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Abstract: Root zone soil moisture (RZSM) is critical for water resource management, drought monitoring and 10 

sub-seasonal flood climate prediction. While RZSM is not directly observable from space, but several RZSM 

products are available and widely used at global and continental scales. This study conducts paper presents a 

comprehensive and quantitative evaluation of eight RZSM products using observations from 58 in situ soil 

moisture stations over the Huai River Basin (HRB) in China.A direct validation is performed using observations 

from 58 in situ soil moisture stations from 1 April 2015 to 31 March 2020. Attention is drawn to the potential 15 

factors that increase contribute to the uncertainties of model-based RZSM, including the such as errors in 

atmospheric forcing (precipitation, air temperature), vegetation parameterizations, soil properties, and spatial scale 

mismatch. The results show that the Global Land Data Assimilation System Catchment Land Surface Model 

(GLDAS_CLSM) outperforms the otherperforms best among all RZSM products with the highest correlation 

coefficient (R = 0.69) and the lowest unbiased root mean square error (ubRMSE = 0.018 m3 m-3): 0.69 and 0.018 20 

m3 m-3, and shows the potential for drought monitoring and flood forecast in Huaibei Plainrespectively. All RZSM 

products tend to overestimate in situ soil moisture values, except for the Soil Moisture and Ocean Salinity (SMOS) 

L4 product, which underestimates RZSM. While SMOS Level 4 (L4) RZSM shows a much lower correlation with 

in situ observations than model-based RZSM products forced by precipitation, this could be due to the fact that 

SMOS L4 does not contain precipitation information and has a weaker response to precipitation. The model-based 25 

RZSM products generally perform better in the wet season than in the dry season due to the enhanced ability to 

capture of the temporal dynamics of in situ observations in the wet season and the inertia of remaining high soil 

moisture values even in the dry season. While SMOS L4 performs better in the dry season than in the wet season, 

because the ground microwave radiation signal is more attenuated in the wet season due to a substantial increase 

in water vapor absorption and scattering than in the dry season, which is used to retrieve SMOS Level 3 (L3) SSM 30 

and is propagated to SMOS L4 RZSM. The underestimation of Surface Soil Moisture (SSM) in SMOS L3, caused 

by underestimated physical surface temperature and overestimated ERA interim soil moisture, may triggers the 

underestimation of RZSM in SMOS L4. The seven model-based RZSM products show an overestimation of RZSM 

by the other productsin situ observations, which could be associated with can be explained by the overestimation 

of precipitation amounts, the frequency of precipitation events (drizzle effects) and the underestimation of air 35 

temperature and the underestimated ratio of transpiration to the total terrestrial evapotranspiration. In addition, the 

biased soil properties (organic carbon, clay and sand fractions) and flawed vegetation parameterizations (e.g., 

canopy, root tissue and soil evaporation and transpiration model representation) affect the hydrothermal transport 
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processes represented in different LSMs and lead to inaccurate soil moisture simulation.overestimation of soil clay 

content and the underestimation of soil sand content in different LSMs lead to higher soil moisture values. The 40 

intercomparison of the eight RZSM products shows that MERRA-2 and SMAP L4 RZSM have the highest 

correlation, which can be attributed to the fact that both products use the catchment land surface model and the 

atmospheric forcing provided by the Goddard Earth Observing System Model, version 5 (GEOS-5), although the 

versions differ slightlyThe scale mismatch between point and footprint also introduces representative errors. The 

comparison of frequency of normalized soil moisture between RZSM products and in situ observations indicates 45 

that the LSMs should focus on reducing the frequency of wet soil moisture, increasing the frequency of dry soil 

moisture and the ability to capture the frequency peak of soil moisture.   
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1 Introduction 

Soil moisture plays a key role in the hydrological cycle and land-atmosphere interactions. It controls water and 

energy balances (Calvet, 2000; Brocca et al., 2010; Xing et al., 2021) and has been recognised by the World 50 

Meteorological Organization (WMO) as one of the 50 essential climate variables (Cho et al., 2015). In particular, 

root zone soil moisture (RZSM) has important applications in agricultural drought monitoring, water resource 

management, flood forecasting and seasonal climate prediction (Reichle et al., 2017a; Zhou et al., 2020; Beck et 

al., 2021; Xing et al., 2021; Xu et al., 2021; Fan et al., 2022). RZSM is the amount of water held in the top 1 m of 

the soil column that is available for plant transpiration and biomass production, which is crucial for agricultural 55 

drought monitoring. Different ecosystems in different climate and topography conditions have different rooting 

depth, and root zone water storage capacity (Gao et al., 2014; Kleidon, 2014; Fan et al., 2017; Gao et al., 2019a).   

For example, trees in arid regions must have deep rooting depth and large root zone water storage capacity, 

otherwise they cannot survive in drought (Yang et al., 2016). Crops usually have shallower rooting and in 

agricultural applications, RZSM is commonly defined as the volumetric soil moisture in the top 1 m of the soil 60 

column (Reichle et al., 2015; Babaeian et al., 2019; Al Bitar et al., 2021; Huerta-Bátiz et al., 2022). This definition 

of RZSM has been widely used in many existing studies (Reichle et al., 2017a; Pablos et al., 2018; Xing et al., 

2021; Xu et al., 2021; Fan et al., 2022). The depth of root tissue can vary from a few centimeters to about two 

meters. However, in large-scale modelling studies, the term “root zone” commonly refers to the 0-100 cm soil 

layer. This assumption is based on the fact that the vegetation root tissue is mostly densely distributed in this area 65 

(Baldwin et al., 2017). In the context of climate change, extreme events such as floods, droughts and heat waves 

are becoming more frequent around the world, with significant impacts on RZSM (Lorenz et al., 2010; Hauser et 

al., 2016; Al Bitar et al., 2021). For example, flash droughts are severely affecting RZSM and agricultural 

production in the Huaibei Plain, China (Gou et al., 2022).  

Recently, microwave-based satellite soil moisture missions provide global surface soil moisture (SSM) 70 

retrievals with approximately 3-day temporal resolution, but are limited to the top few centimetres (0-5 cm for L-

band) due to the limitations of microwave penetration depth limitations (Kerr et al., 2001; Reichle et al., 2017b). 

Therefore, various approaches have been developed to estimate the RZSM and are roughly divided into three 

categories (Liu et al., 2023), including (1) statistics-based methods, such as linear regression (Zhang et al., 2017) 

and cumulative distribution function (Gao et al., 2019b), (2) data-driven machine learning methods, such as 75 

random forest (Carranza et al., 2021) and artificial neural network (Kornelsen and Coulibaly, 2014), (3) physically 

based methods, such as data assimilation of satellite-derived observations into LSMs (Albergel et al., 2017; Bonan 

et al., 2020). Among them, the assimilation of satellite-derived observations into LSMs is considered as the most 

accurate method to estimate RZM due to the explicit physical mechanism, while requiring large amounts of input 

data (precipitation, air temperature, radiation, etc.). To dateAs a result, several RZSM products have been 80 

developed for broader global-scale applications,. For example, RZSM products such as the Global Land Data 

Assimilation System (GLDAS_NOAH and GLDAS_CLSM) (Rodell et al., 2004), the China Land Data 

Assimilation System (CLDAS) (Shi et al., 2014) and the Soil Moisture Active Passive (SMAP) Level 4 (L4) 

(Reichle et al., 2012; Reichle et al., 2017a), have been developed. These products aim to provide optimal land 

surface states and fluxes by combining an offline (not coupled to the atmosphere) land surface model (LSM) with 85 

satellite data using data assimilation techniques (Calvet and Noilhan, 2000; Rodell et al., 2004). The LSM is forced 

with meteorological analysis fields including precipitation, wind speed, air humidity, surface pressure, air 
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temperature and radiation. The the European Centre for Medium-Range Weather Forecasts (ECMWF) fifth 

generation reanalysis (ERA5) (Hersbach et al., 2020), the Modern-Era Retrospective Analysis for Research and 

Applications version 2 (MERRA-2) (Gelaro et al., 2017), and the National Centers for Environmental Prediction 90 

Climate Forecast System version 2 (NCEP CFSv2) (Saha et al., 2014). These RZSM products are generated by 

combining LSMs driven by meteorological forcing fields from atmospheric general circulation model (AGCM) 

and satellite-derived data using different data assimilation techniques (Calvet and Noilhan, 2000; Rodell et al., 

2004) provide global analysis of atmospheric fields. They also provide sub-daily ocean and land surface variables. 

These fields are generated by coupling an Atmospheric General Circulation Model (AGCM) with an LSM and an 95 

Ocean Wave Model (OWM), and by assimilating a large number of in situ and satellite observations. In addition, 

the Soil Moisture and Ocean Salinity (SMOS) Centre Aval de Traitement des Données (CATDS) provides SMOS 

L4 RZSM products, which are derived from SMOS Level 3 (L3) 3-day SSM retrievals using a statistical 

exponential filter model (Albergel et al., 2008; Al Bitar and Mahmoodi, 2020).  

Numerous studies have been conducted to validate and assess the utility of SSM using in situ observations in 100 

the topsoil layer (Collow et al., 2012; Cui et al., 2017; Beck et al., 2021; Zheng et al., 2022). On the other hand, 

validation studies for RZSM are relatively rare, especially over China (Xing et al., 2021; Xu et al., 2021; Fan et 

al., 2022). Given the importance of the Huai River Basin (HRB) as an agricultural grain production area in China, 

it is crucial to evaluate the performance of different RZSM products in this region. RZSM products can be validated 

against in situ observations, which serve as a reference dataset. Differences between in situ RZSM observations 105 

and RZSM products can be attributed to errors in meteorological forcing data, soil properties, parameterisation 

and scale mismatch, etc. The accuracy of RZSM products is strongly influenced by the quality of meteorological 

forcing data, especially precipitation and air temperature (Zeng et al., 2021). Numerous studies have shown large 

uncertainties in global climate atmospheric forcing data, particularly for precipitation frequency, intensity and 

heavy precipitation events (Sun et al., 2005; Piani et al., 2010; Velasquez et al., 2020; Jiao et al., 2021). Accurate 110 

representation of soil properties is also critical. Many global LSMs rely on the FAO/UNESCO (Food and 

Agriculture Organization, United Nations Educational, Scientific and Cultural Organization) World Soil Map 

(Reynolds et al., 2000), including GLDAS products (Bi et al., 2016; Yang et al., 2020), NCEP CFSv2 (Yang et al., 

2020), ERA5 (Qin et al., 2017; Yang et al., 2020), SMOS L4 (Al Bitar et al., 2021), MERRA-2 (McCarty et al., 

2016; Gelaro et al., 2017). However, this soil map contains limited soil information in many regions, including 115 

China (Shangguan et al., 2013), leading to increased uncertainty in soil moisture simulations. In addition, the lack 

of representation of soil stratification can significantly affect the simulation of RZSM by LSMs. In the Huaibei 

Plain, the stratification of plough, black soil and lime concretion layers can hinder the vertical movement of water 

from the surface layer to the root zone layer (Li et al., 2011; Zha et al., 2015; Gu et al., 2021). Finally, the accuracy 

of soil moisture simulations is also affected by different inadequate model structures and imperfect 120 

parameteriszations schemes., especially for representation of vegetation in LSMs, such as the land cover and 

vegetation canopy and root tissue parameterizations (Nogueira et al., 2020; Stevens et al., 2020; van Oorschot et 

al., 2021), soil evaporation and transpiration model representation (Lian et al., 2018; Dong et al., 2022; Feng et al., 

2023). Vegetation is usually represented by land cover maps (that are usually prescribed similar to soil maps), 

which can be very different for the different models and exhibits large uncertainties in simulating the water and 125 

energy exchange between land surface and atmosphere. For example, Nogueira et al. (2020) found that the 

misrepresentation of the vegetation coverage results in a cold bias in land surface temperature during summer, 
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they proposed an improved representation of vegetation with an update of the LAI and high- and low- vegetation 

fractions, types and density, which effectively reduces the cold bias. van Oorschot et al. (2021) proposed a climate-

controlled root zone storage capacity by calculating a time-varying total soil depth based on a moisture depth 130 

model instead of using a constant of 2.84 m in the original HTESSEL LSM, which improved the water flux 

simulations. Dong et al. (2022) demonstrated that the inaccurate partitioning of evapotranspiration into soil 

evaporation and vegetation canopy transpiration results in warm bias in air temperature due to the inadequate 

utilization of RZSM for transpiration, which results in the underestimated ration of transpiration to 

evapotranspiration. Different LSMs are used in LDAS or reanalysis products, such as the Noah LSM in 135 

GLDAS_NOAH and NCEP CFSv2 (Rodell et al., 2004; Saha et al., 2014), HTESSEL in ERA5 (Hersbach et al., 

2020), CLSM in GLDAS_CLSM, MERRA-2 and SMAP L4 (Koster et al., 2000; Reichle et al., 2017d; Reichle et 

al., 2021), the Common Land Model (CoLM) and the Community Noah LSM with multi-parameterisation options 

(Noah-MP) in CLDAS products (Wang et al., 2021a). The exponential filter technique is used in SMOS L4 (Al 

Bitar et al., 2021).  140 

Numerous studies have been conducted to validate and assess the utility of SSM using in situ observations in 

the topsoil layer (Collow et al., 2012; Cui et al., 2017; Beck et al., 2021; Zheng et al., 2022). On the other hand, 

validation studies for RZSM are relatively rare, especially over China (Xing et al., 2021; Xu et al., 2021; Fan et 

al., 2022). Given the importance of the Huai River Basin (HRB) as an agricultural grain production area in China, 

it is crucial to evaluate the performance of different RZSM products in this region. RZSM products can be validated 145 

against in situ observations, which serve as a reference dataset. Differences between in situ RZSM observations 

and RZSM products can be attributed to errors in meteorological forcing data, soil properties, parameterisation 

and scale mismatch, etc. 

The objectives of this study are to (1) compare eight global RZSM products (ERA5, MERRA-2, NCEP 

CFSv2, GLDAS_CLSM v2.2, GLDAS_NOAH v2.1, CLDAS v2. 0, SMAP L4 and SMOS L4) with in situ soil 150 

moisture observations over the HRB from 1 April 2015 to 31 March 2020, (2) compare the RZSM products with 

each other over the HRB, (3) investigate the potential sources of errors on the performance of the RZSM products, 

including meteorological forcing data, soil properties, soil stratification, vegetation parameterization and scale 

mismatch soil stratification. As it is difficult to directly quantify the effects of model structures and 

parameterisations on soil moisture, these aspects are not addressed in this study. The paper is organized as follows. 155 

The gridded RZSM products and in situ validation datasets (precipitation, air temperature, soil texture) are 

presented in Sect. 2. Section 3 describes the RZSM pre-processing methods and the statistical metrics used to 

evaluate the different datasets. The validation and the intercomparison of the RZSM products are presented in Sect. 

4. Section 5 discusses the potential sources of error in various RZSM products. Section 6 provides the main 

conclusions. 160 
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2 Datasets 

In this study, RZSM is defined as the volumetric soil moisture in the top 1 m of the soil column. The eight RZSM 

products evaluated in this study are summarised in Table 1. 

 2.1 The Huai River Basin study area 165 

The HRB is the transitional zone between the northern subtropical and warm temperate climates, and it is one of 

the most important commodity grain production areas in China. It is located in eastern China, 111°55ᇱ-121°25ᇱ 

E, 30°55ᇱ-36°36ᇱN, and covers an area of 270000 km2 (Figure Fig. 1). The HRB has a typical humid and sub-

humid monsoon climate. The average annual precipitation is 888 mm and increases from north to south. More than 

60 % of the annual precipitation falls between June and September (Zhang et al., 2009). The HRB suffers from 170 

frequent floods and droughts due to the spatial and temporal variability of precipitation and evaporation. The main 

land cover types in the HRB are rainfed croplands, followed by irrigated croplands, forests and grasslands. Overall, 

the terrain of the HRB is relatively flat, with a large plain covering 90 % of the area. The cultivated area in the 

HRB is approximately 127200 km2, of which 76 % is irrigated according to the Manual of the Huai River Basin 

Irrigation Area (Chapter 2.1) and Summary of Flood Control Planning for the Huai River Basin 175 

(http://www.hrc.gov.cn). The water resource infrastructures include reservoirs, electromechanical wells, diversion 

locks and pumping stations built along lakes and rivers. Most cropland fields are irrigated by irrigation canals or 

a combination of wells and canals (Wang et al., 2021a). Annual evaporation can exceed precipitation. It ranges 

from 900 to 1500 mm and decreases from north to south (Wang et al., 2021a). Heavy irrigation in the HRB can 

explain the extra water available for evaporation. 180 

2.2 HRB in situ measurements 

The HRB soil moisture network was established by the Ministry of Water Resources of the People's Republic 

of China. It consists of 58 in situ stations (see Table S1Fig .1) and provides soil moisture measurements at four 

depths of 10, 20, 40 and 100 cm (Liu et al., 2023). At each station, volumetric soil moisture measurements in units 

of m3 m-3 are collected at 08:00 AM local solar time using frequency domain reflectometry ECH2O EC-TM probes. 185 

These probes are calibrated using gravimetric measurements taken at each soil depth. The deployment of the soil 

moisture stations and the collection of soil moisture measurements follows the specifications for soil moisture 

monitoring (MWR, 2015). Since the study aims to evaluate the accuracy of eight RZSM products (0-100 cm) 

which are summarized in Table 1, the in situ soil moisture measurements at the four depths are depth-weighted 

averaged to obtain the 0-100 cm soil moisture data. Stations are located in areas without irrigation. 190 

The China Daily Gridded Ground Precipitation and Air Temperature dataset V2.0, provided by the China 

Meteorological Administration (CMA) (http://data.cma.cn) with a spatial resolution of 0.5°×0.5° (approximately 

55.6 km), serves as a reference dataset for validating the meteorological forcing fields used in reanalyses and 

LDAS. The CMA dataset is derived by spatial interpolation using the partial thin-plate smoothing spline method 

from 2474 ground-based meteorological station observations across China, following stringent quality controls 195 

and necessary corrections. At the national level, the average coverage of gauging stations in a grid cell is 38 %. 

However, in the eastern part of China, where the HRB is located, the coverage reaches up to 77 %. The dataset 

has been extensively validated against ground observations and is of high quality. For example, the precipitation 

data has a root mean square error (RMSE) of 0.49 mm/month and a correlation coefficient (R) of 0.93 with a 
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significance level p smaller than 0.01 (CMA, 2012b). The annual air temperature data have a mean bias and RMSE 200 

ranging from -0.2 to 0.2°C and from 0.2 to 0.3°C, respectively (CMA, 2012a).  
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Fig. 1 Overview of the study area and distribution and land cover of in situ soil moisture stations (green pentagon). The 

squares in Fig.1b and c represent 0.25° grid. 205 

2.3 Soil map 

Soil databases used in many global LSMs have traditionally relied on the FAO/UNESCO 1:5 million scale World 

Soil Map with a spatial resolution of 5 arc minutes (approximately 10 km). It took twenty years to complete this 

map, which remained the primary global overview of soil resources until recently (Shangguan et al., 2013). 

However, this FAO/UNESCO soil map contained limited soil information in different regions, including China. 210 

Consequently, the uncertainties in soil properties contributed to larger errors in the land surface variables simulated 

by the LSMs (e.g. RZSM), especially over China (Nachtergaele et al., 2009; Shangguan et al., 2013). To address 

these uncertainties, the Harmonised World Soil Database (HWSD) was developed by FAO and the International 

Institute for Applied Systems Analysis (IIASA) with a resolution of 30 arcseconds (approximately 1 km). The 

HWSD combines recently collected regional and national updates of soil information with the FAO/UNESCO 1:5 215 

million scale World Soil Map (FAO et al., 2012). HWSD also incorporates the 1:1 million scale soil map of China 

provided by the Institute of Soil Science, Chinese Academy of Sciences (ISSCAS).  

The A China soil dataset of soil properties was developed by Shangguan et al. (2013), which integrates the 

physical and chemical properties of 8979 soil profiles along with the soil map of China (Shangguan et al., 2013), 

and is employed in the CLDAS product (Qin et al., 2017). The dataset provides information on soil properties for 220 

eight layers (0-2.3 m) at a spatial resolution of 30×30 arcseconds (approximately 1 km). Due to the limited 

availability of measured soil data, The FAO/UNESCO and HWSD V1.2 soil datasets are employed in different 

LSMs, respectively. The China dataset of soil properties developed by (Shangguan et al., 2013) is used as a 

reference to evaluate the soil properties (i.e. sand and clay content, bulk density and soil organic matter) of 

FAO/UNESCO and HWSD V1.2 datasets in section 5.2.the soil properties information, including sand and clay 225 

content, bulk density and soil organic matter, from Shangguan et al. (2013) was used in this study to validate the 

accuracy of the corresponding data from the FAO/UNESCO soil map and HWSD  

2.4. Gridded RZSM products 

The eight products considered in this study (Table 1) are presented below. 

2.4.1 ERA5 230 

ERA5 is the fifth generation global atmospheric reanalysis produced by ECMWF. It covers the period from 

January 1940 to present and provides hourly estimates of 0.25 degree atmosphere, land surface and 0.5 degree 

ocean waves (Hersbach et al., 2023). ERA5 is developed using the 4-Dimensional Variational (4D-Var) data 

assimilation method, which incorporates a 10-member ensemble and model forecasts from the ECMWF Integrated 

Forecast System (IFS) in CY41R2 with 137 hybrid sigma/pressure model levels in the vertical and the top level at 235 

0.01 hPa (Hersbach et al., 2020). ECMWF IFS mainly assimilates satellite-derived precipitation data, such as the 

Advanced Microwave Scanning Radiometer 2 (AMSR-2), the Global Precipitation Measurement (GPM), 

FengYun-3-C (FY-3-C), the Tropical Rainfall Measuring Mission (TRMM), and ground-based radar precipitation 

composites provided by the World Meteorological Organization Information System, to obtain the best 

precipitation estimates. The near-surface atmospheric forcing field at the lowest level of the atmospheric model 240 
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(about 10 m a.g.l.) is used to force the HTESSEL LSM, The 4D-Var data assimilation uses 12-hour windows from 

0900 UTC to 2100 UTC and from 2100 UTC to 0900 UTC (next day). The HTESSEL scheme is usedwhich serves 

as the land surface component of ERA5 the ECMWF IFS to model the land surface variables. HTESSEL uses the 

FAO/UNESCO World Soil Map and the Global Land Cover Characteristics (GLCC) database (Nogueira et al., 

2020). Different techniques are used to assimilate the different variables: the Simplified Extended Kalman Filter 245 

(SEKF) is used for RZSM, 1-dimensional Optimal Interpolation (OI) for soil and snow temperature, 2-dimensional 

OI for snow and screen level parameters (2 m temperature and relative humidity) (Hersbach et al., 2020). The 

diffusivity form of the Richard’s equation is used to describe the vertical water flow within the soil column that is 

discretized into four layers in the HTESSEL. Besides, HTESSEL ignores the exchange of lateral water fluxes 

between adjacent grid cells. The screen-level parameters analysis (2 m temperature and relative humidity) is 250 

carried out first, then its increments are incorporated into the soil moisture analysis. 

2.4.2 MERRA-2 

MERRA-2 is the latest version of a global atmospheric reanalysis product produced by NASA Global Modelling 

and Assimilation Office (GMAO, 2015). It uses the Goddard Earth Observing System Model (GEOS-5.12.4) 

atmospheric data assimilation system, which consists of (1) the GEOS atmospheric model and (2) the Gridpoint 255 

Statistical Interpolation assimilation system. It covers the period from January 1980 to present with a latency of 

approximately 3 weeks after the end of a month and provides global, hourly, 0.25-degree estimates (GMAO, 2015; 

Reichle et al., 2017d). CLSM is used as the land surface component of MERRA-2 to analyse the land surface states 

and fluxes(Reichle et al., 2017c). The precipitation forcing is the weighted average of model background 

precipitation generated by GEOS-5 FP-IT (Forward Processing system for Instrument Teams) after 31 December 260 

2014 and precipitation generated by AGCM, with weights dependent on latitude. The National Oceanic and 

Atmospheric Administration (NOAA) Climate Prediction Center (CPC) Unified Gauge-Based Analysis of Global 

Daily Precipitation (CPCU) product is used to correct the model background precipitation. The CPC Merged 

Analysis of Precipitation (CMAP) product is rescaled to match the climatology of the Global Precipitation 

Climatology Project product, version 2.1 (GPCPv2.1) and is fully used in Africa, which allows the observed 265 

precipitation to impact, via evapotranspiration, the near-surface air temperature and humidity, thereby yielding a 

more self-consistent near-surface meteorological dataset (Reichle et al., 2017d). CLSM uses the FAO/UNESCO 

World Soil Map and the Global Land Cover Characteristics (GLCC), version 2.0 (Reichle et al., 2017c), and is 

used as the land surface component of MERRA-2 to perform the land surface analysis. The CLSM used in 

MERRA-2 simulates the average soil moisture in the surface layer (0-5 cm), the root zone (0-100 cm) and the 270 

varying profile (from the land surface to the bedrock), and does not take into account lateral water fluxes 

(groundwater or river flow) between catchments which is used as the basic computational unit (Reichle and Koster, 

2003). 

2.4.3 NCEP CFSv2 

NCEP CFSv2 is the third generation global atmospheric reanalysis product developed by the Environmental 275 

Modelling Center at NCEP. It is a global, high-resolution, coupled atmosphere-ocean-land surface-sea ice system 

designed to provide the best estimate of the state of these coupled domains, covering the period from January 2011 

to present and providing 6-hourly, 0.2-degree estimates (Saha et al., 2011). The global atmospheric data 
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assimilation system (GDAS) employed in the climate forecast system simulates 64 sigma-pressure hybrid layers 

vertically. The Noah LSM is forced by the atmospheric forcing variables at the lowest level from the Climate 280 

Forecast System Reanalysis (CFSR) GDAS and the blended precipitation forcing. The global precipitation analysis 

from CMAP and CPCU and the model background precipitation from GDAS are integrated based on a latitude-

dependent weighting method to provide the optimal global precipitation forcing for a reliable land surface 

simulation (Meng et al., 2012). The Noah land surface modelLSM is first used in the coupled land-atmosphere-

ocean model to provide the initial conditions of the land surface states and fluxes, and then in the semi-coupled 285 

CFSR Climate Forecast System Reanalysis (CFSR) Global Land Data Assimilation System (GLDAS) to 

performprovide the land surface analysis and provide the evolving land surface states and fluxes (Saha et al., 2010; 

Saha et al., 2014) . The Noah LSM employed in NCEP CFSv2 uses the FAO/UNESCO World Soil Map and the 

land cover classification based on Advanced Very High Resolution Radiometer (AVHRR) 1 km data set. 

2.4.4 GLDAS_NOAH 290 

GLDAS_NOAH version 2.1 is the mainstream land surface analysis product developed by NASA Goddard Earth 

Sciences Data and Information Services Center (GES DISC) and aims to provide the optimal fields of land surface 

states and fluxes by incorporating large amounts of satellite- and ground-based observations provides global, 3-

hourly, 0.25-degree resolution of estimates for the period from 1 January 2000 to present (Rodell et al., 2004; 

Beaudoing et al., 2020). No data assimilation procedure was implemented in the GLDAS_NOAH version 2.1 295 

product. The offline (not coupled to the atmosphere) Noah LSM is forced with combination of model- 

(NOAA/Global Data Assimilation System (GDAS) atmospheric analysis fields) and observation-based 

precipitation (the disaggregated Global Precipitation Climatology Project (GPCP) V1.3 Daily Analysis 

precipitation fields) and radiation data (the Air Force Weather Agency’s AGRicultural METeorological modeling 

system (AGRMET) radiation fields) to provide optimal fields of land surface analysis . The soil column is 300 

discretized into four layers for describing the movement of soil moisture based on the diffusive form of Richard’s 

equation in NOAH LSM, which is same with NCEP CFSv2. GLDAS_NOAH uses the hybrid STATSGO/FAO 

World Soil Map and the modified IGBP MODIS (Moderate Resolution Imaging Spectroradiometer) 20-category 

vegetation classification (Rui et al., 2021). 

2.4.5 GLDAS_CLSM 305 

GLDAS_CLSM version 2.2 is  one of the most popular analysis dataset of land surface states and fluxes developed 

by NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). based on the CLSM forced 

with tThe CLSM embedded in the GLDAS is forced by the meteorological analysis fields from the operational 

ECMWF IFS.  These meteorological forcing fields are obtained by assimilating large amounts of atmospheric 

observations to update the model background predictions (e.g. precipitation) derived in the forecast step and are 310 

available at 0.25-degree, 3-hourly interval and provides global, daily, 0.25-degree resolution estimates for the 

period from 1 February 2003 to present (Li et al., 2019; Li et al., 2020). The CLSM used in GLDAS doesn’t have 

explicit vertical levels for soil moisture and only simulate the soil moisture represented by the surface layer (0-2 

cm), root zone (0-100 cm) and varying profile. The lateral water fluxes between catchments are also not taken into 

account in the current CLSM (Reichle and Koster, 2003). The FAO/UNESCO World Soil Map and the University 315 

of Maryland (UMD) land cover classification based on AVHRR land cover map are used in the GLDAS_CLSM 
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(Rui et al., 2021). Unlike the open-loop GLDAS version 2.1 product, GLDAS- version 2.2 product assimilates 

observations of the total terrestrial water (TWS) anomaly from Gravity Recovery and Climate Experiment 

(GRACE). Temporal changes of TWS are influenced by changes in soil moisture, snow and ice, surface water and 

biomass, and groundwater storage. 320 

2.4.6 CLDAS 

The CLDAS-2.0 product is the Asian atmospheric and land surface analysis product with high temporal and spatial 

resolution developed and released by CMA. It is produced based on a multi-LSMs operational system consisting 

of CLM, CoLM, and Noah-MP, with a spatial coverage of 0-60° N and 70-150° E and temporal coverage from 

January 2008 to present (CMA, 2015). The production of CLDAS-V2.0 involves the following three processes. 325 

Firstly, nearly 40000 automated meteorological station measurements, ECMWF and NCEP numerical 

analysis/forecast products, satellite-derived precipitation (FY2) and digital elevation model (DEM) are used to 

produce 0.0625°, hourly estimates of meteorological forcing data by operating the Space-Time Multi-Scale 

Analysis System (STMAS) (Shi et al., 2014; Wang et al., 2021a). Meanwhile, the meteorological forcing is 

validated using national automatic station observations (more than 2400 stations). Second, the meteorological 330 

forcing is used to drive the multi-LSMs system to obtain a multi-layer ensemble of soil moisture estimates. Finally, 

the ensemble mean is applied to each soil layer to produce a soil moisture ensemble analysis product. CLDAS 

utilizes the soil property dataset developed by Shangguan et al. (2013) and simulates five soil layers for the 

diffusion for water flux and the transmission for heat flux vertically. 

2.4.7 SMAP L4 335 

The SMAP Level-4 soil moisture (L4-SM) is produced by assimilating SMAP radiometer Level 1C brightness 

temperature observations into CLSM and provides global, 3-hourly, 9-km resolution estimates of SSM (0-5 cm) 

and RZSM (0-100 cm) from March 2015 to present (Reichle et al., 2020; Reichle et al., 2021). The Goddard Earth 

Observation System, version 5, LDAS (GEOS-5 LDAS) uses a spatially distributed ensemble Kalman filter (EnKF) 

to assimilate the observations into CLSM (Rienecker et al., 2008). The EnKF has a 3-hourly update time step and 340 

is used to interpolate and extrapolate the brightness temperature and model estimates in time and space (Reichle 

et al., 2017a). The GEOS-5 CLSM is driven by surface meteorological data (precipitation, radiation, etc.) from the 

GEOS-5 Forward Processing (FP) system where large amounts of observations are assimilated into a global 

atmospheric model. The CPCU, 0.5-degree, daily precipitation observations are used to correct the GEOS-5 FP 

model background precipitation. Prior to the GEOS-5 FP precipitation correction, both the CPCU precipitation 345 

data and the hourly background precipitation are scaled to the climatology of the GPCPv2.2 pentad precipitation 

product. SMAP L4 product uses the updated HWSD V1.2 soil property dataset and the MODIS land cover product 

based on the UMD classification (Reichle et al., 2012).   

2.4.8 SMOS L4 

The SMOS L4 soil moisture product is disseminated by SMOS CATDS and provides global, daily estimates of 350 

RZSM (0–100 cm) over a 25-km EASE-2 grid from January 2010 to present (Al Bitar and Mahmoodi, 2020; 

CATDS, 2021). The SMOS L4 RZSM is derived from the SMOS L3 3-day SSM product using a modified 

exponential filter linking the characteristic time length T (the transfer time of water from the surface layer to the 
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root zone layer) to the soil properties (Pablos et al., 2018). The soil parameters (i.e. saturated water content, the 

soil moisture at wilting point and the soil moisture at field capacity) are calculated based on the soil texture from 355 

FAO soil texture map (Al Bitar et al., 2021). The product is based on SMOS descending orbit (18:00) observations 

and other ancillary datasets such as MODIS observations, NCEP climate data and an updated FAO/UNESCO soil 

properties map. The soil column is divided into three layers (layer 1: 0-5 cm, layer 2: 5-40 cm, layer 3: 40-100 cm) 

in a water bucket model. The scaled 0-5 cm soil moisture is modified using a logarithmic function and filtered to 

obtain the layer 2 soil moisture. The scaled layer 2 soil moisture is then filtered using a different value of T to give 360 

the layer 3 soil moisture. Finally, the RZSM (0-100 cm) is calculated as a depth-weighted average of the soil 

moisture of the three layers (Al Bitar et al., 2021).   
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Table 1. Description of global and regional RZSM gridded products used in this study. 

Dataset 
Land 
surface 
model 

Time 
period 

resolution 
Soil 
map 

Soil layers Data accessReferences 

ERA5 
(Global) 

HTESSEL January 
1979-
present 

Hourly 
/0.25° 

FAO 
 

0-7 cm,  
7-28 cm, 
28-100 cm, 
100-289 cm 

ERA5 reanalysis datasets 
Hourly 0.25 x 0.25 degree| 
ECMWFHersbach et al. 
(2020); Xu et al. (2021) 

MERRA-2 
V2.0 (Global) 

CLSM January 
1980-
present 

Hourly 
/0.25°  

FAO 
 

0-5 cm,  
0-100 cm 

GES DISC Dataset: MER
RA-2 tavg1_2d_lnd_Nx 
(M2T1NXLND 5.12.4) (na
sa.gov)(Gelaro et al., 201
7); Reichle et al. (2017d) 

NCEP CFSv2 
V2.0 (Global) 

Noah January 
2011-
present 

6-Hourly 
/0.20° 

FAO 
 

0-10 cm,  
10-40 cm, 
40-100 cm, 
100-200 cm 

CISL RDA: NCEP Climat
e Forecast System Version 
2 (CFSv2) 6-hourly Produ
cts (ucar.edu)Qin et al. (20
17) 

GLDAS_NOA
H V2.1 
(Global) 

Noah January 
2000-
present 

3-Hourly 
/0.25° 

FAO 
 

0-10 cm,  
10-40 cm, 
40-100 cm, 
100-200 cm 

GES DISC Dataset: GLD
AS Noah Land Surface Mo
del L4 3 hourly 0.25 x 0.25
 degree V2.1 (nasa.gov)Bi 
et al. (2016); Xing et al. (2
021) 

GLDAS_CLS
M V2.2 
(Global) 

CLSM February  
2003-
present 

Daily 
/0.25° 

FAO 
 

0-2 cm,  
0-100 cm 

GES DISC Dataset: GLD
AS Catchment Land Surfa
ce Model L4 daily 0.25 x 
0.25 degree GRACE-DA1 
V2.2 (nasa.gov)Li et al. (2
019) 

CLDAS V2.0 
(Asia) 

CLM 
CoLM 
Noah-MP 

January 
2008-
present 

Hourly 
/0.0625° 

Shuang
guan et 
al. 
(2013) 
 

0-5 cm,  
0-10 cm, 
10-40 cm, 
40-100 cm, 
100-200 cm 

China Meteorological Ad
ministration Land Data As
similation System (CLDA
S v2.0) Product Dataset (c
ma.cn)Chen andYuan (202
0); Wang et al. (2021a) 

SMAP Level 4 
V5 (Global) 

CLSM March  
2015-
present 

3-Hourly 
/9 km 

HWSD 
 

0-5 cm,  
0-100 cm 

SMAP L4 Global 3-hourly
 9 km EASE-Grid Surface 
and Root Zone Soil Moistu
re Geophysical Data, Versi
on 5 | National Snow and I
ce Data Center (nsidc.org)
Reichle et al. (2017a); Ma 
et al. (2019) 

SMOS Level 4 
V301 (Global) 

Exponentia
l filter 
(no LSM) 

January  
2010-
present 

Daily 
/0.25° 

FAO 
 

0-100 cm L4 Land research products
-Centre Aval de Traitemen
t des Données SMOS (CA
TDS)Tangdamrongsub et 
al. (2020); Al Bitar et al. 
(2021) 

Note that precipitation, air temperature and soil texture have the same resolution as soil moisture. 
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3 Methods 365 

3.1 Statistical metrics 

Four widely used statistical metrics were used to quantitatively assess the performance of RZSM products against 

in situ measurements. The Pearson correlation coefficient (R) measures the linear correlation between the in situ 

measurements and the RZSM products. Mean Bias Error (MBE) reflects the mean systematic deviation of the 

model simulations relative to the measurements. Accuracy is assessed using the Root Mean Square Error (RMSE). 370 

The unbiased RMSE (ubRMSE) measures the standard deviation of the differences. In addition, Probability of 

Detection (POD), False Alarm Ratio (FAR) and Critical Success Index (CSI) are used to assess the ability of the 

global gridded rainfall to reproduce the measured rainfall (Su et al., 2019). POD is the proportion of real 

precipitation events simulated by AGCM relative to the actual precipitation events, reflecting the ability of AGCM 

to detect precipitation. FAR is the fraction of unreal precipitation events out of the total precipitation events 375 

simulated by AGCM. CSI is a more balanced score that combines the characteristics of false alarms and missed 

events, representing the probability of successful simulation of AGCM precipitation. In this study, these metrics 

are calculated at daily time steps after aggregating all sub-daily products to daily time steps. Note that the number 

of observations at each in situ station used to calculate the scores is 1827. The time series of different RZSM 

datasets (soil moisture, precipitation, air temperature and soil texture)are first averaged over all in situ stations and 380 

then used to calculate the metrics. The statistical metrics and corresponding formulas are listed in Table 2. 

3.2 Calculation and validation of RZSM 

As the in situ measurements are available at several specific depths (10, 20, 40 and 100 cm), the RZSM is 

calculated using a depth-weighted average of the four layers soil moisture layers (Xing et al., 2021). The equation 

is as follows: 385 

𝜃ோ௓ௌெ =
ଶఏభ௅భା(ఏభାఏమ)௅మା⋯(ఏ೙షభାఏ೙)௅೙

ଶ(௅భା௅మା௅యା⋯௅೙)
        (1) 

where 𝜃ோ௓ௌெ refers to the 0-100 cm RZSM (m3 m-3), 𝜃௡ is the volumetric soil moisture at the 𝑛௧௛ observation depth 

(m3 m-3), and 𝐿௡ is the soil layer thickness between adjacent observation depths (m). 

For the RZSM products, in addition to the GLDAS_CLSM, MERRA-2, SMAP L4 and SMOS L4, which 

directly provide the 0-100 cm RZSM, other RZSM products are provided in different soil layers, NCEP CFSv2, 390 

CLDAS and GLDAS_NOAH (𝜃଴ିଵ଴௖௠, 𝜃ଵ଴ିସ଴௖௠, 𝜃ସ଴ିଵ଴଴௖௠), ERA5 (𝜃଴ି଻௖௠, 𝜃଻ିଶ଼௖௠, 𝜃ଶ଼ିଵ଴଴௖௠). For example, 

the GLDAS_NOAH RZSM can be calculated as: 

𝜃ோ௓ௌெ = 0.1 × 𝜃଴ିଵ଴௖ + 0.3 × 𝜃ଵ଴ିସ଴௖௠ + 0.6 × 𝜃ସ଴ିଵ଴଴௖௠      (2) 

where 𝜃ோ௓ௌெ  denotes 0-100 cm RZSM (m3 m-3), 𝜃଴ିଵ଴௖ , 𝜃ଵ଴ିସ଴  and 𝜃ସ଴ିଵ଴଴௖௠  denote the soil 

moisture estimates at 0-10 cm, 10-40 cm and 40-100 cm, respectively. 395 

3.3 RZSM products aggregation and validation strategies 

In terms of the temporal resolution, except for the RZSM products (e.g., GLDAS_CLSM, SMOS L4) provided at 

daily time intervals, the other sub-daily RZSM datasets (hourly/3-hourly/6-hourly time steps, shown in Table 1) 

are aggregated to daily average values to match the daily sampling frequency of the in situ observations. In terms 

of spatial resolution, we didn’t change the spatial resolution of any RZSM products and used the RZSM time series 400 
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for each grid where the in situ stations are located. Two validation strategies were used in the study. The first is to 

compare the RZSM time series averaged over all in situ stations with the RZSM time series averaged over all 

model grids where the in situ stations are located (Fig.2 and 3 shown in this study). The second one is the point-

grid validation, the RZSM measurements at each in situ station are compared directly with the RZSM values for 

the grid where the in situ station is located, if there is more than one in situ station within a grid, the RZSM 405 

measurements at each station are compared to the grid values separately. The point-grid validation is provided in 

the supplement (Fig. S1 and S2). 

 

The global precipitation and air temperature forcing data are used in the production of model-based RZSM 

products except for SMOS L4, which are validated against the China daily gridded ground precipitation and air 410 

temperature dataset V2.0 described in section 2.2. The soil properties data used in the eight RZSM products were 

all derived from the FAO/UNESCO soil map of World except for CLDAS, which used the soil data developed by 

Shangguan et al. (2013), and SMAP L4, which used the HWSD V1.2 soil properties over China. The China soil 

dataset developed by Shangguan et al. (2013) is used as a reference to evaluate the accuracy of FAO/UNESCO 

and HWSD V1.2 soil properties (clay and sand content, organic carbon content and bulk density). 415 
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Table 2. List of the statistical metrics for evaluation of RZSM products and corresponding precipitation forcing 

data using in situ measurements. 

Note: n is the number of gap-filled daily observations (1827) used at each of the 58 in situ stations (see Table 

S1). 𝜃௘௦௧,௜ and 𝜃௢௕௦,௜ are RZSM products and in situ measurements (m3 m-3), respectively ; 𝜃௘௦௧,௜ and 𝜃௢௕௦,௜ are the 420 

means of 𝜃௘௦௧,௜ and 𝜃௢௕௦,௜ over the entire research period; H is the number of precipitation events detected by 

model and in situ measurements; M is the number of measured precipitation events not recognized by the model 

product; F is the number of model-based precipitation events not detected by in situ measurements. 𝑅𝑍𝑆𝑀௡௢௥  

represents the normalized RZSM, 𝑅𝑍𝑆𝑀௠௜௡ and 𝑅𝑍𝑆𝑀௠௔௫ represent the maximum and minimum of RZSM, 

respectively.   425 

Statistic metrics Unit Equation 
Optimal 

value 

correlation coefficient 
(R) 

- 
∑ ൫𝜃௘௦௧,௜ − 𝜃௘௦௧,௜൯൫𝜃௢௕௦,௜ − 𝜃௢௕௦,௜൯
௡
௜ୀଵ

ට∑ ൫𝜃௘௦௧,௜ − 𝜃௘௦௧,௜൯
ଶ

௡
௜ୀଵ

ට∑ ൫𝜃௢௕௦,௜ − 𝜃௢௕௦,௜൯
ଶ

௡
௜ୀଵ

 1 

Mean Bias Error (MBE) m3 m-3 
∑ ൫𝜃௘௦௧,௜ − 𝜃௢௕௦,௜൯
௡
௜ୀଵ

𝑛
 0 

Root Mean Square Error 
(RMSE) 

m3 m-3 ඨ∑ ൫𝜃௘௦௧,௜ − 𝜃௢௕௦,௜൯
ଶ௡

௜ୀଵ

𝑛
 0 

unbiased Root Mean 
Square Error (ubRMSE) 

m3 m-3 ඨ∑ ቀ൫𝜃௘௦௧,௜ − 𝜃௘௦௧,௜൯ − ൫𝜃௢௕௦,௜ − 𝜃௢௕௦,௜൯ቁ
ଶ

௡
௜ୀଵ

𝑛
 

0 

Probability of Detection 
(POD) 

- 
𝐻

𝐻 +𝑀
 1 

False Alarm Ratio (FAR) - 
𝐹

𝐻 + 𝐹
 0 

Critical Success Index 
(CSI) 

- 
𝐻

𝐻 +𝑀 + 𝐹
 1 

Normalized RZSM 
(𝑅𝑍𝑆𝑀௡௢௥) 

- 
𝑅𝑍𝑆𝑀 − 𝑅𝑍𝑆𝑀௠௜௡

𝑅𝑍𝑆𝑀௠௔௫ −𝑅𝑍𝑆𝑀௠௜௡
 - 
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4 Results 

4.1 Comparison between gridded and in situ RZSM 

Figure 2 shows scatterplots of RZSM products against the in situ measurements averaged across all in situ stations 

over the HRB, from 1 April 2015 to 31 March 2020. The statistical metrics are shown in Table 3. Regarding the 

bias, except for the underestimation by SMOS L4 (-0.047 m3 m-3), all the other products overestimate the RZSM 430 

observations by 0.030 m3 m-3 to 0.117 m3 m-3 (SMAP L4 and ERA5, respectively), especially for ERA5 and 

CLDAS. Due to the large bias, ERA5 and CLDAS have the largest RMSE values (0.122 and 0.114 m3 m-3, 

respectively) among all the RZMS products due to the large bias. Regarding correlation and ubRMSE, 

GLDAS_CLSM (R = 0.69, ubRMSE = 0.018 m3 m-3) outperforms the other RZSM products, followed by MERRA-

2 (R = 0.58, ubRMSE = 0.023 m3 m-3), ERA5 (R = 0.58, ubRMSE = 0.033 m3 m-3), CLDAS (R = 0.56, ubRMSE 435 

= 0.023 m3 m-3), SMAP L4 (R = 0.53, ubRMSE = 0.027 m3 m-3) and GLDAS_NOAH (R = 0.54, ubRMSE = 0.030 

m3 m-3), NCEP CFSv2 (R = 0.54, ubRMSE = 0.036 m3 m-3) and SMOS L4 (R = 0.35, ubRMSE = 0.027 m3 m-3). 

Overall, GLDAS_CLSM performs best among the eight RZSM products in terms of R, ubRMSE and bias values, 

while SMAP L4 presents the lowest RMSE and the lowest bias (0.040 and 0.030 m3 m-3, respectively). SMOS L4 

presents the worst performance in terms of correlation with the lowest R value= 0.35. The detailed statistics are 440 

shown in Table 3. 

Figure 3 shows the time series of  observation- and model-based RZSM averaged over all in situ stations and 

the grids where the in situ stations are located. in situ RZSM observations averaged over all in situ stations with 

its spatial variability, and of 3 RZSM productsERA5, SMOS L4, and GLDAS_CLSM presenting a mashow the 

highest overestimation, a marked the lowest underestimation, and the best overall agreement with in situ 445 

observations, respectively. Other products can be seen in Fig. S1. In general, all RZSM products capture the rapid 

temporal variations of the in situ soil moisture observations and respond correspond well to precipitation events, 

except for SMOS L4, which shows less rapid changes and smoother time series (Fig. 3 and Fig. S1). The model-

based RZSM products generally perform better in the wet season than in the dry season. While SMOS L4 performs 

better in the dry season than in the wet season (Fig. S1). The in situ RZSM observations show a variation in the 450 

range of 0.1 to 0.4 m3 m-3. The range of NCEP CFSv2 and SMAP L4 RZSM is similar to the observed RZSM 

range. ERA5 and CLDAS present larger RZSM values, ranging from 0.2 to 0.5 m3 m-3. MERRA-2, 

GLDAS_CLSM and GLDAS_NOAH RZSM values range from 0.2 to 0.4 m3 m-3, which is a narrower interval 

compared to the other products. SMOS L4 displays the smallest RZSM values, ranging from 0.1 to 0.3 m3 m-3.  

The statistical distribution of the scores for the eight RZSM products against the in situ soil moisture 455 

observations at individual stations is shown in Fig. S2 and Table S1. Overall, the average score values in Table S1 

are not as good as results shown in Table 3. In order to eliminate the seasonal effects and to examine the ability of 

the products to represent the daily variability of the RZSM, a five-week moving average window is used to 

calculate the monthly anomaly time series of the RZSM. Figure S3 displays a comparison of the results for monthly 

anomalies. In general, the performance of the eight RZSM products is better during the wet season than for the 460 

full annual cycle and the dry season (see Table S1). 
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Fig. 2 Scatterplots of RZSM products vs. in situ RZSM observations averaged across all in situ stations from 1 April 

2015 to 31 March 31 2020. Scores are given in Table 3. Darker regions show a higher density of data point and the 465 

blue line in each subplot represents the fitted trend for the data points. 
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Fig. 3 Time series of RZSM (0-100 cm) products and in situ soil moisture observations averaged across all in situ 

stations from 1 April 2015 to 31 March 31 2020. ERA-5, GLDAS_CLSM and SMOS L4 are shown, other products 470 

can be seen in Fig. S1. The dark line and the gray-shaded areas represent the mean and standard deviation of in situ 

stations observations. Colored lines represent different RZSM products. ERA-5, GLDAS_CLSM and SMOS L4 are 

represented by the blue line, the dashed red line, the green line, respectively. Daily precipitation is represented by the 

orange vertical bars. 

Table 3. Statistical metrics of eight RZSM products validated by in situ measurements (0-100 cm) averaged over 475 

all stations from 1 April 2015 to 31 March 2020 (Fig. 2). Mean score values are given. Best score values are in 

bold. The number of observations used to calculate the scores is 1827 for each product. 

Dataset 

In situ validation 

R 
Bias 

(m3 m-3) 

RMSE 

(m3 m-3) 

ubRMSE 

(m3 m-3) 
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ERA-5 0.58 0.117 0.122 0.033 

MERRA-2 0.58 0.040 0.046 0.023 

NCEP CFSv2 0.54 0.041 0.055 0.036 

GLDAS_NOAH 0.54 0.071 0.077 0.030 

GLDAS_CLSM 0.69 0.046 0.049 0.018 

CLDAS 0.56 0.107 0.114 0.023 

SMAP L4 0.53 0.030 0.040 0.027 

SMOS L4 0.35 -0.047 0.055  0.027 
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4.2 Intercomparison of gridded RZSM products 

Figure 4 displays the pairwise comparison of the eight RZSM products for grid cells located above the in situ 480 

stations. Overall, there is good agreement between all RZSM products, except for SMOS L4. The correlation 

coefficient R between each of the other seven RZSM products varies from 0.30 (MERRA-2 versus SMOS L4) to 

0.95 (SMAP L4 versus MERRA-2), with an average value of 0.71. The mean bias varies from -0.067 m3 m-3 

(MERRA-2 minus CLDAS) to 0.165 m3 m-3 (ERA5 minus SMOS L4), with an average value of 0.037 m3 m-3. The 

ubRMSE varies from 0.010 m3 m-3 (MERRA-2 versus SMAP L4) to 0.040 m3 m-3 (NCEP CFSv2 versus SMOS 485 

L4), with an average value of 0.024 m3 m-3. SMOS L4 differs most from the other products. The correlation 

coefficient R between SMOS L4 and the other seven RZSM products varies from 0.30 (MERRA-2 vs. SMOS L4) 

to 0.41 (GLDAS_NOAH versus SMOS L4), with an average value of 0.35, and the mean bias varies from 0.077 

m3 m-3 (SMAP L4 minus SMOS L4) to 0.165 m3 m-3 (ERA5 minus SMOS L4), with an average value of 0.112 m3 

m-3. The ubRMSE varies from 0.023 m3 m-3 (GLDAS_CLSM versus SMOS L4) to 0.400 m3 m-3 (NCEP CFSv2 490 

versus SMOS L4), with an average value of 0.031 m3 m-3. 
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Fig. 4 Comparison of different RZSM products (volumetric water content, m3 m-3) with each other. The scatterplots 

and their corresponding statistics are located on opposite sides of each other, that is, the scatterplot of the data pair 495 

SMOS L4-ERA5 is in the top left-hand corner, while the respective statistical values are found in the bottom right-

hand corner. Darker regions show a higher density of data point and the blue line in each subplot represents the fitted 

trend for the data points. 

Figure 5 shows the histograms of the normalised RZSM of the eight products and the in situ observations. 

The relative frequency distribution corresponding to the normalized soil moisture interval varies considerably 500 

between the different RZSM datasets. All soil moisture datasets are almost normally distributed with a clear peak. 

However, tThe observed RZSM distribution is skewed towards low values and has a peak frequency around 0.3., 

and the most frequent normalised RZSM class falls in the range of 0.3 to 0.4. The MERRA-2, GLDAS_CLSM 

and, SMAP L4, and ERA5 products exhibit the same behavioursimilar distribution patterns with a peak frequency 

around 0.4. In contrast, SMOS L4, NCEP CFSv2 and CLDAS the frequency distribution of the other RZSM 505 

products show an obvious offset towards wet soil moisture compared to the in situ observations, display a 
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relativewith a peak frequency peak in the range of 0.4 to 0.5. In particular, GLDAS_NOAH, on the other hand, 

shows a peak frequency in the range of 0.5 6 to 0.67, and is clearly skewed towards the wetter end of the 

distribution. It is obvious that the histograms of MERRA-2, GLDAS_CLSM and SMAP L4 show better agreement 

with the in situ observations than the other RZSM products, although they slightly overestimate the frequency of 510 

wet soil moisture. However, they all don’t capture the peak frequency and underestimate the peak frequency of 

normalized soil moisture ranging from 0.2 to 0.4. The other RZSM products show significant overestimation of 

frequency of wet soil moisture, underestimation of dry soil moisture and of peak frequency. Therefore, the 

Richard’s equation used to simulate the water content in different soil layers in LSMs should focus on producing 

less wet soil moisture and more dry soil moisture to obtain a more accurate frequency distribution of modelled soil 515 

moisture. 

 

 

Fig. 5 Histograms showing the relative frequency (vertical axis) of the various normalized RZSM datasets and in situ 520 

observations. 
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4.3 Validation of atmospheric forcings and soil properties  

4.3.1 Precipitation and air temperature 

Figure 6 shows the differences between the model and ground-based precipitation. A daily precipitation amount 

of less than 1 mm is considered as a no-rain criterion. During the period from 1 April 2015 to 31 March 2020, the 525 

annual mean precipitation amount from global products (SMAP: 1024 mm yr-1, GLDAS_NOAH: 988 mm yr-1, 

MERRA-2: 974 mm yr-1, NCEP CFSv2: 951 mm yr-1, GLDAS_CLSM: 912 mm yr-1, ERA5: 880 mm yr-1) 

overestimate the ground-based observations (840 mm yr-1) by 22, 17, 16, 13, 9 and 5 %, respectively. In addition, 

the mean frequency of rainy days (131, 114, 105, 113, 114, 126 d yr-1) is larger than observed (97 d yr-1) due to 

the drizzle effect often produced by AGCM (Piani et al., 2010; Velasquez et al., 2020). In contrast to the global 530 

products mentioned above, CLDAS (806 mm yr-1) slightly underestimates the mean annual precipitation amount 

by 4 %, and the precipitation frequency (99 days yr-1) is close to the ground-based observation. Furthermore, the 

global precipitation products tend to underestimate the in situ precipitation observations for precipitation events 

above 50 mm d-1 (Fig. 6). Overall, the R values between precipitation products and the observed precipitation are 

higher than in good agreement with the observed precipitation, with R values generally above 0.4 (left panel of 535 

Fig. 7). MERRA-2, ERA5, GLDAS_CLSM, and SMAP L4 show strong ability to detect precipitation with POD 

value above 0.6 (right panel of Fig. 7). The R value between modelled and ground-based precipitation is directly 

related to the CSI value except for GLDAS_NOAH.  
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540 

Fig. 6 Comparison of daily cumulative precipitation events and cumulative precipitation amounts time series between 

model-derived precipitation and in situ precipitation observations averaged over all in situ stations. 

 
Fig. 7 Summary of error metrics of gridded precipitation data against in situ precipitation observations (left panel), 

right panel shows the detection ability of gridded precipitation to reproduce the observed precipitation. The blue 545 

histogram represents the median and black error bar represents the standard deviation. 
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The daily air temperature data derived from ERA5, MERRA-2, NCEP CFSv2, GLDAS_CLSM, CLDAS, 

GLDAS_NOAH and SMAP L4 are validated against in situ observations of daily air temperature after aggregating 

all sub-daily products to daily time steps. Figures 8 and S4 S3 shows that the modelled air temperature captures 

the observed temporal variation well, with R values above 0.96. However, all of them show underestimation, 550 

indicated by negative bias values ranging from -4.0 to -5.2 K. In terms of the comprehensive scores of the four 

statistical metrics, GLDAS_NOAH air temperature outperforms the other datasets and SMAP L4 shows the worst 

scores. Detailed statistics are shown in Table 4 (Table 4). 
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 555 

Fig. 8 Scatterplots of model- and observation-based air temperature averaged over all stations, from 1 April 2015 to 31 

March 2020. ERA5, MERRA-2, NCEP CFSv2, GLDAS_CLSM, GLDAS_NOAH, CLDAS and CMA products provide 

the air temperature datasets at the 2-m screen level. SMAP L4 product provides the air temperature at center height 

of the lowest atmospheric model layer. Darker regions show a higher density of data point and the blue line in each 

subplot represents the fitted trend for the data points.  560 
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Table 4. Statistical metrics of air temperature products validated by in situ measurements averaged over all stations 

from 1 April 2015 to 31 March 2020. Mean score values are given. Best score values are in bold. The number of 

observations used to calculate the scores is 1827 for each product. 

Dataset 

In situ validation 

R 
Bias 

(K) 

RMSE 

(K) 

ubRMSE 

(K) 

ERA-5 0.98 -4.8 5.2 2.1 

MERRA-2 0.98 -5.1 5.7 2.4 

NCEP CFSv2 0.98 -4.9 5.3 2.1 

GLDAS_NOAH 0.98 -4.3 4.8 2.1 

GLDAS_CLSM 0.98 -4.5 4.9 2.1 

CLDAS 0.96 -4.0 4.9 2.8 

SMAP L4 0.97 -5.2 5.7 2.4 

4.3.2 Soil properties 

In this study, four soil properties indicators, including clay and sand content, organic carbon content and bulk 565 

density were selected to investigate the differences among the FAO/UNESCO soil map of World, HWSD, and the 

reference soil dataset developed by Shangguan et al. (2013). The soil properties data used in the eight RZSM 

products were all derived from the FAO/UNESCO soil map of World except for CLDAS, which used the soil data 

developed by Shangguan et al. (2013), and SMAP L4, which used the HWSD soil properties over China. Figure 9 

shows the reference dataset and HWSD generally exhibit similar properties, although the reference dataset has 570 

slightly higher organic carbon content and lower sand content. Both of them differ from the FAO/UNESCO soil 

properties data obviously. FAO/UNESCO overestimates the clay content for the upper (0-30 cm) and lower 

subsurface (30-100 cm) soil layers. Sand content is also overestimated for the subsurface layer but it is 

underestimated for the surface layer. Besides, FAO/UNESCO overestimates significantly the organic carbon 

content for both layers, resulting in the underestimated bulk density.  575 
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Fig. 9 Comparison of three sets of soil properties data (FAO used in ERA5, MERRA2, NCEP CFSv2, GLDAS_NOAH, 

GLDAS_CLSM and SMOS), HWSD used in SMAP L4 and reference soil properties data Shangguan et al. (2013) used 

in CLDAS. The histogram (gray bar: 0-30 cm; white bar: 30-100 cm) represents the median and black error bar 

re`presents the standard deviation. 580 
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5 Discussion 

5.1 What is the impact of uncertainties of meteorological forcing data? 

The accuracy of LSM simulations is influenced by the quality of the meteorological forcing, which is considered 

to be one of the most important and direct factors, especially precipitation and air temperature (Reichle et al., 2012; 585 

Yang et al., 2020; Zeng et al., 2021). Global precipitation and air temperature forcing data are used in the 

production of all RZSM products except for SMOS L4. In different LSMs, the diffusive form of Richard’s equation 

is used to describe the vertical movement of water in the soil column. Precipitation serves as the upper boundary 

condition to regulate the temporal dynamics of soil moisture. Therefore, These forcing data are compared with 

reference data extracted from the China gridded precipitation and air temperature dataset. The the overestimation 590 

of larger amount and frequency of precipitation amounts and the frequency of precipitation events (the wet bias 

Fig. 6excluding CLDAS) could be a reason for the overestimation of soil water storage simulated by the model-

based RZSM products. We also quantitatively evaluated the gridded precipitation by comparing it to ground-based 

precipitation to investigate the effect of precipitation accuracy on the performance of RZSM products (Fig. 67). In 

terms of R, RMSE, CSI, POD and FAR, MERRA-2 and GLDAS_CLSM precipitation are the best performing 595 

products. This may explain the relatively better agreement of MERRA-2 and GLDAS_CLSM RZSM with in situ 

data in terms of correlation (Table 3), as precipitation dominates the dynamics change of soil moisture. The low 

CSI and high FAR and the overestimated precipitation frequency indicate that the precipitation for each grid 

derived from AGCM has more rainy days and less dry days and struggles to reproduce the temporal pattern of the 

precipitation observed at each rain gauge, resulting in the relatively large RMSE values in precipitation generally 600 

above 7 mm day-1. This could also explain the low correlation R ranging from 0.4 to 0.6, although the daily average 

bias in model-based precipitation is less than 0.5 mm day-1. For most reanalysis products, the precipitation used to 

drive the different LSMs was generated by the AGCM through the assimilation of atmospheric temperature, 

humidity and wind observations (Reichle et al., 2017d). Before driving the land surface water budget, The the 

MERRA-2 model background precipitation was corrected using with NOAA CPCU gauge-based precipitation 605 

observations analysisbefore driving the land surface water budget was implemented in the coupled land-

atmosphere reanalysis system, which may also contribute to the high consistency with the ground-based 

precipitation. The correction leads to more accurate precipitation fields for MERRA-2, and then to more realistic 

RZSM simulations. Being driven by in situ precipitation observations, the CLDAS multi-LSMs should have 

produced RZSM values close to the observations. However, the CLDAS RZSM product overestimates the in situ 610 

observations by 0.107 m3 m-3 (Table 3). Therefore, precipitation may not be the dominant factor contributing to 

the overestimation of RZSM for the CLDAS RZSM (Bi et al., 2016; Qin et al., 2017).  

Air temperature is another key factor in determining the accuracy of RZSM simulations, as it controls soil 

evaporation and plant transpiration. The agreement between model- and observation-based air temperature is much 

better than for precipitation due to the high spatiotemporal heterogeneity in precipitation. The underestimation of 615 

air temperature by reanalyses has been illustrated in previous studies (Wang and Zeng, 2012; Yang et al., 2020). 

In general, the lower air temperature results in less evapotranspiration, and more soil water storage. This is 

consistent with the overestimation of in situ observations by LSM-based RZSM products (Bi et al., 2016; Yang et 

al., 2020). Compared to precipitation, air temperature has an overall better correlation with in situ observations. 

Note that ERA5 includes an analysis of soil moisture and screen-level (2 m) air temperature and air humidity. 620 

Studies have indicated that the assimilation of screen-level variables improves root zone soil moisture estimates 
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relative to in situ observations providing more realistic lower boundary conditions for numerical prediction models 

(Douville et al., 2000; Seuffert et al., 2003; de Rosnay et al., 2012).  

The overestimation of RZSM by ERA5 (Fig. 3) could be a signature of irrigation because the in situ RZSM 

observations do not capture irrigation.625 

 

Fig. 10 Soil properties (clay and sand content, organic carbon content and porosity) of three soil layers 

(Layer1 (0-16.6 cm): plough layer; Layer 2 (16.6-49.3 cm): black soil layer; Layer3 (49.3-138.3 cm): lime 

concretion layer) HRB at different stations. 

 630 

5.2 Are soil properties correctly represented? 

Time-invariant soil property data (e.g. porosity) are key model parameters for LSMs because they determine the 

physical structure of the soil in the vadose zone, which controls the partitioning of precipitation into surface runoff 

and infiltration. In general, soil texture is closely related to the ability of the soil to retain water, as water molecules 

adhere more tightly to fine-textured clay particles than coarse-textured sand particles. Consequently, clay exhibits 635 

stronger water retention capacity and higher water content stored in the soil compared to sand at the same matric 

potential. Meanwhile, the sandy soil shows the better drainage capacity and higher hydraulic conductivity than 

clay soil. In addition, the overestimated FAO/UNESCO soil organic carbon content (Fig. 9) leads to higher soil 

porosity and lower bulk density. As a result, water can infiltrate more quickly and more water can flow through 

the soil and can be retained in the soil (Bot and Benites, 2005; Reichle et al., 2017b). Therefore, the use of 640 

inaccurate FAO/UNESCO soil property data used in LSMs may explain the overestimation of soil moisture by the 

various RZSM products compared to the ground-based observations. It is promising to improve the accuracy of 

LSM-based RZSM using HWSD instead of FAO/UNESCO soil property data. The soil hydraulic parameters 

(SHPs), such as the hydraulic conductivity and matric potential, are crucial parameters to describe the vertical 

transport of water in the soil column through the Richard’s equation employed in the LSMs. Generally speaking, 645 

the SHPs are derived from a combination of soil properties (clay, sand, silt fractions and organic content, etc.) with 

pedotransfer functions (PTFs), which can be constructed by multivariate regression models, nonlinear regression 

models or artificial neural networks (Harrison et al., 2012). Therefore, different input variables and functional 
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forms of the continuous PTFs are used to derive SHPs in the LSMs. The Richard’s equation relying on the SHPs 

shows great uncertainty in the simulated soil moisture. For example, the HWSD soil properties used in SMAP L4 650 

are more consistent with the reference dataset than FAO soil properties used in MERRA-2 by revising the 

underestimated sand content and the overestimated clay content in FAO. In addition, SMAP L4 adopts PTFs from 

Wösten et al. (2001) which take into account the organic carbon affecting soil hydraulic and thermal properties. 

MERRA-2 adopts PTFs adapted from  Cosby et al. (1984) without considering organic carbon (De Lannoy et al., 

2014). The revised soil parameters and new PTFs employed in SMAP L4 yield smaller shape parameter of water 655 

retention curve and result in less water retention than in MERRA-2, and increase the hydraulic conductivity. Thus, 

SMAP L4 has the smaller soil moisture estimates and less RZSM bias against in situ measurements than MERRA-

2, which is consistent with the result of this study. Therefore, the soil properties and PTFs could also explain part 

of the uncertainty. 

Soil stratification can affect the accuracy of LSM-based RZSM by impeding the water transfer from the 660 

surface layer to the root zone layer. In the Huaibei plain, the soil column can basically be divided into three layers, 

including the plough layer (0–16.6 cm), the black soil layer (16.6–49.3 cm) and the lime concretion layer (49.3–

138.3 cm) due to the long-term human activities (e.g. fertilisation and ploughing), which significantly increases 

the soil organic carbon content and porosity in the plough layer compared to the deeper soil layer (Zhang et al., 

2001; Li et al., 2011; Zha et al., 2015; Gu et al., 2021). There is a noticeable difference in soil properties between 665 

the plough layer and the black soil layer, while the difference between the black soil layer and the lime concretion 

layer is relatively small (see Fig. S510). High porosity results in high hydraulic conductivity and infiltration 

capacity (Zha et al., 2015). Therefore, interflow can occur due to the difference of infiltration rate between adjacent 

soil layers. The interflow may either flow horizontally due to good lateral drainage conditions or accumulate 

vertically and evaporate. These processes may not be well represented by LSMs.  670 

In the study by Fan et al. (2022), RZSM products (SMAP-L4 V6, ERA5-land V2, GLDAS-Noah V2.1) were 

evaluated over croplands in Jiangsu province, which is close to the Huaibei Plain. A fourth RZSM dataset was 

derived from the ESA CCI SSM using an exponential filter. In this study, SMAP L4, ERA5 and GLDAS_NOAH 

overestimate the in situ RZSM. Overall, both studies show similar R values of RZSM products against the in situ 

observations, but with opposite biases.  The changes in the sign of the bias could be attributed to differences in 675 

soil properties (see Fig. 10). In the Huaibei plain, the main soil type is lime concretion black soil, whose main 

characteristic are (1) soil stratification, (2) poor soil permeability and water retention capacity due to high clay 

content, (3) clay swelling during wet periods and shrinking during dry periods. For a given soil profile, porosity 

decreases with depth and clay content increases with depth, resulting in a decrease in hydraulic conductivity. 

Expansive montmorillonite clay minerals are the main constituents of the lower black soil layer, giving the soil 680 

strong expansion and contraction and a high dry bulk density. During drought, cracks in the soil column increase 

widen and deepen, resulting in capillary breakage. This makes it difficult for groundwater and RZSM to recharge 

crops, even though the groundwater is shallow. In addition, the increased cracks in the soil column exacerbates 

the and increased evaporation of soil moisture in the root zone, ultimately leading to frequent droughts. During 

wet periods, when precipitation or irrigation occurs, the soil absorbs water and swells, closing the cracks and 685 

preventing water infiltration. Water is then lost mainly through surface runoff. The crops are prone to waterlogging 

disasters. This could explain the lower RZSM values ranging from 0.2 to 0.3 m3 m-3 observed in the Huaibei plain 
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and the higher RZSM values ranging from 0.3 to 0.4 m3 m-3 observed in Jiangsu. The larger amount of precipitation 

in Jiangsu could be another possible reason.  

5.3 what is the impact of vegetation representation in LSMs? 690 

Vegetation also plays a crucial role in the exchange of water, energy and carbon between the land surface and the 

atmosphere, which has significant effect on the simulation of soil moisture by LSMs. First, the land cover map 

describes the distribution and fractions of different land use types, which have different impact on the partitioning 

of net solar radiation into ground heat, sensible and latent heat fluxes, and the partitioning of precipitation into 

canopy interception, runoff and infiltration. The land cover maps employed in the LSMs are different. For example, 695 

GLDAS_NOAH uses the modified IGBP MODIS (Moderate Resolution Imaging Spectroradiometer) 20-category 

vegetation classification, and GLDAS_CLSM uses the University of Maryland (UMD) land cover classification 

based on AVHRR (Advanced Very High Resolution Radiometer) land cover map  and MERRA-2 and HTESSEL 

both use the global land cover characteristics database, version 2.0 (Reichle et al., 2017c; Rui et al., 2021). Second, 

the parameterization for vegetation canopy (e.g., leaf area index, bare soil fraction, high- and low-vegetation 700 

fraction, type and density, Nogueira et al. (2020)) and root tissue (root distribution, rooting depth, root density and 

root zone water storage, Gao et al. (2014), Stevens et al. (2020) and van Oorschot et al. (2021)) varies considerably 

across different LSMs. These parameterization schemes show substantial impact on the transport of water from 

the land surface to the atmosphere through root water uptake constrained by root related parameters and canopy 

transpiration adjusted by stomatal aperture and water stress conditions, and fix the carbon dioxide from the 705 

atmosphere to the land surface through the photosynthesis. Therefore, it is difficult to consistently and accurately 

depict the dynamic evolution of vegetation for different LSMs. The discrepancy in land cover types, vegetation 

canopy and root parameterizations between different land cover maps not only affects the exchange of water, 

carbon and energy between land surface and atmosphere at the local scale, but also affects the water and carbon 

cycle, and energy balance at the terrestrial and global scales. Moreover, the inaccurate partitioning of the total 710 

terrestrial evapotranspiration into soil evaporation, canopy interception and vegetation transpiration also affects 

the exchange of water and energy between the land surface and the atmosphere. Generally speaking, the ratio of 

transpiration to the total terrestrial evapotranspiration is underestimated compared to the observations in most earth 

system models (ESMs) (Feng et al., 2023). This phenomenon could be related to the excessive reliance on the 

surface soil moisture and canopy-intercepted water storage rather than the adequate utilization of RZSM for 715 

transpiration, which leads to the overestimated RZSM (Dong et al., 2022), or the unreliable representation of 

canopy light use, interception loss and root water uptake processes in the ESMs (Lian et al., 2018). In different 

LSMs, the process representing the partitioning of the total terrestrial evapotranspiration into different components 

differs from each other. For example, GLDAS_CLSM shows the higher fraction of soil evaporation, while 

GLDAS_NOAH shows the higher fraction of transpiration over the Huai River Basin (Feng et al., 2023). In general, 720 

soil evaporation is mainly controlled by surface soil moisture, while the transpiration is controlled by the available 

water in the root zone. Therefore, the soil evaporation fraction is inversely proportional to leaf area index, while 

the transpiration fraction is proportional to leaf area index. The difference in the fractions of evapotranspiration 

components between GLDAS_CLSM and GLDAS_NOAH could be related to the model parameterization 

associated with sol evaporation and transpiration. Furthermore, the transpiration of crops is highly dependent on 725 

the growing season, which might be not well represented in the LSMs. 



36 
 

 

5.3 4 What are the difference between the three CLSM-based RZSM products? 

Regarding the in situ validation in Sect. 4.1, the superior skill metrics of GLDAS_CLSM among the three CLSM-

based RZSM products (GLDAS_CLSM, SMAP L4 and MERRA-2), can be attributed to its more accurate 730 

representation of precipitation. While GRACE TWS observations have been assimilated into GLDAS_CLSM, 

previous studies have indicated that the assimilation of GRACE TWS has no or negligible effect on RZSM. This 

could be attributed to the faster response of soil moisture to atmospheric forcing than groundwater (Zaitchik et al., 

2008; Houborg et al., 2012; Girotto et al., 2016), the short in situ data record or insufficient spatial sampling (Li 

et al., 2012). Tian et al. (2017) and Tangdamrongsub et al. (2020) jointly assimilated terrestrial water storage 735 

(GRACE TWS) and SSM products. The soil moisture-only assimilation improved the performance of soil moisture 

estimates relative to in situ measurements but degraded the performance of groundwater estimates. The GRACE-

only assimilation only enhanced the skill metrics of groundwater estimates. 

Regarding the intercomparison in Sect. 4.2, the very good correlation and low ubRMSE between MERRA-2 

and SMAP L4 shown in Fig. 4 can be partly attributed to the fact that both products are based on the CLSM and 740 

both use atmospheric forcing data generated from GEOS-5. However, it should be noted that SMAP L4 uses a 

more recent version of CLSM with a different representation of soil hydraulic and thermal properties. In addition, 

MERRA-2 and SMAP L4 use different model background precipitation (i.e. GEOS-5 FP system for SMAP L4 

and GEOS-5 FP-IT system for MERRA-2) (Reichle et al., 2017d). In MERRA-2, the CPCU precipitation is used 

in its native climatology to correct the GEOS FP-IT model background precipitation, while in SMAP L4 the CPCU 745 

precipitation is rescaled to the climatology of the GPCPv2.2 pentad precipitation product climatology before being 

corrected by the GEOS-5 FP system. De Lannoy et al. (2014) showed that SMAP L4 has a smaller mean bias in 

SSM and RZSM than MERRA-2 due to the increased sand content of the HWSD and the new pedotransfer 

functions provided by Wösten et al. (2001), which is consistent with result of this study. 

5.4 5 How does the mismatch of spatial scales affect the evaluation results? 750 

In addition to the model- and the observation-based soil moisture errors, the mismatch of spatial scales between 

grid-scale soil moisture simulations and point-scale observations also introduces additional errors. The eight 

RZSM products are evaluated against in situ observations using two validation strategies described in section 3.3. 

The statistical scores of spatial-average validation and point-grid validation As shown in the statistical metrics are 

shown in Tables 3 and S1, respectively. the The R and ubRMSE values for spatial-average validationcalculated on 755 

regional scale are generally better than that for point-grid validationthose calculated on point scale. For the latter 

comparison, the grid-based RZSM value lacks representativeness of soil moisture within the grid cell due to the 

high spatial variability resulting from different characteristics of the underlying surface and meteorological forcing. 

This leads to an error in representativeness (Xia et al., 2014). In contrast, the spatial-average validationformer 

comparison improves the representativeness of the grid-based RZSM and reduces the spatial noise (Wang and 760 

Zeng, 2012; Xia et al., 2014; Bi et al., 2016; Zheng et al., 2022). In addition, upscaling the sparse ground-based 

observations to the footprint-scale satellite soil moisture retrieval or model grid scale through the temporal stability 

concept, block kriging, field campaign data, or LSM, reduces the uncertainty of spatial resampling and further 

improves the reliability of soil moisture validation (Crow et al., 2012).  
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5.5 6 Why does SMOS L4 underestimate RZSM? 765 

The SMOS L4 RZSM is derived from the SMOS L3 3-day SSM by applying a modified exponential filter (Pablos 

et al., 2018). Figure 10 11 shows the comparison of the SMOS L3 SSM and L4 RZSM with the in situ soil moisture 

observations. It is evident that both SMOS L3 SSM and L4 RZSM underestimate the in situ observations with 

average bias values of -0.069 and -0.047 m3 m-3, respectively. By partitioning the total error composed of the 

exponential filter model and the inherent SMOS in situ differences, Ford et al. (2014) have shown that the 770 

mismatch between in situ observations and the estimates is much larger than the error caused by the exponential 

filter method. The underestimation of in situ observations by SMOS L3 SSM has been reported in previous studies 

(Djamai et al., 2015; Cui et al., 2017; Pablos et al., 2018; Ma et al., 2019; Wang et al., 2021b). Therefore, it can 

be inferred that the underestimation of in situ observations by the SMOS L3 SSM propagates to the SMOS L4 

RZSM. The L-band microwave signal is sensitive to soil moisture, soil temperature and vegetation optical depth 775 

(VOD) (Kerr et al., 2012). Using the L-band Microwave Emission of the Biosphere (L-MEB) model (Wigneron 

et al., 2021), SMOS L3 soil moisture and Vegetation Optical Depth (VOD) can be retrieved simultaneously from 

multiple orbits using multi-angular (~0-60°) and dual-polarisation TB measurements (Al Bitar et al., 2017; Li et 

al., 2021).  Numerous studies have shown that the SMOS L3 physical surface temperature used in the forward 

radiative transfer model was underestimated (Cui et al., 2017; Ma et al., 2019; Wang et al., 2021b; Zheng et al., 780 

2022). In the SMOS L3 retrieval algorithm, underestimation of soil temperature leads to overestimation of soil 

emissivity, which ultimately results in the underestimation of soil moisture retrieval. In general, the SMOS L3 

VOD retrievals are relatively noisy, which may be related to retrieval instabilities and Radio Frequency 

Interference (RFI) effects (Cui et al., 2017; Wang et al., 2021b; Wigneron et al., 2021; Zheng et al., 2022). 

Therefore, it is difficult to quantify its relationship with soil moisture. In addition, the ECMWF ERA-Interim soil 785 

moisture is also used in the operational SMOS L3 SSM retrieval algorithm. For a given pixel, the total TB is 

simulated as the sum of several fractional contributions (FNO: nominal (bare soil, low vegetation), FFO: forest, and 

others as urban, water, etc.), i.e. TBtotal =TBFNO + TBFFO +TBothers (Fernandez-Moran et al., 2017). SMOS L3 

retrievals are computed only over a fraction of the pixel (the “dominant” fraction where SM retrieval is meaningful 

over certain surface types) (Fernandez-Moran et al., 2017; Wigneron et al., 2021). For the remaining fraction of 790 

pixels, only their contributions to the total signal need to be estimated using the ECMWF ERA-Interim SM (0-7 

cm) as an auxiliary input, but no SM retrievals are performed. Previous studies have shown that the ERA-Interim 

soil moisture over China is overestimated (Yang et al., 2020; Ling et al., 2021). Therefore, the overestimated 

ECMWF ERA-Interim SM (0-7 cm) leads to an underestimation of the forest TBFFO contribution, which in turn 

leads to an overestimation of TBFNO and to a dry bias in the retrieved SMOS L3 SM (as there is a negative 795 

correlation between brightness temperature and soil moisture (Rao et al., 2007)). 
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Fig. 10 11 Comparison of time series (left panel) and scatterplots (right panel) of SMOS L3 SSM vs. in situ SSM (Fig. 

10a and b), SMOS L3 SSM vs. SMOS L4 RZSM (Fig. 10c and d) and SMOS L4 RZSM vs. in situ RZSM (Fig. 10e and 

f). 800 

6 Conclusion 

In this study, eight RZSM products were quantitatively evaluated against observations from 58 in situ soil moisture 

stations over the heavily irrigated HRB in China. Statistical metrics of R, mean bias, RMSE and ubRMSE were 

used to evaluate the performance of different RZSM products. The impact of several potential confounding factors 

on the uncertainty of RZSM products was investigated. These factors included, including meteorological forcing 805 

variables (precipitation and air temperature), soil properties (organic matter, bulk density, clay and sand content), 

soil stratification, vegetation parameterization and spatial scale mismatch. The main conclusions of this study are 

as follows: 

(1) GLDAS_CLSM performed best amongoutperformed the other RZSM products based on LSMs over the 

HRB in terms of R, ubRMSE and mean bias, followed by MERRA-2, CLDAS, SMAP, ERA5, NCEP CFSv2, and 810 

GLDAS_NOAH. The SMOS L4 product presented the worst performance due to the fact that SMOS L4 does not 

contain precipitation information and has a weaker response to precipitation. All LSMSeven model-based RZSM 

products overestimated the in situ observations RZSM with median bias values ranging from 0.033 m3 m-3 (SMAP 

L4) to 0.116 m3 m-3 (CLDAS). On the other hand,While SMOS L4 underestimated the RZSM with a median bias 

value of -0.050 m3 m-3. ERA5 and CLDAS had the largest biases, of 0.104 m3 m-3 and 0.116 m3 m-3, respectively. 815 

However, the ERA5 screen-level parameters analysis could indirectly account for irrigation. 

(2) The intercomparison of RZSM products shows that the correlation coefficient R between any two of the 

seven LSMmodel-based RZSM products varied from 0.68 (ERA5 vs. CLDAS) to 0.95 (SMAP L4 vs. MERRA-

2). In contrast, SMOS L4 did not correlate wellpresented lower correlation with the other seven RZSM products 

with R ranging from 0.30 (MERRA-2) to 0.41 (GLDAS_NOAH) and with a negative bias ranging from -0.165 m3 820 

m-3 (SMOS L4 minus ERA5) to -0.077 m3 m-3 (SMOS L4 minus SMAP L4). The comparison of the frequency 

distribution between eight RZSM products and in situ observations indicates that MERRA-2, GLDAS_CLSM and 

SMAP L4 are in better agreement with the in situ observations than the other RZSM products. All RZSM products 
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overestimate the frequency of wet soil moisture and underestimate the frequency of dry soil moisture. Besides, the 

frequency peaks of the RZSM products show an obvious offset towards wet soil moisture and are underestimated 825 

compared to the in situ observations. Therefore, the Richard’s equation used to simulate the water content in 

different soil layers in LSMs should focus on producing less wet soil moisture and more dry soil moisture. 

(3) Precipitation may be the most important factor in determining the accuracy of LSM-based RZSM. With 

the exception of CLDAS, the different precipitation datasets all show an overestimation of total precipitation and 

precipitation frequency (excessive number of occurrences of drizzle events). Except for CLDAS, This may explain 830 

the overestimation of in situ soil moisture observations by various the model-based RZSM products could be 

associated with the overestimation of precipitation amounts, the frequency of precipitation events (excessive 

number of occurrences of drizzle events)., but not for CLDAS. The air temperature datasets used to drive the LSMs 

had have a cold bias ranging from -4.0 K (CLDAS) to -5.19 K (SMAP L4), which tended tends to decrease reduce 

evapotranspiration and increase RZSM result in more soil moisture residuals. In addition, the underestimated ratio 835 

of transpiration to the total terrestrial evapotranspiration existing in most earth system models consumes less water 

in the root zone for transpiration and large RZSM. The underestimation of the SMOS L4 RZSM may be related to 

the underestimation of the SMOS L3 SSM. (4) The underestimation of the SMOS L4 RZSM may be related to the 

underestimation of the SMOS L3 SSM.  

(4) The model-based RZSM products generally perform better in the wet season than in the dry season due 840 

to the enhanced ability to capture of the temporal dynamics of in situ observations in the wet season and the inertia 

of remaining high soil moisture values even in the dry season. While SMOS L4 performs better in the dry season 

than in the wet season, because the ground microwave radiation signal is more attenuated in the wet season due to 

a substantial increase in water vapor absorption and scattering than in the dry season, which is used to retrieve 

SMOS L3 SSM and is propagated to SMOS L4 RZSM. 845 

(5) The utilization of the HWSD soil property dataset instead of the FAO/UNESCO World Soil Map will 

contribute to improve the simulation of the hydrothermal transport processes represented in LSMs and thus to an 

improved land surface analysis. 

(6) Spatial-average validation could reduce the spatial noise of in situ soil moisture measured at different 

locations and improve the representativeness of soil moisture observations to model-based grid values. 850 
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Data availability. The soil moisture observations in Huai River Basin is not publicly available but could be 

requested from the Huaihe River Commission of the Ministry of Water Resources, P. R. C. (https://hrc.gov.cn). 

We provide a sample data set of these measurements for a subset of 10 stations 

(https://doi.org/10.6084/m9.figshare.23497502). The soil moisture time series of the 10 in situ stations can be 

seen in Fig. S6. 860 
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