
Response to RC1 

 

We would like to thank anonymous reviewer #1 for their thorough and thoughtful comments. We 

believe that by addressing these comments we greatly improved the clarity and organization of 

the manuscript. Below, we include in-line responses for each of the reviewer’s comments.  

Detailed comments: 

 

1) The descriptions of  "Open loop", "Nature Run", "Assimilation w/o Forest" and assimilation 

with forest are scattered and hard to follow. Readers not familiar with the concept of open 

loop and nature run will struggle and it will be helpful to provide a summary. I am unclear 

on what biases and uncertainties were considered in the open loop simulations 

Thanks for pointing this out. We agree that our terminology for these simulations was 

sometimes inconsistent and confusing. We changed the text throughout the manuscript to 

make our discussion of the different simulations and labeling for each clearer. For 

example, additional text was added to link specific simulations in the text with the labels 

used in the figures (lines 248 - 249 and lines 268 - 269). 

We also agree that the differences between the open loop and nature run simulations were 

not stated as clearly as they could have been. The differences between these simulations 

were driven by the different models simulating snow (Noah-MP versus SnowModel), 

model forcing (ERA5 versus MERRA2), and different meteorological downscaling 

procedures. We edited Section 2.1 to ensure that the nature run and open loop simulations 

each have a paragraph dedicated to discussing their setups, and added a table to the 

supplementary to further highlight the differences (Table S1). We also note that the 

disparity between the open loop and nature run simulations is representative of snow 

modeling errors that are common for continental and global scale models (lines 414 - 

416). The improvement to the simulated SWE following assimilation shows that a snow 

satellite with the characteristics presented here, paired with the forest strategy for 

adjusting snow in difficult-to-observe locations, could correct these common 

regional/global model errors (lines 414 - 428). 

2) How did you come up with the 750 m search radius for the forested and non-forested pairing? 

This 750 m searching radius corresponded to a 5x5 window of grid cells. Given the large 

expanse of forests in this domain (Fig. 1), smaller searching radii increased the 

prevalence of windows where every cell within the window was forested and thereby 

unable to infer the SWE correction. Secondly, the forest strategy worked well due to the 

spatial similarity between the winter SWE corrections in forested grid cells and the SWE 

corrections from the nearest unforested grid cells. We attributed this to the high spatial 

autocorrelation in the precipitation differences between the open loop and nature run 

simulations (lines 451 - 455). Given this, we expected that a larger searching radius 

would increase the risk of including SWE corrections at grid cells with dissimilar SWE 

errors. In lines 493 - 495, we acknowledge that future work could investigate different 



searching approaches, including different window sizes or gap-filling approaches that 

more heavily weight grid cells with similar topographical features. 

3) Considering the fact that SWE magnitude and processes are highly variable among different 

years, how transferable are results from 2019 to a dry year when the role of snowpack is even 

greater for managing water? This point warrants a discussion.  

This is a great point. In this manuscript, we chose to focus our efforts and results on the 

forest strategy (Section 2.4), which addressed one of the greatest challenges for SAR 

remote sensing retrievals. Due to this and the large computational cost of these 

simulations (lines 134 - 138), we chose to focus the analysis on only a single water year. 

Based on our results, we anticipate that the improvements that we presented here would 

likely be similar for both higher and lower snow years. Specifically, we expect that the 

results can be transferable to dry years provided that 1) the distribution of forested/non-

forested snow (e.g., Figure 6) was  similar, and 2) the disparity between the modeled 

snow biases in forested and nearby unforested grid cells was also similar. However, we 

agree that this should be evaluated in future research. We discuss and acknowledge this 

in lines 487 - 493. 

4) You are using snow water equivalent and SWE interchangeably. use the abbreviation after 

you have defined it.  

Thanks for pointing this out. These instances have been corrected (e.g., line 53). 

5) L58 missing reference 

Thanks for catching this. These citations were added (line 59). 

6) Fig. 1: Red contours are not really basins. They are boundaries of water resources regions 14 

(upper Colorado), 16 (Great Basin), 17 (PNW), and 18 (CA). 

Good point. We removed our use of “basins” in the text (e.g., line 131). We now use the 

term “hydrologic region” throughout. 

7) L143: use of Western United States vs Western U.S.  

All instances except the first instance of “Western United States”, were changed to 

“Western US” for consistency. 

8) Is it fair to use the same peak snow day, i.e., March 13 2009,  for the entire study 

region?  How variable this peak date was among the four regions? 

This is a great question. This date was selected based on the date of maximum SWE 

volume across the full modeling domain. However, the date of maximum SWE volume 

from the nature run only varied between March 11 and 16 across the four hydrologic 

regions (see Figure 7, and Figures S6 – S8). Therefore, we believe that this is a 



reasonable target date for model evaluation, especially given that water resource 

allocation and management decisions in the Western US are often based on the volume of 

snow at maximum snow timing (lines 442 - 446). 

Although maximum snow volume peaked around 13 March, many lower-elevation grid 

cells were already experiencing melt by that date, causing snow cover to have high liquid 

water content and eliminating the capability of SAR observations on that date (e.g., bars 

in Figure 7). Therefore, many of the SWE errors reported in Table 1, Figure 5, and Figure 

6 are driven by drift between the open loop and nature run, which used different models, 

meteorological forcing, and downscaling. In other words, the model performance that we 

report for 13 March was worse than if we had focused on an earlier winter date when less 

snowmelt was occurring and greater amounts of simulated observations were included in 

the assimilation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Response to RC2 

 

We would like to thank anonymous reviewer #2 for their comments and suggestions. We believe 

that this manuscript greatly benefitted from addressing these comments. Below, we include 

detailed responses for each of the reviewer’s comments.  

 

Detailed comments: 

1. The way it is written it appears the “nature run” is used as the ground truth. At the large 

spatial extent of the Western US this seems appropriate. However, it is unknown how the 

“nature run” compares to ground based SWE observations. It would be helpful to provide 

some comparisons to observed SWE from SNOTEL stations in different regions to show that 

the whole modeling framework is actually representative of actual “ground truth”. 

Thanks for the comment. In the manuscript, we followed the approach typical among 

OSSE studies (e.g., Errico et al., 2007; Garnaud et al., 2019; Kwon et al., 2021) by 

focusing on developing an experiment setup that uses the departure between the open 

loop and the nature run to simulate errors common for continental and global snow 

simulations (lines 414 - 416). Overall, our setup allowed us to test the degree of model 

adjustment and resulting SWE estimation that could be provided from a satellite snow 

sensor with the characteristics provided here (Sect. 2.4). Given the size of our domain 

and spatial resolution, model calibration and bias corrections to the meteorological 

forcing data would be time and computationally expensive, and would likely require 

different model calibrations and corrections based on regionally and temporally specific 

errors. Therefore, we relied on the use of a state-of-the-art model with improved 

precipitation forcing and downscaling techniques (SnowModel coupled with Noah-MP, 

NASA’s MERRA-2 forcing, and slope/aspect-based meteorological downscaling) to 

represent the “true” state of snow evolution, and a more-common modeling setup (Noah-

MP and ERA5 forcing) to represent the open loop model states.  

Though ensuring the realism of the nature run is not the primary focus of OSSEs, we 

established that snow evolution from the nature run resembled realistic conditions in the 

Western US and Canada. We added some comparisons between our simulations and a 

widely-used Western US snow reanalysis (Fang et al., 2022) which has been validated 

with ground-based SWE observations from SNOTEL locations. We added this 

comparison to the supplemental material and referenced it in the main text (lines 175 - 

182). We chose to compare our simulations with this reanalysis product since 

comparisons between grid cells (250 m) and point observations of SWE can be 

challenging. We found that the extent to which the nature run matched SWE from the 

reanalysis in 2019 varied regionally. For instance, on 13 March (date used to approximate 

peak snowpack timing in this study), SWE from the nature run and reanalysis had a 

spatial coefficient of correlation between 0.31 and 0.42 in a Pacific Northwest and 

Colorado subregion. This was significantly better than the open loop simulation, which 

only had a coefficient of correlation of approximately 0.15. Further, snow cover from the 

nature run was biased by +4% relative to the reanalysis, but the open loop consistently 

overestimated snow cover by greater than +13%. While total snow volume between the 



nature run and reanalysis agreed closely in the Pacific Northwest subdomain, SWE from 

the nature run was biased low in the Colorado subdomain.  

2. Can you comment on why on a single year (2019) was used? I realize the modeling is likely a 

big lift computationally but snowpack characteristics can change an awful lot from year to 

year. You picked a big snowpack year but what about a shallow snowpack year? 

This is a great question. In this manuscript, we chose to focus our efforts and results on 

the forest strategy (Section 2.4), which addressed one of the greatest challenges for SAR 

remote sensing retrievals. Due to this, and due to the large computational cost of these 

simulations (lines 134 - 138), we chose to focus the analysis on only a single water year. 

Based on our results, we anticipate that the improvements that we presented here would 

likely be similar for both higher and lower snow years. However, this could be evaluated 

in future research. We now discuss and acknowledge this in lines 487 - 493. We also 

addressed a similar comment from Reviewer #1 (question #3). 

3. The introduction mentions a “future snow mission”. Can you clarify if this is an already 

planned mission or more of a hypothetical mission? 

The “future snow mission” referenced in this manuscript is a hypothetical mission at this 

time. However, much of the snow community, including the coauthors on this study, and 

scientists from both the US and international communities, have been researching what 

the capabilities of a snow-focused remote sensing platform could look like (e.g., Cho et 

al., 2023; Garnaud et al., 2019) in preparation for satellite mission opportunities. This 

manuscript, which demonstrates the value of SAR-based snow observations combined 

with modeling efforts, contributes to that future mission effort.  

4. In the Short Summary it says “250 m estimates of snow”. Can you be more specific and say 

snow water equivalent. It also states “snow water volume to within 4%”. Can you add what 

that is in reference to? Ground truth? 

Good idea. This was changed to “snow water equivalent”. The short summary is 

restricted in length (500 characters, including spaces), so I was unable to add that the 

reference for this statistic was the nature run. However, I added text to the abstract to 

clarify this. 

5. Line 58: It looks like “Ref” needs to be filled in. 

We apologize for the oversight and thanks for catching this. This was edited (line 59) 

6. Line 131: What does “SW” mean? Please define. 

Thanks for pointing this out. This was supposed to be “shortwave”. This was changed in 

the updated manuscript. 

7. Line 245: Is the word “snowy” out of place here? 



Good catch. This was a typo, and it was removed in the updated text.  

References: 

Cho, E., Vuyovich, C. M., Kumar, S. V., Wrzesien, M. L., & Kim, R. S. (2023). Evaluating the 

utility of active microwave observations as a snow mission concept using observing 

system simulation experiments. The Cryosphere, 17(9), 3915-3931. 

Errico, R.M., Yang, R., Masutani, M., Woollen, J.S.: The estimation of analysis error 

characteristics using an observation systems simulation experiment. Meteorologische 

Zeitschrift 16, 695–708, 2007. 

Garnaud, C., Bélair, S., Carrera, M.L., Derksen, C., Bilodeau, B., Abrahamowicz, M., Gauthier, 

N., Vionnet, V.: Quantifying Snow Mass Mission Concept Trade-Offs Using an 

Observing System Simulation Experiment. Journal of Hydrometeorology 20, 155–173. 

https://doi.org/10.1175/JHM-D-17-0241.1, 2019. 

Kwon, Y., Yoon, Y., Forman, B.A., Kumar, S.V., Wang, L.: Quantifying the observational 

requirements of a space-borne LiDAR snow mission. Journal of Hydrology 601, 126709. 

https://doi.org/10.1016/j.jhydrol.2021.126709, 2021. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Response to RC3 

 

I have a number of questions below, focused on the experimental setup. In short, some additional 

details on: the radar mission configuration, sensitivity of the results to the 20% uncertainty value 

prescribed to the synthetic SWE data, and some assurances about the independence of the results 

from the nature run itself are needed before the manuscript is suitable for publication. 

We would like to thank reviewer #3 for their thorough review and thoughtful comments. 

It was clear to us that this reviewer is familiar with the SAR remote sensing, and we 

believe that their comments on this and the related study design greatly improved our 

manuscript. We also agree that the points that reviewer #3 raised here and detailed later 

on should have been addressed to greater detail in the original manuscript. Below, we 

include more detailed responses to each of these overarching concerns, including 

references to where content was added or changed in the revised manuscript.  

In summary, the radar configuration used in this study wasn’t selected to correspond 

directly with any proposed mission, but was instead intended to represent a conservative 

retrievals that are likely worse than we would expect from a future snow-focused 

satellite. We added text to emphasize this, and we specifically address the reviewer’s 

comments on 1) retrieval uncertainties, 2) uncertainties stemming from heterogeneities in 

the land cover, and 3) systematic biases that could result from land/snow characteristics 

and viewing geometries. Additionally, in the revised manuscript, we emphasize that the 

setup used here is a “fraternal twin” OSSE where we use different models (Noah-MP and 

SnowModel) to simulate snow evolution. Relative to “indentical twin” OSSEs, which use 

the same model, “fraternal twin” OSSEs have greater independence between the model 

states and information content which better avoids the internal consistencies between the 

open loop and nature run (e.g., Yu et al., 2019) that the reviewer is expressing concerns 

about.  

More detailed responses to these concerns are included in the detailed comments below. 

Again, we would like to thank reviewer #3 for their time and thoughtful comments. We 

feel well served by this review, and look forward to their feedback on our responses and 

edits. 

Detailed comments: 

1. Section 2.2: It would be helpful to have some further details on the exact mission 

configuration, or range of configurations that motivated this study would be helpful. There is 

only a parenthetical statement on line 83 that the focus is a volume-scattering based 

approach using X- and Ku-band measurements. Were a number of mission and orbital 

configurations explored? It’s not clear what swath width, or range of swath widths were 

applied and it is only stated that a 10 to 14 day revisit time was used. 

The focus of this study was to demonstrate the value of the forest gap-filling strategy. 

Therefore, we are not showing results from a range of different mission configurations 

here. Instead we chose a conservative configuration, meaning one with less capability 



than we anticipate from a future snow mission, to show that even with fewer observations 

and worse-than-expected accuracies we expect improved SWE estimates, and by 

employing a strategy over forested regions those estimates can be improved further still.  

We assimilated observations every 10-14 days, at a 250 m resolution which is 

representative of a small constellation of SAR satellites. We revised Section 2.2 to better 

highlight this focus. 

2. Line 166: “Additionally, based on an error level of 20%, spatially and temporally 

uncorrelated random errors drawn from a Gaussian distribution were added to the synthetic 

SWE retrievals.”Does this mean the 20% random error was applied directly to the nature 

run SWE values? While 20% isn’t overly conservative, there are systematic error 

considerations based on the frequency of radar measurement, and radar geometry 

considerations that result from the configuration of the mission. For instance, Ku-band 

retrievals will be biased low in deep snow areas while X-band will be more insensitive to 

shallow snow. Measurements near swath edges may have an incidence angle that results in 

systematic errors. Some additional details on how this 20% number was determined, whether 

you explored the sensitivity of the results to this value, and the potential impact of not 

considering more mission-specific systematic errors would be helpful. 

Thank you for this comment. We agree that the error assumption was not well described 

and required further explanation. Yes, the random 20% gaussian error was uniformly 

applied to the portions of the nature run that fell within orbital “cookie cutter” swaths on 

each day. This is a conservative estimate of the expected error from a combined X-/Ku-

band SAR system, based on previous mission design concept efforts. For example, the 

CoREH2O mission expected to meet requirements of +/-30 mm for SWE  300 mm and  

+/-10% for SWE > 300 mm (Rott et al 2010, 2012) which accounted for system and 

instrument error, including swath edge effects, as well as SWE retrieval performance. 

Similarly, the Canadian Terrestrial Snow Mass Mission (TSMM) concept that is currently 

under development aims to achieve better than 20% measurement uncertainty for SWE 

greater than 50 mm, though it is limited to SWE less than 200 mm (Garnaud et al. 2019).  

Combined X- and Ku-band SWE retrievals have been successfully demonstrated over a 

range of snow conditions based on recent airborne and tower-based validation efforts 

(Zhu et al. 2018, 2021, Tsang et al 2022, Durand et al. 2023, Singh et al. 2023). While we 

expect a future snow mission to achieve better than 20% measurement uncertainty over 

the majority of snow covered area, we applied this conservative error estimate uniformly 

over the observational swath. 

Given this manuscript’s primary focus on the forest-filling strategy (Section 2.4) and 

computationally-expensive model domain (~83 million grid cells and 1000 processors), 

we wanted to keep our narrative and methods simple, simulating results for a 

configuration that could be worse than whatever may actually be operationally-feasible. 

However, we also agree that observational biases may be more common in certain 

locations and periods, particularly in very shallow or very deep snowpacks. We 

acknowledge this at the end of Section 2.2, and we added an additional discussion on this 

in the second-to-last paragraph of Section 4. We point out that while the size of these 

domains made simulations with multiple satellite observation characteristics/accuracies 



computationally-expensive, we expect the simulations performed here to serve as the 

basis for future studies, which could use subsets of the results from this study to 

investigate smaller regions where certain retrieval errors may be more prevalent and/or 

systematic (lines 483 - 490). 

3.  Line 211 - 219: the approach to filling in forested areas with information from adjacent non-

forested grid cells is clearly described and nicely illustrated in Figure 2. The text and image 

generally gives the impression that gridded SAR backscatter will either be from a clearing or 

a forest. But vegetation cover relevant to radar backscatter is not a binary influence. What 

thresholds were used to differentiate forest from clearing? How would mixed grid cells be 

treated? What about the influence of non-forest vegetation like shrubs within the snowpack? 

These questions raise some good points. We recognize that SAR retrievals would be 

influenced by landcover heterogeneities, which could include multiple forest densities, 

distributions, and forest types. Here, our approach was conservative by prescribing grid 

cells as fully “forested” and thereby unobservable if the most-dominant land cover for 

any gridcell was forested. However, you are correct that forested/unforested landcover is 

not binary in reality, and that some grid cells with more forest cover could still have 

accurate SAR retrievals while nearby areas with sparser forest or other vegetation types 

and terrain features could be subject to inaccuracies.  

Given the size of the modeling domain investigated here, we believe that our land 

classification approach was the most strict and spatially consistent way to partition grid 

cells that were the most/least likely to be obscured by the forest canopy, on average. 

However, the degree to which different arrangements, densities, and forest types 

influence SAR retrievals is a topic of continued research (including research from 

coauthors on this study). We also added an acknowledgement of this study assumption in 

lines 476 - 483.   

4.  Line 230: “when snowmelt is minimized and synthetic observations are masked by grid cells 

with liquid water content to the smallest degree”. This text suggests that wet snow grid cells 

were not assimilated, similar to how forest cells were masked. If this is the case, a 

description of how wet snow was treated needs to be added to Section 2.3 or 2.4. 

This is a great suggestion. As previously-written, the fact that melting-snow grid cells 

were masked out in the observation simulator was briefly mentioned at the end of Section 

2.3, but should have been highlighted more. We added an additional sentence to clarify 

which grid cells were included in the assimilation (lines 248 - 249 and lines 268 - 269). 

We also revised the first paragraph of Section 3 to remind readers of the differences 

between the simulations and which grid cells were included in the data assimilation 

procedure (Lines 281 - 284). Finally, we added a supplemental table to summarize the 

simulation differences (Table S1). 

5. Line 264: “This was driven by the expansive snow extents of the open loop simulation…”.A 

feature of the open loop simulation is the smoother spatial pattern and clear lack of 

elevational influence on SWE. The high SWE areas are very smooth, unlike the nature run. In 



trying to understand this, I went back to Section 2, but could not find a clear description of 

the open loop simulation. Based on line 134, it is stated that Noah-MP (without SnowModel) 

was used for the open loop simulation but some further insight into the underlying 

differences in Figures 3 and 4 would be helpful. 

Thanks for pointing this out. This was something that was also noted by the other 

reviewers. We revised Section 2 and added a table to the supplementary (Table S1) to 

more clearly indicate the differences between the simulations. In summary, the 

differences were a result of different snow models, model forcing, and meteorological 

downscaling procedures. 

6. Line 290: “In forested grid cells, SWE simulated by the open loop simulation were biased 

high by approximately 87 mm (+150%) on average (Fig. 6), with a mean absolute error of 

111 mm (Table 2). These errors were propagated into the simulation with data assimilation 

without the forest strategy. Fortunately, the ratio between modeled SWE and synthetic SWE 

observations in forested grid cells and the nearest canopy-free grid cells had high levels of 

similarity. Therefore, estimating snow in forest regions using the nearest canopy-free pixels 

(Fig. 2) improved snow simulations significantly.” I’m struggling a bit here to ensure that 

there is no impact based simply on the structure of the experiment. Forest SWE in the open 

loop simulation is too high. Assimilating the synthetic SWE retrievals lowers the forest SWE 

values so they agree better with the nature run, indicating a positive influence that the radar 

SWE product would deliver. But the synthetic radar data were generated from the nature 

run, perturbed with 20% random uncertainty. Because the nature run itself is used as the 

generator of the synthetic data and the reference, is this a case of the synthetic data adjusting 

the open loop back to itself? In this sense, the finding that the synthetic radar-retrieved SWE 

data is nudging the open loop back to the nature run does not prove the positive impact of the 

radar product but rather is just a mathematical adjustment achieved by using the nature run 

itself to ultimately adjust the open loop simulation. Presumably, prescribing a higher error 

value and considering radar-specific uncertainties on top of the 20% random error would 

result in less of an improvement. Conversely, applying a lower error value would result in 

more of an improvement. I think this issue of error characterization (see also comment #2 

above), and independence of the results from the quality of the nature run itself needs to be 

addressed. Presumably the reduction in the forest SWE positive bias achieved via 

assimilation is what drives the reduction in positive bias in the streamflow estimate as well 

(line 346)? 

Thanks for the comment. You are correct that the data assimilation causes the open loop 

simulation to adjust the SWE towards the nature run in periods and locations without 

snowmelt. However, this study uses a “fraternal twin” setup wherein we use a different 

model for the nature run (SnowModel), and the open loop simulations (Noah-MP) with 

and without assimilation. This setup causes divergences in model states that are based on 

the difference in model physics (e.g., Kim et al., 2021; Mudryk et al., 2015), in addition 

to differences in forcing (Table S1). Therefore, we believe that this setup avoids the great 

majority of internal consistencies that the reviewer is expressing concerns about here. In 

fact, we chose a “fraternal twin” setup since  “identical twin” OSSEs, which use the same 



models, tend to overestimate the benefit of simulated observations (Yu et al., 2019). We 

now include a brief discussion on this in the main text (lines 182 - 187). 

We believe that the results are representative of the degree to which we can expect to 

improve our large scale snow estimations provided radar SWE retrievals and the novel 

forest strategy. For example, the open loop and nature run simulations exhibit widespread 

and often uncorrelated differences in the volume, distribution and evolution of snow. 

Despite the fact that we don’t change the model, forcing, or downscaling, our results 

show that assimilating SAR retrievals using a gap-based snow correction strategy in 

forested areas could improve common snow modeling errors provided only 10-14 day 

observation repeats and conservative assumptions about SAR retrieval capabilities in 1) 

forested grid cells and 2) grid cells experiencing snowmelt.  

Finally, as we acknowledge earlier in our responses, SAR retrievals 1) could be subject to 

more systematic model errors based on terrain characteristics, and 2) will not have binary 

(full or none) observational capabilities over any 250m grid cell, but rather have retrieval 

accuracies that are a function of the distribution and density of multiple vegetation types, 

including forests and other surface vegetation (e.g., shrubs and tussocks). While it would 

be great to include these tests, this is still a topic of active research, making any 

physically based and location-specific approach for SAR retrieval degradations difficult 

to parameterize. Instead, this study uses conservative representations of SAR retrievals to 

demonstrate the value of extrapolating SAR-based snow corrections in some of the most 

difficult to observe landscapes. Using these simulations as a baseline, we are planning 

future research to focus on the landscape and sensor-specific issues that you mention here 

in smaller regions where these issues could be most prevalent (see the second-to-last 

paragraph of Section 4). 

7. Line 314: “mean SWE evolution tracked the nature run simulation significantly better than 

the open loop simulation in the spring snowmelt period.”This is an interesting result. 

Essentially it shows that if you get peak SWE right, you can track SWE during the melt 

period even in the absence of many radar measurements (you had only 5% usable data 

during the melt period as stated on line 311). But I wonder how dependent this result is on 

the dynamics of the melt period. Presumably if there are additional snowfall events after 

peak SWE this may not be the case? Were the results in Figure 7 replicable for the other 

watersheds? And I wonder how replicable this result is from year to year (you would need to 

speculate here since this is outside the scope of this study)? 

Thanks so much. We were excited about this result. We discuss the modeled runoff in the 

last paragraph of Section 3, including the results shown in Figure 7 (Upper Colorado), the 

Great Basin (Figure S6), Pacific Northwest (Figure S7), and California (Figure S8). The 

NSE statistics for each of these regions and simulations are also reported in Table 1. To 

summarize, runoff improved with assimilation in both the Upper Colorado and Pacific 

Northwest for the simulation with data assimilation and the forest strategy. This wasn’t 

surprising since a significant portion of the seasonal snow was in forested locations for 

these two domains, and the open loop simulation experienced widespread high biases in 

both SWE and runoff (relative to the nature run). However, the runoff accuracies for the 



California and Great Basin domains changed very little. This was driven by the smaller 

changes to domain SWE volume with assimilation (relative to the Upper Colorado and 

Pacific Northwest). Because we used a fraternal twin OSSE with two different snow 

models, runoff performance could still be biased by the differences between models, even 

if SWE was largely improved. Here, the simulations using the Noah-MP snow model 

(OL, DA, and DA+F) tended to simulate less low-elevation winter snowmelt but more-

rapid spring snowmelt, resulting in low-biased winter runoff and high-biased spring 

runoff relative to the nature run. Therefore, in these domains, the improvements to runoff 

from SWE assimilation were largely offset by the difference in snowmelt between the 

two snow models (Noah-MP versus SnowModel, Table S1). 

We agree that abnormal dynamics in both the winter accumulation and spring snowmelt 

season could decrease the accuracy of simulations and make SAR observations more 

challenging. We added an acknowledgement of this in lines 487 - 493. In this study, 2019 

had multiple spring snowfall events (e.g., Figure 7). However, despite this, the 

differences between spring SWE simulated by the nature run, open loop simulation, and 

simulations with data assimilation were driven much more by differences in winter snow 

accumulation and spring snowmelt rates. 

Finally, while we agree that the inclusion of multiple years is outside of the scope of this 

particular study, we agree that a discussion of annual snow variability was missing from 

the manuscript. We now include this in lines 487 - 493. We also responded to similar 

comments about this from Reviewer #1 (question #3) and Reviewer #2 (question #2). 

8. The two major limitations of volume scattering based radar approaches are forest and wet 

snow. The focus is on forest in this study, but synthetic SWE under wet snow conditions was 

also masked. Can a similar strategy as was developed to fill in forest areas be used to 

address the wet snow challenge? This is out of scope to do this in this study, but perhaps 

something for the discussion? 

This is a great question, and one that would be interesting to investigate. We now 

acknowledge this in lines 493 - 495. However, there may be some additional challenges 

to making SWE estimates in regions experiencing snowmelt based on SAR observations 

from surrounding, unmelting regions. The forest approach presented here focuses 

primarily on winter periods, when the difference between nearby unmelting grid cells is 

due to differences in snow accumulation. At these spatial scales (~250m), model biases 

may be more likely to be driven by mesoscale-scale precipitation biases, which we 

hypothesize may have high spatial autocorrelation (lines 451 - 455). Contrary to this, 

differences in SWE between two grid cells, one experiencing snowmelt and the other not, 

could be driven by the same differences in SWE accumulation, in addition to differences 

from the cumulative snowmelt energy (influenced by processes like terrain shading, 

canopy shading and longwave emission, and temperature changes with elevation). We 

hypothesize that spatial differences in cumulative melt energy may exhibit less spatial 

autocorrelation, and particularly as the departure in snowmelt onset timing grows 

between grid cells. 



9. Line 19: ‘popular’ seems like an odd word choice to me…how about ‘widely-used’? 

Good idea. We revised this in the updated abstract. 

10. Line 58: add the references for the limitations of passive microwave SWE datasets. 

Thanks for catching this. These references were updated (line 59). 

11. Line 60: I would specify that the Lievens et al study uses C-band SAR. 

Good idea. We specified this in our edits. 

12. Line 63: “To overcome these limitations, modeling and data assimilation systems are needed 

that can extend the coverage and utility of available measurements to areas, times, and variables 

that are not directly observed.” Well said! 

Thank you! 

13. Lines 135-140: can some additional references be added for Noah-MP and TOPMODEL? I 

think Niu and Yang (2004) focuses only on the snow processes… 

We have a citation for Niu et al. (2011) earlier on when Noah-MP is first introduced in 

the manuscript (line 122). We also agree that we should have added a citation for 

TOPMODEL. It is now included (line 156) 

14. Figure 2: I find the dashed circle to be distracting and unnecessary. The gray shading shows 

the swath; the dashed line grid illustrates the SAR data. I don’t know what the circle means… 

Thanks for the comment. We now see how this is confusing. The dashed circle was 

intended to represent the radius at which the unforested SWE corrections are sampled. 

For this example, the grid cell near the edge of the swath has fewer non-forested grid 

cells from which to derive the SWE adjustment since a portion of the search radius falls 

outside of the satellite swath. We revised the figure caption to make this clearer. We also 

revised the figure to show that we instead grabbed information from a 5-by-5 square 

window of grid cells. 
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