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Short summary. 250 m estimates of snow water equivalent in the Western US and Canada wereare improved by assimilating 1 
observations representative of a future snow-focused satellite mission with a land surface model. Here, by including a gap-2 
filling strategy, snow estimates could be improved in forested regions where remote sensing is challenging. This approach 3 
improved estimates of winter maximum snow water volume to within 4%, on average, with persistent improvements to both 4 
spring snow and runoff throughout spring snowmelt. in many regions. 5 
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Abstract. Snow is a vital component of the Earth system. Yet, no snow-focused satellite remote sensing platform currently 16 

exists. In this study, we investigate how synthetic observations of snow water equivalent (SWE) representative of a synthetic 17 

aperture radar remote sensing platform could improve spatiotemporal estimates of snowpack. We use an Observationa fraternal 18 

twin Observing System Simulation Experiment, specifically investigating how much snow simulated using popularwidely 19 

used models and forcing data could be improved by assimilating synthetic observations of SWE. We focus this study across a 20 

24°-by-37° domain in the Western United States (US) and Canada, simulating snow at 250 m resolution and hourly timesteps 21 

in water-year 2019. We perform two data assimilation experiments, including: 1) a simulation excluding synthetic observations 22 

in forests where canopies obstruct remote sensing retrievals, and 2) a simulation inferring snow distribution in forested grid 23 

cells using synthetic observations from nearby canopy-free grid cells. Results found that , relative to a nature run, or assumed 24 

true simulation of snow evolution, assimilating synthetic SWE observations improved average SWE biases at peakmaximum 25 

snowpack timing in shrub, grass, crop, bare-ground, and wetland land cover types from 14%, to within 1%. However, forested 26 

grid cells contained a disproportionate amount of SWE volume. In forests, SWE mean absolute errors at peak snowpackthe 27 

time of maximum snow volume were 111 mm, and average SWE biases were on the order of 150%. Here, the data assimilation 28 

approach that estimated forest SWE using observations from the nearest canopy-free grid cells substantially improved these 29 

SWE biases (18%) and the SWE mean absolute error (27 mm). Simulations employing data assimilation also improved 30 

estimates of the temporal evolution of both SWE and runoff, even in spring snowmelt periods when melting snow and high 31 

snow liquid water content prevented synthetic SWE retrievals. In fact, in the Upper Colorado River basinregion, melt-season 32 
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SWE biases were improved from 63% to within 1%, and the Nash Sutcliffe Efficiency of runoff improved from –2.59 to 0.22. 33 

These results demonstrate the value of data assimilation and a snow-focused globally relevant remote sensing platform for 34 

improving the characterization of SWE and associated water availability. 35 

1 Introduction 36 

    Snow plays important roles in the Earth system, by regulating global temperatures and cooling the land surface because of 37 

its reflective properties (Barry, 2002). The insulative properties of snow are also vital in ecological balance by protecting plants 38 

and animals from extreme cold and providing moisture when it melts. Snow is(Barry, 2002). Snow is also a major source of 39 

water storage for many regions, especially in areas that rely on snowpack to sustain water resources during the dry season. ItIn 40 

fact, it has been estimated that more than 2 billion people around the world are reliant on seasonal snow melt for their water 41 

supply (Barnett et al., 2005). Snowpack is the natural 'integrator' of climatic conditions and offers more predictability of water 42 

availability than variables with shorter memory, such as precipitation and streamflow (Terzago et al., 2023). As a result, 43 

Aaccurate wintertime estimates of snowpack are therefore critical for water management and agricultural planning (Koster et 44 

al., 2010). Water managers can prepare mitigation strategies for extreme dry or wet possibilities based on the wintertime 45 

snowpack.(Koster et al., 2010). For example, in the Western U.S.,US, where a vast majority of streamflow originates from 46 

snow (Li et al., 2017), it is common practice to use the April 1 snowpack, the historic peak fordate of maximum snowpack in 47 

that region, for developing water supply estimates for later in the season. However, climate change impacts have led to 48 

increased variability in the snow seasonality (Livneh and Badger, 2020), with warmer temperatures reducing the amount of 49 

snow accumulation and seasonal snow storage, and advancing the timing of the spring melt. Therefore, accurate 50 

characterization of winter snowpack and its variability is critically important for making informed water supply quantifications.  51 

    In recognition of the critical need to have spatially distributed measurements of snow mass, there have been several efforts 52 

to measure and estimate SWEsnowpack and snow water equivalent from many different remote sensing platforms in the past 53 

several decades. Airborne lidar systems have been able to provide high resolution, accurate measurements of snow mass 54 

(Painter et al., 2016), but this approach has significant logistical barriers for global and frequent snow measurements, and the 55 

hydrological utility of a practical spaceborne lidar platform is limited (Kwon et al., 2021). In the past three decades, snow 56 

depth and SWE estimates have been derived from passive microwave remote sensing measurements, but they tend to be ofthese 57 

measurements are at coarse spatial resolutions, and have limited accuracies over deep and wet snow, complex terrain, and 58 

dense vegetation (Derksen et al., 2014; Foster et al., 2005)(REF). Active microwave remote sensing instruments such as 59 

Synthetic Aperture Radars (SARs) can provide finer spatial resolution measurements to help resolve some of these issues., For 60 

example, C-band SAR observations from the Sentinel-1 constellation and have shown promise in obtaining high quality, 61 

moderate resolution (1km) observations in deep snow environments (Lievens et al., 2019). A volume scattering radar approach, 62 

using X- and Ku-band SAR, has also been demonstrated in several airborne campaigns and proposed for multiple snow mission 63 

concepts (Yueh et al 2009, Rott et al 2010) because of its potential to achieve high resolution and global coverage over a range 64 
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of snow depths. While these microwave instruments can observe in night-time and cloudy conditions, they are still limited 65 

over areas with dense vegetation (Tsang et al., 2022). Further, all spaceborne instruments have inherent coverage gaps due to 66 

their orbital and revisit configurations. 67 

    To overcome these limitations, modeling and data assimilation systems are needed that can extend the coverage and utility 68 

of available measurements to areas, times, and variables that are not directly observed. In this article, we present a novel 69 

approach through data assimilation, designed specifically to improve the usefulness of spaceborne SWE retrievals over forested 70 

areas. The approach is demonstrated using an observing system simulation experiment (OSSE; e.g., Cho et al., 20222023; 71 

Errico et al., 2007) which is an approach used to formally assess the impact of the data to be collected from an anticipated 72 

mission. Several prior studies have examined the use of OSSEs for snow mission studies (Garnaud et al., 2019; Kwon et al., 73 

2021; Wrzesien et al., 2022).(Garnaud et al., 2019; Kwon et al., 2021; Wrzesien et al., 2022). Among them, SAR-focused 74 

OSSEs have been conducted by Garnaud et al. (2019) and Cho et al. (20222023) to assess the utility of hypothetical snow 75 

observations. Garnaud et al. (2019) focused on a Ku-band SAR to quantify trade-offs between sensor configurations (e.g., 76 

various spatial resolutions and revisit frequencies) with retrieval algorithm accuracy and SWE performance in southern 77 

Quebec, Canada, where temperate forests are dominant with shallow and moderate snowpack conditions. Cho et al. (20222023) 78 

conducted a X-/Ku-band SAR OSSE with an achievable sensor configuration (1 km spatial resolution, 7-day revisit frequency, 79 

and orbital configurations using the Trade-space Analysis Tool for Constellations [TAT-C] simulator) focusing on 80 

mountainous environments in a western Colorado. To comprise diverse snow environments, specifically for  and testing the 81 

degree to which various forested landscapes in this study, we focus onSAR retrieval capabilities in different forest densities 82 

and snow volumes could improve observationally-based SWE estimates.  Here, we build on this prior research by developing 83 

an OSSE covering the entire western United States domain along with the proposed, more realistic constellations using TAT-84 

C.US and portions of Canada. We simulate finer-scale (250 m) synthetic SWE observations that could be provided from a 85 

future X-/Ku-band SAR mission, which are then incorporated within a land surface model through data assimilation to assess 86 

their capability to improve snow state estimates, and the integrated impact on hydrologic states in space and time. The 87 

assimilation experiments here are conducted with and without a novel strategy to extend SAR-based observational coverage 88 

of snow mass to variousSWE estimates from unforested regions into forested landscapes where SAR retrievals of the snowpack 89 

may be obscured by the forest canopy. 90 

    The primary contribution of this paper is the development of a viable strategy for extending space borne remote 91 

sensinghypothetical remotely sensed SWE measurements in preparation ofretrievals from a future snow mission concept (a 92 

volume-scattering X-/Ku -band SAR). satellite mission into difficult-to-observe forest landscapes. We specifically focus on 93 

addressing the following research questions: 1) what is the added utility of spaceborne active remote sensing SWE retrievals 94 

across the western United States?Western US and Canada? 2) how much can spatiotemporal representations of SWE be 95 

improved by focusing on developing observationally based snow estimates over areas with dense vegetation, where SAR 96 
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sensors may be limited? 3) How much added hydrological utility can be obtained through spaceborne active remote sensing 97 

measurements and data assimilation approaches, particularly when coverage over forested areas is improved?  98 

    Section 2 describes the study domain and OSSE modeling setup. This is followed by the description of the results (Sect. 3), 99 

a discussion of the findings (Sect. 4), and the study’s conclusions (Sect. 5).  100 

2.1 Study domain and OSSE setup 101 

    As noted above, anAn OSSE is a typical approach used to assess the value of the data to be collected from an anticipated 102 

mission, and consists. OSSEs often consist of the following steps: 1) Development of an assumed “true state” of the relevant 103 

system is produced by Developing a “nature run” that involves the use ofuses a state-of-the-art model employed with the best 104 

available boundary conditions (Sect. 2.1); 2) simulation of synthetic observations from using the nature run to generate 105 

simulated remote sensing observations, accounting for sources of sensing limitations, sensing uncertainties, and orbital 106 

configurations (Sect. 2.2); 3) incorporation ofincorporating the simulated observations (often through data assimilation, Sect. 107 

2.3) in a different,separate, “open loop” model configuration with accuracies representative of common modeling biases and 108 

uncertainties, often called the ‘open loop’; and 4) evaluation of the impact thatevaluating how much the simulated remote 109 

sensing data have on improvingimprove the open loop model performance relative to the nature run. The details of the OSSE 110 

setup used in this manuscript, are described below,In addition to this OSSE approach, this study goes further by 1) testing the 111 

degree of improvement to both the remotely-sensed variable (i.e., SWE) and the resulting changes to land surface runoff in 112 

snowy regions, and 2) developing two separate data assimilation experiments, one which masks simulated observations in 113 

forested pixels where SAR retrievals may be most challenging, and the other including a novel approach for inferring SWE in 114 

forested landscapespixels using simulated observations from nearby, unforested simulated observations pixels (Sect. 2.4). The 115 

details of the OSSE setup used in this study are described in more depth throughout this section. 116 

    We employ the NASA Land Information System (LIS; Kumar et al., 2006), an infrastructure for high performance, 117 

ensemble-based land surface modelling and data assimilation to enable this OSSE.  LIS encompasses several advanced land 118 

surface models that can simulate terrestrial water, energy, and carbon balances and related states such as soil moisture, land 119 

surface temperature, and SWE, among others. These include different versions of community models such as Noah (Ek et al., 120 

2003), Variable Infiltration Capacity (VIC; Liang et al., 1994), Catchment (Koster et al., 2000), Joint UK Land Environment 121 

Simulator (JULES; Best et al., 2011), and Noah-MP (Niu et al., 2011). The LIS framework also includes support for specialized 122 

models that are designed to provide more detailed representations of certain land surface processes (e.g. snow), while enabling 123 

interaction with LSMs that solve for water, energy, and carbon balances at a macroscale. For example, the advanced snow 124 

physics model called SnowModel (Liston and Elder, 2006) has been incorporated within LIS in a manner that allows coupling 125 

to existing LSMs. This structure allows the use of the advanced snow physics from SnowModel while leveraging the existing 126 
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process schemes (e.g., sub-surface, groundwater, canopy) within the LSMs. Here we utilize these unique capabilities for 127 

enabling the OSSE integrations.  128 

.  The study is conducted over a large domain (Fig. 1), covering the Western U.S.US and southern Canada from 31-55N and 129 

93-130W at a 250 m spatial resolution. As shown in Fig. 1, this modeling domain encompasses a broad range of vegetation 130 

types, topographical regimes and river basinswater resources regions of the Pacific Northwest, California, Great Basin, and 131 

Upper Colorado. 22% of the domain is covered by forests, with grasslands, croplands, and shrublands accounting for 20%, 132 

23%, and 26% of the domain, respectively. Forests dominate the coverage of areas with significant snowpack, occupying 58% 133 

of regions that are in the mid-elevation range of 2500-3500m, and 15% of the areas with elevations over 3500m. From a 134 

modellingmodeling perspective, the domain extent of Fig. 1 (~83 million land grid points) is computationally challenging. The 135 

scalable high performance computational and parallel inputting and outputting capabilities of NASA LIS were leveraged to 136 

enable these simulations. A multiprocessor configuration involving approximately 1000 processors was employed to facilitate 137 

large model simulations for the nature run, open loop simulation, and two simulations with data assimilation. 138 

139 
Figure 1:  Maps of the land and vegetation classes (A; left panel) and elevation (in meters) (B; right panel) used in the 140 
simulations. Outlines and labels in the left panel indicate regions discussed in the Results (Sect. 4). Red contours in the right 141 
panel indicate basinshydrologic regions used in the analysis. 142 

    The “nature run” Simulations in this study was performed using a model configuration that coupled a state-of-the-art and 143 

physically based snow model (named SnowModel, discussed later in this section) with the Noah model with multi-144 

parameterization (Noah-MP) version 4.0.1. The simulations are conducted by forcing this coupled model setupLIS LSMs with 145 
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the surface meteorology from NASA’s Modern Era Retrospective Reanalysis, version 2 (MERRA2MERRA-2; Gelaro et al., 146 

2017) product, with LIS-provided downscaling to 250 m resolution using lapse rates and topographical downscaling 147 

approaches, like SW corrections based on topographical shading (Arsenaultand ECMWF Reanalysis, version 5 (ERA5; 148 

Hersbach et al., 2020) products. The model integrations were conducted for the water year 2019 (September 2018 – September 149 

2019), which was a wetter than normal year based on the long-term average meteorological conditions over this domain. The 150 

open loop and data assimilation integrations performed in this study were conducted using Noah-MP alone. 151 

    The open loop and data assimilation integrations performed in this study are conducted using the Noah land surface model 152 

with multi-parameterization (Noah-MP model discussed above) version 4.0.1 (Niu et al., 2011) and forcing from ERA5.The 153 

Noah-MP model evolved from the Noah LSM, with multiple options for various land surface processes. It represents processes 154 

related to energy, water, and carbon balances at the land surface by accounting for processes related to infiltration, evaporation, 155 

transpiration, runoff generation and groundwater recharge. A TOPMODEL-based runoff model (Beven et al., 2021) is used to 156 

calculate surface runoff and groundwater discharge. Options for prognostic vegetation dynamics models that represent the 157 

growth and senescence of vegetation are also available within Noah-MP. A two-stream radiative transfer approach is employed 158 

to calculate surface energy processes.  AFinally, a multilayer snowpack model (with up to three layers) that canis used to 159 

account for snow melt metamorphisms, compaction by overlying snow, sublimation of canopy intercepted snow, and 160 

snowmelt-refreeze cycles is available within Noah-MP (Niu and Yang, 2004).within Noah-MP (Niu and Yang, 2004).  161 

    Snow states like snow depth and SWE were also modelled across the Western USnited States (domain highlighted in Fig. 162 

1) at 250 m resolution and hourly time steps using athe state-of-the-art and physically based single-layer snow 163 

modelimplementation of SnowModel (named SnowModel; Liston and Elder, 2006), provided forcing from MERRA-2 with 164 

LIS-provided lapse rates and topography-based meteorological downscaling approaches, like incoming shortwave corrections 165 

based on topographical shading (Cosgrove et al., 2003; Kumar et al., 2013). SnowModel This model has seen widespread use 166 

in the snow community, demonstrating the capability to resolve snow evolution in a variety of landscapes and complex snow 167 

processes like the redistribution of snow via wind, and the resulting impact on snow distribution, melt season snow duration, 168 

glacier mass balance, and snow habitat for species like polar bears and Dall sheep (Hiemstra et al., 2002; Liston et al., 2016; 169 

Mahoney et al., 2018; Mernild et al., 2017; Sturm and Wagner, 2010). In addition to wind redistribution, Ssnow evolution 170 

within SnowModel at each grid cell accounted accounts for a wide set of snow processes, including snow sublimation, snow 171 

grain size evolution, solar topographical shading, canopy shading, and canopy snow interception, and wind redistribution. 172 

Through the coupling within LIS, Noah-MP snow states and the resulting snow-driven runoff were updated using the 173 

SnowModel outputs at hourly daily timesteps for each grid cell.  174 

    Preliminary research has shown that relative to Noah-MP, LIS simulations coupling Noah-MP with SnowModel have 175 

improved the volume and spatial distribution of simulated snow depth and SWE (Arsenault et al., 2021; Wrzesien et al., 2022). 176 
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Therefore, the coupled SnowModel and Noah-MP model was a prime candidate for the “nature run” in this study, or the 177 

simulation most representative of the true underlying spatiotemporal snow states from which simulated observations were 178 

derived (Sect. 2.2), and the assimilated model was compared against. Here, the nature run and open loop simulations detailed 179 

above were compared to a widely-used Western US snow reanalysis product (Fang et al., 2022) to ensure that 1) the nature 180 

run exhibited reasonable model accuracy, and 2) the departure between the open loop simulation and nature run are 181 

representative of common regional, continental, and global modeling efforts (Figure S1 and S2). The OSSE developed for this 182 

study is a “fraternal twin” OSSE, wherein two different models are used to simulate snow in the open loop (Noah-MP) and 183 

nature run (SnowModel) simulations. This approach is  selected since “identical twin” OSSEs, which use the same model, can 184 

result in less divergence in model states and information content, biasing the degree of model improvement that could come 185 

from assimilating an observation (e.g., Yu et al., 2019). More information on the difference between the open loop and nature 186 

run models can be found in Table S1.  187 

2.2 Observation simulator 188 

    From the nature run integrations conducted with Noah-MP coupled to SnowModel in LIS, synthetic SWE retrievals at 250 189 

m spatial resolution, expected from a hypothetical SAR mission, were simulated. First, the orbital swaths were simulated using 190 

TAT-C (Le Moigne et al., 2017). TAT-C, a NASA software system designed for future Distribution Spacecraft Missions 191 

(DSM),.   Synthetic SWE retrievals at 250 m spatial resolution, representative of a hypothetical X- and Ku-band SAR mission, 192 

are simulated from the nature run. To do this, the orbital swaths are simulated using TAT-C (Le Moigne et al., 2017). TAT-C 193 

is a NASA software system designed for future Distribution Spacecraft Missions (DSM), which enables us to explore a range 194 

of feasible design options (e.g., constellation vs. single, geostationary vs. polar-orbiting, low vs. high temporal frequencies) to 195 

estimate optimal gains for the given mission configuration. Using an assumed 10-14 day revisit frequency, thesePrevious 196 

OSSEs have been conducted to test the impact from different snow mission configurations (e.g. Garnaud et al 2019). Here we 197 

instead focus on demonstrating the value of a gap-filling approach (Sect. 2.4) for estimating snow in forested landscapes where 198 

SAR retrievals may be most challenging. Therefore, we used TAT-C to design a conservative mission configuration consisting 199 

of a small constellation of X- and Ku-band SAR satellites. Using a 10-14 day revisit frequency, depending on latitude, TAT-200 

C orbital swaths were applied to the nature run outputs to simulate the satellite viewing area. The realisticremote sensing spatial 201 

coverage is simulated by extending the ground track to a swath width (i.e., 50 km). The daily viewing extents are then simulated 202 

as a daily binary map (so-called “cookie cutter”) masking the surface as viewed or not at a 250 m spatial resolution.  203 

    Additionally, bBased on an error level of 20%, spatially and temporally uncorrelated random errors drawn from a Gaussian 204 

distribution weare added to the synthetic SWE retrievals. Note that here we use an optimisticThis 20% error level is selected 205 

using a conservative estimate of SWE measurement uncertainty for a volume-scattering X-/Ku -band SAR mission based on 206 

developed mission design concepts and ground validation. For example, the ESA Cold Regions Hydrology High-Resolution 207 

Observatory (CoREH2O) mission expected to meet instrument and retrieval requirements of ±30 mm accuracies for SWE of 208 
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300 mm, ±10% for SWE greater than 300 mm (Rott et al 2010, 2012). Similarly, the Canadian Terrestrial Snow Mass Mission 209 

(TSMM) concept that is currently under development aims to achieve better than 20% measurement uncertainty for SWE 210 

greater than 50 mm, though it is limited to SWE less than 200 mm due to the dual Ku-band system (Garnaud et al. 2019). 211 

Airborne and tower-based field data have demonstrated that a combination X- and Ku-band system can provide SWE retrievals 212 

over a range of snow conditions at accuracies better than 20% (Zhu et al. 2018, 2021, Tsang et al 2022, Durand et al. 2023, 213 

Singh et al. 2023). However, we use an assumption of uniform error levels throughout the domain, whereas in reality, the 214 

errors are likely to be dependent on other factors, including the terrain characteristics, vegetation, and precipitation regime. 215 

snow characteristics, and vegetation. This is discussed more in Section 4. 216 

2.3 Data assimilation setup 217 

    A one-dimensional ensemble Kalman Filter (EnKF; Reichle et al., 2002)  wasis used to assimilate the synthetic observations 218 

within the open loop configuration of the model. EnKF is widely used for land data assimilation studies (Kumar et al., 2022), 219 

as it provides a flexible approach for the treatment of model and observation errors and non-linear models. An ensemble of 220 

model realizations is used by EnKF to assess and propagate model errors. In this instance, the ensemble requirement further 221 

adds to the significant computational requirements of the large model domain (Fig. 1) and fine spatial resolution of the 222 

simulations (250 m). Therefore, a 5-member ensemble with perturbations applied to the meteorological variables and model 223 

prognostic fields are used for  simulating uncertainty in the modelled estimates. Table 1 details the parameters for 224 

meteorological and model state perturbations, which are based on recent snow data assimilation studies (Lahmers et al., 2022; 225 

Kwon et al., 2021).  Though a larger ensemble size is better for ensuring sufficient sampling density, our choice of five 226 

ensembles is reasonable given that the model state vector used in the assimilation only consists of two variables; the total SWE 227 

and snow depth. The assimilation setup employs a sequential update strategy, where at each time step an ensemble of model 228 

forecasts is propagated forward in time, followed by an update based on observational inputs. The model states are updated 229 

toward the observations based on the relative uncertainties in the model and observations using the following formulation, at 230 

a certain time 𝑘.  231 

                                                                                 𝑥௞
௜ା = 𝑥௞

௜ି + 𝐾௞ൣ𝑦௞
௜ − 𝐻௞𝑥௞

௜ି൧                                                            Eq. (1) 232 

Where 𝑥௞ and 𝑦௞  are the model and observation state vectors, respectively. The term 𝐻௞ represents the observation operator 233 

that maps the model states to the observed variables. The superscripts 𝑖 − and 𝑖 + represent the 𝑖th ensemble member before 234 

and after the update, respectively. 𝐾௞ is the “Kalman gain” term, that allows the weighting of the observations and model 235 

forecasts is a function of the model and observation error covariances.  236 

Table 1. Model forcing and state-variable perturbations used by the 5-member ensemble of LIS simulations 237 
Variable Perturbation Type Cross Correlation across variables 
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Meteorological Forcing Std. 
Dev. 

SW 
corr 

LW corr PCP 
corr 

T corr 

Downward Shortwave (SW) Multiplicative 0.2 1 −0.3 −0.5 0.3 

Downward Longwave (LW) Additive 30 −0.3 1 0.5 0.6 

Precipitation (PCP) Multiplicative 0.5 −0.5 0.5 1 −0.1 

Near surface Air Temperature (T) Additive 0.5 0.3 0.6 −0.1 1 

Noah-MP LSM snow states   SWE Snow depth   

SWE Multiplicative 0.01 1 0.9   

Snow depth Multiplicative 0.01 0.9 1   

 238 

    The data assimilation procedure detailed here assimilated the synthetic SWE retrievals (Sect. 2.2) with the open loop 239 

simulation. The degree to which the simulation with data assimilation approached SWE simulated by the nature run is intended 240 

to represent the extent to which a SAR remote sensing platform with the SWE retrieval characteristics from Sect. 2.2 could be 241 

combined with a land surface model to provide near real-time estimates of SWE at 250 m resolution. However, the SAR 242 

observations synthesized in this study have known issues with observing snow with high liquid water contents and dense forest 243 

cover. Therefore, synthetic observations at each timestep were masked at grid cells withwhere the most-dominant landcover 244 

type from the North American Land Change Monitoring System (NALCMS; Latifovic et al., 2017) was forested, including 245 

deciduous, evergreen, and mixed forest cover (Fig. 1), and1). Synthetic observations were also masked at grid cells where and 246 

when snow was experiencing melt., identified by the presence of liquid water in the snowpack from the nature run. Although 247 

limited in area, grid cells with “ice” landcover (Fig. 1) were also excluded. In this study, this simulation which used assimilation 248 

only in unforested, non-melting, and ice-free grid cells is termed “Data Assimilation, without the forest strategy” (DA). In 249 

Sect. 2.4 below, we present a novel approach used to infer SWE in grid cells with forests using the nearest canopy-free synthetic 250 

observations. 251 

2.4 Extending observations over forests 252 

    The 1-d EnKF approach employed here updated each model grid SWE from the open loop simulation based on the 253 

observations available at that grid point. Though studies have employed 3-d EnKF approaches to spatially propagate 254 
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observational information to neighbouring grid cells (De Lannoy et al., 2012) , here we relied on 1-d updates due to several 255 

factors. First, a 2-d update requires the knowledge of spatial error correlations and their variability, which is challenging to 256 

specify (Ying, 2020). Most prior studies using such schemes employ uniform specifications and are limited to small domains. 257 

Second, a 2-d update increases the size of the state vector and consequently requires the use of a larger ensemble. This, 258 

combined with the added computational expense of a 2-d analysis significantly increases the computational cost. Therefore, 259 

we employed an alternate approach that is computationally more efficient while allowing the extension of observations to 260 

nearby areas.  261 

    Assuming that the SWE retrievals from the hypothetical SAR instrument are limited over forested areas, hereareas where 262 

the dominant vegetation type are forests (Fig. 1a), we employ a novel approach to extend the observations obtained in non-263 

forested areas (Fig 2). For every forested location, valid retrievals over nearby non-forested locations within a radius of 264 

influence of 750 m are identified. An observation at the forested pixel is then estimated by scaling the model SWE by the ratio 265 

of the average observed SWE to modeled SWE over the ‘clearing’ areas (Fig. 2). This scaled observation is then used for 266 

assimilation over the forested pixel. Here we implicitly use the spatial correlations inherent in the model between forested and 267 

clearing areas to extend observational coverage over the clearing to forested locations. This simulation is termed “Data 268 

Assimilation, with the forest strategy” (symbolized by DA+F in Section 3). To evaluate the accuracy and added value of this 269 

scaling approach, we compare SWE and runoff from the nature run simulation, versus simulations with data assimilation both 270 

1) employing the forest scaling strategy discussed here, and 2) masking synthetic observations in forested grid cells (Sect. 2.3). 271 
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 273 

Figure 2. Conceptual depiction and equations demonstrating the forest strategy used here, which estimates a SWE observation 274 
at a given grid cell (outlined box in blue color) based on the modeled SWE (𝑆𝑊𝐸௠௢ௗ௘௟,௙) and the ratio between the average 275 

synthetic SWE observations (𝑆𝑊𝐸௢௕௦,௖) and average modeled SWE (𝑆𝑊𝐸௠௢ௗ௘௟,௖) from grid cells within a 750 m radius 276 
(dashed boxcircle). The light gray shading represents the satellite swath, the tree icons indicate forested locations, and the 277 
snowflake icons represent grid cells with valid SWE retrievalsmeasurements at non-forested locations. The grid cell from this 278 
example is near the satellite swath edge, so observations are unavailable in the nearby regions South and East of this pixel. 279 

3 Results 280 

    In this section, we compute the difference between the open loop simulation, nature run, and the two open loop simulations 281 

with data assimilation, one masking synthetic observations over regions with forests, and time periods with melting snow, and 282 

ice, and the other applying the same data assimilation but extending snow estimates in forested regions using the strategy from 283 

Sect. 2.4 and Fig. 2. The differences between these simulations are detailed in Section 2 and Table S1. We focus on the 284 

differences between these four simulations using: 1) average SWE from the winter snow accumulation season (December, 285 

January, and February; DJF), when snowmelt is minimized and synthetic observations are masked by grid cells with liquid 286 

water content to the smallest degree, 2) spatially distributed SWE on 13 March, the date corresponding to the timing of 287 

maximum SWE volume in water-year 2019, and 3) daily average SWE and total runoff for each day in water-year 2019 over 288 

a number of selected river basinshydrologic regions including the Pacific Northwest, California, Great Basin, and Upper 289 

Colorado (Fig. 1b). 290 
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    The open loop and nature run simulations exhibited differences in both the volume and spatial distribution of average winter 291 

(December, January, and February; DJF) SWE (Fig. 3a and 3b). Relative to the nature run, the open loop simulation tended to 292 

simulate lower elevation winter SWE that was both larger in magnitude and persisted for longer before melting. In the Pacific 293 

Northwest domain (Fig. 4), DJF average snow cover (defined as grid cells with mean DJF SWE exceeding 5 mm), was 294 

approximately 12% larger for the open loop simulation than the nature run (Table 2). These snow extent biases were also 295 

apparent in the other basinshydrologic regions (Figs. S1 – S3 – S5), where open loop snow extents exceeded snow extents 296 

from the nature run by 26% in the Upper Colorado, 45% in the Great Basin, and 6% in California. Visually, the nature run had 297 

significant increases in the spatial variability of winter SWE, better representing the differences in SWE between mountain 298 

peaks and valleys, and the patchiness of  snow cover in regions with winter snowmelt and ephemeral snow cover (e.g., Fig. 4, 299 

Fig. S1). Relative to the nature run, DJF SWE from the open loop simulation was biased high across the full modeling region 300 

(Fig. 3) by approximately 26%, on average, with a mean absolute error of 41 mm and spatial coefficient of correlation of 301 

approximately 0.74. Across snowy the Pacific Northwest basin (Fig. 4), DJF mean SWE biases were approximately 37%, with 302 

a mean absolute error of 55 mm. Open loop model performance for the other basinshydrologic regions can be found in Table 303 

2. 304 

 305 
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Figure 3. Winter (December, January, and February) mean SWE simulated at 250 m resolution from the open loop (a), nature 306 
run (b), and data assimilation simulations, both with (d) and without (c) the forest strategy presented in Sect. 2.4. 307 

 308 

Figure 4. Winter (December, January, and February) mean SWE in the Pacific Northwest region simulated at 250 m 309 
resolution from the open loop (a), nature run (b), and data assimilation simulations, both with (d) and without (c) the forest 310 
strategy.  311 
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Table 2. Simulation performance, relative to the nature run simulation, for the open loop simulation (OL) and the 312 
simulations with data assimilation, both with (DA+F) and without (DA) the forest strategy. Statistics are presented for the 313 
full domain, the four hydrologic basinsregions, and all forested and unforested grid cells. 314 

 

DJF* snow-
extent 
biases 

13 March 2019 SWE Seasonal SWE and runoff 

Mean bias 

SWE abs. 
error 
[mm] 

Coeff. of 
corr. 

MAM* 
mean SWE 

bias 

Nash-
Sutcliffe 

Efficiency 

Full study 
domain 

OL^ +22% +26% 41 0.74 - - 

DA^ +23% +9% 36 0.79 - - 

DA+F^ +22% +4% 17 0.91 - - 

Upper 
Colorado 

OL +26% +37% 55 0.74 +63% -2.59 

DA +28% +27% 50 0.74 +86% -3.71 

DA+F +28% +8% 23 0.90 < 1% 0.22 

Pacific 
Northwest 

OL  +12% +42% 89 0.69 +44% -0.17 

DA +13% +32% 80 0.74 +80% -0.34 

DA+F +13% +6% 35 0.89 +15% 0.39 

Great Basin 

OL  +45% +35% 38 0.62 -29% 0.58 

DA +46% +46% 32 0.75 +10% 0.58 

DA+F +46% +28% 23 0.83 -38% 0.53 

California 

OL +6% -34% 50 0.64 -50% 0.92 

DA +8% -6% 40 0.79 -15% 0.88 

DA+F +8% -6% 28 0.88 -26% 0.89 

Unforested 
OL +19% +14% 22 0.83 - - 
DA +20% < 1% 14 0.91 - - 
DA+F +20% < 1% 14 0.91 - - 

Forested 
OL +29% +150% 111 0.67 - - 
DA +30% +150% 111 0.67 - - 
DA+F +30% +18% 27 0.93 - - 

* DJF = December, January, and February; MAM = March, April, and May (averages) 
^ OL = open loop simulation; DA = simulation with data assimilation without the forest strategy; DA+F = simulation 
with data assimilation andwith the forest strategy 

    As expected, the simulations assimilating the synthetic SWE observations agreed with the nature run better than the open 315 

loop simulation. However, on 13 March 2019 (the date of maximum domain SWE volume), the simulation with data 316 

assimilation without the forest strategy had high-biased SWE across large portions of the Rocky Mountains and the Cascade 317 

Mountain range (Fig. 1, Fig. 5b and Fig. 5e). Low biased SWE was more common in Northernmost Canadian portions of the 318 

Rocky Mountains and Cascade Range, the Western montane regions in Washington State, the Northern portions of the Great 319 

Basin, and the lower-lying elevations of the California Sierra Nevada. Additionally, despite the assimilation, snow extents 320 

were still biased high relative to the nature run (Fig. 3) at magnitudes similar to the open loop simulation (Table 2). This was 321 

driven by the expansive snow extents of the open loop simulation, which were decreased by data assimilation, but still resulted 322 

in widespread early-season SWE increases for short periods of time between synthetic observations (at 10 – 14 day 323 
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frequencies), increasing to the number of grid cells with DJF SWE exceeding 5 mm (threshold used to define average winter 324 

snow extents in Fig. 3). 325 

    Assimilating the synthetic SAR observations without the forest strategy best improved SWE in shrub, grass, crop, bare, and 326 

wetland landcover types (Fig. 6b and 6c). For example, relative to the open loop simulation (Fig. 5a and 5d), data assimilation 327 

without the forest strategy (Fig. 5b and 5e) corrected the high SWE biases in the Great Plains (Fig. 1). While 13 March SWE 328 

in shrub, grass, crop, bare-ground, and wetland regions was typically small in magnitude, these landcover types accounted for 329 

77% of the modeling domain area, and 61% of the domain total SWE volume on 13 March (Fig. 6a). In these regions, SWE 330 

from the open loop simulation had a mean absolute error of 22 mm, and a mean bias of approximately 14%, relative to the 331 

nature run (Table 2). Data assimilation significantly improved the SWE bias in these land cover types to within 1%, on average 332 

(Fig. 6b), with a mean absolute error of 14 mm, relative to the nature run. 333 

334 
Figure 5. 13 March 2019 SWE difference (top row) and percent-difference (bottom row), relative to the nature run, for the 335 
open loop simulation (a and d), and simulations with data assimilation, both with (c and f) and without (b and e) the forest 336 
strategy. SWE percent-different maps (bottom row) only compare grid cells where SWE from the nature run was greater 337 
than 5 mm. 338 
 339 
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    The data assimilation results discussed above did not use the synthetic observations over forested grid cells, where 340 

retrievals from SAR instruments may be either partially or fully occluded by the canopy overstory (Tsang et al., 2022; Ruiz 341 

et al., 2022; Huang et al., 2019). However, a significant portion of the snow volume in mid-latitude domains overlaps with 342 

forests. For example, although forests only covered approximately 22% of the study region investigated here (Fig. 1a), 343 

forested grid cells contained just over 34% of the total 13 March SWE volume, a volume about 10% higher than the snow 344 

volume contained in the next-largest landcover type (Fig. 6a). In forested grid cells, SWE simulated by the open loop 345 

simulation were biased high by approximately 87 mm (+150%) on average (Fig. 6), with a mean absolute error of 111 mm 346 

(Table 2). These errors were propagated into the simulation with data assimilation without the forest strategy. Fortunately, 347 

the ratio between modeled SWE and synthetic SWE observations in forested grid cells and the nearest canopy-free grid cells 348 

had high levels of similarity. Therefore, estimating snow in forest regions using the nearest canopy-free pixels (Fig. 2) 349 

improved snow simulations significantly (Fig. 3d, Fig. 4d, and Fig. 5c and 5f). In fact, snow simulated in forest landscapes 350 

using data assimilation with the forest strategy agreed well with the nature run, exhibiting a 13 March SWE average bias in 351 

forested grid cells of only 14 mm (+8%) (Fig. 6), and a mean absolute error of 27 mm. This forest strategy resulted in large-352 

scale improvements to total domain SWE (Fig. 5), reducing the 13 March full-domain SWE volume bias by 28%, and 353 

improving the spatial coefficient of correlation by 0.12, relative to the data assimilation simulation without the forest 354 

strategy. 355 
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 356 

Figure 6. SWE volume on 13 March 2019 broken down by landcover type in subplot a. For each landcover type, the 357 
interquartile range and median of SWE differences (b) and SWE percent-differences (c) are calculated for the open loop 358 
simulation (black) and each simulation with data assimilation (blue bars). SWE differences (b) and (c) are calculated relative 359 
to the nature run. 360 

    The comparisons above focused on mean DJF SWE and SWE from the date nearest peakmaximum snow volume (13 361 

March, 2019). However, assimilating the synthetic SWE data also improved estimates of snow water resources throughout 362 

the duration of the water year, even in periods when most snow-covered regions were experiencing snowmelt and synthetic 363 

observations were masked. For example, in the Upper Colorado basin, approximately 75% of the basinregion had DJF snow 364 

cover with little or no winter snowmelt (Fig. 7). The simulation with data assimilation and the forest strategy substantially 365 

improved basin-mean SWE evolution in the snow accumulation season in this basinhydrologic region (Fig. 7, October - 366 

March). However, snowmelt onset in the March, April, and May (MAM) months increased the number of grid cells 367 

experiencing snowmelt from the open loop model outputs, reducing the number of grid cells across the full Upper Colorado 368 

Region that could be observed by the synthetic SAR observations to approximately 5%, on average, over this period of time. 369 

Despite this, since the simulation with data assimilation improved the volume, timing, and spatial distribution of 370 

peakmaximum SWE, mean SWE evolution tracked the nature run simulation significantly better than the open loop 371 

simulation in the spring snowmelt period. In fact, relative to the nature run, MAM SWE from the open loop simulations was 372 
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biased high by approximately 63%, on average, in the Upper Colorado (Table 2). The simulation with data assimilation 373 

using the forest strategy improved this bias to less than 1%, on average, over the same period. In this study, simulations 374 

using Noah-MP (open loop and data assimilation simulations) melted snow more rapidly in the later-half of the spring 375 

snowmelt season than the nature run simulation which evolved SWE using SnowModel (Section 2.1). Therefore, although 376 

peakmaximum SWE volume, peakmaximum SWE timing, and MAM SWE were improved by data assimilation, the timing 377 

of snow disappearance for the simulation with data assimilation using the forest strategy was approximately 18 days earlier 378 

than the nature run in the Upper Colorado. 379 

 380 

Figure 7. Time series comparison of basin-mean SWE (top) and total runoff (bottom) between the open loop, nature run, and 381 
simulations assimilating the synthetic observations, both with and without the forest strategy in the Upper Colorado basin. 382 
Dashed bars in the top plot represent the monthly percentage of the Upper Colorado grid cells with no snowmelt. Solid bars 383 
also exclude grid cells with forest coverage. 384 

    Much like the Upper Colorado Basin, SWE simulated by the open loop simulation in the Pacific Northwest (Fig. S5S7) 385 

was biased high for the entirety of the snow season. Both domains also had greater than 80% synthetic snow observation 386 
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coverage in March (including grid cells that filled snow estimates using the forest strategy), and as a result, the simulation 387 

with data assimilation using the forest strategy closely matched SWE from the nature run. However, both of these domains 388 

had a significant portion of the seasonal snowpack in forested landcover (Fig. 7 and Fig. S5S7, difference between the 389 

hatched and solid bars). These grid cells had winter SWE estimates from the open loop simulation that were predominately 390 

high-biased (Fig. 3 and Fig. 5). Therefore, although data assimilation improved winter SWE in non-forested landcover types 391 

(Fig. 6), the simulation without the forest strategy caused little-to-no improvement in the simulated domain mean 392 

peakmaximum SWE (Table 2). This highlights the value of the forest strategy used here (Fig. 2), which drew information 393 

from synthetic observations in relatively few nearby pixels to infer the mean snow volume in forested grid cells. Given the 394 

four basinshydrologic regions investigated in this study, a far smaller volume of snow existed in forested landcover for the 395 

California (Fig. S6S8) and Great BasinsBasin regions (Fig. S4S6), resulting in DJF domain-mean SWE evolution that was 396 

more similar between the simulations with and without the forest strategy. We expect results in these domains to be more 397 

indicative of the value of winter SAR observations in less-vegetated snowy landscapes, such as Tundra and Prairie snow 398 

regimes (Sturm and Liston, 2021). 399 

    Finally, the improvements to the spatial and temporal estimates of SWE discussed above had trickle-down improvements 400 

on simulated runoff. For example, in the Upper Colorado (Fig. 7), total annual runoff from the open loop simulation was 401 

biased high by approximately 35%, relative to the nature run. This error was driven most by high-biased winter snow 402 

accumulation, which nearly doubled the melt season (March – July) runoff estimated by the nature run simulation. Here, by 403 

assimilating the synthetic SWE observations, and estimating forest snowpack from the relationship between modeled and 404 

observed SWE from the nearest canopy-free pixels, total annual streamflow in this domain was improved to within 1%. Not 405 

only was domain total runoff improved, but the seasonal evolution of high and low-flows vital for water management and 406 

planning was also improved. This improved the Nash-Sutcliffe Efficiency (NSE) from –2.59 to 0.22 between the open loop 407 

simulation and simulation with data assimilation employing the forest strategy (Table 2). These results were similar for the 408 

Pacific Northwest, which had an NSE that improved from –0.17 to 0.39. HereHowever, due to the smaller changes to SWE 409 

and more-rapid snowmelt simulated by Noah-MP, changes to runoff from data assimilation in California and the Great Basin 410 

were small (Table 2).), with improvements that were largely outweighed by the difference in snowmelt timing and rates 411 

between Noah-MP and SnowModel. 412 

4. Discussion 413 

    The differences between the open loop simulation and nature run in this study were representative of typical snow modeling 414 

errors reported in the literaturecommon for continental and global-scale models used for seasonal to long-term future snow 415 

predictions (e.g., Franz et al., 2010; Garousi-Nejad and Tarboton, 2022; Kim et al, 2021; Liu et al, 2022). The greatest source 416 

of these snow modeling errors is commonly errors in meteorological forcing data, and in particular, biases in precipitation 417 
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(Garousi-Nejad and Tarboton, 2022; Henn et al., 2018; Pflug et al., 2021; Raleigh and Lundquist, 2012; Wayand et al., 2013). 418 

These biases are especially prevalent in the portions of the earth’s surface with the greatest volumes of snow, such as the tundra 419 

and montane regions (Kim et al., 2021), where ground observations and observation station maintenance are hindered by harsh 420 

winter conditions and inaccessibility. This suggests that the greatest need for improving global estimates of snow is improved 421 

estimates of snow accumulation in remote, under sampled landscapes. Here, we expect that the SAR observations evaluated 422 

in this study could address these needs., thus providing a path forward for pairing common snow models with observations as 423 

a basis for determining global snow mass. For example, assimilating SAR observations at 10 – 14 day intervals with the 424 

observational error characteristics reported in Sect. 2.2, improved midlatitude winter SWE volume by approximately 22%, on 425 

average (Table 2). In unforested landscapes, which account for a majority of the Earth’s snow water storage (Kim et al., 2021), 426 

assimilation improved the mean SWE bias at peak-maximum SWE timing to within 1%, on average, and reduced the standard 427 

deviation of errors by approximately 45 mm (~85%) (Fig. 6).  428 

    Despite the benefits discussed above, SAR observations have known limitations in forested landscapes where the canopy 429 

overstory obstructs retrievals from the underlying snowpack (Huang et al., 2019; Ruiz et al., 2022; Tsang et al., 2022). 430 

Therefore, this study was designed to investigate a forest strategy that uses the relationship between modeled SWE estimates 431 

and synthetic SWE observations from neighboring grid cells as the basis for inferring snow distribution in regions with forested 432 

landcover (Fig. 2). To focus on the benefits of this approach, we chose a domain (Fig. 1) that included both significant forest 433 

spatial coverage (22%) with disproportionate amounts of winter snow (34%) within the forested pixels (Fig. 6). Relative to the 434 

open loop simulation, the simulation with data assimilation and the forest strategy dramatically improved the spatial 435 

distribution of SWE (e.g., Fig. 3 and Fig. 4) and the resulting SWE biases at peak-domain maximum snowpack timing (Fig. 436 

5). In fact, in forested grid cells, SWE on 13 March was only biased by 14 mm (mean absolute error of 27 mm), on average, 437 

for the simulation with data assimilation and the forest strategy., relative to the nature run. This was opposed to the open loop 438 

simulation, which was biased by 87 mm (mean absolute error of 111 mm) over the same regions and date. Despite the fact that 439 

the two simulations with data assimilation agreed in all grid cells except forested grid cells, the simulation employing the forest 440 

strategy had a mean absolute error (17 mm) across the full modeling region that was approximately 51% smaller than the 441 

simulation without the forest strategy. Here, we recognize that this study used a single date (13 March) to represent snow water 442 

resources at maximum SWE timing. However, the date of maximum SWE volume from the nature run varied by less than a 443 

week across the four hydrologic regions (11 - 16 March; Fig. 7, Fig. S6 - S8). Therefore, this was a relevant date for model 444 

comparisons, especially given that water resource and allocation decisions in the Western US are often based on the volume 445 

of snow at maximum snow timing. 446 

    This research shows how a modeling framework and relatively few observations can be used to gap-fill estimates of snow 447 

in regions where remote sensing observations from a future platform may be most challenged. Despite the fact that snowpack 448 

with properties able to be retrieved by SAR instrumentation (i.e., canopy-free landcover and no snowmelt) sometimes only 449 
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accounted for only small portions of a modeling domain (e.g., Fig. 7),  SWE from the model and SAR observations in nearby 450 

canopy-free grid cells were predictive of the snow in forested grid cells. We hypothesize that this could have partly been driven 451 

by the 250 m resolution of synthetic observations and simulations. At this length scale, snow distribution is typically driven 452 

by processes like synopticmesoscale weather patterns and their interaction (e.g., orographic lapse rates, wind 453 

loading/sheltering, terrain-shading, etc.) with static topographical features like elevation, slope, and aspect (e.g., Clark et al., 454 

2011; Lehning et al., 2011; McGrath et al., 2018; Minder et al., 2008; Trujillo et al., 2007). However, we acknowledge that 455 

snow in forested and open grid cells is subject to different snow processes. In fact, the nature run simulation used here attempts 456 

to simulate snow-canopy interactions, such as snow interception and solar shading from the canopy overstory (Liston and 457 

Elder, 2006). Here, since we focus predominantly on model improvements from data assimilation in the SWE accumulation 458 

season, we hypothesize that the primary difference between SWE accumulation in forested pixels, and the nearest canopy-free 459 

grid cells could be driven by canopy interception, or the lack thereof. In other words, inferring forested snowpack using the 460 

nearest canopy-free grid cells could bias snow in forested regions where snow processes differ slightly. While the forest 461 

strategy improved SWE simulated in forested grid cells at the date of peak-maximum SWE volume, SWE was still biased high 462 

relative to the nature run (Fig. 6). We hypothesize that a correction factor, based on variables like forest canopy type, vegetation 463 

density, wind speed, and temperature during snowfall, all of which influence snow interception, (Lundquist et al., 2021), could 464 

be used to facilitate the difference in snow accumulation expected between a forest pixel and SWE observations from nearby 465 

canopy-free grid cells. This approach will be a topic of future research. However, since errors with precipitation are often the 466 

overwhelming source of model errors, we hypothesize that the forest strategy (Fig. 2), which corrected modeled SWE in 467 

forested areas using the ratio between modeled and observed SWE in nearby open areas, was well-suited to correct precipitation 468 

biases.  469 

    The results presented here are subject to a number of assumptions. These assumptions were intended to apply regionally-470 

consistent and conservative rules about how 1) synthetic SAR observations were generated, and 2) the grid cells and time 471 

periods that SAR observations occurred in. For example, we used a 20% and zero-mean random distribution of errors to 472 

generate observations from the nature run. We expect the error from a future satellite mission to be less than 20% over the 473 

majority of snow covered regions (Sect. 2.2). However, observational biases may be more common in certain locations and 474 

periods based on snow depth, particularly in very shallow or very deep snowpacks, terrain characteristics and vegetation 475 

characteristics. Additionally, the landcover classification used in this study (Fig. 1) was based on the dominant landcover type 476 

within each model grid cell, as defined from the North American Land Change Monitoring System (Latifovic et al., 2017). For 477 

forested grid cells, this included needleleaf, broadleaf, and mixed forest types. To be conservative, this study completely 478 

masked synthetic observations in 250 m grid cells classified as forest, thereby assuming 1) no observation capabilities in 479 

predominantly forested areas, and 2) full observation capabilities in grid cells where forests were not the dominant landcover 480 

type. In reality, SAR may be able to achieve accurate snow retrievals in some forested-dominated regions based on the forest 481 

type, forest distribution, and canopy density (Tsang et al., 2022). Conversely, some regions with sparser or no forest cover 482 
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may still have observation limitations based on the domain and snow characteristics mentioned above. The large domain used 483 

in this study also made tests over multiple years computationally challenging. Here, the intent of this study was to investigate 484 

a strategy for deriving SWE corrections in difficult to observe forest landscapes, and we hypothesize that precipitation biases 485 

and the resulting modeled SWE accumulation could be improved to a similar degree in years with both larger and smaller 486 

snow volumes. Finally, while strategies for identifying and correcting systematic SAR observation errors are a topic of 487 

continued research (e.g., Durand et al., 2023; Singh et al., 2023), OSSEs are an inherently flexible framework for evaluating 488 

sensor utility, so future research could use the simulations performed here to test a wider array of sensor configurations and 489 

non-normal retrieval errors. Future work could build upon these results to investigate multiple years, perhaps considering 490 

warmer and/or drier snow years, when the role of snowpack for water supply and midwinter snowmelt and rain-on-snow 491 

frequency may be more likely to increase snowpack liquid water content, or years with late-season spring snow accumulation. 492 

Future research should also investigate other gap-filling approaches, like methods to infer SWE in grid cells where snowmelt 493 

is occurring and liquid water may prevent SAR retrievals, and gap-filling approaches using different window sizes and/or 494 

searching windows that more heavily weight unforested grid cells with similar characteristics (elevation, aspect, etc.).     495 

    This study tested a simple model setup using a popular land surface model (Noah-MP) and Kalman-based data assimilation 496 

procedure. This data assimilation procedure updated modeled snow states, like snow depth and SWE, based only on synthetic 497 

SWE observations at 10 – 14 day temporal frequencies where/when snowmelt was not occurring. WeDespite the limitations 498 

and assumptions discussed above, we expect that the results presented here could represent the lower-bound of performance 499 

that could be achieved from a real-time modeling framework that could accompany a space-borne SAR remote sensing 500 

platform. For example, many studies have demonstrated repeatable patterns of snow accumulation in years with similar winter 501 

meteorological characteristics (e.g., Deems et al., 2008; Pflug et al, 2022; Schirmer et al., 2011; Sturm and Wagner, 2010; 502 

Woodruff and Qualls, 2019). This suggests that retrospective information about snow distribution patterns in previous years, 503 

could be used as the basis for extrapolating and updating snow model states in grid cells not covered by SAR observations on 504 

a given date. From the modeling perspective, only 5 ensemble members were used in the Ensemble-Kalman data assimilation 505 

(Sec 2.3), when a larger ensemble of simulations may have improved uncertainty characterization of simulated snow and 506 

hydrological states even more. This study also assumed that synthetic SAR observations were unable to observe snow in all 507 

forested landscapes, when retrievals of snow in forested stands could be achievable for some forested regions with smaller tree 508 

cover fractions and biomass (Montomoli et al., 2015; Tsang et al., 2022). Finally, the SAR configuration tested here had 10 – 509 

14 day repeat times, but future satellite configurations with more-frequent observational repeats could be possible.are possible 510 

and have been recommended by the 2018 Decadal Survey (NASEM 2018). Despite all of these conservative assumptions, the 511 

difference between the open loop simulation (representative of current modeling accuracies), and the simulation with synthetic 512 

observation data assimilation using the forest strategy, demonstrated large-magnitude and widespread improvements to real-513 

time estimates of winter SWE and the associated improvement to spring SWE and runoff. Therefore, we expect the findings 514 
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of this study, particularly the strategy to extend the observational utility to forested areas, to significantly aid in the full 515 

exploitation of the information from a future SAR-based snow satellite mission. 516 

5. Conclusion 517 

    Global estimates of snow volume and distribution have uncertainties stemming from limited snow observations and 518 

biases in meteorological forcing data. These uncertainties stress the need for a global snow-focused satellite remote 519 

sensing platform. Here, we investigate the degree to which synthetic observations of snow water equivalent (SWE 520 

representative of a Synthetic Aperture Radar (SAR) remote sensing platform, could correct common snow modeling 521 

errors and provide spatiotemporally continuous SWE estimates. We investigate this using an ObservationObserving 522 

System Simulation Experiment, specifically investigating how much snow simulated using a popularwidely used land 523 

surface model and meteorological forcing dataset, could be improved by assimilating synthetic SAR observations of 524 

SWE.  525 

    The difference between the open loop simulation and the nature run werewas representative of common modeling 526 

errors. Snow simulated by the open loop simulation had larger winter snow extents, and total snow volume that was 527 

biased high by approximately 35%. The open loop simulation also simulated snow that was more spatially homogeneous, 528 

underestimating the variability across variations in topography and underestimating lower-elevation snowmelt from the 529 

nature run. Assimilating the synthetic SWE observations improved SWE simulated in the shrub, grass, crop, bare-ground, 530 

and wetland land cover types. In fact, SWE biases on the date of domain peakmaximum SWE volume (13 March 2019) 531 

in these landcover types improved from 14% for the open loop simulation to within 1% after data assimilation. However, 532 

despite only covering 22% of the study area, forested grid cells contained just over 34% of the domain SWE on 13 533 

March. The open loop simulation and the simulation with data assimilation without the forest strategy had SWE that was 534 

high biased by 150% (87 mm), on average, in these forested grid cells.  The relationship between modeled SWE and 535 

synthetic SWE observations in forested grid cells exhibited similarities with the nearest canopy-free grid cells. Therefore, 536 

SWE in forested regions was able to be inferred using the simple modeling framework and synthetic SAR observations 537 

from nearby canopy-free grid cells. In fact, the simulation with data assimilation using this forest gap-filling strategy 538 

substantially improved SWE biases to 4% (~22% improvement) at peak-maximum SWE timing, with a SWE mean 539 

absolute error of 17 mm (24 mm improvement) and spatial correlation of 0.91 (0.17 improvement) across the Western 540 

US 541 

    Improvements in winter SWE accumulation also improved estimates of melt-season SWE evolution and total runoff 542 

in four major Western United States hydrological basinsUS hydrologic regions, even in periods when winter snowmelt 543 
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greatly reduced the number of grid cells that could be observed by the synthetic SWE observations. In fact, in the Upper 544 

Colorado River basin, melt season SWE biases improved from 63% to less than 1% after assimilation, and the runoff 545 

Nash Sutcliffe Efficiency improved from -2.59 to 0.22. These results demonstrate the value of SAR observations and 546 

simple spatial-filling strategies in grid cells where SAR retrievals could be obstructed by the canopy. Here, we expect 547 

our results to represent a lower-boundary of model performance which could be improved further by more robust 548 

assimilation approaches, more-frequent SAR observations, further developments to SAR retrieval algorithms in forested 549 

landscapes, and adaptations to the forest gap-filling strategy developed here. However, our results also show that 550 

widespread improvements to global SWE could be available in near real-time provided data assimilation approaches and 551 

a SAR remote sensing platform. 552 

Code availability: The Land Information System (LIS; lis.gsfc.nasa.gov) framework used to perform the nature run, open 553 

loop, and data assimilation simulations from this study can be accessed from a GitHub public repository 554 

(https://github.com/NASA-LIS/LISF). Model documentation and LIS tutorials can also be accessed from this repository. Users 555 

are encouraged to reference Kumar et al. (2006) for more information on LIS. The Trade-space Analysis Tool for designing 556 

Constellations (TAT-C) tool is currently available on-request for federal employees and contractors 557 

(https://software.nasa.gov/software/GSC-18399-1). 558 

Data availability: The model outputs and data necessary to reproduce the figures and statistics reported in this study can 559 
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