
Response to Reviewer #1 
 
We appreciate the comments and references given by both reviewers. 
We repeat the reviewers’ concerns and provide our respective responses in italics. The changes 
are in the revised manuscript.  
 
The manuscript describes a thorough comparison of different methods to quantify spectral 
characteristics of geophysical one-dimensional data such as profiles or time series. The 
motivation comes from analyses of gravity waves in observations. An important focus is on the 
effect of potential gaps in the data, with gaps present for a significant fraction of the data. Three 
methods are compared: Fast Fourier Transform, Generalised Lomb-Scargle periodogram, and 
Haar Structure Function. The study constitutes a useful and interesting contribution to the 
literature: the topic is rather technical and only interests a specific readership, but this is very 
well carried out, well explained and generally well presented. A very positive aspect is that an 
open code is made available to use these three analysis methods. Some changes would 
constitute improvements, and in particular, the conclusion section deserves to be rewritten in 
less technical terms. Minor revision is recommended, and this shall constitute a valuable study, 
although for a somewhat specific audience.  Main concern: 
The authors have made appreciated efforts for clarity throughout the text and for pedagogy in 
presenting the different methods. This is particularly useful as these methods are not 
necessarily familiar to all, making this study a valuable opening towards uncommon methods 
that may be of relevance for certain purposes (data with significant gaps in particular).  
 
However, the conclusion appears less polished than the rest of the text: a list of key messages 
has been identified, and this is positive and useful, but this list remains too technical and too 
long. It makes the conclusion less readable and less efficient than it could be. There should be 
more of an effort to come back to recommendations for concrete analyses of observations, with 
less acronyms and simpler messages and recommendations for the different situations and the 
advantages/disadvantages of the different methods. There is a contrast between the conclusion, 
which reads more like a summary of a technical report, and the synthetic sketch of Figure 8, 
which carries simple and clear messages.  
 
As requested, we rewrote the conclusion section and addressed the mentioned points. We hope 
that the text flows more smoothly. 
 
Minor points: 
l30 'universal GW spectrum': odd formulation given that different power laws have been 
documented in different contexts as recalled in table A1 
 
 
We have removed the word “universal” in I30. 
 
Additionally, although the table does not aim to be exhaustive, it could include observations 



from long-duration balloons, as these provide original insights into Lagrangian spectra of gravity 
waves, which is uncommon (Hertzog Vial 2001, Podglajen et al. 2016) 
Thanks for the references, we have cited the two papers (Hertzog Vial 2001, Podglajen et al. 
2016) in Table A1.  
 
l50-51: the FFT is likely known by almost anyone doing data analysis; however, how common 
are the other two methods? How commonly are they used in geosciences? Could the authors 
give some hints or suggestions on that?  
 
The following text is rewritten in l50-51: 
“The FFT is the standard method to analyse spectra of evenly sampled data. The Lomb-Scargle 
periodogram (LS) was used in many studies as the main analysis method (or as a reference) of 
GW spectra (e.g., Hall and Aso, 1999; Zhang et al., 2006; Guharay and Sekar, 2011; Qing et 
al., 2014). As far as the authors are aware, the HSF has never been used in atmospheric GW 
studies. Both the GLS and HSF are specifically known to handle unevenly sampled data.”  
 
 
l129: it is very good that there is an open code available for part of these tools  
 
 
Thank you. 
 
l131: the study may be motivated by the analysis of gravity waves, but the conclusions and the 
methods described are more general. Signals are analyzed for their periodic components or for 
their spectral slopes, but no use is made of specific aspects of gravity waves such as 
polarization relations. Other scientists dealing with observations including gaps, and analyzing 
nearly periodic signals and/or spectra, could be very interested in this. The authors are thus 
encouraged to put less stress on the gravity wave aspect and to broaden the scope of the study 
(by a few appropriate sentences, in the introduction, for instance).  
 
 
The following text is added to introduction l49: 
“Even though this study is motivated by the analysis of atmospheric GWs, the conclusions and 
the methods can be generalised to different fields with similar time series characteristics such 
as astronomy and seismology.” 
 
l162: it could be recalled that in many observational cases, the f is not a frequency but a vertical 
wavenumber. 
 
 
The following text is added to the simulation section 3.2: 
“(in the case of spatial data, PSD ∝ 1/(k, l, m)^β where k, l, m are horizontal and vertical 
wavenumbers).” 
 



In addition, our methods are general enough to also be used on vertical lidar profiles. 
For example, in the case of a vertical lidar profile with a resolution of 0.5 km, this would 
correspond to a 36 km measurement range. This means in our simulation, vertical wavelength 
would be in range of 1 km to 36 km. 
 
l204: a reference to the MLE could be included  
 
 
(Duvall and Harvey, 1986) citation moved to l204. 
 
l205: why is the observation O noted as a vector?  
 
 
Thank you, we removed it. 
 
Figure 5: in the right panel, the figure includes the mean and standard deviation. This should be 
added in the left panel. The comparison for HSF is particularly important.  
 
 
Figure 5 has been updated. 
 
l325-331: prewhitening and postdarkening should be explained a bit more. How does this relate 
to derivation and integration? Can the factor on line 330 be explained or interpreted in a few 
words? 
 
 
Spectral leakage is a well-known problem, there are different methods to deal with it. We re-
explained the prewhitening and postdarkening part in the discussion and gave a more inclusive 
overview without going into much details in order not to confuse the reader, since it is a vast 
topic. 
 
Figure 8: rather than "simple sinusoid", which describes the synthetic data used for the study, 
the authors should find a phrasing that could better describe potential observations 
("conspicuous periodic signal"? "signal with one dominant frequency"? ). How (un-)important is 
the sinusoidal character of the oscillations?  
 
 
The assumption of sinusoids is essential, especially for gravity waves in the absence of 
nonlinear effects. In addition, the FFT decomposes the signal into sines and cosines while the 
GLS fits a weighted (full) sine function to the signal (Eq.2). We changed it to a “signal with 
single/one frequency” in Figure 8 and throughout the manuscript. 
 
l350: the authors should take into account that readers may skip to the conclusion for the main 
messages: some redundancy between the conclusion and the preceding text is not a problem 



and rather desirable if it makes the conclusion more self-consistent. For instance, it is worth 
recalling what "the methods" are.  
 
 
We redefined the methods in the conclusion section.  
 
l354: the editor may judge otherwise, but redefining acronyms could be welcome.  
 
 
We agree, we redefined all acronyms in the conclusion section.  
 
l365: recall that beta is the spectral slope 
 
 
We added that beta is the spectral slope. 
 
l367: 'competent', for a method? Efficient?  
 
 
Thank you, we changed it accordingly. 
 
l380: re-explain prewhitening and postdarkening, very briefly; part of the readers will be 
unfamiliar with these.  
 
 
We re-explained prewhitening and postdarkening briefly in the conclusion section. 
 
Hertzog, A., & Vial, F. (2001). A study of the dynamics of the equatorial lower stratosphere by 
use of ultra‐long‐ duration balloons: 2. Gravity waves. Journal of Geophysical Research: 

Atmospheres, 106(D19), 22745-22761. 
 
 
Added citation 
 
Podglajen, A., Hertzog, A., Plougonven, R., & Legras, B. (2016). Lagrangian temperature and 
vertical velocity fluctuations due to gravity waves in the lower stratosphere. Geophysical 
Research Letters, 43(7), 3543-3553. 
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Abstract. We present a thorough investigation into the accuracy and reliability of gravity wave (GW) spectral estimation

methods when dealing with observational gaps. GWs have a significant impact on atmospheric dynamics, exerting influence

over weather and climate patterns. However, empirical atmospheric measurements often suffer from data gaps caused by

various factors, leading to biased estimations of the spectral power-law exponent (β)
:::::
slope)

::
β. This exponent describes how

the energy of GWs changes with frequency over a defined range of GW scales. In this study, we meticulously evaluate three5

commonly employed estimation methods: the Fast Fourier Transform (FFT), Generalised Lomb-Scargle periodogram (GLS),

and Haar Structure Function (HSF). We assess their performance using time series of synthetic observational data with varying

levels of complexity, ranging from a single sinusoid to
:::::
signal

::::
with

::::
one

::::::::
frequency

::
to

::
a
:::::::
number

::
of superposed sinusoids with

randomly distributed wave parameters. By providing a comprehensive analysis of the advantages and limitations of these

methods, our aim is to provide a valuable roadmap for selecting the most suitable approach for accurate estimations of β from10

sparse observational datasets.

Keywords. spectra, gravity waves, lidar, Lomb Scargle, Fourier, Haar

1 Introduction

Gravity waves (GWs) are ubiquitous phenomena that play a crucial role in the dynamics of the Earth’s atmosphere, where they

impact weather and climate patterns (Hines, 1960; Ern et al., 2018). Various sources, including convection, topography, and jet15

streams generate these waves (Crowley and Williams, 1987; Fritts, 1989). As they propagate through the atmosphere, they can

break and mix with the surrounding atmosphere, redistributing their energy and momentum. This leads to significant changes

in the atmospheric thermodynamics and large-scale circulation patterns of the atmosphere, including wind speeds and tem-

perature gradients (Lindzen, 1981; Holton, 1983; Fritts and Alexander, 2003). Observations of these meteorological variables

reveal that GWs exist for the most part in the form of a spectrum of superposed waves within a wave packet, and occasionally20

as quasi-monochromatic waves (Maekawa et al., 1984; Eckermann and Hocking, 1989). To understand the physical processes
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that govern the generation, propagation, and dissipation of these wave packets, it is often useful to examine their spectral prop-

erties such as their frequencies, amplitudes, and scales (Axford, 1971; Fritts and VanZandt, 1993).

On that note, Vanzandt first introduced the concept of a ’universal atmospheric GW spectrum’ (VanZandt, 1982). This spec-

trum facilitated efficient parameterizations of how GWs affect the mean atmospheric state (Babu et al., 2008). For instance,25

the spectra of GWs are often used in model parameterization, including source spectra parameterization, Lagrangian spectral

parameterization, and subgrid-scale parameterization, enabling the simulation of the dynamics of the middle and upper at-

mospheres (Beres et al., 2005; Song and Chun, 2008; Houchi et al., 2010). Overall, accurate predictions of GW activity can

improve weather forecasting, while they contribute significantly to climate modelling in parameterizing physical processes like

turbulence and mixing (Alexander et al., 2002; Smith, 2012; Liu et al., 2014).30

This universal GW spectrum exhibits a power law scaled by an exponent (or slope) β, which describes the rate at which wave

energy changes with its wave number (or frequency). The basis for this spectrum for atmospheric GWs is not only supported

by a strong foundation in theoretical works (Dewan and Good, 1986; Weinstock, 1990; Hines, 1991; Dewan, 1994; Gardner,

1994), but also in observational studies (Smith et al., 1987; Fritts et al., 1988; Gardner et al., 1995; Nastrom et al., 1997;

Zhang et al., 2006, 2017). These values of β do not only depend on the type of spectra (e.g. temporal, horizontal, or vertical35

wavenumber) but also the geophysical variables measured (e.g. temperature, horizontal or vertical wind etc.), see Tab. A1 for

a summary. Thus, an accurate estimation of β is essential to validate different theoretical predictions of GW power spectral

densities (PSD) (Dewan and Grossbard, 2000), and improve climate models and weather forecasts (Lindgren et al., 2020).

Determining β from empirical atmospheric measurements is challenging due to various factors, such as the inevitable presence

of data gaps, observational noise, and the finiteness of data length and resolution. Data gaps can occur for numerous reasons,40

including: instrumental errors, data transmission issues (e.g. due to weather conditions like clouds in the case of lidar), and

signal interference (in the case of radar). When gaps exist in multiscale time series, data points representing certain frequencies

are lost, which distorts the spectra and introduces significant bias in the estimation of β (Brown and Christensen-Dalsgaard,

1990; Rigling, 2012). To minimise the effect of these gaps on the spectra, data-filling schemes are often applied. Though linear

interpolation is usually used to fill in these gaps (Meisel, 1978; Lepot et al., 2017), even adaptively implemented interpolators45

produce artefacts into the time series at low gap percentages (GPs), which contribute additional bias in the spectra (Schulz and

Stattegger, 1997; Hall and Aso, 1999). Bias in spectral estimates can also be caused by other relevant sources, such as spectral

leakage, steep spectra (β > 2), and in-signal components with larger periods than the observed time span T (Klis, 1994).

In this paper, we systematically quantify the advantages and limitations of estimation methods of GW spectra in handling

these error sources. We also propose a procedure for selecting unambiguously suitable methods for β estimation.
::::
Even

::::::
though50

:::
this

:::::
study

::
is

::::::::
motivated

:::
by

:::
the

:::::::
analysis

::
of

::::::::::
atmospheric

::::::
GWs,

:::
the

::::::::::
conclusions

:::
and

:::
the

::::::::
methods

:::
can

::
be

::::::::::
generalised

::
to

::::::::
different

::::
fields

::::
with

::::::
similar

::::
time

:::::
series

::::::::::::
characteristics

::::
such

:::
as

:::::::::
astronomy

:::
and

::::::::::
seismology. Two commonly used methods are considered,

namely the Fast Fourier Transform (FFT) (Cooley and Tukey, 1965) and the Generalised Lomb-Scargle periodogram (GLS)

(Zechmeister and Kürster, 2009), as well as the fairly recent Haar Structure Function (HSF) (Lovejoy and Schertzer, 2012).

The FFT is the standard method to analyse spectra of evenly sampled data, while the .
::::
The

::::::::::::
Lomb-Scargle

::::::::::
periodogram

::::
(LS)

::::
was55

::::
used

::
in

::::
many

::::::
studies

::
as

:::
the

:::::
main

::::::
analysis

:::::::
method

::
(or

:::
as

:
a
::::::::
reference)

::
of

::::
GW

::::::
spectra

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Hall and Aso, 1999; Zhang et al., 2006; Guharay and Sekar, 2011; Qing et al., 2014)
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:
.
::
As

:::
far

::
as

:::
the

::::::
authors

:::
are

::::::
aware,

:::
the

::::
HSF

:::
has

:::::
never

::::
been

:::::
used

::
in

::::::::::
atmospheric

::::
GW

::::::
studies.

:::::
Both

:::
the GLS and HSF are specifi-

cally known to handle unevenly sampled data. In an effort to closely mimic real observations of GWs, we simulate time series

data with varied levels of complexity, beginning with signals consisting of single sinusoids
:
a

:::::
signal

::::
with

::::
one

::::::::
frequency

:
and

increasing in complexity to a superposition of sinusoids with randomly distributed scales (and frequencies
:::::::::
frequencies

:::::
(and60

:::::
phases).

Previous studies have investigated these spectral methods and others for estimating power-law spectra and compared their

performance on synthetic and observed data. For instance, Zhan et al. found that using FFT of linearly interpolated signals

is the best approach to analyse radar wind data at 50% GP (only for the case of β = 5/3) compared to the correlogram and

Lomb-Scargle (LS )
::
the

:::
LS

:
(Zhan et al., 1996). However, a quantitative analysis of the effect of changing β or the GP was65

not conducted. Similarly, Munteanu et al. showed that FFT outperforms LS, Z-Transform, and Discrete Fourier Transform in

estimating β from Venus’ magnetic field data (Munteanu et al., 2016). Although, the effect of changing β was not considered

either since the power-law spectra were not simulated. In contrast, Hébert et al. found that the HSF consistently surpassed other

methods in estimating β, without the need to interpolate the gapped (simulated paleoclimate) data for β ∈ (0,3), except the

case of β ∈ (−1,0), where they concluded that LS would be the best option (Hébert et al., 2021). Nonetheless, the impact of70

altering the GP was not quantitatively presented, instead, the skewness of the gaps (Gamma) distribution was used as a parame-

ter to refer to the irregularity of the time series.
:::::
These

::::
three

::::::
studies

:::::::
showed

:::
that

:::
the

:::
LS

::::::
method

::::::
suffers

::::
from

:::::::::
significant

:::::::
leakage

::
in

:::
the

::::
case

::
of

:::::::::
power-law

::::::
spectra

:::::
which

:::::::
persists

::::
even

:::::
when

::::::::::
Multi-Taper

::::::::
Methods

::::::
(MTM)

:::
are

:::::
used,

::::::::
however,

:
a
:::::::::::
combination

::
of

::::
both

:::
the

:::
LS

::::
and

:::::
MTM

::::::
seems

::
to
::::::::
improve

::
on

::
its

::::::::::::
disadvantages

::::::::::::::::::::
(Springford et al., 2020).

:

The rest of the paper is organised as follows: in Sect. 2, we describe the methods used in our study, including a description of75

FFT, GLS, and HSF. In Sect. 3 we introduce the data simulation procedures. In Sect. 4 we discuss data processing. In Sect.

5 we present the results of our simulations, comparing the performance of these methods in different scenarios. In Sect. 6 we

discuss the implications of our findings, and provide recommendations for spectral analysis of GW time series with data gaps.

Finally, in Sect. 7, we present a summary of our relevant results and conclusions.

2 Spectral Methods80

2.1 The Fast Fourier Transform

The FFT is the most commonly used method for estimating frequency spectra of evenly sampled data (Cooley and Tukey,

1965). It enables the approximation of a time series sampled from a continuous distribution over discrete time steps, through

a series of complex sine and cosine waves with varying frequencies. Under the assumption of a unit sample interval, the

(forward) FFT transforms a time series zn of length N from its original domain (time or space) into a set of coefficients Zk in85

the (temporal or spatial) frequency domain by employing the relation:

Zk =

N−1∑
n=0

zne
−2πikn/N , k = 0,1, ...N − 1. (1)

3



In our work, the FFT will serve as the benchmark spectral estimation method. The expected Fourier transform of a discretized

signal is given by the convolution of the true transform and the transform of a Dirac comb window function designating those

measurement times (Vanderplas, 2018). In the case of gapped data, the symmetry in the Dirac comb is destroyed, causing the90

resulting transform to be noisy with incorrect peak positions and heights. Consequently, the true transform of gapped data will

not be recoverable. This disadvantage can be bypassed by applying data reconstruction methods such as interpolation, sparse

approximation, etc., to approximate the true Fourier transform (Babu and Stoica, 2010). Unfortunately, these reconstruction

methods can introduce artefacts to the signal, which depend on the distribution of the gaps and their sizes (Munteanu et al.,

2016).95

2.2 The Generalised Lomb-Scargle Periodogram

The GLS periodogram developed by Zechmeister and Kuerster offers a method for estimation of the PSD of unevenly sampled

time series (Zechmeister and Kürster, 2009). It is a generalisation of Lomb’s least-squares approach (Lomb, 1976) which is

equivalent to the modified Schuster’s periodogram (Schuster, 1898; Scargle, 1982) (based on the FFT) in the case of evenly

sampled data. The GLS produces a spectrum by least-squares fitting a model of a weighted sinusoid given by100

y(t) = acosωt+ bsinωt+ c (2)

to the time series at each sampled frequency ω. The offset c compensates for the assumption that the mean of the time series z

is equal to the mean of the fit y. This floating-mean approach is advantageous, considering that the mean of a periodic signal

may change statistically, especially for small N (Ferraz-Mello, 1981). Furthermore, the purpose of using weighted sums is to

account for the observational noise for which the original LS does not.105

The LS method has often been used to seek dominant periodic frequencies or cycles (Zhang et al., 1993; Pichon et al., 2015;

Rao et al., 2017), analyse seasonal changes of significant modulations of GW fields (Beldon and Mitchell, 2010), and estimate

the spectral indices β and amplitudes of GW power-law spectra (Hall and Aso, 1999; Zhang et al., 2006; Guharay and Sekar,

2011; Qing et al., 2014). In addition, LS is known as the most efficient method for estimating the variance in both gapped and

non-gapped stationary time series with a single-sinusoidal
:::::
single periodicity, without the need to fill in missing data (Marinna110

et al., 2019). In contrast, Vio et al. found that the LS is neither reliable for analysing semi-periodic nor aperiodic signals with

non-stationary noise or signals made of more than one sinusoid
::::
wave, without additional steps (Vio et al., 2010).

2.3 The Haar Structure Function

The HSF is a mathematical tool used in conducting scaling analysis of signals (Lovejoy and Schertzer, 2012), which is based115

on the Haar wavelet (Haar, 1910). It is a simple yet powerful method for decomposing a signal x(t) whose power spectral

density exhibits a power law, i.e. PSD ∝ τH with a scaling (Hurst) exponent H , over a scale (lag) τ = 1/f , into fluctuations
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∆x= x(t+ τ)−x(t). The first-order Haar fluctuations Hτ at a lag τ are defined by the relation:

Hτ (x(t
′)) =

2

τ

∣∣∣∣∣∣
∑

t+ τ
2<t′<t+τ

x(t′)−
∑

t<t′<t+ τ
2

x(t′)

∣∣∣∣∣∣ (3)

The q-th order structure function Sq(τ) is then obtained as an approximation by ensemble averaging these fluctuations as120

follows:

SH,q=1H,q
::

(τ) = ⟨Hτ (x(t))⟩ ≈ τ qH−K(q) (4)

In the quasi-Gaussian case, the moment scaling function is K(q)≈ 0, so for the first-order structure function (q = 1) , only H

determines the scaling of mean fluctuations.

A power spectrum which follows a power law
::::::::
power-law

:
PSD ∝ τβ is related to the Hurst exponent by β = 1+2H −K(2),125

here q = 2 because the power spectral density is a second-order moment. Thus, under the
::
our

:
quasi-Gaussian approximation,

we re-scaled the HSF to a comparable scale to the PSD using the relation:

SH,q=1 ∝ τH ≈ τ
β−1
2 ,

::
(5a)

SH,q=1 · τ1/2 ∝ τβ/2 ,
::

(5b)

S2
H,q=1 · τ ∝ τβ ∝ PSD .

::
(5c)130

::::::
Despite

::::
that

:::
the

:::::
term

:::::
K(2)

::
is

:::::
fairly

::::::
small,

:
it
::

is
:::::::::

nontrivial
::
in

::::
the

:::::::::::
non-Gaussian

:::::
case

:::
and

::::::
higher

::::::::
moments

::
q,
::::

and
:::
the

:::::
HSF

:::::
allows

:::
for

:::
its

:::::::::
calculation

:::::::::::::::::::::::::
(Lovejoy and Schertzer, 2012)

:
,
:::
but

:::
this

::
is
:::::::

beyond
:::
the

:::::
scope

:::
of

:::
this

::::::
paper. The HSF is particularly

suitable for estimating the scaling exponent of time series with H ∈ (−1,1) or β ∈ (−1,3). This range of β values covers the

vast majority of atmospheric processes from weather (where τ < 10 days, and 1< β < 3) to macroweather systems (where

10 days < τ < 10− 30 yr, and −1< β < 1). The HSF also possesses the advantage of handling unevenly sampled data, which135

is a consequence of the fact that it is computed by taking the mean of absolute fluctuations
:::::::::::::
(Lovejoy, 2014). Nevertheless, the

HSF is not employed to estimate the amplitude or the frequency of sinusoids
::::::::
frequency

::
of

:
a
:::::
wave

::
or

:::
its

::::::::
amplitude, since it only

measures how much frequency components contribute to the total variance. The Python code implementation of the HSF is

readily accessible (Mossad, 2023), which was derived from the R code originally developed by Raphaël Hébert (Hébert, 2021).

3 Data Simulation140

In this section, we present the simulation procedures used to generate time series similar to actual GWs measurements. In

measurements, GWs can exhibit various behaviours, ranging from superposed waves within wave packets with multiple fre-

quencies, amplitudes, and phases to more coherent quasi-monochromatic waves (Maekawa et al., 1984; Eckermann and Hock-
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ing, 1989; Sica and Russell, 1999). In Sect. 3.1, we simulate single sinusoids
:::::
signals

:::::
each

::::
with

::::
one

::::::::
frequency

:
to mimic

quasi-monochromatic waves, in which the goal is to accurately estimate the correct frequency and amplitude of each sig-145

nal. In Sect. 3.2, however, we simulate time series composed of a superposition of scales and amplitudes. This simulation

allows us to produce spectra which follow power laws, whose exponents
:::::
waves

:::::
with

:::::::
random

::::::::::
frequencies

:::
and

::::::::::
power-law

:::::::::
amplitudes.

::::
The

:::::::::::::::
exponents/slopes β

::
of

:::::
their

:::::::::
power-law

::::::
spectra

:
are used to assess the bias of the spectral analysis meth-

ods.
:::::
While

:::
our

::::::::::
simulation

::::::
adopts

::
a

::::::::
simplified

::::::
linear

::::::::
saturation

::::::
theory

:::::::::
approach

:::::::
through

:::
the

:::::::::::
superposition

:::
of

::::
sine

::::::
waves

:::::::::::::::::::::::::::::::::::
(Dewan and Good, 1986; Smith et al., 1987)

:
,
:::
we

:::::::::::
acknowledge

:::
that

:::::
other

:::::::::::
explanations

:::
for

::
the

:::::::
spectral

::::::::
character

::
of

:::::
GWs

:::::
exist,150

::::::::
including

:::::::::::::::::
"nonlinear-damping"

::::::::::::::::::::::::::::::::
(Weinstock, 1982, 1990; Gardner, 1994)

:
,
::::::::
"Doppler

:::::::::
spreading"

:::::::::::
(Hines, 1991)

:
,
:::::::::::::::
“saturated-cascade

:::::::::
similitude”

:::::::::::::
(Dewan, 1994)

:::
and

::::::::::::::::::
high-Reynolds-number

:::::::::
"stratified

:::::::::
turbulence"

::::::::::::::::::::::
(Pinel and Lovejoy, 2014),

:::
see

::::::::
Table.A1

::
for

:::::
more

::::::
details.

By analysing both simulations, we can determine the accuracy of each of the methods at different levels of signal complexity,

and identify potential limitations and sources of error in the analysis of GWs spectra. Random gaps are then introduced to re-155

semble observational gaps for both simulations. The units and values of the variables used in this simulation have been chosen

to represent average values or ranges characteristic of typical GW time series.

3.1 Single-Sinusoid
:::::::::::::::
Single-Frequency

::::::
Signal

:
Simulation

Quasi-monochromatic GWs can be observed under specific conditions where a single frequency dominates other components

(Muraoka et al., 1988; Swenson et al., 1999). This kind of GWs can be approximated as an evenly sampled single sinusoid160

x(t) =Asin(2πft+φ) with a known frequency f , phase shift φ, and amplitude A, at time t. For both simulations, the time

resolution ∆t is 5min with a total span of T = 6h, as this resolution and duration align with the average values of lidar

measurements commonly used in atmospheric studies (Gardner et al., 1995; Gerding et al., 2008). As a result, the number of

points N in each signal is equal to T
∆t = 72. Each simulated sinusoid has an arbitrary amplitude of A= 4K and a randomly

chosen frequency f from the set 1/{6,3,1.5,1,0.5,1/3}[ h−1]. Changing the frequency serves as a test to examine whether the165

bias of the methods is frequency-dependent. The phase shift φ is also randomly chosen but from a uniform distribution within

the interval [0,2π].

The amplitude of the time series is equivalent to the estimated height of the main peak in the spectrum. It is computed from

the FFT coefficients (Eq. 1) as AFFT =maxk

(
2|Zk|
N

)
and from the GLS fit coefficients (Eq. 2) as AGLS =maxk

(√
a2k + b2k

)
.

The frequency of that peak fk corresponds to the estimated frequency of the signal. As a metric for the accuracy of estimation170

of the true values of frequencies and amplitudes, we used the relative bias given by:

Relative bias =
value estimated− value expected

value expected
. (6)

Since real data is susceptible to observational noise, it is crucial to consider the case where white noise is added to the sim-

ulated signal as a random variable r(t) from a standard normal distribution. Here, the signal-to-noise ratio is defined by

SNR =A2/2σ2
r , where σ2

r is the noise variance (Horne and Baliunas, 1986). To strike an appropriate balance between captur-175
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ing meaningful noise characteristics and minimising low SNR bias, an average SNR value of 8 is chosen for this simulation.

3.2 Spectral Power Law Simulation

As reported before (see Table A1), the universal spectra of GWs are characterised by a power law, i.e. PSD ∝ 1/fβ
::
(in

:::
the

::::
case

::
of

:::::
spatial

:::::
data,

::::::::::::::::
PSD ∝ 1/(k, l,m)β

:::::
where

::::::
k, l,m

:::
are

::::::::
horizontal

::::
and

::::::
vertical

:::::::::::::
wavenumbers). On that account, we are interested180

in estimating the value of β of simulated time series whose spectra would have β ∈ {−1,0,1,5/3,2,2.5,3} and comparing it

with the true value. The simulated evenly sampled time series x(t) consists of a sum of M sinusoids, each with frequency fi and

power law
::::::::
power-law amplitudes, Ai = f−β

i as follows (Rice, 1944)
:::::::::::::::::::::::::::::::::::::::::::::::
(Rice, 1944; Billah and Shinozuka, 1990; Kirchner, 2005)

x(t)∼
M∑
i

√
Ai sin(2πfit+φi) =

M∑
i

(fi)
−β/2 sin(2π(fi)t+φi) . (7)185

We used for our simulation M = 35 for each time series. It is driven by the objective of reconciling the inclusion of a minimum

of 20 waves based on observational (Sica and Russell, 1999) and modelling suggestions (Dewan, 1994; Hamilton, 1997), while

simultaneously incorporating a sufficiently large number of waves to mitigate random spectral errors (Keisler and Rhyne, 1976)

::::::::::::::::::::::::::::::::::::
(Keisler and Rhyne, 1976; Shinozuka, 2005). This approach enables the demonstration of the power law

:::::::::
power-law spectrum

without the need for excessive averaging. The frequencies fi are statistically independent uniformly distributed random values,190

selected within the range
[
1
T ,

1
2∆t

]
=
[

1
6 h ,

1
10min

]
. Hence, the time series is composed of non-harmonic components and there

are no favoured frequencies, which is a better approximation of atmospheric GWs than an idealistic case where frequencies are

only integer multiples of a fundamental frequency. Here, x(t) is proportional to the square root of the amplitudes Ai since β is

estimated from PSD-normalised spectra, which are the squared modulus of the amplitudes.

The PSD is obtained by the FFT using the relation 2ZkZ
∗
k∆t

N , where Z∗
k is the complex conjugate of Zk. This definition is195

equivalent to the GLS spectrum
N|a2

k+b2k|∆t

2 of evenly sampled data. The HSF is however normalized according to Eq. 5c to

estimate a comparable scale to the PSD. The bias of β estimation is defined for this simulation as

β bias = value estimated - value expected . (8)

3.3 Gaps Simulation

After creating a time series with the desired spectral properties, gaps are introduced by randomly removing data points (except200

both endpoints), assuming that all data points are equally probable to be removed (i.e. a uniform distribution). Based on the

simulated GP p in the data, an integer number of random points NG =N − N ·p
100 :::::::::

NG = N ·p
100 is removed. Thus, a 0% GP means

that no points were removed, while a 50% GP means that 36 points were randomly removed, since N = 72. To assess the

dependence of bias in spectral analysis methods on the gaps, we conducted simulation runs spanning GPs ranging from 0% to

7



90% in increments of 10% for each time series analysed. Each of these simulation runs was repeated 1000 times at each GP205

increment to ensure the statistical significance of our results since the frequencies, phases, and gaps are randomised. Then we

computed the average values of the estimated amplitude and period (for the single-sinusoid
::::::::::::::
single-frequency

:::::
signal simulation),

and β (for the spectral power law
:::::::::
power-law simulation).

4 Processing Steps

Before applying spectral methods on the generated time series from the simulations in Sec.3, the following steps are taken:210

– The time series is first interpolated using the original time step 5min, this is only necessary for FFT.

– The mean of the signal z is subtracted to account for the zero-frequency component of the Fourier transform Z0.

When computing the spectrum for a time step ∆t, the frequency grids of all methods are defined as follows:

– The frequency range spans from 1
T to 1

2∆t .

– The frequency spacing is given by ∆f = 1
T .215

In the presence of gaps where ∆t is not constant, the Nyquist frequency is then defined as:

– fNy =
1
2p , where p is the largest value that allows ti = t0 +nip to be possible for all ti, and ni are integers (Eyer and

Bartholdi, 1999). This value corresponds to the same Nyquist frequency of our non-gapped data, which is 0.1min−1.

– This approach is more appropriate for GLS and HSF than applying a "pseudo-Nyquist" limit based on an average or a

minimum value of ∆t (Scargle, 1982; Vanderplas, 2018).220

To estimate β, the spectra are fitted by taking the following steps:

– A maximum likelihood estimator (MLE) is employed to determine the fit parameter β
::::::::::::::::::::::
(Duvall and Harvey, 1986).

– The MLE fit involves minimising the negative log-likelihood function − lnL(
−→
O )

:::::::::
− lnL(O) of observations Oi at fre-

quency fi using the equation:

−lnL(
−→
O )lnL(O)

::::::
=

n∑
i=1

ln⟨Oi⟩+
Oi

⟨Oi⟩
, (9)225

where ⟨Oi⟩ refers to the power law
::::::::
power-law model c( 1

fβ ) being fitted, with c as a normalisation coefficient(Duvall and Harvey, 1986)

.

– The MLE fit is recommended over least squares regression because the latter assumes a Gaussian distribution of peri-

odogram residuals, leading to a biased estimate of β (Clauset et al., 2009).
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5 Results230

5.1 Single-Sinusoid
:::::::::::::::
Single-Frequency

:
Signal

First, we show an example of the time series generated by the simulation described in Sect.3.1, which consists of a 0.5 h-wave

in a 6-hour time series. As can be seen in Fig.1a, in the absence of gaps, an accurate estimation of the 4K amplitude and the

0.5 h period of this signal is acquired by both the GLS and FFT. In addition, the spectra obtained by the FFT and GLS are

(as expected) equivalent in the case of evenly sampled data (Scargle, 1982). When the random gaps replaced 50% of the data235

points, a significant difference between the amplitude spectra is observed, see Fig.1b. Both methods still provide an accurate

estimate of the signal’s period. Linear interpolation of the 50% gapped signal preserves the structure of the wave but loses some

of the high-frequency components, which leads to a significant underestimation of the amplitude by 43% in the FFT spectrum.

In contrast, the amplitude of the highest peak in the GLS spectrum is not affected by the gaps and has not changed from the

expected value.240

When comparing average relative period bias for different simulation periods, Fig.2a shows that GLS demonstrates no period
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Figure 1. Time series of a 0.5 h-wave in a 6-hour observation time generated according to Sect.3.1. (a) shows the time series (upper left)
and its temporal amplitude spectrum (lower left) in the absence of gaps. (b) shows the time series (upper right) and its temporal amplitude

spectrum (lower right) after the addition of random gaps.

bias below 80% GP and a negligible bias beyond (within ±20% deviation interval). Fig.2b shows, contrarily, that the smaller

the simulated period of the signal, the more FFT overestimates it at GPs larger than 40%. This is due to linear interpolation

replacing the removed high-frequency components with lower-frequency ones (i.e., aliasing), which eventually dominate as

the GP gradually increases. To put these results in perspective, at 70% GP, FFT inaccurately determines the period of a 0.5 h245

wave as 2.93 h (i.e. overestimates it by 486%). Given that there are quite few data points left in the time series at 70% GP, it

is expected that FFT is not able to recover the correct period, however, GLS is still capable of obtaining the exact value of the

period (i.e., an error of 0%). Not only is the GLS a much better estimator of the period on average, but also since its standard

deviation remains trivially small until 80% GP, it is a more reliable choice on a case-by-case basis as well.
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Similarly, the FFT’s amplitude bias experiences clear dependency on the frequency of the signal, while GLS demonstrates a
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(a) Relative period bias for GLS.
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(b) Relative period bias for FFT.

Figure 2. Comparison of relative period bias (Eq.6) as a function of gap percentage for each method, here shown for each simulated period
(frequency). The bias is estimated from the average estimated values of the periods, and its standard deviation is scaled accordingly. Note

that the y-axis (relative period bias) is limited between[−0.2,0.2] for the GLS and [−4,20] for FFT. This shows how extremely different the
accuracy of each method is.

250

negligible amplitude bias at GP below 80%, see Fig.3. In particular, the results show that the mean estimated amplitude from

the FFT spectrum deviates exponentially from the expected value as the frequency of the signal increases, even at gap percent-

ages below 50%. In addition, the standard deviation of amplitude estimation by GLS increases as the GP increases, although

it remains within ±10% deviation interval up to 80% GP. On the contrary, the standard deviation of amplitude estimation by

FFT significantly increases as both the frequency of the signal and GP increase, implying that FFT is more inconsistent and255

highly sensitive to missing data, especially for high-frequency signals.

Overall, GLS provides a more robust estimation of the period and amplitude of gapped time series, while the FFT’s perfor-

mance is simultaneously dependent on the GP and frequency of the signal.

5.2 Spectral Power Law Signal260

A time series example is shown in Fig.4 to illustrate the complexity of a signal produced according to Sect. 3.2 for β = 2,

showcasing the signal before and after the introduction of gaps. As the percentage of gaps in the data increases, the impact on

the spectral components varies depending on their frequency range. High-frequency components (rapid fluctuations over short

periods) are most vulnerable when data is being removed. Subsequently, the lower frequency components (slow variations over

longer periods) follow, exhibiting greater resilience to data gaps. In essence, a considerably greater number of gaps is required265

to significantly affect the estimation of the latter. A distorted spectrum of this time series can be seen, which is a result of

the limited sample length and resolution (Roberts et al., 1987). In addition, as the signal comprises numerous sinusoids
:::::
waves

with random frequencies, the presence of closely spaced frequencies leads to the emergence of complex and broad peaks in the
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(a) Relative amplitude bias for GLS.
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(b) Relative amplitude bias for FFT.

Figure 3. Comparison of relative amplitude bias (Eq. 6) as a function of gap percentage for each method, here shown for each simulated
period (frequency). According to Fig.2b, past a certain GP threshold, the highest peak in the FFT spectrum does not belong to the true

frequency but to meaningless interpolation noise. For this reason, the amplitude bias reported in Fig.3 is limited by relative period bias < 3,
since amplitude values beyond this threshold should not be relied upon. Note that the upper and lower limits of the y-axis are different for

each method as well.

spectrum (Horne and Baliunas, 1986; Dewan and Grossbard, 2000).

In the absence of gaps, the true value of β is accurately estimated from the spectra of all methods (see Fig.4a). However,
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Figure 4. A time-series example (upper left and right) generated by the spectral power law
::::::::
power-law simulation (according to Sect.3.2)

with a spectral exponent of β = 2 within a 6-hour observation time, before and after the addition of gaps, respectively. The estimated power
spectral densities of both non-gapped and gapped time series are shown in the lower left and right. Here, both x- and y-axes in the spectra
figures were log-scaled so that a linear function can be identified. The dotted lines (in red, green and blue) represent the fits of the PSD of

each method.
270

after removing 50% of the data points (Fig.4b), the estimated spectrum by the HSF remains relatively unaltered while the

GLS and HSF
::::
FFT spectra diverge. The overestimation of β (bias= 0.6) by FFT is due to the amplitudes of high-frequency

components being underestimated, which is a result of the interpolation (Schulz and Stattegger, 1997; Hall and Aso, 1999).
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An even smaller bias (0.1) results in the
:::
This

:::::::::::::
overestimation

::
of

::
β
::::
can

::::
also

::
be

:::::::::
explained

::
by

:::
the

::::
fact

::::
that

::::
these

:::::::::::
interpolated

::::::::::::::
(high-frequency)

::::::::::
components

:::::::::
contribute

::::::
locally

::
by

::::::
β = 3

::
to

:::
the

::::::
overall

:::::
slope

:::
of

:::
the

::::::::
spectrum

:::::
which

::::::
result

::
in

:::::::
positive

::::
bias275

::::
when

:::
the

::::
true

::
β

::
is

:::
less

::::
than

::
3
::::::::::::::
(Lovejoy, 2014).

::
In

:::
the

:
case of the HSF,

::::::
where

:::
no

::::::::::
interpolation

:::
of

:::
the

:::::
signal

::
is

:::::
done,

::
an

:::::
even

::::::
smaller

::::
bias

::::
(0.1)

::::::
results. In contrast, the true power law can be seen for the first few low frequencies in the GLS spectrum,

then it starts to flatten at intermediate and high frequencies with a substantial bias of −1.41. This occurs because the lack of

data points constrains the least squares fit by GLS, which leads to the interpolation of power at these frequencies (i.e., a flat

line).280

For a statistically significant picture, we show the distributions of estimated β values from 1000 simulation runs in Fig.5.
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Figure 5. Histograms of the estimated β values from 1000 spectra of time series generated by the spectral power law
:::::::
power-law

:
simulation

(according to Sect.3.2) with a spectral exponent of β = 2 within a 6-hour observation time. The vertical lines in the histograms of the
gapped case refer to the mean estimated values of β by each method.

In the non-gapped case
:::
(see

:::::::
Fig.5a), the distributions of all methods overlap within a small standard-deviation range of ±0.2

around β = 2. In contrast, we see that gaps cause the estimated β values from the FFT and HSF spectra to spread over a larger

range
::::::
spectra

::
to

::::
shift

:::::
their

:::::::::
distribution

::
to
::::::
higher

::::::
values

::::::
around

:::::::
β = 2.3

::
in

:::::
Fig.5b, while the distribution of GLS

:::
gets

::::::::
narrower

:::
and diverts far below the expected value of 2. The mean of estimated β values from HSF spectra is clearly the closest to

::::
both285

the true value . These distributions
:::
and

::
its

:::::
mean

::
in
:::

the
:::::::

absence
:::

of
::::
gaps,

::::::
which

::::::
shows

::::::::::
consistency

:::
and

::::
less

::::::::
sensitivity

:::
to

:::
the

::::
gaps.

::
It

::
is

:::::
worth

::::::
noting

:::
that

:::
the

:::::::::::
distributions

::
in

::::::
Fig.5a show that even in the absence of gaps, estimated β lies mostly within

the range of [1.5,2.5] and not exactly at 2, as single spectra are distorted without averaging. It is also important to mention that

the results of the bias are quite identical whether β is estimated from averaging power-law exponents of single spectra or it is

estimated from fitting an averaged spectrum.290

To further explore the behaviour of the bias under different conditions, we evaluated the effect of changing the simulated value

of β on the estimation bias (see Fig.6). At 0% GP, all methods show no bias, except for β > 2 and β =−1, where there is an

apparent deviation. The first deviation is expected because the larger β is than 2, the more the spectrum suffers from "low-

frequency leakage" due to the finite length of the time series (Klis, 1994; Schulz and Mudelsee, 2002). The other case of small
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deviation takes place on the opposite end of the spectral slope range (β =−1), where high frequencies dominate. The power295

at these frequencies is quite easily aliased, hence, underestimated, as they are the closest to the Nyquist limit. These deviations

do not mean that spectra of β =−1orβ > 2 can not be obtained, but that on average, they are very likely to be misestimated.

In the instance of gapped time series, our results show that as the GP increases, the biases in the estimated exponent also became

more pronounced for all three methods. Similar to the non-gapped situation, the GLS demonstrates an exceptional efficiency

in estimating flat spectra where β = 0 with a negligible bias. This is a consequence of the absence of frequency dependency300

in a flat spectrum, which renders the gaps irrelevant in terms of introducing bias, since the GLS spectrum is already flat. As

β increases (indicating a steeper decline in power with increasing frequency) and the percentage of gaps in the data increases,

the bias in the GLS spectrum becomes more prominent. For instance, in the case of β transitioning from 1→ 3 where power

is skewed towards low frequencies, gaps cause GLS to mistakenly assign excessive power at the missing high frequencies,

ultimately resulting in a steady underestimation of β. In contrast, when β =−1, high-frequency components dominate low-305

frequency ones. Consequently, there is a loss of power at these high frequencies as the gaps disrupt their sampling. This loss

of power causes the GLS method to overestimate β, mirroring the GLS bias observed when β = 1.

In similar fashion, both the FFT and HSF demonstrate a relatively constant bias for β = 3 of approximately −0.3 at all GPs.

However, as β decreases from 2→−1, their biases monotonically increase as the GP increases. Nevertheless, the HSF shows

substantially less bias than the FFT when the GP exceeds 10%. The FFT bias is attributed to the established interpolation310

effects. Therefore, as more data points are interpolated, the FFT spectrum progressively underestimates the amplitude of the

high frequencies. This underestimation results in the bias being positive for all β values, except β = 3 where leakage causes

FFT to overestimate these frequencies. Overall, averaging β values from single spectra is a good measure of the expected value

because of their low standard-deviation except at very high GPs.

In light of the aforementioned considerations, it can be argued that the FFT technique demonstrates competence in generating315

accurate spectral estimations for non-gapped time series. Nevertheless, it encounters challenges as the data incorporates an

increasing number of gaps, necessitating interpolation techniques which introduce inherent biases. Meanwhile, the HSF is

demonstrated to be a particularly reliable approach for analysing GW time series with spectral power law
::::::::
power-law

:
exponents

β ∈ {1,5/3,2,2.5,3} and in-between. Its performance, however, exhibits limitations primarily in cases where the spectrum

of a time series possesses a power law
:::::::::
power-law exponent β < 1. Notably, such occurrences have only been observed and320

predicted within measurements of vertical wind time series, as indicated in Tab.A1. One can reasonably anticipate that spectra

falling within the range of β values between 1 and 3 will be prevalent across the majority of atmospheric time series.

Conversely, the GLS method yields similarly favourable outcomes, particularly for time series whose spectra are flat and high-

frequency dominated, that it even surpasses the accuracy of HSF when β possesses values between −1 and 0. Nonetheless, the

GLS method exhibits an increasing bias as the value of β increases beyond 0, rendering it a less certain choice for time scales325

extending beyond a few hours, which commonly occur in the context of atmospheric gravity waves. Clearly, the consistent and

overall impeccable GLS performance on estimating periods and amplitudes of single sinusoids
::::::
signals

::::
with

:::::
single

::::::::::
frequencies

does not seem to translate to universally resolve the level of superposition of many random periodicities with power-law
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Figure 6. Comparison of the bias in the mean β estimates obtained from the three different methods as a function of gap percentage. The
results of each method are shown for spectra with power law

::::::::
power-law exponents β ∈ {−1,0,1,5/3,2,2.5,3}

330

6 Discussion

6.1 Low-Frequency Leakage

The problem of power leakage from low frequencies into higher ones arises as a result of the constrained frequency range,

which of itself is limited by the observed time span T . This leakage does not only take place in the case of spectra with β > 2,

but also in the spectra of time series with scales
::::::
periods longer than T . GWs can often have these kinds of scales with periods335

longer than the simulated
::::
time

::::
span, 6 h and normally these periods are not resolved. Thus, we also quantitatively tested the
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effect of these long periods on the estimated spectra by adding 3 extra waves of periods 8, 10, and 12 h into the simulated

time series. Two cases were examined, one where each of the 3 waves has an amplitude equivalent to the lowest frequency

component in each simulation. In another case, we scaled their amplitudes by the same power law
:::::::::
power-law exponent β as all

frequencies in the simulation.340

In both cases, longer-than-T periods produced quite similar effects on the spectra, with a substantial positive bias observed for

all signals with β < 2 and a significant negative bias for β > 2, even in the absence of gaps. For instance, Figs. 7a,7b show an

example of this leakage in averaged spectra for β = 3, without and with the extra waves. A common feature of both cases is

the spectral power being excessively concentrated at the lowest frequencies. When the extra long waves are added, the leakage

becomes more drastic for the GLS and FFT, and their absolute biases of β increase. In contrast, the HSF is less affected by345

these long periods compared to the FFT and GLS. This effect of longer-than-T waves in the time series resembles that of

trends, which contribute to the spectral shape with a power-law exponent β = 2 (Klis, 1994).

While a weighted fit of the spectra can reduce this
:::
the bias, it does not fully rectify the problem of leakage, it also requires a

smoothed spectrum and may be confounded by other biases from observational noise, gaps, or method inefficiencies. To
::::
One

:::::::
approach

::
to
:

counteract this leakage , we test the approach of
::::
from

:::::::::
unresolved

::::::::::::
low-frequency

::::::
power

::
is

:::::
based

:::
on "prewhiten-350

ing" the data followed by
:::
time

::::::
series

::::
then

:
"postdarkening" the spectra . It

:::::::::::::::::::::::
(Blackman and Tukey, 1958)

:
.
:::::::::::
Prewhitening

:
is a

technique to decorrelate the time series
::::::
(reduce

::
its

:::::::::::::
autocorrelation

:::::
close

:::
to

:::
that

:::
of

::
a

:::::
white

:::::
noise

::::::
signal)

:
before calculat-

ing the PSD , which was coined by Blackman and Tukey (Blackman and Tukey, 1958) and mentioned throughout literature

(Dewan and Grossbard, 2000; Guharay and Sekar, 2011). To apply prewhitening, we first-difference the time series, i.e. subtract

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Keisler and Rhyne, 1976; Dewan and Grossbard, 2000; Guharay and Sekar, 2011)

:
.
::::
This

::::
step

::::::
serves

::
to
::::::::

decrease
:::
the

::::
rate

:::
of355

::::::
change

::
of

:::::::
PSD(f)

::::
with

::::::::
frequency

::
f ,

::::::
hence,

:::
the

:::::::::
distribution

::
of
:::
the

::::::
power

::
is

::::
more

:::::
even.

:::
The

:::::::::::
prewhitened

::::
time

:::::
series

:
is
::::::::
obtained

::
by

:::
the

::::::
means

::
of

:::::::::::::::
first-differencing;

:::::
where

:
each data point from its previous value. After obtaining the power spectrum, it is

first smoothed using a Hann window to reduce the fluctuations, making it easier to fit the spectral shape. Then the spectrum is

postdarkened through division bya factor of
::
is

::::::::
subtracted

:::::
from

::
its

:::::::::
successive

:::
one

:::
i.e.

::::::::::::::::::::::
∆x(t) = x(t)−x(t−∆t).

:::
By

:::::
doing

::::
this,

::
the

:::::::::::
contribution

::
of

:::
the

:::::
mean

:::::::
becomes

::::::::
negligible

::::
and

:::::
trends

:::
are

::::::::::
transformed

::
to

::::::::
constants

:::::::::::::::::
(Bieber et al., 1993).

::::
The

::::::::
spectrum

::
of360

:::
this

::::::::::
prewhitened

:::::
series

::::::
∆x(t)

::
is

::::::
related

::
to

:::
the

::::::
original

::::::::
spectrum

::
of

::::
x(t)

:::
by:

:

PSDx(t)(f) =
PSD∆x(t)(f)

2(1− cos(2πf∆t))
.

::::::::::::::::::::::::::::::

(10)

::::
This

:::::
factor

:
2(1− cos(2πfn∆t)) , which compensates for prewhitening (i.e.,

:
is
:::::::

derived
:::::
from

:::
the

:::::::
Fourier

::::::::
transform

:::
of

:::
the

::::::::::::
autocorrelation

:::::::
function

::
of

::::::
∆x(t)

:::
and

::
is

::::
used

::
to

:::::::::
compensate

:::
for

:::
the

:::::::::::
prewhitening

::::::
process

::::::::::::::::::
(Houbolt et al., 1964).

::::
This

::::::::::::
compensation

::::::::::
postdarkens

:
(recolours) the time series

:::::::
resulting

::::::::
spectrum.

:::::
Note

:::
that

:::
the

::::::::
spectrum

::
of

:::
the

:::::::::::
prewhitened

:::::
series

:::::
∆x(t)

::::::
should

:::
be365

::::::::
smoothed

:::
first

:::::
using

::
a

::::
Hann

:::::::
window

::
to
::::::::
suppress

:::
the

::::::
random

::::::::::
fluctuations

::::::
before

::::::::::::
postdarkening.

In Fig. 7c, we present the postdarkened spectra after prewhitening the time series for β = 3. This approach completely cancels

out the bias in all methods for both cases. This confirms the effectiveness of the prewhitening and postdarkening method in

correcting the leakage problem. However, this approach is not a perfect solution since it may introduce additional bias for less
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steep spectra (where β < 1) which do not suffer from leakage.
:::::
When

:::
the

::::::::
spectrum

::
is

:::::::
constant

::
in

:::
the

::::::::::::
low-frequency

:::::
part,

:::
the370

:::::::::::
prewhitening

::::::
process

:::::
might

:::::
cause

::
it

::
to

::
be

::::::::
distorted

::
as

::::
well.

:
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(a) Non-prewhitened, without extra long waves.
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(b) Non-prewhitened, with extra long waves.
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(c) Prewhitened, with extra long waves.

Figure 7. Averaged temporal spectra of non-gapped time series generated by the spectral power law
::::::::
power-law simulation with a spectral

exponent of β = 3 within a 6-hour observation time (a) without extra waves, (b) after the addition of 3 extra waves with frequencies lower
than f = 1/T (particularly 8, 10, and 12 hours) to the simulation, (c) the postdarkened spectra of the prewhitened time series with extra

waves. Here, also both axes were log-scaled so that a linear function can be identified. The dotted lines (in red, green and blue) represent the
fits of the PSD of each method.

6.2 Method Selection Procedure

The spectral analysis of GW time series data is a complex task that requires careful consideration of various factors. Based

on our simulation results, we propose a flowchart (see Fig. 8) that outlines a practical guide for selecting appropriate spectral375

estimation methods for GW studies, taking into account the characteristics of the observed data such as its complexity and

percentage of gaps in it. From the flowchart, it is clear that there are recognisable differences between the patterns of the time

series of superposed scales and single sinusoids
:::::
waves

:::
and

::::::
signals

:::::
with

:::
one

::::::::::
frequencies. Even within the former classification,
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the anti-persistent time series whose spectra have β ∈ [0,−1] are still differentiable from those long-range dependent ones

where β ∈ [1,3]. It is also safe to say that theoretical predictions of GW spectra with β ∈ [0,−1] exist only for measurements380

of vertical wind time series (see Tab. A1). Otherwise, β ∈ [1,3] spectra should be expected for the vast majority of atmospheric

time series. Note that, even in the absence of gaps in the signal, caution must be taken if the estimated β is approximately equal

to or less than 2. If it is, then it can be an accurate estimation, or caused by one of the systematic errors such as interpolation or

longer than T variations.

Figure 8. Recommended procedure for estimating power spectra of gravity waves time series.

385

7 Conclusions

Our study investigated the bias of the methods when estimating the spectra of GW time series using simulated data with various

characteristics. We first examined simulated signals consisting of single sinusoids in order to characterise real quasi-monochromatic

waves. The main findings are: The GLS and FFT are identical in
:::
The

::::::
domain

::
of

:::::::::::
observational

::::::::
analyses,

::::::::
especially

::
in

::::::::::
atmospheric

::::::
physics,

:::
is

:::
vast

::::
and

::::::::
complex.

::::
The

:::::::
intrinsic

::::::
nature

::
of

:::::
these

::::::::::::
measurements

:::::::
requires

:::::::::
precision,

:::::::::
reliability,

:::
and

::::::::::
adaptability

:::
of390

::::::::
analytical

:::::::
methods

::
to

::::::
extract

::::::::::
meaningful

:::::::
insights.

:::::::::::
Observational

:::::
gaps

:::
due

::
to

:::::::::
instrument

:::::::
failures

::
or

::::::
adverse

:::::::::
conditions

:::
are

::::
also

:::::::
common

::
in

::::::::::
atmospheric

:::::::
physics.

::::
Our

:::::::
research

::
on

::::::::
synthetic

::::::::::
atmospheric

::::::
gravity

:::::
wave

:::::
(GW)

::::
time

:::::
series

:::::
offers

:
a
:::::::::::::
comprehensive

:::::::
overview

::
of
::::::::
different

:::::::
spectral

::::::::
estimation

::::::::
methods,

::::::::
shedding

::::
light

:::
on

::::
their

:::::::
strengths

::::
and

:::::::::
limitations.

::::
The

:::::::
methods

:::::::::
compared

::
in

:::
this

:::::
study

:::
are

:::
the

:::
Fast

:::::::
Fourier

:::::::::
Transform

:::::
(FFT)

::::::
(which

:::::::
requires

:::::::::::
interpolation

::
of

:::::
gaps),

:::
the

::::::::::
Generalised

::::::::::::
Lomb-Scargle

:::::::
method
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:::::
(GLS)

::::
and the case of evenly sampled data with no gaps. The GLS has relatively negligible bias in estimating the frequencies395

and amplitudes of gapped single sinusoids compared to the FFT. Up to 80% GP, the performance of the GLS shows no

dependency on the frequency of the signal and proves efficiency in mitigating the effects of gaps in
::::
Haar

::::::::
Structure

::::::::
Function

:::::
(HSF)

:::::
(both

::::::
which

:::
can

::::::
handle

::::::::
unevenly

::::::::
sampled

::::
data

::::::
without

:::::::::::::
interpolation).

:::::
Their

::::::::::
performance

:::
is

:::::::
assessed

:::
by

:::::::::
evaluating

::::::
whether

::::
the

::::::
output

::::::
spectra

:::
of

::::::::
simulated

::::
time

::::::
series

:::::
(with

::::::
known

::
a
:::::
priori

:::::::
features

::::
and

:::
gap

::::::::::::
distributions)

::::::
match

:::
the

:::::
input

:::::::::
parameters

::
of

:
the data, while the absolute bias of the FFT drastically increases as both the GP and frequencyincrease. The400

inefficiency of the FFT in recovering the true frequency and amplitude of the signal is attributed to
::::::::
including

:::
the

:::::::::
frequency,

::::::::
amplitude

:::
and

:::::::
spectral

:::::
slope.

::::::::
Building

::
on

:::
our

::::::::
findings,

:::
we

:::::::
propose

:::
the

::::::::
following

:::::::::::::::
recommendations:

::::::::::::
Determination

:::
of

:::
the

::::
Time

::::::
Series

::::::
Nature

:
:
:::::::
Initially,

:::
the

:::::
series

::
is

:::::::
assessed

::
to

::::::::
determine

::
if

:
it
:::::::::
represents

:
a
::::::
pattern

::
of

::
a

:::::
signal

::::
with

:::
one

:::::::::
frequency.

::
If

:
it
:::::
does,

:::
the

:::::::
analysis

:::::::
proceeds

:::::::
directly

::
to

:::::
using

:::
the

::::
GLS

:::::::
method,

:::::::::
especially

::
if the required interpolation step,

which distorts the time series . Overall, the GLS is a more reliable method for identifying the periodic components of gapped405

GW time
:::::::
contains

::::
gaps

:::::
and/or

:::::::::::
demonstrates

:::::
rapid

:::::::::
variations.

::::::
Rather

::::
than

::::::::::
interpolating

:::::
these

::::
gaps

::
to

:::
use

:::
the

:::::
FFT,

:::::
which

:::::
alters

::
the

::::::
data’s

::::::::::::
characteristics,

:::
the

::::
GLS

:::::
offers

:::
far

:::::
more

:::::::
accurate

:::::::
spectral

::::::::
estimates.

:::::::::
Evaluation

:::
of

:::::
Data

:::::
Gaps

:
:
:::
For

:::::
more

::::::::
complex

:
series, particularly when dealing with high-frequency sinusoids. Then we

investigated the effects of gaps on the spectra of simulated time series composed of
::::
those

:::::::::::
characterised

:::
by a superposition of

scales with
:::::
waves

::
or

:
power-law amplitudes. Our results are summarised as follows: The choice of spectral estimation methods410

can significantly impact
::::::::
spectrum,

:::
the

::::
data

:
is
::::
first

:::::::
assessed

:::
for

:::::::::::
observational

:::::
gaps.

:::
The

::::::::
presence

::
of

::::
such

::::
gaps

:::::::::
profoundly

::::::
affects

the accuracy of β estimation, especially in the presence of data gaps and leakage effects. The FFT
::::::::
traditional

:::::::
spectral

:::::::
analysis

:::::::
methods

:::
like

:::
the

:::::
FFT.

::
If

::::::::
variations

:::
are

:::::
rapid

:::
(i.e.

:::
the

:::::
slope

:::
of

:::
that

:::::::::
power-law

::::::::
spectrum

::
β

::
is

::
in

:::
the

:::::
range

:::::::
[−1,0])

:::
the

:::::
series is

competent in generating accurate spectral estimations for non-gapped time series but faces challenges with increasing GP as it

is interpolation-based, which is a source of biases. The HSF is reliable for analysing GW time series with spectral power law415

exponents β ∈ [1,3], but exhibits limitations when
:::::
again

::::::::
subjected

::
to

:::
the

:::::
GLS

:::::::
method.

::::::::
However,

:::
for

::::::
slower

::::::::
variations

:::::
such

::
as

:::
the

::::
vast

:::::::
majority

::
of
:::::::::::

atmospheric
:::::::::::::
measurements,

:::::::::
represented

:::
by

::
a β is less than 1. The GLS methodperforms quite well

for time series with flat and high-frequency dominated spectra, surpassing the accuracy of HSF for β ∈ [−1,0], but exhibits

increasing bias for exponents beyond 0, making it less suitable for longer time scales. The reliance on an approach that is

not interpolation-based, proves more advantageous in mitigating such biases.Even in the absence of gaps, all tested methods420

underestimate β for time series whose spectra are too steep (β > 2), due to the leakage of power at low frequencies into

high-frequency components. Waves that are
::::
value

:::::::
between

:::::
[1,3],

:::
the

::::
HSF

::::::
method

::
is
::::::::::
consistently

:::
the

::::
least

:::::::
biased.

:::::::
Mitigate

::::::::::::::
Low-Frequency

::::::::
Leakage:

::::::
When

::
the

:::::::
spectra

::
of

:::
the

::::
time

:::::
series

::::
with

::::
slow

::::::::
variations

:::
are

:::::::
analysed

:::::
(even

::
in

:::
the

:::::::
absence

::
of

:::::
gaps),

::
it
::::::

should
:::

be
::::::::::
investigated

::::::::
whether

::::::::::::
low-frequency

:::::::
leakage

:::::
takes

::::::
place.

:::::
Finite

::::
time

::::::
series,

:::::
very

:::::
steep

::::::
spectra

::::
and

:::::
waves

::::
with

:::::::
periods

:
longer than the observed time span can introduce similar leakagebiases in β estimation, with positive425

biases for β < 2 and negative biases for β > 2. The HSF was less affected by these slow variations compared to the FFT

and GLS. Prewhitening the time series followed by postdarkening the spectra is recommended as a suitable approach to

correct these low-frequency leakageproblems. Our findings
::::
cause

::::
this

::::
kind

::
of

:::::::
leakage.

:::
All

::::::
tested

:::::::
methods,

::
to
:::::::
varying

:::::::
extents,

:::::::
struggled

:::::
with

:::
this

:::::::
leakage

::::
from

::::::::::
unresolved

::::::::::::
low-frequency

::::::
power,

::::::
leading

::
to
::::::

biases
::
in

:::::::::
estimating

:::
the

:::::::
spectral

:::::
slope

::
β.

:::::
Thus
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::
we

::::::::::
recommend

:::::::::
cautiously

::::::::
applying

:::
the

::::::::
approach

::
of

:::::::::::
prewhitening

:::
the

::::
time

::::::
series

:::
and

::::::::::::
postdarkening

:::
the

::::::::
spectrum

::
to

:::::::
address430

:::
this

::::::::
problem.

:::::::::::
Prewhitening

:::
can

:::
be

::::::::
actualised

:::
by

::::::::::::::
first-differencing

:::
the

:::::
series

:::::
which

:::::::
renders

::
its

::::::::
spectrum

:::::
close

::
to

:::
that

:::
of

:::::
white

:::::
noise.

::::::::::::
Subsequently,

::::::::::::
postdarkening

:::
the

::::::::
spectrum

::
is

:::::::
required

:::
to

::::::::::
compensate

:::
for

:::
the

:::::::::::
prewhitening

:::::::
process

:::
via

:::::::
division

:::
by

::
a

:::::::::::::::::
frequency-dependent

::::::
factor.

:::::::::::
Nevertheless,

:::::::::
depending

:::
on

:::
the

:::::::::::::
characteristics

::
of

:::
the

::::::::
analysed

::::
time

::::::
series,

:::::::
further

::::
steps

:::::
(e.g.

::::::::::
windowing)

:::::
might

::
be

::::::::
necessary

:::
to

:::
help

:::::::
counter

:::::
other

:::::
causes

::
of

::::::::
leakage.

:::::
These

::::::::
sequential

::::::::
decisions highlight the importance of carefully selecting appropriate spectral estimation methods and accounting435

for potential biases caused by data gaps, leakage effects, and long periods when interpreting β values from GW observations.

Our findings contribute to the understanding of the limitations and uncertainties associated with β estimation and provide

guidance for future research and advancements in spectral analysis techniques to improve the accuracy and reliability of β

estimation in GW studies and to better understand the physical processes driving GW variability in
::::::
tailoring

:::::::
analysis

::::::::
methods

::
to

::
the

::::::::::::
characteristics

::
of

:::
the

::::
data

::
at

:::::
hand.

:::::::::
Employing

:
a
:::::::::::::
one-size-fits-all

:::::::
method

:::
can

:::::
result

::
in

:::::
biased

:::::::
spectra,

:::::
which

:::
are

:::::::::
especially440

::::::
critical

::
in

::::
GW

:::::::::::::
parametrisations

::
in

:::
all

::::::::::
atmospheric

:::::::
models.

::::
Our

:::::::::::::::
recommendations,

::::::::
grounded

::
in

:::::::
rigorous

:::::::
research

:::
on

::::::::
synthetic

::::::
gravity

::::
wave

::::
time

::::::
series,

:::
aim

::
to
:::::
guide

::::::::::
researchers

::
in

::::::
making

::::::::
informed

:::::::::
decisions,

:::::::
ensuring

:::
the

::::::::
accuracy

::
of

:::::::
spectral

:::::
results

::::
and

::::::::
advancing

:::
our

::::::::::::
understanding

::
of

:::
the

::::::::
dynamics

:::
of the atmosphere.

Code availability. The code to simulate time series with power-law spectra, analyse and fit them is accessible under (Mossad, 2023).

Author contributions. M.M. wrote the codes to conduct these simulations, analyzed their results and drafted the manuscript. I.S., R.W., and445

G.B. provided supervision, scientific insight, and edited the text of the manuscript.

Competing interests. Robin Wing and Gerd Baumgarten are members of the editorial board of Atmospheric Measurement Techniques.

Acknowledgements. This paper is a contribution to the project W1 (Gravity Wave Parameterization for the Atmosphere) of the Collaborative

Research Centre TRR 181 "Energy Transfers in Atmosphere and Ocean" funded by the Deutsche Forschungsgemeinschaft (DFG, German

Research Foundation) - Projektnummer 274762653 and the Analyzing the Motion of the Middle Atmosphere Using Nighttime RMR-lidar450

Observations at the Midlatitude Station Kühlungsborn (AMUN) funded by Deutsche Forschungsgemeinschaft (DFG) - Projektnummer

445400792.

19



Table A1. Comparison of theoretical predictions and selected observed values of the power-law exponent β of GW spectra. Here T refers to
temperature, W is wind and ρ is density.

Reference Type of Spectra Spectral exponent or β

Universal spectrum (VanZandt, 1982)
::::::::
"Universal"

:::::::
spectrum

:::::::::::::::::::::::::
(VanZandt, 1982, and ref. within)

Vertical wavenumber spectra by Doppler navigator and
anemometer of horizontal W observations 2.4

Linear instability theory (Dewan and Good, 1986; Smith
et al., 1987) Vertical wavenumber spectra of horizontal W 3

Saturated-cascade theory (Dewan, 1994)
Horizontal wavenumber spectra of horizontal W, T and
fractional ρ 5/3

Saturated-cascade theory (Dewan, 1994) Vertical wavenumber spectra of vertical W -1

Saturated-cascade theory (Dewan, 1994) Temporal spectra of vertical W 0

Saturated-cascade theory (Dewan, 1994) Temporal spectra of horizontal W, T and fractional ρ 2

Lidar observations (Shibata et al., 1988) Vertical wavenumber spectra of T data 2.5 to 3

Diffusive filtering theory (Gardner, 1994) Vertical wavenumber spectra of horizontal W 3 (p=2)

Diffusive filtering theory (Gardner, 1994) Temporal spectra of horizontal W 2 (p=2)

Diffusive filtering theory (Gardner, 1994) Vertical wavenumber spectra of vertical W -1 (p=2)

Diffusive filtering theory (Gardner, 1994) Temporal spectra of vertical W 0

Diffusive damping theory (Weinstock, 1990; Zhu, 1994) Temporal spectra of horizontal W p

Diffusive damping theory (Weinstock, 1990; Zhu, 1994) Vertical wavenumber spectra of horizontal W 3

Doppler spread theory (Hines, 1991) Vertical wavenumber spectra of horizontal W 3

Doppler spread theory (Hines, 1991) Temporal spectra of horizontal W p

Lidar observations (Gardner et al., 1995) Temporal spectra of ρ data 2.3

Lidar observations (Gardner et al., 1995) Temporal spectra of T data 1.6

Lidar observations (Gardner et al., 1995) Temporal spectra of vertical W data ≈ 0

Lidar observations (Gardner et al., 1995) Vertical wavenumber spectra of ρ data 3.5

Lidar observations (Gardner et al., 1995) Vertical wavenumber spectra of T data 2.5

Lidar observations (Gardner et al., 1995) Vertical wavenumber spectra of vertical W data 1.4 to 1.9

Radiosonde observations (Zhang et al., 2017) Vertical wavenumber spectra of zonal W data 2.4 to 2.68

Radiosonde observations (Zhang et al., 2017) Vertical wavenumber spectra of meridional W data 2.53 to 2.76

Radiosonde observations (Zhang et al., 2017) Vertical wavenumber spectra of vertical W data 0.2 to 0.3

Balloon observations (He et al., 2020) Vertical wavenumber spectra of T data 2.18 to 2.63

::::::
Balloon

:::::::::
observations

:::::::::::::::::::
(Hertzog and Vial, 2001)

::::::::
Lagrangian

::::::::::::::::::::
wavenumber–frequency

::::::::
spectra

::::
of

:::::::
horizontal

::
W (

::::::::
meridional

:::
and

:::::
zonal)

::::
data

::
1.9

::
to

:::
2.2

::::::
Balloon

:::::::::
observations

:::::::::::::::::::
(Hertzog and Vial, 2001)

::::::::
Lagrangian

::::::::::::::::::
wavenumber–frequency

::::::
spectra

::
of

::::::
vertical

:
W

:::
data

::
0.2

::
to

:::
0.5

::::::
Balloon

:::::::::
observations

::::::::::::::::::
(Podglajen et al., 2016)

::::::::
Lagrangian

:::::::
temporal

::::::
spectra

:::
of

::::::::
horizontal

::
W

:::
data

::
in

:::::
period

::::
range

::::::::::
[4 h,20min]

:::
1.78

::
to

::::
1.96
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