in shrub, grass, crop, bare-ground, and wetland regions was typically small in magnitude, these landcover types accounted for 308 

77% of the modeling domain area, and 61% of the domain total SWE volume on 13 March (Fig. 6a). In these regions, SWE 309 

from the open loop simulation had a mean absolute error of 22 mm, and a mean bias of approximately 14%, relative to the 310 

nature run (Table 2). Data assimilation significantly improved the SWE bias in these land cover types to within 1%, on average 311 

(Fig. 6b), with a mean absolute error of 14 mm, relative to the nature run. 312 

313 
Figure 5. 13 March 2019 SWE difference (top row) and percent-difference (bottom row), relative to the nature run, for the 314 

open loop simulation (a and d), and simulations with data assimilation, both with (c and f) and without (b and e) the forest 315 

strategy. SWE percent-different maps (bottom row) only compare grid cells where SWE from the nature run was greater 316 

than 5 mm. 317 
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    The data assimilation results discussed above did not use the synthetic observations over forested grid cells, where 318 

retrievals from SAR instruments may be either partially or fully occluded by the canopy overstory (Tsang et al., 2022; Ruiz 319 

et al., 2022; Huang et al., 2019). However, a significant portion of the snow volume in mid-latitude domains overlaps with 320 

forests. For example, although forests only covered approximately 22% of the study region investigated here (Fig. 1a), 321 

forested grid cells contained just over 34% of the total 13 March SWE volume, a volume about 10% higher than the snow 322 

volume contained in the next-largest landcover type (Fig. 6a). In forested grid cells, SWE simulated by the open loop 323 

simulation were biased high by approximately 87 mm (+150%) on average (Fig. 6), with a mean absolute error of 111 mm 324 

(Table 2). These errors were propagated into the simulation with data assimilation without the forest strategy. Fortunately, 325 

the ratio between modeled SWE and synthetic SWE observations in forested grid cells and the nearest canopy-free grid cells 326 

had high levels of similarity. Therefore, estimating snow in forest regions using the nearest canopy-free pixels (Fig. 2) 327 

improved snow simulations significantly (Fig. 3d, Fig. 4d, and Fig. 5c and 5f). In fact, snow simulated in forest landscapes 328 

using data assimilation with the forest strategy agreed well with the nature run, exhibiting a 13 March SWE average bias in 329 

forested grid cells of only 14 mm (+8%) (Fig. 6), and a mean absolute error of 27 mm. This forest strategy resulted in large -330 

scale improvements to total domain SWE (Fig. 5), reducing the 13 March full-domain SWE volume bias by 28%, and 331 

improving the spatial coefficient of correlation by 0.12, relative to the data assimilation simulation without the forest 332 

strategy. 333 
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 334 

Figure 6. SWE volume on 13 March 2019 broken down by landcover type in subplot a. For each landcover type, the 335 

interquartile range and median of SWE differences (b) and SWE percent-differences (c) are calculated for the open loop 336 

simulation (black) and each simulation with data assimilation (blue bars). SWE differences (b) and (c) are calculated relative 337 

to the nature run. 338 

    The comparisons above focused on mean DJF SWE and SWE from the date nearest maximum snow volume (13 March, 339 

2019). However, assimilating the synthetic SWE data also improved estimates of snow water resources throughout the 340 

duration of the water year, even in periods when most snow-covered regions were experiencing snowmelt and synthetic 341 

observations were masked. For example, in the Upper Colorado, approximately 75% of the region had DJF snow cover with 342 

little or no winter snowmelt (Fig. 7). The simulation with data assimilation and the forest strategy substantially improved 343 

mean SWE evolution in the snow accumulation season in this hydrologic region (Fig. 7, October - March). However, 344 

snowmelt onset in the March, April, and May (MAM) months increased the number of grid cells experiencing snowmelt 345 

from the open loop model outputs, reducing the number of grid cells across the full Upper Colorado Region that could be 346 

observed by the synthetic SAR observations to approximately 5%, on average, over this period of time. Despite this, since 347 

the simulation with data assimilation improved the volume, timing, and spatial distribution of maximum SWE, mean SWE 348 

evolution tracked the nature run simulation significantly better than the open loop simulation in the spring snowmelt period.  349 

In fact, relative to the nature run, MAM SWE from the open loop simulations was biased high by approximately 63%, on 350 
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average, in the Upper Colorado (Table 2). The simulation with data assimilation using the forest strategy improved this bias 351 

to less than 1%, on average, over the same period. In this study, simulations using Noah-MP (open loop and data 352 

assimilation simulations) melted snow more rapidly in the later-half of the spring snowmelt season than the nature run 353 

simulation which evolved SWE using SnowModel (Section 2.1). Therefore, although maximum SWE volume, maximum 354 

SWE timing, and MAM SWE were improved by data assimilation, the timing of snow disappearance for the simulation with 355 

data assimilation using the forest strategy was approximately 18 days earlier than the nature run in the Upper Colorado. 356 

 357 

Figure 7. Time series comparison of mean SWE (top) and total runoff (bottom) between the open loop, nature run, and 358 

simulations assimilating the synthetic observations, both with and without the forest strategy in the Upper Colorado. Dashed 359 

bars in the top plot represent the monthly percentage of the Upper Colorado grid cells with no snowmelt. Solid bars also 360 

exclude grid cells with forest coverage. 361 

    Much like the Upper Colorado, SWE simulated by the open loop simulation in the Pacific Northwest (Fig. S7) was biased 362 

high for the entirety of the snow season. Both domains also had greater than 80% synthetic snow observation coverage in 363 

March (including grid cells that filled snow estimates using the forest strategy), and as a result, the simulation with data 364 
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assimilation using the forest strategy closely matched SWE from the nature run. However, both of these domains had a 365 

significant portion of the seasonal snowpack in forested landcover (Fig. 7 and Fig. S7, difference between the hatched and 366 

solid bars). These grid cells had winter SWE estimates from the open loop simulation that were predominately high-biased 367 

(Fig. 3 and Fig. 5). Therefore, although data assimilation improved winter SWE in non-forested landcover types (Fig. 6), the 368 

simulation without the forest strategy caused little-to-no improvement in the simulated domain mean maximum SWE (Table 369 

2). This highlights the value of the forest strategy used here (Fig. 2), which drew information from synthetic observations in 370 

relatively few nearby pixels to infer the mean snow volume in forested grid cells. Given the four hydrologic regions 371 

investigated in this study, a far smaller volume of snow existed in forested landcover for the California (Fig. S8) and Great  372 

Basin regions (Fig. S6), resulting in DJF domain-mean SWE evolution that was more similar between the simulations with 373 

and without the forest strategy. We expect results in these domains to be more indicative of the value of winter SAR 374 

observations in less-vegetated snowy landscapes, such as Tundra and Prairie snow regimes (Sturm and Liston, 2021). 375 

    Finally, the improvements to the spatial and temporal estimates of SWE discussed above had trickle-down improvements 376 

on simulated runoff. For example, in the Upper Colorado (Fig. 7), total annual runoff from the open loop simulation was 377 

biased high by approximately 35%, relative to the nature run. This error was driven most by high-biased winter snow 378 

accumulation, which nearly doubled the melt season (March – July) runoff estimated by the nature run simulation. Here, by 379 

assimilating the synthetic SWE observations, and estimating forest snowpack from the relationship between modeled and 380 

observed SWE from the nearest canopy-free pixels, total annual streamflow in this domain was improved to within 1%. Not 381 

only was domain total runoff improved, but the seasonal evolution of high and low-flows vital for water management and 382 

planning was also improved. This improved the Nash-Sutcliffe Efficiency (NSE) from –2.59 to 0.22 between the open loop 383 

simulation and simulation with data assimilation employing the forest strategy (Table 2). These results were similar for the 384 

Pacific Northwest, which had an NSE that improved from –0.17 to 0.39. However, due to the smaller changes to SWE and 385 

more-rapid snowmelt simulated by Noah-MP, changes to runoff from data assimilation in California and the Great Basin 386 

were small (Table 2), with improvements that were largely outweighed by the difference in snowmelt timing and rates 387 

between Noah-MP and SnowModel. 388 

4. Discussion 389 

    The differences between the open loop simulation and nature run in this study were representative of snow modeling errors 390 

common for continental and global-scale models used for seasonal to long-term future snow predictions (e.g., Franz et al., 391 

2010; Garousi-Nejad and Tarboton, 2022; Kim et al, 2021; Liu et al, 2022). The greatest source of these snow modeling errors 392 

is commonly errors in meteorological forcing data, and in particular, biases in precipitation (Garousi-Nejad and Tarboton, 393 

2022; Henn et al., 2018; Pflug et al., 2021; Raleigh and Lundquist, 2012; Wayand et al., 2013). These biases are especially 394 

prevalent in the portions of the earth’s surface with the greatest volumes of snow, such as the tundra and montane regions (Kim 395 

et al., 2021), where ground observations and observation station maintenance are hindered by harsh winter conditions and 396 
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inaccessibility. This suggests that the greatest need for improving global estimates of snow is improved estimates of snow 397 

accumulation in remote, under sampled landscapes. Here, we expect that the SAR observations evaluated in this study could 398 

address these needs, thus providing a path forward for pairing common snow models with observations as a basis for 399 

determining global snow mass. For example, assimilating SAR observations at 10 – 14 day intervals with the observational 400 

error characteristics reported in Sect. 2.2, improved midlatitude winter SWE volume by approximately 22%, on average (Table 401 

2). In unforested landscapes, which account for a majority of the Earth’s snow water storage (Kim et al., 2021), assimilation  402 

improved the mean SWE bias at maximum SWE timing to within 1%, on average, and reduced the standard deviation of errors 403 

by approximately 45 mm (~85%) (Fig. 6).  404 

    Despite the benefits discussed above, SAR observations have known limitations in forested landscapes where the canopy 405 

overstory obstructs retrievals from the underlying snowpack (Huang et al., 2019; Ruiz et al., 2022; Tsang et al., 2022). 406 

Therefore, this study was designed to investigate a forest strategy that uses the relationship between modeled SWE estimates 407 

and synthetic SWE observations from neighboring grid cells as the basis for inferring snow distribution in regions with forested 408 

landcover (Fig. 2). To focus on the benefits of this approach, we chose a domain (Fig. 1) that included both significant forest 409 

spatial coverage (22%) with disproportionate amounts of winter snow (34%) within the forested pixels (Fig. 6). Relative to the 410 

open loop simulation, the simulation with data assimilation and the forest strategy dramatically improved the spatial 411 

distribution of SWE (e.g., Fig. 3 and Fig. 4) and the resulting SWE biases at domain maximum snowpack timing (Fig. 5). In 412 

fact, in forested grid cells, SWE on 13 March was only biased by 14 mm (mean absolute error of 27 mm), on average, for the 413 

simulation with data assimilation and the forest strategy, relative to the nature run. This was opposed to the open loop 414 

simulation, which was biased by 87 mm (mean absolute error of 111 mm) over the same regions and date. Despite the fact that 415 

the two simulations with data assimilation agreed in all grid cells except forested grid cells, the simulation employing the forest 416 

strategy had a mean absolute error (17 mm) across the full modeling region that was approximately 51% smaller than the 417 

simulation without the forest strategy. Here, we recognize that this study used a single date (13 March) to represent snow water 418 

resources at maximum SWE timing. However, the date of maximum SWE volume from the nature run varied by less than a 419 

week across the four hydrologic regions (11 - 16 March; Fig. 7, Fig. S6 - S8). Therefore, this was a relevant date for model 420 

comparisons, especially given that water resource and allocation decisions in the Western US are often based on the volume 421 

of snow at maximum snow timing. 422 

    This research shows how a modeling framework and relatively few observations can be used to gap-fill estimates of snow 423 

in regions where remote sensing observations from a future platform may be most challenged. Despite the fact that snowpack 424 

with properties able to be retrieved by SAR instrumentation (i.e., canopy-free landcover and no snowmelt) sometimes only 425 

accounted for only small portions of a modeling domain (e.g., Fig. 7), SWE from the model and SAR observations in nearby 426 

canopy-free grid cells were predictive of the snow in forested grid cells. We hypothesize that this could have partly been driven 427 

by the 250 m resolution of synthetic observations and simulations. At this length scale, snow distribution is typically drive n 428 



 

20 

 

by processes like mesoscale weather patterns and their interaction (e.g., orographic lapse rates, wind loading/sheltering, terrain-429 

shading, etc.) with static topographical features like elevation, slope, and aspect (e.g., Clark et al., 2011; Lehning et al. , 2011; 430 

McGrath et al., 2018; Minder et al., 2008; Trujillo et al., 2007). However, we acknowledge that snow in forested and open grid 431 

cells is subject to different snow processes. In fact, the nature run simulation used here attempts to simulate snow-canopy 432 

interactions, such as snow interception and solar shading from the canopy overstory (Liston and Elder, 2006). Here, since we 433 

focus predominantly on model improvements from data assimilation in the SWE accumulation season, we hypothesize that 434 

the primary difference between SWE accumulation in forested pixels, and the nearest canopy-free grid cells could be driven 435 

by canopy interception, or the lack thereof. In other words, inferring forested snowpack using the nearest canopy-free grid 436 

cells could bias snow in forested regions where snow processes differ slightly. While the forest strategy improved SWE 437 

simulated in forested grid cells at the date of maximum SWE volume, SWE was still biased high relative to the nature run 438 

(Fig. 6). We hypothesize that a correction factor, based on variables like forest canopy type, vegetation density, wind speed, 439 

and temperature during snowfall, all of which influence snow interception (Lundquist et al., 2021), could be used to facilitate 440 

the difference in snow accumulation expected between a forest pixel and SWE observations from nearby canopy-free grid 441 

cells. This approach will be a topic of future research. However, since errors with precipitation are often the overwhelming 442 

source of model errors, we hypothesize that the forest strategy (Fig. 2), which corrected modeled SWE in forested areas using 443 

the ratio between modeled and observed SWE in nearby open areas, was well-suited to correct precipitation biases.  444 

    The results presented here are subject to a number of assumptions. These assumptions were intended to apply regionally-445 

consistent and conservative rules about how 1) synthetic SAR observations were generated, and 2) the grid cells and time 446 

periods that SAR observations occurred in. For example, we used a 20% and zero-mean random distribution of errors to 447 

generate observations from the nature run. We expect the error from a future satellite mission to be less than 20% over the 448 

majority of snow covered regions (Sect. 2.2). However, observational biases may be more common in certain locations and 449 

periods based on snow depth, particularly in very shallow or very deep snowpacks, terrain characteristics and vegetation 450 

characteristics. Additionally, the landcover classification used in this study (Fig. 1) was based on the dominant landcover type 451 

within each model grid cell, as defined from the North American Land Change Monitoring System (Latifovic et al., 2017). For 452 

forested grid cells, this included needleleaf, broadleaf, and mixed forest types. To be conservative, this study completely 453 

masked synthetic observations in 250 m grid cells classified as forest, thereby assuming 1) no observation capabilities in 454 

predominantly forested areas, and 2) full observation capabilities in grid cells where forests were not the dominant landcover 455 

type. In reality, SAR may be able to achieve accurate snow retrievals in some forested-dominated regions based on the forest 456 

type, forest distribution, and canopy density (Tsang et al., 2022). Conversely, some regions with sparser or no forest cover 457 

may still have observation limitations based on the domain and snow characteristics mentioned above. The large domain used 458 

in this study also made tests over multiple years computationally challenging. Here, the intent of this study was to investigate 459 

a strategy for deriving SWE corrections in difficult to observe forest landscapes, and we hypothesize that precipitation biases 460 

and the resulting modeled SWE accumulation could be improved to a similar degree in years with both larger and smaller 461 



 

21 

 

snow volumes. Finally, while strategies for identifying and correcting systematic SAR observation errors are a topic of 462 

continued research (e.g., Durand et al., 2023; Singh et al., 2023), OSSEs are an inherently flexible framework for evaluating 463 

sensor utility, so future research could use the simulations performed here to test a wider array of sensor configurations and 464 

non-normal retrieval errors. Future work could build upon these results to investigate multiple years, perhaps considering 465 

warmer and/or drier snow years, when the role of snowpack for water supply and midwinter snowmelt and rain-on-snow 466 

frequency may be more likely to increase snowpack liquid water content, or years with late-season spring snow accumulation. 467 

Future research should also investigate other gap-filling approaches, like methods to infer SWE in grid cells where snowmelt 468 

is occurring and liquid water may prevent SAR retrievals, and gap-filling approaches using different window sizes and/or 469 

searching windows that more heavily weight unforested grid cells with similar characteristics (elevation, aspect, etc.).     470 

    This study tested a simple model setup using a popular land surface model (Noah-MP) and Kalman-based data assimilation 471 

procedure. This data assimilation procedure updated modeled snow states, like snow depth and SWE, based only on synthetic 472 

SWE observations at 10 – 14 day temporal frequencies where/when snowmelt was not occurring. Despite the limitations and 473 

assumptions discussed above, we expect that the results presented here could represent the lower-bound of performance that 474 

could be achieved from a real-time modeling framework that could accompany a space-borne SAR remote sensing platform. 475 

For example, many studies have demonstrated repeatable patterns of snow accumulation in years with similar winter 476 

meteorological characteristics (e.g., Deems et al., 2008; Pflug et al, 2022; Schirmer et al., 2011; Sturm and Wagner, 2010; 477 

Woodruff and Qualls, 2019). This suggests that retrospective information about snow distribution patterns in previous years, 478 

could be used as the basis for extrapolating and updating snow model states in grid cells not covered by SAR observations on 479 

a given date. From the modeling perspective, only 5 ensemble members were used in the Ensemble-Kalman data assimilation 480 

(Sec 2.3), when a larger ensemble of simulations may have improved uncertainty characterization of simulated snow and 481 

hydrological states even more. This study also assumed that synthetic SAR observations were unable to observe snow in all 482 

forested landscapes, when retrievals of snow in forested stands could be achievable for some forested regions with smaller tree 483 

cover fractions and biomass (Montomoli et al., 2015; Tsang et al., 2022). Finally, the SAR configuration tested here had 10 – 484 

14 day repeat times, but future satellite configurations with more-frequent observational repeats are possible and have been 485 

recommended by the 2018 Decadal Survey (NASEM 2018). Despite all of these conservative assumptions, the difference 486 

between the open loop simulation (representative of current modeling accuracies), and the simulation with synthetic 487 

observation data assimilation using the forest strategy, demonstrated large-magnitude and widespread improvements to real-488 

time estimates of winter SWE and the associated improvement to spring SWE and runoff. Therefore, we expect the findings 489 

of this study, particularly the strategy to extend the observational utility to forested areas, to significantly aid in the f ull 490 

exploitation of the information from a future SAR-based snow satellite mission. 491 

5. Conclusion 492 
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    Global estimates of snow volume and distribution have uncertainties stemming from limited snow observations and 493 

biases in meteorological forcing data. These uncertainties stress the need for a global snow-focused satellite remote 494 

sensing platform. Here, we investigate the degree to which synthetic observations of SWE representative of a Synthetic 495 

Aperture Radar (SAR) remote sensing platform, could correct common snow modeling errors and provide 496 

spatiotemporally continuous SWE estimates. We investigate this using an Observing System Simulation Experiment, 497 

specifically investigating how much snow simulated using a widely used land surface model and meteorological forcing 498 

dataset, could be improved by assimilating synthetic SAR observations of SWE.  499 

    The difference between the open loop simulation and the nature run was representative of common modeling errors. 500 

Snow simulated by the open loop simulation had larger winter snow extents, and total snow volume that was biased high 501 

by approximately 35%. The open loop simulation also simulated snow that was more spatially homogeneous, 502 

underestimating the variability across variations in topography and underestimating lower-elevation snowmelt from the 503 

nature run. Assimilating the synthetic SWE observations improved SWE simulated in the shrub, grass, crop, bare-ground, 504 

and wetland land cover types. In fact, SWE biases on the date of domain maximum SWE volume (13 March 2019) in 505 

these landcover types improved from 14% for the open loop simulation to within 1% after data assimilation. However, 506 

despite only covering 22% of the study area, forested grid cells contained just over 34% of the domain SWE on 13 507 

March. The open loop simulation and the simulation with data assimilation without the forest strategy had SWE that was 508 

high biased by 150% (87 mm), on average, in these forested grid cells.  The relationship between modeled SWE and 509 

synthetic SWE observations in forested grid cells exhibited similarities with the nearest canopy-free grid cells. Therefore, 510 

SWE in forested regions was able to be inferred using the simple modeling framework and synthetic SAR observations 511 

from nearby canopy-free grid cells. In fact, the simulation with data assimilation using this forest gap-filling strategy 512 

substantially improved SWE biases to 4% (~22% improvement) at maximum SWE timing, with a SWE mean absolute 513 

error of 17 mm (24 mm improvement) and spatial correlation of 0.91 (0.17 improvement) across the Western US 514 

    Improvements in winter SWE accumulation also improved estimates of melt-season SWE evolution and total runoff 515 

in four major Western US hydrologic regions, even in periods when winter snowmelt greatly reduced the number of grid 516 

cells that could be observed by the synthetic SWE observations. In fact, in the Upper Colorado River, melt season SWE 517 

biases improved from 63% to less than 1% after assimilation, and the runoff Nash Sutcliffe Efficiency improved from -518 

2.59 to 0.22. These results demonstrate the value of SAR observations and simple spatial-filling strategies in grid cells 519 

where SAR retrievals could be obstructed by the canopy. Here, we expect our results to represent a lower-boundary of 520 

model performance which could be improved further by more robust assimilation approaches, more-frequent SAR 521 

observations, further developments to SAR retrieval algorithms in forested landscapes, and adaptations to the forest gap-522 
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filling strategy developed here. However, our results also show that widespread improvements to global SWE could be 523 

available in near real-time provided data assimilation approaches and a SAR remote sensing platform. 524 

Code availability: The Land Information System (LIS; lis.gsfc.nasa.gov) framework used to perform the nature run, open 525 

loop, and data assimilation simulations from this study can be accessed from a GitHub public repository 526 

(https://github.com/NASA-LIS/LISF). Model documentation and LIS tutorials can also be accessed from this repository. Users 527 

are encouraged to reference Kumar et al. (2006) for more information on LIS. The Trade-space Analysis Tool for designing 528 

Constellations (TAT-C) tool is currently available on-request for federal employees and contractors 529 

(https://software.nasa.gov/software/GSC-18399-1). 530 

Data availability: The model outputs and data necessary to reproduce the figures and statistics reported in this study can 531 

be found at https://www.hydroshare.org/resource/e0ad80f818bf4062a335e9e0d7362834/. This repository includes 532 

domain static variables, such as land cover, elevation, and spatial coordinates, in addition to model outputs of winter-average 533 

SWE, SWE at the date of maximum SWE volume (13 March 2019), and SWE and runoff aggregated across each region. 534 

MERRA-2 forcing data can be accessed from the Goddard Earth Sciences Data and Information Services Center (GES DISC, 535 

https://disc.gsfc.nasa.gov/), and ERA5 data can be accessed from the European Centre for Medium-Range Weather Forecasts 536 

climate data store (https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5). 537 
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