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Abstract. Mesoscale pressure waves, including atmospheric gravity waves, outflow and frontal passages, and wake lows, are

outputs of and can potentially modify clouds and precipitation. The vertical motions associated with these waves can modif;

the temperature and relative humidity of air parcels and thus yield potentially irreversible changes to the cloud and precipitation
content of those parcels. A wavelet-based method for identifying and tracking these types of wave signals in time series data

from networks of low-cost, high-precision (0.8-Pa noise floor, 1-Hz recording frequency) pressure sensors is demonstrated.
Strong wavelet signals are identified using a wave period-dependent (i.e., frequency-dependent) threshold, then those signals
are extracted by inverting the wavelet transform. Wave periods between 1 minute and 120 minutes were analyzed, a range which

ecould capture acoustic, acoustic-gravity, and gravit

wave modes. After extracting the signals from a network of pressure sensors, the cross-correlation function is used to estimate

the time difference between the wave passage at each pressure sensor. From those time differences, the wave phase velocity
vector is calculated using a least-squares fit. If the fitting error is sufficiently small (thresholds of RMSE < 90 s and NRMSE <
0.1 were used), then a wave event is considered robust and trackable. We present examples of tracked wave events, including a

Lamb wave caused by the Hunga-Tonga volcanic eruption in January 2020, a gravity wave train, an outflow boundary passage
a frontal passage, and a cold front passage. The data and processing techniques presented here can have research applications
in wave climatology and testing associations between waves and atmospheric phenomena.

1 Introduction

Gravity waves (i.e., buoyancy waves), which result from vertical perturbations of stably stratified fluid, are ubiquitous in the at-

mosphere and represent an important distributor of energy through the atmosphere {(Nappo;261+3)—(Fritts and Alexander, 2003; Nappo, 201

- The initial perturbations which generate gravity waves can have several sources, including but not limited to forced flow.
over topography, deep convection, shear instability, adjustment of unbalanced flow, and nonlinear interaction between waves
(Fritts and Alexander, 2003). Within the troposphere, the vertical motions associated with gravity waves have been shown to
influence cloud and precipitation processes. Hor-example;—several-If parcels then reach saturation and produce precipitation

which falls out, the changes to the parcel can be irreversible. Several studies have investigated the effects of gravity waves on
marine stratocumulus. Allen et al. (2013) and Connolly et al. (2013) related gravity waves to changes in drizzle production
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within marine stratocumulus; specifically, enhanced condensation and collision-coalescence to form drizzle drops appeared to
occur in the updrafts associated with gravity waves. Evidence also suggests a link between gravity waves and the rapid erosion
of marine stratocumulus cloud decks (Yuter et al., 2018), perhaps because evaporation due to entrainment is enhanced as ma-
rine stratocumulus clouds are lifted by gravity waves (Connolly et al., 2013). Fovell et al. (2006) identified gravity waves as a
potential trigger mechanism for deep moist convective cells. Case studies have linked gravity waves to snow bands, i.e., linear

mesoscale enhancements in snowfall rate within winter storms (Bosart et al., 1998; Zhang et al., 2001; Gaffin et al., 2003), but

it is unclear how often snow bands are associated with gravity waves.

associated with gravity waves could influence cloud microphysical properties, we use Fig. 1, which shows relative humidity.
with respect to ice (1) and with respect to liquid water (J2Hqzer) as 3 function of temperature and water vapor mixing
ratio _for a standard atmosphere, as well as the temperature difference between 100% [2H,c. and release-ofconditionat
symmetrie-instability—100% RH,yqze, for each water vapor mixing ratio. For temperatures below 0°C, BHice > RHpater:.
A lifted parcel would be cooled at a constant water vapor mixing ratio (move upward in Fig. 1) until it intersects the 100%
R Hice contour wherein vapor deposition would reduce the water vapor (further lifting would move upward and to the left in
Fig. 1). If the parcel cools sufficiently to also intersect the 100% RHwater contour, supercooled water droplets would form in
the parcel and riming would likely occur further depleting the available water vapor in the parcel. An up and down motion of
an air parcel in a gravity wave that only crosses the 100% I2H;.. contour yields ice mass changes that are reversible, i.e. the
ice mass added by vapor deposition in the upward motion will be lost to sublimation in the downward motion.

In contrast, if the lifting of the parcel within a gravity wave starts at RH,.. > 100% and intersects the 100% RH,,,;
contour, the ice mass added by riming when ice particles collide with supercooled droplets is not reversible (i.e., there is no

ey

mixing ratio) is lifted and cooled to -9.7°C in a gravity wave (which requires 190 m of lift assuming a 9°Ckm™" parcel lapse
rate), it would become supersaturated with respect to water as well as with respect to ice. Water droplets would form in the
parcel and the ice crystals could potentially become rimed. If the parcel remains ice saturated when it descends in the gravity.
wave, the additional ice mass from the riming on the ice particle would not be removed. Ice mass added by riming can only be
removed by sublimation in conditions where the parcel is subsaturated with respect o ice.

One way of distinguishing gravity waves from other wave phenomena such as Kelvin-Helmholtz waves is that gravity waves
produce a surface pressure signal (Nappe;2643)}(Nappo, 2013, Sect. 8.2), given that the stable layer in which they occur is
adjacent or nearly adjacent to the surface. That said, several different phenomena can produce surface pressure disturbances on
similar spatiotemporal scales to gravity waves, including but not limited to outflow boundary passages. convective wake lows
(Johnson and Hamilton, 1988), release of conditional symmetric instability (Gray etal. 2011), and Lamb waves generated
by, e.g., distant volcanic eruptions (Matoza et al., 2022), large bolide impacts (ReVelle, 2008), and thermonuclear explosions

Pierce and Posey, 1971). Acoustic and acoustic-gravity waves can also produce pressure signals at shorter time scales. Such

at -8.0°C and 2.96 gkg ™" water vapor
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waves would include infrasound waves, which can be associated with, e.g., convective storms and strong flow over mountains
Coffer and Parker, 2022; Bedard, 1978).

Time series of surface pressure data have been analyzed to identify tropospheric wave events in previous studies (Kjelaas-et-al;1974:-Chr
1998; Grivet-Talocia et al., 1999; Koch and Sa

Kjelaas et al., 1974; Christie et al., 1978; Einaudi et al., 1989; Grivet-Talocia and Einaudi

. Kjelaas et al. (1974) and Christie et al. (1978) presented case studies of gravity wave events selected manually from time se-
ries pressure data. Grivet-Talocia and Einaudi (1998) and Grivet-Talocia et al. (1999) recorded data at 1/120 Hz (i.e., every
2 min) to identify wave periods longer than 30 min. Einaudi et al. (1989) used a network of microbarographs recording at
0.1 Hz (i.e., every 10 sec) placed within roughly 100 m of each other, which constrained the characteristics of disturbances
which could be tracked through their network to waves with speeds up to 50 m s~*, and wave periods of 1-20 min. Koch
and Saleeby (2001) used operational Automatic Surface Observing Systems (ASOS) data recorded at 1/300 Hz (i.e., every
5 min) which resolved wavelengths > 150 km. While strong pressure disturbances including outflows and wake lows can be
detected by ASOS pressure sensors logging data at 1 min intervals, the large spatial separation between operational weather

stations, which are primaritty-mostly located at airports, precludes determination of the associated wave speed and direction for

mesoscale disturbances. de Groot-Hedlin et al. (2014) used 337 barometers deployed with the USArray Transportable Array,
recording at 1 Hz (i.e.. every 1 sec) frequency, to detect and track high amplitude (roughly 3 hPa peak to trough) pressure
waves associated with convective storms in the southern United States. The USArray Transportable Array barometers were
spaced roughly 70 km apart, which might also preclude tracking of localized disturbances.

There is a scarcity of data for detecting and tracking pressure disturbances, including gravity waves, on the meso-/3-scale or
meso-y-scale (ranging from 2 km to 200 km). Pressure disturbances on those scales may be relevant to phenomena such as snow.

bands (e.g. McMurdie et al., 2022), trade wind cumulus (e.g. Seifert and Heus, 2013), and bow echoes (e.g. Adams-Selin and Johnson, 201

which are active areas of research. We developed a measurement and analysis technique which will allow for questions
regarding eravity waves on those scales to be addressed. To what degree and in what conditions information on gravity wave

occurrence would be valuable in operational weather settings is yet to be determined.
This paper presents data from networks of internet appliance tew-costlow cost, high precision air pressure sensors (i.e.,

microbarographs) and a methodology for objectively identifying mesoscale wave events and wave speed and direction. The

methodology is intended to be used for post-processing in research applications, rather than for real time or near real time
detection of wave events. Similar low cost sensor networks have been used for detection of seismic (Anthony et al., 2018) and
for detecting infrasound waves to monitor fan rotation speeds in nuclear reactor cooling towers (Eaton et al., 2022). The former
network covered the area of Oklahoma, and the latter used networks covering the area of a single nuclear reactor. Qur networks
of pressure sensors are on the scale of a medium to large sized city or metropolitan area.

Section 2 of this paper describes the pressure sensors used in this study and the data they provide. Section 3 describes the
methodology for objectively identifying pressure waves from the pressure time traces. Section 4 provides five examples of

events captured by the wave identification method. Finally, a summary and avenues for future work are discussed in Sect. 5.
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2 Data
2.1 Networks of pressure sensors

Pressure sensors were placed in three separate networks: New York City metro area and Long Island, NY, Raleigh, NC, and
Toronto, ON, Canada (Fig. 2). Each pressure sensor was either a Bosch BME280 (Bosch, 2022) or a Bosch BMP388 (Bosch,
2020) Adafruit breakout board connected to a Raspberry Pi Zero W single-board computer used to log the data. BME280

sensors measure pressure, temperature, and humidity. BMP388 sensors measure pressure and temperature. Each pressure sensor

costs roughly 50-75 US Dollars, subject to changes in the cost of Raspberry Pi Zero W units. For context to another low cost
network concept, the Raspberry Shake 4D seismographs cost "a few hundred dollars" per unit (Anthony et al., 2018). The

combined sensor and communications package is about the size of a deck of cards. Sensors are connected to the internet and
sync their data to a server at North Carolina State University. Initial testing of the sensors outdoors on patios, in sheltered
locations such as garages, and indoors revealed pressure waves were well resolved in all locations and it was best practice
to place the sensors indoors to minimize wind contamination in pressure measurements. When active, each sensor records
pressure at 1-second intervals with a roughly 0.8 Pa noise floor depending on ambient conditions. The sensors synchronize to
network time upon startup. The wave extraction method only depends on relative pressure variations and is not sensitive to
absolute or relative calibration.

To examine the properties of gravity waves which are detectable by these pressure sensors, we consider an internal gravity
wave occurring in an environment with constant background wind u The relationship between the pressure perturbation p’

and the horizontal velocity perturbation u’ associated with the wave is described by Nappo (2013):

p' = u'po(c—uo) (1)

where py is the environmental air density and c is the phase speed of the gravity wave. From Eq. 1, the maximum pressure

perturbation p/,, ... can therefore be related to the maximum horizontal velocity perturbation u., .. by:

pfmam :U;naxpoﬂC—UoD )

Figure 3 shows p/,, ., values according to Eq. 2 at an air density of 1.225 kg m 3 (standard air density at sea level; American

!/
max

amplitude likely needs to be atleast-an-order-of-magnitadegreater-substantially larger than the noise floor;-meaninggravity

Meteorological Society, 2022) for u/,,, and |c — ug| values up to 15 m s~ *. In order to reliably detect a wave eventsignal, the

2.2 Operational Weather Observations

For context, we compare extracted wave signals with available operational weather observations.
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We use Automated Surface Observing Systems (ASOS; NOAA National Centers for Environmental Information, 2021a)
data including surface temperature, dew point, wind speed and direction, and additional pressure measurements coincident with
wave events. ASOS data are recorded each minute. For wave events detected in New York and Long Island, we examined ASOS
data from John F. Kennedy International Airport (KJFK) and Long Island MacArthur Airport (KISP). For wave events detected
in Toronto, we examined ASOS data from Buffalo Niagara International Airport (KBUF) and Niagara Falls International
Airport (KIAG).

For one example case shewn-in Sect. 4.2, we show upper-air radiosonde data from a weather balloon launched in Buffalo,
NY. We obtained data from the Integrated Global Radiosonde Archive (IGRA; NOAA National Centers for Environmental
Information, 2021b) and interpolated to a constant 100-meter resolution. The data include measurements of temperature, dew
point, and winds, from which we calculated wet bulb temperature, frost point, and saturation equivalent potential temperature
(0%). Because radiosondes are typically launched every 12 hours at a limited number of locations, representative radiosonde
data are not available for every case.

‘We use horizontal maps of data from the U.S. National Weather Service (NWS) WSR-88D radars (NOAA National Weather
Service Radar Operations Center, 1991) to show storm features occurring coincident with wave events in Sect. 4.3 and Sect.
4.5. Radar reflectivities are processed following Tomkins et al. (2022) to indicate regions with mixed precipitation in the
scan, by inferring that points with reflectivity above 20 dBZ and dual-polarization correlation-coefficient below 0.97 have
mixed precipitation. In maps of radar reflectivity, those regions with mixed precipitation are then shown in greyscale. Doppler
velocity waves are extracted from radial velocity data following Miller et al. (2022), by calculating the difference in radial
velocity from successive scans, converting those differences to a binary (positive/negative) field, and filtering out small objects

in that binary field.

3 Methods

The methods outlined here for identifying wave events in the pressure time traces are adapted from the techniques used by
Grivet-Talocia and Einaudi (1998) and Grivet-Talocia et al. (1999). The method uses wavelet transforms to identify wave
events in time-wave period (or, equivalently, time-frequency) space. Wavelet transforms are preferable to Fourier transforms
for the purpose of identifying transient waves which are localized in time (Torrence and Compo, 1998). To illustrate the step-
by-step procedure, an example corresponding to an gravity wave event on 23 February 2023 in the Toronto pressure network

is described in detail.
3.1 Identifying wave events in a single sensor

The full pressure time series for a gravity wave event on 23 February 2023 captured by sensor 25 in Toronto is shown in Fig.
4a. As an initial pre-processing step, 10-second samples of pressure (i.e., averages of 10 pressure measurements) are used to
smooth out noise and pressure perturbations due to high frequency turbulent eddies in the data (Fig. 4b). Hereafter, time series

labeled as total pressure are the 10-second sub samples of the original pressure measurements.
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A wavelet transform W of a finite energy signal f(¢) (a pressure time series in this study) can be defined as (Grivet-Talocia
and Einaudi, 1998, their Eq. 1):

Wiho)=or [ £ (i @

where a is the scale (related to the wave period), and b shifts the wavelet in time (t). ©* represents the mother wavelet. An
analytic Morse wavelet was used (e.g. Olhede and Walden, 2002; Lilly and Olhede, 2012) via the cwt function within Matlab
(Lilly, 2021). In this study, W (b, a) will always refer to the wavelet transform of a pressure time series. The resulting wavelet
transform is an array of complex values in time-scale space. The absolute value of the wavelet transform | (b,a)| can be
considered the wavelet power at a given time and scale. Figure 4c shows the wavelet power associated with the wave event at
sensor 25 on 23 February 2023. In this study, wave periods between 1 minute and 120 minutes were analyzed corresponding
to expected periods for mesoscale disturbances.

To objectively identify wave event centers according to wavelet power, a scale-dependent (i.e., wave period-dependent)
threshold function A(a) is defined as the mean wavelet power across all available data for the sensor network by scale, multi-

plied by a constant K:
Afa) = K(|[W(b,a)l), )

A scale-dependent threshold K is necessary because the ‘background’ wavelet power for a pressure time series generally
increases with scale (e.g., Canavero and Einaudi, 1987). Grivet-Talocia and Einaudi (1998) and Grivet-Talocia et al. (1999)
used 2 as an appropriate value for K. Lower values of K lead to more wave events being detected, which can include potential
artifacts in the pressure time trace. For the present study, a K value of 10 was used to ensure that only the strongest wave
signals were identified (solid contour in Fig. 4d). This threshold can be adjusted, and different applications may warrant
different values of K. The mean wavelet power as a function of wave period is shown for each regional sensor network and for
all networks combined in Fig. 5. Event centers were identified as local maxima in wavelet amplitude which exceed A(a), which
are located at (b,,,44, @maz)- In Fig. 4, an event center is located within the solid contour. From the identified event centers, the
first iterations of event regions (£2") were identified in time-scale space as connected regions where the wavelet power exceeds
K (|W(b,a)l),. i.e., half of the event center threshold. In Fig.4, {2’ is represented by the region within a dashed contour which
contains a solid contour.

The watershed transform (Meyer, 1994) was used to refine §)'. Watersheds (i.e., catchment basins) were identified in the
negative wavelet power array —|W (b, a)|. Any watersheds within Q" whose period range was entirely outside the period range
of the watershed containing the event center were removed from the event region €'. This step was included to correct cases
where multiple "peaks" in wavelet power were present within £’ at different wave periods, with a "valley" in wavelet power in
between where the wavelet power still exceeded & ([W (b, a)|),, which likely represented distinct wave modes and should be
considered separate wave events.

Q' was extended to define the final event region 2 for each event, first by taking the bounding box of €)', then by extending

the bounding box along the time axis in both directions until it reaches a local minimum in the wavelet amplitude to ensure that
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the entire signal of interest is contained in the event region. This could result in overlapping event regions. Figure 4d shows the
wavelet power normalized by the mean wavelet power by scale (|1W| / (|IW]),) for the 23 February 2023 example in sensor
25, with the outline of the event region overlaid with the magenta box.

After defining the event region (2, the wave event trace could then be extracted (i.e., reconstructed) by inverting the wavelet
transform function over the event region ). Figure 4e shows the extracted wave event trace for the 23 February 2023 wave
event in sensor 25. As in Grivet-Talocia and Einaudi (1998), wave events were identified and extracted one at a time, with
the extracted wave event subtracted from the pressure trace and the wavelet transform recalculated at each iteration, until the

absolute maximum of |W| / (|[W|), was less than K (i.e., until no more events are left to be found in the pressure time series).

We tested the method of detecting wave events in a single sensor using synthetic pressure data, The synthetic time series of
pressure is created by an initial constant pressure value (which is randomly chosen from a normal distribution with mean 1000
hPa and standard deviation 2 hPa). We then added normally distributed random noise centered on 0 with standard deviation
equal to the noise floor (0.008 hPa). Finally, we added 105 pre-defined wave events, which consist of sine waves of period
ranging from 2 min to 120 min and maximum amplitude ranging from £0.01 hPa to £1 hPa, Each set of sine waves lasts
for 2 hours, with a 12 minute ramp-up and ramp-down period at the start and end of those 2 hours in which the amplitude
increases and decreases linearly, respectively. One of these synthetic wave events is shown in Fig. 6a. Using the (|IW (b, a
values shown in Fig. 5 and a K value of 10, 52 of the 105 synthetic wave events were detected, with no false positive event
detections (Fig. 6¢). The weakest detected synthetic wave event had an amplitude of £0.0464 hPa (or 0.0928 from peak to
trough) and a waye period of 2 min (shown in Fig. 6a). Lower values of /' do lead to more wave events being detected, with
few false positives. The K = 2 used by Grivet-Talocia and Einaudi (1998) results in 86 of the 105 wave events being detected
with only one false positive. However, this exercise likely fails to capture the full extent of noise and the interference of many.
signals present in real pressure data. Lower values of & can result in more weak pressure wave events being detected, which
may be "real” at a single sensor location, but these may then erroneously paired with other weak pressure wave events at other
sensor locations using the methods described in the proceeding sections. Therefore, we will use & = 10 to detect and track
pressure wave events across the networks of sensors.

3.2 Matching corresponding wave events between multiple sensors

Once wave events were identified for each sensor individually, the following steps were taken to identify coherent wave events
across multiple sensors. For this purpose, the terms primary sensor (denoted by i) and secondary sensor (denoted by j) will be
used to describe a pair of sensors for which events are identified and paired together.

For each event in the primary sensor pressure trace, events in the secondary sensor pressure trace that occurred within 2
hours of that primary sensor event (i.e., with a gap between the end of the event in one sensor and the start of the event in the

other sensor not exceeding 2 hours) were considered "candidate" events to match with the primary sensor event. This 2 hour

threshold is subjective, and it affects the range of speeds of wave events which can be detected. The threshold can be altered
depending on the distances between pressure sensors and the desired application. For example, the largest distance between

any 2 sensors in the 3 networks is that between sensors 012 and 027 (136 km apart, Fig. 2). A wave feature propagating at
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18.9 ms™* would take 2 hours to propagate that distance. However, wave features propagating at an angle could be slower and
propagate over both sensors within 2 hours, and as long as pressure sensors in between those two most distant sensors capture
the event, the following processing technique will allow those sensors to "bridge the gap” even if the event takes longer than
2 hours to propagate across the distance between those sensors. Thus, 18.9 ms™" is a conservative estimate of the minimum
phase speed required for this methodology to track a wave event. Candidate matching events in the secondary sensor trace

had to have a center period which was within the primary sensor event period range, and vice versa. Then, for each candidate
matching event in the secondary sensor trace, the event waveforms are reconstructed by inverting the wavelet transform over
the event region for both sensors. Figure 7 shows the extracted waveform for the 23 February 2023 event in sensor 25 and the
same wave passage in sensors 04, 23, 24, and 34. The time lag estimate for the wave passage between sensors is At,,, the

time lag which maximizes the cross-correlation function C;; (At):
1
Cij(At) = — pi(t)pj(t-i- At)dt (®))
[pall l1p; 1]

where p;(t) and p;(¢) are the extracted waveforms for the events in the primary and secondary sensor, respectively. The black
lines and subfigure titles in Fig. 7 show the optimal shift in the extracted waveforms for sensors 04, 23, 24, and 34 to maximize
C;; to sensor 25 for the 23 February 2023 example. The match to the primary sensor event is the candidate event with the
highest maximized cross-correlation to the primary sensor event. If the maximized cross-correlation exceeded 0.65, and the
same pair of matched events results from switching the primary and secondary sensors (i.e., the event is matched two-ways), the
event from sensor i and the event from sensor j are paired together. Switching the primary and secondary sensors is necessary
to avoid instances where multiple events in one sensor are matched with the same event in another sensor. This can occur, for
example, when a set of waves manifests as one event in one sensor and multiple (separate) events in another sensor.

The process of matching events between sensors described above was repeated for each possible combination (within a
sensor network) of primary and secondary sensors in order to obtain the full set of lag times between each pair of sensors
which captured each event. In other words, N2 pairs of sensors, order-dependent, were analyzed, where N is the number of
sensors in the network with data at a given time. Then, each event in each sensor was assigned an ID based on which other
sensors had a matching event in order to track events across 3 or more sensors. This process required iterating through each
sensor in a network. Each event in the first sensor was assigned a new (i.e., arbitrary) ID. For each subsequent sensor s, events
with no two-way matches in any prior sensor were also given new IDs. If there were two-way matches with an event in one
or more prior sensor(s), the event in the sensor s, would share the ID assigned to the matched event in the prior sensor. If
there were multiple prior sensors with matched events, and those events had different IDs, the ID associated with the higher
maximized cross-correlation between the event traces was assigned to the event in sensor s... If this process results in multiple
events in sensor s. sharing the same event ID D, the event in sensor s, associated with the highest maximized cross-correlation
with any one prior sensor for an event with event ID D is assigned event ID D, and the previously outlined steps are repeated

for the other event(s) in sensor s., with event ID D and associated sensors excluded.
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The result of this process is a set of events with associated ID numbers for every sensor in the network. For a single sensor,
each event has a unique ID. For each ID number that appeared in at least three sensors, the wave phase velocity vector was

calculated using the set of lag times between each pair of sensors which captured the event.
3.3 Estimating wave phase velocity vector

Once sets of matched events were identified, the wave propagation velocities (two-dimensional vectors) could be estimated
for events which occurred in three or more sensors. It is hypothesized for each wave event that a plane wave crosses the
sensor network with slowness vector s = (s, s, ), where s, and s, are the inverses of the x- and y-components of the wave
propagation vector (in s m~!), respectively. s can be solved for from the following equation (Del Pezzo and Giudicepietro,

2002):
t=s-Ax (6)

where t is the column vector of the At,,; values for each possible pair of sensors which captured the event, and Az is
the two-column matrix of the x- and y-components of the distance vector between each pair of sensors which captured the
event. t and Ax each have N;(N; — 1)/2 rows, where Ny is the number of sensors which captured the event. Equation 6 can
be considered an overdetermined system of N,(Ng — 1)/2 linear equations, as long as N, > 3, and is solved for s by a least

squares approach represented by:
s=(AxTAx)tAxTt @)

where superscript T indicates the transpose of a matrix (Del Pezzo and Giudicepietro, 2002).
Once s, and s, are solved for, they can be inverted to obtain the wave phase velocity components, ¢, and c,;, respectively.
Additionally, the modeled delay times t,,, can be calculated by solving Eq. 6 for t. From ¢,,,, we estimate the model error

using root mean square error (RMSE) and normalized root mean square error (NRMSE):

S i = )?
MSE = = :
s \/ NN~ )2 ®

St b — )
Ns(N,—1)/2
ST ()2

NRMSE = )

Events with sufficiently small RMSE and NRMSE in the modeled delay times can be considered "trackable" events in

that there is higher confidence in the wave velocity estimates for those events. ¥t-was-found-through-testing-After processing

multiple years of data from the Toronto and New York pressure sensor networks and analyzing the resulting RMSE and
NRMSE distributions, it was found that a maximum RMSE threshold of 90 s-and-maximum NRMSE-s and a maximum

NRMSE threshold of 0.1 are reasonable thresholds-to-considerwave-events-to-be-to consider a wave event trackable.
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Additionally, we require that wave events be captured by at least 4 sensors to be considered trackable. While the slowness
vector and corresponding error metrics can be calculated for events captured by only 3 sensors, the calculation is less con-
strained because there are only 3 delay times dt,,; in the calculation (compared to 6 delay times for events captured by 4
sensors, 10 delay times for events captured by 5 sensors, etc.). The result is that events captured by only 3 sensors can have
small RMSE and NRMSE by chance much more easily than events captured by 4 or more sensors. For each robust and track-
able wave event, the mean amplitude was calculated by averaging the difference between the maximum and minimum values
in the extracted event trace for each sensor which captured the event. The center period for the event was calculated as the

mean of the wave period corresponding to b, for each sensor which captured the event.

4 Pressure disturbance examples

It is especially useful to have examples of wave events where other observational sources constrain the wave phase speed and
direction. We discuss the following examples in this section, some of which have corroborating information on the wave phase
speed and/or direction. The Lamb waves caused by the Hunga Tonga-Hunga Ha’apai volcanic eruption in January 2022 is
represent a case where where-the origin of the waves is known and the phase speed is eonstrained-to-the-speed-ef seune-known
as a function of air temperature (Amores et al., 2022). A gravity wave train which passed over Toronto on 25 Feb-February
2022 occurred coincident with a surface cyclone 100 km distant but in local conditions of sparse radar echo. A wave event on
4 Feb-February 2022 is a case associated with an outflow boundary clearly captured by Doppler radar data from the WSR-88D
radar located in Upton, NY. In another example, waves coincided with a cold front which passed over Toronto on 15 Nev
November 2020. The cold front’s associated narrow rain band and Doppler velocity wave (Miller et al., 2022) can be identified
in WSR-88D radar data from Buffalo, NY. We also describe a wake low associated with a long-lived mesoscale convective
system (MCS) which passed over Long Island on 14 Sep-September 2021. These events were each manually chosen after
roughly 40 months of pressure data were processed. The gravity wave train on 25 February 2022 and cold front example on 15
November 2020 are not unusual; several other gravity wave trains and pressure jumps due to cold front passages were found.
The other three example cases are atypical events, however. It is extremely rare to detect a pressure signal due to a volcanic
eruption several thousand km away. While other outflow boundaries were found to produce detectable pressure waves, the case
on 4 February 2022 was unusual in terms of the time of year when it occurred (most other pressure waves associated with
outflow boundary passages occurred during the warm season) and the radar signature. The wake low detected on 14 September
2021 was the only wake low event detected by our pressure sensor network.

4.1 15-17 January 2022: Hunga Tonga-Hunga Ha’apai eruption and sheek-wavesLamb wave

On 14-15 January, 2022, large eruptions occurred at the Hunga Tonga volcano in the south Pacific Ocean which produced
ash plumes reaching the stratosphere-mesosphere and a series of shock waves. A particularly violent, submarine eruption oc-
curred at around 0400 UTC 15 January (Global Volcanism Program, 2022). Satellite data suggests-suggest that the ash plume

associated with this eruption may-have-reached-30-reached as high as 57 km a.s.l. (Carr et al., 2022; Proud et al., 2022) and
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contained roughly 400 million kg of sulfur dioxide. Damaging tsunami waves due to the eruption were observed as far as
Peru (Global Volcanism Program, 2022). Subsequent analyses of the atmospheric shoek-pressure waves from the eruption have
classified the shoek—waves-pressure wave observed far from the source eruption as Eamb-waves{e-g5Amoresetal;2622):
Fhese-Lamb-waves-have-a Lamb wave (e.g., Amores et al., 2022). This Lamb wave has been the subject of several studies and
media reports since the time of the eruption fe-g D el : - e 2o

Amores et al., 2022; Adam, 2022; Burt, 2022; Bhatia and Fountain, 2022; Vergoz et al., 2022). The pressure signal asso-

ciated with the Lamb waves-wave was observed to circle the Earth atteast-twice-several times with estimated phase speeds
exceeding 100 m s~ (Adam;2022; Burt; 2022)(Adam, 2022; Burt, 2022; Vergoz et al., 2022).

To identify and characterize the pressure waves from this event, we combined the three regional sensor networks (Fig. 2)
to effectively create an array of 18 sensors which were active at the time of the shoek-wavesLamb wave passages. Table 1
summarizes events identified during this period which meet the robust event criteria outlined in the methods (captured by
at least 4 sensors, RMSE < 90 s, and NRMSE < 0.1), in addition to having a mean optimal cross-correlation between the
extracted event traces exceeding 0.75. The initial outbound (traveling from Tonga to the antipode location in Algeria) waves
manifested as 3 separate detected events between 1509 and 1714 UTC 15 January, each with high wave frequencies (i.e., low
wave periods barely over 1 minute) and low amplitudes (up to 0.3 hPa). The earliest, and strongest, of these events had a
phase speed of 326.6 m s~! and direction of 64.2° (i.e., to the east-northeast). The subsequent rebound (traveling from the
antipode location to Tonga) waves were detected as 2 separate events between 0356 and 0729 UTC 16 January. The rebound
waves had a much higher amplitude (roughly 2.4 hPa) and lower wave frequency (i.e., longer wave periods on the order of

L and

roughly 10 minutes) than the outbound waves. The earliest rebound wave event had a phase speed of 264+:9-292.1 m s~
direction of 261.9° (i.e., to the west-southwest). Our networks captured the initial outbound waves from Tonga to the antipode
at Algeria [Outbound (i), (ii), and (iii) in Table 1] and the first rebound waves back from Algeria [Rebound (i) and (ii) in Table
1]. Subsequent reverberations of the Lamb sheek-waves were not trackable with our sensors and methods by the above criteria
due to a combination of the low amplitudes, high frequency, and large phase speeds confounding the process of approximating

delay times between sensors (an issue also described by Grivet-Talocia and Einaudi, 1998).
4.2 25 February 2022: Gravity wave train over Toronto

Four pressure sensors in Toronto were used to detect and track a series of pressure oscillations between 0816 and 1359 UTC on
25 February 2022, with a particularly large pressure peak near 1000 UTC (Fig. 9). The mean amplitude of the event across the
4 sensors was 2.1 hPahPa, and the wave train was estimated to propagate at 45.4 m s~! at 73° (i.e., to the east-northeast). The
center wave period was 00:20:22. At this time a mature surface cyclone was located roughly 100 km to the south of Toronto.
Linear bands of reflectivity were identified in WSR-88D radar data from Buffalo, NY, in the hours leading up to the detected
pressure waves, but between 0900 UTC and 1200 UTC there was only sparse radar echo over the Toronto area. Between 1230
and 1430 UTC there was radar echo across the Toronto area, and a set of Doppler velocity waves was identified from the
WSR-88D data using the methods in Miller et al. (2022). Those Doppler velocity waves appeared to propagate toward the

northeast, in roughly the same direction as the detected pressure waves (Video Supplement Animation-Figure-S01).
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The nearest available sounding during the duration of the wave event appeared to indicate adequate environmental conditions
for gravity wave ducting (Lindzen and Tung, 1976; Koch and O’Handley, 1997). The sounding from Buffalo, NY, valid at 1200
UTC on 25 Feb 2022, shows a temperature inversion roughly 2 km deep (Fig. 10), which serves as the "ducting layer" directly
above a shallow boundary layer. A moist neutral or conditionally unstable layer (indicated by near-zero or negative values
of the vertical gradient in equivalent saturation potential temperature) was above this inversion extending to around 4500 m
MSL and serves as the "trapping layer" in Fig. 10. The sharp change in stability between the inversion layer and conditionally
unstable layer at roughly 2800 m MSL could serve as a reflector of gravity wave energy. The apparent presence of a gravity

wave duct during the detected pressure wave event raises confidence that the pressure waves were gravity waves.
4.3 4 February 2022: OQutflow pressure jump and subsequent oscillations over Long Island

Between 1730 and 1900 UTC on 4 February 2022, an event with amplitude of roughly 1.8 hPa was detected by the-pressure
sensor-networkfive pressure sensors in the New York City metro area and Long Island. This event was a positive jump in
pressure followed, to varying degrees in each sensor, by weak oscillations in the pressure trace (Fig. 11). Prior to the jump
in pressure, there had been a decreasing trend in the pressure traces for several hours. At the same time, WSR-88D weather
radar data from Upton, NY, showed widespread precipitation echo over Long Island. A wave feature was apparent in the
Doppler radial velocity data, which could also be identified following the methods of Miller et al. (2022) (Fig. 12 and Video
Supplement Animation-Figure-S02). This wave event had a phase speed of 21.1 m s~! and direction of 118.2° clockwise from
north (i.e., southeastward). The values are consistent with the radar-detected Doppler velocity wave feature (Video Supplement
Animation-Figure-S02).

Operational one-minute Automated Surface Observing System (ASOS) data (Fig. 13a) also recorded a jump in the surface
pressure of nearly 2 hPahPa. Near the time of this jump, there was also a peak in the wind speed and gusts, along with a brief
shift in the wind direction from north-northeasterly to north-northwesterly (Fig. 13b). These features, along with the modest
decrease in the temperature (Fig. 13a), are consistent with a convective outflow boundary (i.e., gust front). A "fine line" can be
seen in WSR-88D reflectivity data at roughly the same location as the wave, which further suggests that a convective outflow

was responsible for the pressure rise (Fig. 12 and Video Supplement Animation-Figure-S02).
4.4 15 November 2020: Cold front passage over Toronto

A robust and trackable wave event was detected by S-five pressure sensors in Toronto coincident with a cold front passage at
roughly 2000 UTC on 15 November 2020. The pressure steadily dropped in the hours leading up to the frontal passage before
abruptly rising 1-2 hPa as the cold air mass arrived. The pressure then dropped roughly 1 hPa about 30 min-min later. Some
sensors recorded oscillations in the pressure trace embedded within the gradual pressure rise in the proceeding hours (Fig. 14).
One-minute ASOS data from Buffalo, NY, also captured the pressure jump at roughly the same time as the temperature and
dew point drop indicating the cold front passage (Fig. 15).

The pressure wave event for the cold front passage had an estimated phase speed of 27.5 m s™! at 65° (i.e., to the east-

northeast), a mean amplitude of 1.8 hPa, and a center wave period of 00:02:08. WSR-88D radar data from Buffalo, NY, show a
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narrow band of high reflectivity and a Doppler velocity wave (identified following the methods in Miller et al., 2022) associated
with the cold front advancing over Toronto at roughly 2000 UTC at a speed and direction consistent with the pressure wave

(Video Supplement Animation-Figure-S03).
4.5 14 September 2021: Wake low associated with a mesocale convective system

Between 0300 and 0400 UTC on 14 September 2021, a pressure drop of roughly 5 hPa and subsequent recovery occurred at 4
four of the pressure sensors in New York City metro area and Long Island network (Fig. 16). This was detected as a wave event
with an estimated propagation speed of 20.6 m s~! and propagation direction of 67.5° (i.e., to the east-northeast). ASOS data
from Islip, NY (KISP; Fig. 17), and other stations in the area (not shown) also recorded the pressure minimum. This wave event
occurred near the time of a mesoscale convective system (MCS) passage over Long Island as indicated by reflectivity data from
the WSR-88D radar in Upton, NY (Fig. 18 and Video Supplement Animation-Figure-S04). In addition to the precipitation echo
associated with the MCS translating from northwest to southeast, there was also a stationary region of weak echo with low
dual-polarization correlation coefficient (shown in greyscale following Tomkins et al., 2022) in the vicinity of the radar. The
stationary weak echo was likely non-meteorological and due to either birds or insects. The precipitation echo appears to be
entirely past KISP by 0342 UTC (Fig. 18c and Video Supplement Animation-Figure-S04), which is roughly the same time as
the minimum pressure at KISP (Fig. 17a).

This pressure minimum appears to be consistent with a wake low, associated with subsidence heating in the rear inflow jet
(Markowski and Richardson, 2010; Johnson and Hamilton, 1988). The subsidence heating does not necessarily lead to warming
at the surface, which was not observed in the ASOS data (Fig. 17a), but decreased air density aloft due to warming will still
lead to a surface pressure decrease. Markowski and Richardson (2010) also note that a property of wake lows associated with
a translating squall line is that the center of convergence due to the wake low does not perfectly align with the center of the
wake low. Rather, the convergence center slightly lags behind the wake low center. In the 14 September 2021 example, the
ASOS time series data have a wind speed minimum co-occurring with a shift in the wind direction from near 100° (east-
southeasterly) to near 280° (west-northwesterly) which can be interpreted as the convergence maximum (Fig. 17b). This
convergence maximum occurs slightly after the pressure minimum associated with the wake low (Fig. 17a), consistent with the

Markowski and Richardson (2010) description.

5 Discussion and Summary

In this study, a wavelet-based method was used to identify wave events in time series pressure data from networks of high
precision sensors (0.8 Pa-preeision-—sensors-Pa noise floor) recording the pressure every second. In addition to identifying
wave events in each sensor individually, the delay times in wave passage among sensors in a given network were used to
determine the direction of wave propagation and phase velocity. The methods shown are intended mainly for post-processing
of pressure data for research applications, and not for real time, operational use. A benefit to this method is that it can be
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fully automated to detect wave events across many months of data, and we have made the processing code openly available
Allen and Miller, 2023).

Overall, the method was most successful at tracking pressure wave events with relatively large amplitudes (on the order
of 0.3 hPa or more) and longer periods (i.e., lower frequencies; on the order of 5 minutes or more). Low-amplitude, high-
frequency waves likely propagated across the sensor networks many times, but these waves were difficult to reconstruct, due
to their wavelet signal being weaker, and to track, due to aliasing of the waveform conflating the time lag estimates between
sensors. We use a rather strict criteria for detecting a wave event in a given sensor; the peak wavelet power must exceed 10
times the mean value for a given wave period (i.e., K
to detect pressure waves with a scale dependent threshold; their K value was only 2. Therefore, many wave events detected
using our criteria will be relatively high amplitude (on the order of 1 hPa or more), including most examples shown in Sect. 4.

Environmental factors can influence whether or not a given gravity wave is detected by our surface pressure sensors. Gravity
waves aloft will not always produce a detectable pressure signal at the surface, for example if the planetary boundary layer

=10; eq. 4). Grivet-Talocia and Einaudi (1998) also used wavelet anal

is neutral or unstable (e.g., Kjelaas et al., 1974). Another possible limitation is that in their current network deployments the

pressure sensors are too far apart to track highly localized disturbances, particularly for the New York City/Long Island sensor

network. Our method may not always properly track waves which are modified by local conditions (which may alter their
amplitude, frequency, and/or phase velocity) as they propagate across the sensor network,. Future work will examine data from

networks of pressure sensors a few km-km to a few s-m apart and the degree to which signals associated with waves in shallow
marine clouds are detectable with these sensors.

Deployment of networks of low-cost, high-precision sensors opens myriad opportunities for monitoring the direction and
speed of gravity waves that have not been previously available with conventional pressure sensors on operational weather
stations due to their longer measurement interval and larger station spacing. A forthcoming publication will describe a 3+
year climatology of wave events detected by the pressure sensors deployed in New York and Toronto and address hypotheses
regarding the relationship between gravity waves and local enhancements in snowfall rate within winter storms (i.e., Snow
bands). There are observational case studies demonstrating this connection (e.g., Bosart et al., 1998; Gaffin et al., 2003), but a
multi-year data set with continuously-monitoring pressure sensors in context of radar data will enable a more comprehensive

examination of the co-occurrence, or lack thereof, of gravity waves with snow bands across many winter storms.

Code and data availability. Data: The pressure time series data used throughout this publication can be found at https://doi.org/10.5281/
zenodo.8136536 (Miller and Allen, 2023). The NWS NEXRAD Level-II data used in Figs. 12 and 18 can be accessed from the Na-
tional Centers for Environmental Information (NCEI) at https://www.ncei.noaa.gov/products/radar/next- generation- weather-radar (NOAA
National Weather Service Radar Operations Center, 1991). The NWS ASOS surface station data used to create Figs. 13 and 17 can
be accessed from NCEI at https://www.ncei.noaa.gov/products/land-based-station/automated-surface- weather-observing-systems (NOAA

National Centers for Environmental Information, 2021a). The radiosonde data used to create Fig. 10 can be accessed from NCEI at
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https://www.ncei.noaa.gov/products/weather-balloon/integrated- global-radiosonde-archive (NOAA National Centers for Environmental In-
formation, 2021b).

Code: The code used for processing the pressure time series data can be found at https://doi.org/10.5281/zenodo.8087843 (Allen and
Miller, 2023).

Video supplement. List of animations with captions and filenames

All animations can be viewed at: https://doi.org/10.5446/s_1476. Individual animations can be viewed by following the DOI
URL.

Animation-Figure-S01: Animated maps of (a) reflectivity and (b) Doppler velocity wave detection for NWS WSR-88D
radar data from Buffalo, NY, at 0.5° tilt, from 0706 UTC to 1457 UTC on 25 Feb 2022. In (a), reflectivity values are shown
in greyscale when there is likely enhancement due to melting (Tomkins et al., 2022). Filled blue circles indicate locations of
pressure sensors which captured the wave event described in Sect. 4.2, and unfilled blue circles indicate locations of pressure
sensors which did not capture the wave event. Title: 25 Feb 2022 KBUF Reflectivity and Doppler Velocity Waves. DOI:
https://doi.org/10.5446/62539

Animation-Figure-S02: Animated maps of (a) reflectivity and (b) Doppler velocity wave detection for NWS WSR-88D
radar data from Upton, NY, at 0.5° tilt, from 1541 UTC to 2129 UTC on 4 Feb 2022. In (a), reflectivity values are shown
in greyscale when there is likely enhancement due to melting (Tomkins et al., 2022). Filled blue circles indicate locations of
pressure sensors which captured the wave event described in Sect. 4.3, and unfilled blue circles indicate locations of pressure
sensors which did not capture the wave event. Goes with Fig. 12. Title: 04 Feb 2022 KOKX Reflectivity and Doppler Velocity
Waves. DOLI: https://doi.org/10.5446/62540

Animation-Figure-S03: Animated maps of (a) reflectivity and (b) Doppler velocity wave detection for NWS WSR-88D
radar data from Buffalo, NY, at 0.5° tilt, from 1805 UTC to 2324 UTC on 15 Nov 2020. In (a), reflectivity values are shown
in greyscale when there is likely enhancement due to melting (Tomkins et al., 2022). Filled blue circles indicate locations of
pressure sensors which captured the wave event described in Sect. 4.4, and unfilled blue circles indicate locations of pressure
sensors which did not capture the wave event. Title: 15 Nov 2020 KBUF Reflectivity and Doppler Velocity Waves. DOI:
https://doi.org/10.5446/62541

Animation-Figure-S04: Animated maps of (a) reflectivity and (b) Doppler velocity wave detection for NWS WSR-88D
radar data from Upton, NY, at 0.5° tilt, from 0003 UTC to 0727 UTC on 14 Sep 2021. In (a), reflectivity values are shown
in greyscale when there is likely enhancement due to melting (Tomkins et al., 2022). Filled blue circles indicate locations of
pressure sensors which captured the wave event described in Sect. 4.5, and unfilled blue circles indicate locations of pressure
sensors which did not capture the wave event. Goes with Fig. 18. Title: 14 Sep 2021 KOKX Reflectivity and Doppler Velocity
Waves. DOLI: https://doi.org/10.5446/62542
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Figure 1. (a) Contours of relative humidity with respect to ice (RH,..) and with respect to liquid water (RH q:c,-) as a function of

temperature and water vapor mixing ratio, assuming a standard atmosphere temperature-pressure relationship (corresponding pressure values

on right axis). RH values are contoured at 20% intervals, with the 100% contour dashed. (b) The temperature difference between the 100%
RH;.. and 100% RH,.;c contours for each water vapor mixing ratio.
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Figure 2. Locations of pressure sensor networks. (a) US northeast regional map with the locations of the Toronto, New York City and Long

Island, and Raleigh networks indicated. Detailed maps of sensor locations in (b) Toronto, (¢) New York and Long Island, and (d) Raleigh.
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Figure 3. The maximum pressure perturbation p/,,, (hPahPa) contoured and colored as a function of the maximum velocity perturbation
U e (M s~1) and absolute value of the difference between the wave phase speed and background wind speed |c — ug| (m s™ata density
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Figure 8. Pressure traces and extracted waveforms for two events associated with the sheekwave-Lamb waves caused by the Hunga Tonga-
Hunga Ta’apai eruption on 15 Jan 2022. Extracted waveforms (black lines) are overlaid on the total pressure time series (blue lines). (a) the
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Figure 10. Upper air sounding data from Buffalo, NY, valid for 1200 UTC 25 Feb 2022. (a) Dry bulb temperature (blue), dew point (orange),
wet bulb temperature (green), and frost point (red) profiles (all in °C). (b) Equivalent saturation potential temperature (0;) profile (black
line, K) overlaid on the vertical gradient in 6; (K km ™). Positive values (blue) of the vertical gradient in 67 indicate absolute stability,
while negative values (red) indicate conditional or absolute instability. (c) Horizontal wind profile (barbs, kts; colored according to wind
speed). Annotation indicates the vertical extents of a ducting layer and a trapping layer according to the gravity wave duct criteria described
by Lindzen and Tung (1976) and Koch and O’Handley (1997).
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Figure 11. As in Fig. 9, but for the 04 Feb 2022 wave event in sensors (a) 21, (b) 22, (c) 11, (d) 14, and (e) 20, with cross-correlations and

lag times indicated relative to sensors 21. Extracted waveforms (black lines) are overlaid on the total pressure time series (blue lines).
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Figure 12. (a) Reflectivity and (b) Doppler velocity wave detection for NWS WSR-88D radar data from Upton, N, at 0.5° tilt, at 1920 UTC

on 4 Feb 2022. In (a), reflectivity values are shown in greyscale where there is likely enhancement due to melting (Tomkins et al., 2022).

Filled blue circles indicate locations of pressure sensors which captured the wave event described in Sect. 4.3, and unfilled blue circles

indicate locations of pressure sensors which did not capture the wave event. Filled green circle indicates location of Islip, NY, ASOS station

(KISP). An animation of this figure showing the time sequence from 1541 to 2130 UTC is in Video Supplement Animation-Figure-S02.
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1-Min ASOS Data from KISP
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Figure 13. Time series of one-minute ASOS data from Islip, NY (KISP), on 4 February 2022. (a) Temperature (purple) dew point (red),
and pressure (blue). (b) Wind speed (orange), wind gust speed (red), and wind direction in degrees clockwise from northerly (yellow). Wind

direction is not plotted when it changes by more than 180° in consecutive observations (e.g., when crossing 0° or 360°) or when the wind

speed is below 1.5 m s~ . All times are UTC.
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Figure 14. As in Fig. 9, but for the 15 Nov 2020 wave event in sensors (a) 34, (b) 04, (c) 24, (d) 25, and (e) 25, with cross-correlations and

lag times indicated relative to sensor 34. Extracted waveforms (black lines) are overlaid on the total pressure time series (blue lines).
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1-Min ASOS Data from KBUF
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Figure 15. Time series of one-minute ASOS data from Buffalo, NY (KBUF), on 15 November 2020. (a) Temperature (purple) dew point
(red), and pressure (blue). (b) Wind speed (orange), wind gust speed (red), and wind direction in degrees clockwise from northerly (yellow).

Wind direction is not plotted when it changes by more than 180° in consecutive observations (e.g., when crossing 0° or 360°) or when the
wind speed is below 1.5 m s~ *. All times are UTC.
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Figure 16. As in Fig. 9, but for the 14 Sep 2021 wave event in sensors (a) 21, (b) 27, (c) 14, and (d) 18, with cross-correlations and lag times

indicated relative to sensor 21. Extracted waveforms (black lines) are overlaid on the total pressure time series (blue lines).
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1-Min ASOS Data from KISP
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Figure 17. Time series of one-minute ASOS data from Islip, NY (KISP), on 14 September 2021. (a) Temperature (purple) dew point (red),
and pressure (blue). (b) Wind speed (orange), wind gust speed (red), and wind direction in degrees clockwise from northerly (yellow). Wind

direction is not plotted when it changes by more than 180° in consecutive observations (e.g., when crossing 0° or 360°) or when the wind
speed is below 1.5 m s~ . All times are UTC.
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Figure 18. Maps of radar reflectivity at 0.5° tilt from the NWS WSR-88D radar in Upton, NY, on 14 September 2021. Reflectivity values in

color show meteorological echo and those are shown in greyscale are likely non-meteorological echo such as insects and birds in this case

(Tomkins et al., 2022). Filled blue circles indicate the locations of pressure sensors which captured the wave event described in Sect. 4.5, and

unfilled blue circles indicate the locations of pressure sensors which did not capture the wave event. Filled green circle indicates the location

of the Islip, NY, ASOS station (KISP). The sequence of images from (a) 0303 UTC, (b) 0323 UTC, (c) 0342 UTC, and (d) 0402 UTC shows

the southeastward movement of region of convective cells > 40 dBZ from closer to further off the southern coast of Long Island. The wake

low is inferred to be near the trailing edge of the weaker stratiform precipitation region behind (west of) the convective cells. The minimum

pressure at KISP associated with the wake low occurred near the time of the scan shown in (c). An animated version of this figure, with

Doppler velocity wave detection, is shown in Video Supplement Animation-Figure-S03.
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Outbound Rebound
(1) (i1) (iii) (1) (i1)
Event Start 1509 1/15 | 1532 1/15 | 1606 1/15 | 0356 1/16 | 0652 1/16
UTC
Event End 1631 1/15 | 1619 1/15 | 1714 1/15 | 0823 1/16 | 0729 1/16
UTC
Wave Period 01:19 01:19 01:05 11:25 06:37
mm:ss
Mean Amplitude 0.30 0.13 0.07 243 0.36
hPa
Nsensors 4 7 7 14 7
Mean Cross-Correlation 0.83 0.84 0.77 0.89 0.97
Phase Speed 326.6 237.5 178.9 292.1 290.4
ms !
Phase Direction 64.2 93.1 56.8 261.9 262.0
Degrees CW from N
RMSE 1.04 25.19 74.19 17.90 8.21
S
NRMSE 0.015 0.023 0.035 0.014 0.043
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Table 1. Summary of 5 wave events associated with the Hunga Tonga-Hunga FaHa’apai eruption sheekwaves-Lamb waves in January 2022.
Wave events were subset to those with mean cross-correlation above 0.75, modeled delay time RMSE below 90 s, and modeled delay time
NRMSE below 0.1. The start times shown are the earliest among sensors which captured a given event, and end times shown are the latest
among sensors which captured a given event. Center wave periods and amplitudes are averaged across the sensors which captured a given
event. The first 3 events shown [Outbound (i), (ii), and (iii)] are events associated with the initial outbound set of sheekwavesLamb waves,

and the last 2 events shown [Rebound (i) and (ii)] are events associated with the initial rebound set of sheekwavesLamb waves.




