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Dear Editor and Reviewers, 

We would like to thank the Editor and three Reviewers for their efforts in handling the 

manuscript and for their valuable comments to improve the manuscript. We have revised our 

manuscript thoroughly according to the comments and provide a point-by-point response to 

the comments from three Reviewers below. The original comments from three Reviewers are 

in black font, and our responses are in blue font. 

 

On behalf of all co-authors, 

En Liu 

 

Response to Reviewer #1’s comments on the manuscript egusphere-2023-1597  

RC1: ‘Comment on egusphere-2023-1597’, Anonymous Referee #1, 07 Nov 2023 

The authors attempted to evaluate the predictive performance of eight satellite data-derived 

root-zone soil moisture data. The authors provided a quantitative statistical analysis of each 

RZSM product based on average values of in-situ, and remote sensing estimates for the Huai 

River Basin. The authors concluded that the GLDAS CLSM RZMS products outperform 

other RZSM products. While the information contained in the manuscript is quantitative, I 

ended up questioning the potential contribution of this paper to the readers. I have tried to 

address why I think  

The authors thank the Reviewer #1 for her/his constructive and insightful comments that help 

us improve the quality of the manuscript. The original comments from Reviewer #1 are in 

black font, and our responses are in blue font. 

 - Major comments: 

1. Although the study provides a significant amount of comparative analysis between 

remote sensing-derived RZSM products as well as against observational data, the 

mechanistic understanding and explanation of each result are widely missing across 

the manuscript. Therefore, the author's rationale about the causes of differences was 

often too obvious or uncertain. 

Response: Thank you very much for your valuable comment. In this study, we presented 

an intercomparison between eight root zone soil moisture (RZSM) products and in situ 

observations. Although the different RZSM products are evaluated quantitatively, it 

should be noted that the focus of this study is to investigate the uncertainty in RZSM 

products caused by potential factors. The SMOS Level 4 (L4) RZSM is produced by 

combining a modified exponential filter and SMOS Level 3 surface soil moisture (SSM). 

The other seven RZSM products (except SMOS L4) are produced by land surface models 

driven by surface atmospheric forcing data from atmospheric general circulation models; 

the ability of the land surface model to simulate states (e.g., RZSM) and fluxes is limited 

by uncertainties in the meteorological forcing and parameterization schemes, as well as 
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inadequate model physics. It is difficult to quantify the model physics because different 

land surface models are used to produce different RZSM products. Therefore, we 

analyzed the atmospheric forcing data (especially for precipitation, which dominates the 

terrestrial water cycle), which is considered as the most important factor in determining 

the accuracy of the modeled RZSM, and the model static parameters (soil properties), 

which strongly influence the movement of water in the vadose zone, and local underlying 

surface conditions. The objective of this study is to provide some insights on how to 

improve the ability of land surface models to simulate land surface states and fluxes by 

finding the common characteristics of bias existing in different datasets used in land 

surface models. 

2. Also, the authors argued that GLDAS CLSM-derived RZSM outperforms other 

RZSM estimates. However, rather than trying to explain the different predictive 

performances of each RZSM product (against in-situ observations) in relation to soil 

properties, land cover/use, and vegetation in the study catchment, the authors just 

used the average of 58 in-situ data as well as satellite products, resulting in 'all-

lumped' single time series for each dataset. Thus, it is not convincible to say a certain 

remote sensing-derived estimates outperform others since the performance 

differences can be revealed differently depending on soil properties, vegetation, land 

cover/use, etc. 

Response: According to the elevation and land cover map of the Huai River basin (Figure 

1b-c) and the overview of in situ stations (see Table S1 below, we will add it in the 

supplement), most of the in situ stations are located in the Huaibei Plain, which is a major 

grain production area and has a relatively flat topography. Most of the in situ stations (56 

of 58) are located in the cropland regions (see Table S1 below) and have quite similar 

topography (elevation and slope, etc.). In terms of soil properties, the lime concretion 

black soil is the dominant soil type in the Huaibei plain, which is shown in line 482. Since 

most of the stations in the Huaibei Plain are located in a semi-humid region, which shares 

the similar meteorological conditions and topography. Therefore, we believe that soil 

properties, vegetation, precipitation and temperature are homogeneous among different in 

situ stations. In addition, two validation strategies were used in the study. The first is to 

compare the mean RZSM averaged over all in situ stations with the mean RZSM 

averaged over all grids. The second one is the point-grid validation, the station 

measurements are compared directly with the grid value where the station is located, if 

more than one station, the measurements of these stations are averaged. The point-grid 

validation has been provided in the supplement and draws the same conclusion as the 

station-averaged validation that GLDAS_CLSM outperforms other RZSM products. The 

section “3.3 RZSM products aggregation and validation strategies” will be added in 

chapter 3 Methods. 

Table S1 Overview of in situ stations in the Huai River Basin 

Station Name 
Longitude 

(E) 
Latitude (N) Elevation (m) Land cover 
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Taolaoba 117.16 32.18 48 Irrigated Crop 

Chahua 116.02 33.03 39 Rainfed Crop 

Hanting 116.32 33.02 28 Rainfed Crop 

Songji 115.27 32.82 39 Rainfed Crop 

Funan 115.57 32.64 33 Rainfed Crop 

Santa 115.70 32.81 33 Rainfed Crop 

Yaoli 116.17 31.82 58 Irrigated Crop 

Guanting 116.85 31.80 51 Irrigated Crop 

Zhuangmu 117.11 32.36 27 Irrigated Crop 

Guiji 116.62 32.78 23 Irrigated Crop 

Xiaji 116.54 32.65 25 Rainfed Crop 

Shuangfu 115.57 33.34 37 Rainfed Crop 

Fentai 115.73 33.45 35 Rainfed Crop 

Santang 115.83 33.31 32 Rainfed Crop 

Lixin 116.21 33.14 28 Rainfed Crop 

Jieshou 115.36 33.27 42 Rainfed Crop 

Yangqiao 115.39 33.02 28 Rainfed Crop 

Guangwu 115.33 33.37 42 Rainfed Crop 

Huangling 115.13 33.04 37 Rainfed Crop 

Quanyang 115.44 33.11 35 Rainfed Crop 

Kanheliu 115.85 33.10 33 Rainfed Crop 

Kouziji 116.09 32.84 26 Rainfed Crop 

Sanshilipu 116.11 32.70 27 Rainfed Crop 

Xiaqiao 116.38 32.64 26 Rainfed Crop 

Hengpaitou 116.36 31.59 72 Woodland 

Xianghongdianxia 116.18 31.58 116 Woodland 

Wangchenggang 116.53 31.74 76 Irrigated Crop 

Lumiao 115.80 34.00 39 Rainfed Crop 

Dasi 115.87 33.80 42 Rainfed Crop 

Youhe 115.79 33.63 38 Rainfed Crop 

Huagou 116.06 33.51 33 Rainfed Crop 

Dahu 116.35 33.52 31 Rainfed Crop 

Chenqiao 116.56 33.09 25 Rainfed Crop 

Heliu 116.97 33.03 25 Rainfed Crop 

Linhuanzha 116.57 33.67 29 Rainfed Crop 

Guzhenzha 117.33 33.30 18 Rainfed Crop 

Wudaogou 117.34 33.16 21 Rainfed Crop 

Hexiangzha 117.18 33.00 18 Rainfed Crop 

Tancheng 116.56 33.44 29 Rainfed Crop 

Xibakou 117.87 33.15 11 Rainfed Crop 

Xulouzha 116.75 33.92 30 Rainfed Crop 

Suxianzha 117.08 33.67 28 Rainfed Crop 

Gukouzha 116.45 34.27 39 Rainfed Crop 
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Kuaitanggou 117.55 33.75 20 Rainfed Crop 

Yanglou 116.78 34.32 39 Rainfed Crop 

Langanji 117.23 33.93 25 Rainfed Crop 

Dulou 116.85 34.20 37 Rainfed Crop 

Xiangyang 117.58 33.47 24 Rainfed Crop 

Shuangdui 116.90 33.42 25 Rainfed Crop 

Shuoli 116.90 34.03 32 Rainfed Crop 

Huangmiao 117.65 33.08 19 Rainfed Crop 

Baoji 117.11 33.16 22 Rainfed Crop 

Dinghouying 117.34 33.46 24 Rainfed Crop 

Xuanmiao 116.27 34.52 54 Rainfed Crop 

Longhai 116.35 34.40 45 Rainfed Crop 

Zhangzhuangzhai 116.60 34.12 37 Rainfed Crop 

Sixian 117.92 33.43 16 Rainfed Crop 

Dazhuang 117.87 33.67 20 Rainfed Crop 

3. It is also not indicated how each satellite-based soil moisture (at multiple depths) and 

RZSM 'with different spatiotemporal resolutions were aggregated (again, spatially 

and temporally) to come up with the sets of time series that require consistent 

temporal scales between them. The method used for spatial aggregation of the 

gridded-RZSM also needs to be manifested (i.e., methods). 

Response: The following text (section 3.3 RZSM products aggregation and validation 

strategies) will be added in chapter 3 Methods. 

“In terms of the temporal resolution, except for the RZSM products (e.g., GLDAS_CLSM, 

SMOS L4) provided at daily time intervals, the other sub-daily RZSM datasets (hourly/3-

hourly/6-hourly time steps, shown in Table 1) are aggregated to daily average values to 

match the daily sampling frequency of the in situ observations. In terms of spatial resolution, 

we didn’t change the spatial resolution of any RZSM products and used the RZSM time 

series for each grid where the in situ stations are located. Two validation strategies were 

used in the study. The first is to compare the RZSM time series averaged over all in situ 

stations with the RZSM time series averaged over all model grids where the in situ stations 

are located (Fig.2 and 3 shown in this study). The second one is the point-grid validation, 

the RZSM measurements at each in situ station are compared directly with the RZSM 

values for the grid where the in situ station is located, if there is more than one in situ station 

within a grid, the RZSM measurements at each station are compared to the grid values 

separately. The point-grid validation is provided in the supplement (Fig. S1 and S2).” 

As this is site-specific, it sounds even less convincing that CLSM-derived soil moisture 

products outperform, and thus it gets more confusing what the authors want to argue from 

the RZSM products comparison.  

Response: On the one hand, we want to evaluate the performance of eight RZSM 

products in the agricultural crop area, which could provide a more accurate RZSM dataset 
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for agricultural drought monitoring. The results show that GLDAS_CLSM outperforms 

the other RZSM products. However, it doesn’t mean CLSM-derived soil moisture 

outperforms, because SMAP L4 and MERRA-2 also use CLSM. More importantly, the 

focus of this study is to investigate the uncertainty in different RZSM products caused by 

potential factors, which could provide some insights into how to improve the ability of 

land surface models to simulate the land surface states and fluxes. 

4. There is significant inconsistency (due to the randomness in estimating RZSM from 

the remote sensing data) between RZSM estimation methods. For example, the 

authors tried to estimate RZSM using a depth-weighted method, but equation 1 used 

for in-situ RZSM is different from equation 2, which was used for RZSM estimation 

from satellite-derived modeled soil moisture.  

Response: The in situ soil moisture measurements are available at four depths (10, 20, 40 

and 100 cm). However, in addition to the GLDAS_CLSM, MERRA-2, SMAP L4 and 

SMOS L4, which directly provide the 0-100 cm RZSM, the other model-based soil 

moisture datasets are provided in different soil layers, i.e., NCEP CFSv2, CLDAS and 

GLDAS_NOAH (𝜃଴ିଵ଴ ௖௠, 𝜃ଵ଴ିସ଴ ௖௠, 𝜃ସ଴ିଵ଴଴ ௖௠), ERA5 (𝜃଴ି଻ ௖௠, 𝜃଻ିଶ଼ ௖௠, 

𝜃ଶ଼ିଵ଴଴ ௖௠). The in situ measurements are for each soil depth, but the model-based 

RZSM products are for each soil layer. They are not consistent. Therefore, the study uses 

two different equations to calculate the 0-100 cm RZSM. The in situ RZSM is calculated 

using a depth-weighted mean of the measurements at four soil depths (10, 20, 40 and 100 

cm). The equation 1 was used in the studies by Gao et al. (2017) and Xing et al. (2021). 

The model-based RZSM is calculated with a weighted average soil moisture at different 

layers is calculated based on equation 2, which was used in the study by González-

Zamora et al. (2016) and Xing et al. (2021) and calculation of SMOS L4 RZSM (Al Bitar 

et al., 2021). 

-Specific comments: 

line 39-40: is this sentence needed? 

Response: We have deleted this sentence in the revised manuscript. 

line 42: duplicate definition of RZSM? 

Response: We have deleted this sentence in the revised manuscript. 

line 99-100: by this sentence, do you intend not to include any process-based explanation for 

the soil moisture products? What about attempting to explain the performance differences 

found among the RZSM products (as this is essentially modeled data) in relation to model 

structure? Why does CLSM outperform other land models in terms of RZSM products?  

Response: This study attempts to investigate the error sources of RZSM products without 

considering the model structure. While only evaluating the atmospheric forcing, soil texture, 

and local conditions, we analyze the effects of these error sources on RZSM estimation from 
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the perspective of physical processes. For example, overestimated precipitation tends to lead 

to overestimated water-related states (soil moisture) or fluxes (runoff). The clay exhibits 

stronger water retention capacity compared to sand at the same matric potential, and high soil 

organic carbon leads to high soil porosity. Therefore, the overestimated clay fraction and soil 

organic carbon lead to higher water stored in the soil. In addition, different land surface 

models are used to produce different RZSM products. For example, ERA5 (HTESSEL), 

MERRA-2 (CLSM), NCEP CFSv2 (Noah), GLDAS_NOAH (Noah), GLDAS_CLSM 

(CLSM), CLDAS (CLM, CoLM, Noah-MP), SMAP L4 (CLSM), SMOS L4 (exponential 

filter, not land surface model). Even the same CLSM land surface model is used for both 

MERRA-2 and SMAP L4, but the model version is a bit different. Therefore, it is difficult to 

directly quantify the effect of model structure on RZSM. For example, regarding the water 

and energy balance represented in different LSMs, the partitioning of net radiative energy into 

latent heat flux, sensible heat flux and ground heat fluxes, and the partitioning the 

precipitation into interception, evaporation, runoff and infiltration in the land surface as well 

as the transfer and exchange of water, heat in the vadose zone vary considerably (Chen et al., 

2013; Xia et al., 2014; Reichle et al., 2017a; Zheng et al., 2022). For instance, different LSMs 

simulate different vertical levels for soil moisture and temperature. NOAH LSM, HTESSEL 

and CLM have 4-, 4- and 10-layers vertical levels for soil moisture and temperature, 

respectively (Oleson et al., 2004; Rui et al., 2021a). CLSM doesn’t have explicit vertical 

levels for soil moisture which is represented in surface layer (0-2 cm) and root zone layer (0-

100 cm) but has six layers for soil temperature (Rui et al., 2021a). In addition, the 

fundamental land surface element in CLSM is hydrological catchment, the adjacent 

catchments are deemed as independent of each other and have no fluxes exchange (Koster et 

al., 2000; Reichle and Koster, 2003). However, the computational unit of CLM is grid cell, 

where three nested grid levels are included for representing the spatial heterogeneity of land 

surface (Oleson et al., 2004). NOAH LSM describes the incomplete hydrological cycle 

process at the grid scale, and it neglects the heterogeneity of soil in a single grid cell, which 

has great effect on infiltration, then affect the generation and convergence of runoff (Wang 

and Chen, 2013). HETSSEL also calculates the water and energy balance at the grid cell and 

does not account for lateral exchange of soil water between adjacent grid cell. Regarding the 

surface runoff parameterization scheme, the CLM adopts a conceptual form of original 

TOPMODEL to configure the runoff parameters. On the condition that the top soil layer is 

impermeable, the runoff is calculated through saturated and unsaturated fractions combined 

with the sum of the melt water from snowpack and liquid precipitation falling to the land 

surface (Oleson et al., 2004). A Simple Water Balance (SWB) model is used to parameterize 

surface runoff in the NOAH LSM, where the surface runoff is obtained from precipitation 

minus the maximum infiltration. Meanwhile, the process of runoff generation is considered 

only in the vertical direction in the SWB model. In fact, the range of runoff generation area is 

variational in the horizontal direction during the precipitation occurs (Wang et al., 2016). 

Therefore, the inaccurate infiltration and runoff generation scheme lead to the uncertainty of 

model-generated RZSM. HTESSEL also adopts water balance equation to calculate surface 

runoff by precipitation plus snowmelt and minus maximum infiltration. Compared with the 

SWB used in NOAH LSM, an additional snowmelt item was considered in that of HTESSEL. 

In addition, different maximum infiltration schemes were adopted in HTESSEL and NOAH 
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LSM, respectively. Unlike the traditional, layer-based models, the catchment-based LSM 

takes definitely the control of topography on the spatial variability of soil water and its effect 

on evaporation and runoff into account. In each catchment, CLSM incorporates different 

parameterization schemes describing the energy budget processes in specific hydrological 

regimes into each hydrological catchment model depicting the redistribution of water based 

on topography, which results in reliable estimates of evaporation and runoff (Ducharne et al., 

2000; Koster et al., 2000). In this study, the GLDAS_CLSM RZSM product outperforms 

other model-based RZSM products, but this doesn't mean that CLSM outperforms other land 

surface models. The accuracy of RZSM also depends on the meteorological forcing. 

Chapter 2.4: the information on the spatial and temporal resolution of each data needs to be 

revisited and clearly indicated. 

Response: To provide a concise and clear description of datasets, the information about the 

spatial and temporal resolution of eight RZSM products is shown in Table 1. 

Chapter 3.2: why did you estimate satellite-derived RZSM different from in-situ RZSM? Why 

equation 1 and 2 are different? How convincing are the RZSM comparisons based on 

equation 1 and 2? 

Response: The in situ soil moisture measurements are available at four depths (10, 20, 40 

and 100 cm). However, in addition to the GLDAS_CLSM, MERRA-2, SMAP L4 and SMOS 

L4, which directly provide the 0-100 cm RZSM, the other model-based soil moisture datasets 

are provided in different soil layers, i.e., NCEP CFSv2, CLDAS and GLDAS_NOAH 

(𝜃଴ିଵ଴ ௖௠, 𝜃ଵ଴ିସ  ௖௠, 𝜃ସ଴ିଵ  ௖௠), ERA5 (𝜃଴ି଻ ௖௠, 𝜃଻ିଶ଼ ௖௠, 𝜃ଶ଼ିଵ଴  ௖௠). The in situ 

measurements are for each soil depth, but the model-based RZSM products are for each soil 

layer. They are not consistent. Therefore, the study uses two different equations to calculate 

the 0-100 cm RZSM. The in situ RZSM is calculated using a depth-weighted mean of the 

measurements at four soil depths (10, 20, 40 and 100 cm). The equation 1 was used in the 

studies by Gao et al. (2017) and Xing et al. (2021). The model-based RZSM is calculated with 

a weighted average soil moisture at different layers is calculated based on equation 2, which 

was used in the study by González-Zamora et al. (2016) and Xing et al. (2021) and 

calculation of SMOS L4 RZSM (Al Bitar et al., 2021). 

line 293: instead of averaging all in-situ stations, can you think of disaggregating the study 

basin (and stations) using any available information such as surface soil properties, orography 

(e.g., slope, and elevation), land cover, and/or vegetation? That will help the readers get more 

generalizable information and references. 

Response: It is a very good and useful suggestion. However, this study pays more attention to 

the overall soil moisture dynamic measured at 58 stations in croplands rather than a specific 

station. The underlying surface conditions (e.g. surface soil properties, orography, land cover 

and vegetation) is considered as homogeneous. 56 of 58 in situ stations are located in crop 

lands of the Huaibei Plain, and the elevation is quite similar (Table S1). The lime concretion 

black soil is the dominant soil type in the Huaibei plain. In future study, we will attempt to 
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investigate the effect of different underlying surface conditions (vegetation types, etc.) on soil 

moisture estimations for specific station.  

line 306-309: This needs to be rephrased. It is hard to understand what is meant. 

Response: The text (line 306-309) will be rephrased from “Figure 3 shows time series of in 

situ RZSM observations averaged over all in situ stations with its spatial variability, and of 3 

RZSM products, ERA5, SMOS L4, and GLDAS_CLSM, presenting a marked 

overestimation, a marked underestimation, and the best overall agreement with in situ 

observations, respectively. Other products can be seen in Fig. S1.”  

To “Figure 3 shows the time series of observation- and model-based RZSM averaged over all 

in situ stations and the grids where the in situ stations are located. ERA5, SMOS L4, and 

GLDAS_CLSM show the highest overestimation, the lowest underestimation, and the best 

overall agreement with in situ observations, respectively”. 

The revised Figure 3 is shown below. 

 

Fig. 3 Time series of RZSM (0-100 cm) products and in situ soil moisture observations 

averaged across all in situ stations from 1 April 2015 to 31 March 31 2020. The dark line and 

the gray-shaded areas represent the mean and standard deviation of in situ stations 

observations. Colored lines represent different RZSM products. Daily precipitation is 

represented by the orange vertical bars. 

line 311: can you explain why SMOS L4 showed less rapid changes and smoother trends? 

Response: It is well known that the SSM shows a faster response to atmospheric variations 

than RZSM, especially for precipitation. Therefore, RZSM shows less rapid changes and 

smoother trends than SSM, which shows a strong variability. On the one hand, SMOS L4 

RZSM is estimated from SMOS L3 SSM together with a modified exponential filter with 
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different parameter T (characteristic time length) proposed by Wagner et al. (1999). The 

exponential filter can smooth the trend of SSM, the higher the T value, the smoother the trend 

of RZSM. Most importantly, precipitation with high spatial and temporal variability is the 

main forcing input of other model-based RZSM products, which show rapid changes and 

strong response to precipitation. However, precipitation is not used in producing SMOS L4 

RZSM. Therefore, SMOS L4 RZSM doesn’t respond well to precipitation, and shows less 

rapid changes and smoother trends. 

line 321: can you explain why they did a better job in the wet season compared to the dry 

season? 

Response: In the Huai river basin, more than 60 % of the annual precipitation falls between 

June and September (wet season), which significantly affects the temporal dynamics of 

RZSM. The model-based RZSM products generally perform better in the wet season than in 

the dry season due to the enhanced ability to capture of the temporal dynamics of in situ 

observations in the wet season and the inertia of remaining high soil moisture values even in 

the dry season. Generally speaking, the model-based RZSM products show a strong response 

to precipitation events during the wet season. The temporal dynamics of the model-based 

RZSM products are in good agreement with RZSM observations. However, the RZSM 

observations show stronger variability in the dry season than the model-based RZSM datasets, 

which remain almost unchanged and don’t reproduce the temporal dynamics of in situ 

observations well. This indicates that the land surface models are more sensitive to 

precipitation events to no precipitation events and show better skill in simulating RZSM when 

precipitation events occur. For SMOS L4 RZSM, which performs better in the dry season 

than in the wet season. This may be due to the fact that SMOS L4 RZSM doesn’t contain 

precipitation information, but integrates the ground microwave radiation information captured 

by SMOS passive radiometers, which is propagated to SMOS L4 RZSM products through 

SMOS L3 SSM. During the wet season, the signal intensity of the ground microwave 

radiation obtained by SMOS sensor is attenuated by a substantial increase in water vapor 

absorption and scattering, leading to the distortion of SMOS L3 SSM retrieval. During the dry 

season, the physical shape of soil is less disturbed due to less precipitation, and the ground 

microwave radiation signal is less disturbed by a small amount of water vapor. SMOS sensor 

can receive the microwave radiation signal that is closer to the actual radiation strength, and 

retrieve the more accurate soil moisture state. Therefore, SMOS L4 RZSM performs better in 

the dry season than in the wet season. 

line 360: can you explain why individual satellite-based RZSM products showed different 

probabilistic distributions? Some are log-normal and the others are normal. Can you add more 

explanation on this matter? 

Response: The peak of the relative frequency for model-based RZSM products ranges from 

0.3 to 0.6. RZSM products with log-normal distribution show that low values dominate the 

RZSM time series, which could be caused by low precipitation. The precipitation field 

derived from the atmospheric general circulation model (AGCM) generally has too many 

drizzle events (<1 mm day-1). The modeled RZSM is affected by meteorological forcing, 
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model structure and parameterization, etc. The RZSM estimates are subject to random error 

and systematic bias, and it is difficult to directly quantify which factor affects the probability 

distributions of different RZSM products. And it is beyond the scope of this study. 

line 375: how does this ground-based observation of precipitation (840 mm/year) represent 

the average precipitation of the basin area? You also compared gridded-precipitation with this 

in-situ precipitation observation (line 430). Can you clarify how solid the comparison of this 

in-situ precipitation with gridded precipitation is? 

Response: In this study, the ground-based precipitation observation doesn't represent the 

average precipitation of the watershed area. We only compare the ground-based precipitation 

observations at each in situ station with the modeled precipitation values of the grid where the 

in situ station is located. 

line 432: do you think MERRA-2 and GLDAS-CLSM would outperform other satellite-

derived RZSM in other basins (or area) as well? What if you perform a continental-scale 

study, will you still think there will be a certain winner? If not, how can you limit the scale of 

this sort of comparison study to be meaningful and convincing?   

Response: In this study, MERRA-2 and GLDAS-CLSM outperform other model-based 

RZSM products in the Huaibei Plain, where cropland dominates. It is uncertain whether 

MERRA-2 and GLDAS-CLSM would still outperform other products if this study were 

conducted in other basins (areas) or on a continental scale. Because the accuracy of RZSM 

simulated by land surface model dependent on many factors, such as the local climate 

conditions and underlying surface conditions. The accuracy of precipitation derived from the 

atmospheric general circulation model vary considerably across different regions. For 

example, these large-scale atmospheric processes over the extra-tropics are better resolved in 

the AGCM than convective processes over the tropics. It is a study for specific underlying 

surface conditions (agricultural crop region), the evaluation of eight RZSM products in the 

agricultural crop region could provide a more accurate RZSM dataset for agricultural drought 

monitoring. More importantly, the focus of this study is to investigate the sources of error of 

the different RZSM products, which could provide some insights to improve the ability of 

land surface models to simulate the land surface states and fluxes. 

line 436-438: the sentences need to be re-structured to clarify the argument. 

Response: The text (line 436-438) will be rephrased from “The MERRA-2 model background 

precipitation corrected with NOAA CPCU gauge-based precipitation observations was 

implemented in the coupled land-atmosphere reanalysis system, which may also contribute to 

the high consistency with the ground-based precipitation”  

To “Before driving the land surface water budget, the MERRA-2 model background 

precipitation was corrected with NOAA CPCU gauge-based precipitation in the coupled land-

atmosphere reanalysis system. This correction leads to more accurate precipitation fields for 

MERRA-2”. 
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line 453: in-situ RZSM observation does not capture irrigation effect? Can you explain how 

the irrigation water supply does not impact the soil moisture content? 

Response: We didn’t express it clearly. The original meaning of this sentence is that the in 

situ station does not capture the irrigation signal. Because the in situ stations are usually 

installed away from the cropland to avoid the effect of anthropogenic irrigation on the 

original soil water content supplied by precipitation. In addition, reviewer2 and reviewer3 

also raise question about question. The overall comments from three reviewers indicate that 

the irrigation is not an issue in this paper, and should not be emphasized. We will delete 

relevant statements about irrigation. 

line 485-489: can you add more information on how the soil properties could end up in 

certain ranges of soil moisture values? 

Response: The text (line 485-489) will be replaced by 

“For a given soil profile, porosity decreases with depth and clay content increases with depth, 

resulting in a decrease in hydraulic conductivity. Expansive montmorillonite clay minerals are 

the main constituents of the lower black soil layer, giving the soil strong expansion and 

contraction and a high dry bulk density. During dry periods, cracks in the soil column widen 

and deepen, resulting in capillary breakage. This makes it difficult for groundwater and 

RZSM to recharge crops, even though the groundwater is shallow. In addition, the increased 

cracks in the soil column exacerbates the evaporation of soil moisture in the root zone, 

ultimately leading to frequent droughts. During wet periods, when precipitation or irrigation 

occurs, soil particles absorb water and swell, closing the cracks and preventing water 

infiltration. Water is then lost mainly in the form of surface runoff. The crops are prone to 

waterlogging disasters. This could explain the lower RZSM values ranging from 0.2 to 0.3 m3 

m-3 observed in the Huaibei plain and the higher RZSM values ranging from 0.3 to 0.4 m3 m-3 

observed in Jiangsu. The larger amount of precipitation in Jiangsu could be another possible 

reason.” 

Reference: 

Al Bitar, A., Mahmoodi, A., Kerr, Y., Rodriguez-Fernandez, N., Parrens, M. and Tarot, S.: Global 

Assessment of Droughts in the Last Decade from SMOS Root Zone Soil Moisture, 2021 IEEE 

International Geoscience and Remote Sensing Symposium (IGARSS), 8628-8631, 

https://doi.org/10.1109/igarss47720.2021.9554773, 2021. 

Gao, X., Zhao, X., Brocca, L., Huo, G., Lv, T. and Wu, P., . Depth scaling of soil moisture content from 

surface to profile: multistation testing of observation operators, Hydrol. Earth Syst. Sci.,1–25, 

https://doi.org/10.5194/hess-2017-292, 2017. 

González-Zamora, Á., Sánchez, N., Martínez-Fernández, J. and Wagner, W.: Root-zone plant available 

water estimation using the SMOS-derived soil water index, Adv. Water Resour., 96, 339–353, 

https://doi.org/10.1016/j.advwatres.2016.08.001, 2016. 

Wagner, W., Lemoine, G. and Rott, H.: A Method for Estimating Soil Moisture from ERS Scatterometer 

and Soil Data, Remote Sens. Environ., 70, 191-207, https://doi.org/10.1016/s0034-4257(99)00036-
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x, 1999. 

Xing, Z., Fan, L., Zhao, L., De Lannoy, G., Frappart, F., Peng, J., Li, X., Zeng, J., Al-Yaari, A., Yang, K., 

Zhao, T., Shi, J., Wang, M., Liu, X., Hu, G., Xiao, Y., Du, E., Li, R., Qiao, Y., Shi, J., Wen, J., Ma, 

M. and Wigneron, J.-P.: A first assessment of satellite and reanalysis estimates of surface and root-

zone soil moisture over the permafrost region of Qinghai-Tibet Plateau, Remote Sens. Environ., 265, 

112666, https://doi.org/10.1016/j.rse.2021.112666, 2021. 
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Response to Reviewer #2’s comments on the manuscript egusphere-2023-1597  

RC2: ‘Comment on egusphere-2023-1597’, Anonymous Referee #2, 10 Nov 2023 

This paper presents a study on the evaluation of different global root zone soil moisture products 

and local observations for the Huai River Basin in China. The authors present detailed 

information on the local conditions, and the different gridded products used. They 

comprehensively compare the different products with each other and with the observations. 

Also, the authors provide a discussion on the potential reasons for the differences found. In 

general, it is an interesting study with a lot of analyses and clear visualization of the results. 

Nevertheless, I have a few comments that must be addressed before the manuscript can be 

published. 

The authors thank the Reviewer #2 for her/his constructive and insightful comments that help 

us improve the quality of the manuscript. The original comments from Reviewer #2 are in 

black font, and our responses are in blue font. 

General comments: 

The influence of land cover, vegetation and root representation: 

The authors clearly discuss potential reasons for the mismatch between in situ RZSM 

observations and the global products, such as forcing data and soil texture maps. Also, shortly 

‘different model structures and parameterizations’ (L89) are mentioned as potential cause for 

differences. I do think there is one more very important aspect that is missed here: the role of 

land cover and vegetation, vegetation roots, and soil evaporation and transpiration model 

representation. Vegetation is usually represented by land cover maps (that are usually prescribed 

similar to soil maps), which can be very different for the different models. Other relevant 

vegetation model properties could be Leaf Area Index (see for example Nogueira et al., 2020) 

or the root parameterization (e.g. Stevens et al., 2020 and Van Oorschot et al., 2021). 

Furthermore, transpiration of crops is very dependent on the growing season, which might be 

not represented by the global products. I think these issues should be specifically addressed in 

the introduction and discussion of the results. 

Response: Thank you for rigorous consideration. We do agree with your idea. We will mention 

these issues in the introduction and discussion.  

The following text will be added in the introduction. 

The text (Line 88-89) will be replaced by  

“Finally, the accuracy of soil moisture simulations is also affected by inadequate model 

structures and imperfect parameterization schemes, especially for the representation of 

vegetation in LSMs, such as the land cover and vegetation canopy and root tissues 

parameterizations (Nogueira et al., 2020; Stevens et al., 2020; van Oorschot et al., 2021), soil 

evaporation and transpiration model representation (Lian et al., 2018; Dong et al., 2022; Feng 

et al., 2023). Vegetation is usually represented by land cover maps (that are usually prescribed 

similar to soil maps), which can be very different for the different models and exhibits large 

uncertainties in simulating the water and energy exchange between land surface and atmosphere. 
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For example, Nogueira et al. (2020) found that the misrepresentation of the vegetation coverage 

results in a cold bias in land surface temperature during summer, they proposed an improved 

representation of vegetation with an update of the LAI and high- and low- vegetation fractions, 

types and density, which effectively reduces the cold bias. van Oorschot et al. (2021) proposed 

a climate-controlled root zone storage capacity by calculating a time-varying total soil depth 

based on a moisture depth model instead of using a constant of 2.84 m in the original HTESSEL 

LSM, which improved the water flux simulations. Dong et al. (2022) demonstrated that the 

inaccurate partitioning of evapotranspiration into soil evaporation and vegetation canopy 

transpiration results in warm bias in air temperature due to the inadequate utilization of RZSM 

for transpiration, which results in the underestimated ration of transpiration to 

evapotranspiration.” 

The following text will be added in the “section 5.3 what is the impact of vegetation 

representation in LSMs”. 

“Vegetation also plays a crucial role in the exchange of water, energy and carbon between the 

land surface and the atmosphere, which has significant effect on the simulation of soil moisture 

by LSMs. First, the land cover map describes the distribution and fractions of different land use 

types, which have different impact on the partitioning of net solar radiation into ground heat, 

sensible and latent heat fluxes, and the partitioning of precipitation into canopy interception, 

runoff and infiltration. The land cover maps employed in the LSMs are different. For example, 

GLDAS_NOAH uses the modified IGBP MODIS (Moderate Resolution Imaging 

Spectroradiometer) 20-category vegetation classification, and GLDAS_CLSM uses the 

University of Maryland (UMD) land cover classification based on AVHRR (Advanced Very 

High Resolution Radiometer) land cover map (Rui et al., 2021) and MERRA-2 and HTESSEL 

both use the global land cover characteristics database, version 2.0 (Reichle et al., 2017). 

Second, the parameterization for vegetation canopy (e.g., leaf area index, bare soil fraction, 

high- and low-vegetation fraction, type and density, Nogueira et al. (2020)) and root tissues 

(root distribution, rooting depth, root density and root zone water storage, Gao et al. (2014), 

Stevens et al. (2020) and van Oorschot et al. (2021)) varies considerably across different LSMs. 

These parameterization schemes show substantial impact on the transport of water from the 

land surface to the atmosphere through root water uptake constrained by root related parameters 

and canopy transpiration adjusted by stomatal aperture and water stress conditions, and fix the 

carbon dioxide from the atmosphere to the land surface through the photosynthesis related to 

vegetation canopy types. Therefore, it is difficult to consistently and accurately depict the 

dynamic evolution of vegetation for different LSMs. The discrepancy in land cover types, 

vegetation canopy and root parameterizations between different land cover maps not only 

affects the exchange of water, carbon and energy between land surface and atmosphere at the 

local scale, but also affects the water and carbon cycle, and energy balance at the terrestrial and 

global scales. Moreover, the inaccurate partitioning of the total terrestrial evapotranspiration 

into soil evaporation, canopy interception and vegetation transpiration also affects the exchange 

of water and energy between the land surface and the atmosphere. Generally speaking, the ratio 

of transpiration to the total terrestrial evapotranspiration is underestimated compared to the 

observations in most earth system models (ESMs) (Feng et al., 2023). This phenomenon could 

be related to the excessive reliance on the surface soil moisture and canopy-intercepted water 
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storage rather than the adequate utilization of RZSM for transpiration, which leads to the 

overestimated sensible heat flux as well as the overestimated air temperature (Dong et al., 2022), 

or the unreliable representation of canopy light use, interception loss and root water uptake 

processes in the ESMs (Lian et al., 2018). In different LSMs, the process representing the 

partitioning of the total terrestrial evapotranspiration into different components differs from 

each other. For example, GLDAS_CLSM shows the higher fraction of soil evaporation, while 

GLDAS_NOAH shows the higher fraction of transpiration over the Huai River Basin (Feng et 

al., 2023). In general, soil evaporation is mainly controlled by surface soil moisture, while the 

transpiration is controlled by the available water in the root zone. Therefore, the soil 

evaporation fraction is inversely proportional to leaf area index, while the transpiration fraction 

is proportional to leaf area index. The difference in the fractions of evapotranspiration 

components between GLDAS_CLSM and GLDAS_NOAH could be related to the model 

parameterization associated with sol evaporation and transpiration. Furthermore, the 

transpiration of crops is highly dependent on the growing season, which might be not well 

represented in the LSMs.” 

Introduction 

L49-67: I think this paragraph is intended to describe the state-of-the-art of global surface soil 

moisture, and root zone soil moisture products. The authors mention many long names of 

different products, which shows the detailed literature review done for this study. However, for 

the reader it would be more clear if the paragraphs gives a more general overview, rather than 

all the specific products, by answering questions such as: Why do we only have SSM direct 

retrievals, and not RZSM? What is available for global RZSM? How are the RZSM products 

generated in general? 

Response: The text L49-67 will be rephrased from “Recent satellite soil moisture…exponential 

filter model (Albergel et al., 2008; Al Bitar and Mahmoodi, 2020).” 

To “Recently, microwave-based satellite missions provide global soil moisture retrievals with 

approximately 3-day temporal resolution, but are limited to the top few centimeters (0-5 cm for 

L-band) due to the limitations of microwave penetration depth (Kerr et al., 2001; Reichle et al., 

2017b). Therefore, various approaches have been developed to estimate the RZSM and are 

roughly divided into three categories (Liu et al., 2023), including, (1) statistics-based methods, 

such as linear regression (Zhang et al., 2017) and cumulative distribution function (Gao et al., 

2019), (2) data-driven machine learning methods, such as rand forest (Carranza et al., 2021) 

and artificial neural network (Kornelsen et al., 2014), (3) physically based methods, such as 

data assimilation of satellite-derived observations into LSMs (Albergel et al., 2017; Bonan et 

al., 2020). Among them, the assimilation of satellite-derived observations into LSMs is 

considered as the most accurate method to estimate RZM due to the explicit physical 

mechanism, while requiring large amounts of input data (precipitation, air temperature, 

radiation, etc.). To date, several RZSM products have been developed for broader global-scale 

applications, such as the Global Land Data Assimilation System (GLDAS_NOAH and 

GLDAS_CLSM) (Rodell et al., 2004), the China Land Data Assimilation System (CLDAS) 

(Shi et al., 2014) and the Soil Moisture Active Passive (SMAP) Level 4 (L4) (Reichle et al., 

2012; Reichle et al., 2017a), the European Centre for Medium-Range Weather Forecasts 

(ECMWF) fifth generation reanalysis (ERA5) (Hersbach et al., 2020), the Modern-Era 
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Retrospective Analysis for Research and Applications version 2 (MERRA-2) (Gelaro et al., 

2017), and the National Centers for Environmental Prediction Climate Forecast System version 

2 (NCEP CFSv2) (Saha et al., 2014). These RZSM products are generated by combining LSMs 

driven by meteorological forcing fields from atmospheric general circulation model (AGCM) 

and satellite-derived data using different data assimilation techniques (Calvet and Noilhan, 

2000; Rodell et al., 2004). In addition, the Soil Moisture and Ocean Salinity (SMOS) Centre 

Aval de Traitement des Données (CATDS) provides SMOS L4 RZSM products, which are 

derived from SMOS Level 3 (L3) 3-day SSM retrievals using a statistical exponential filter 

model (Albergel et al., 2008; Al Bitar and Mahmoodi, 2020).” 

L76-94: I think this should go before L68-75. 

Response: Line 76-94 has been moved before Line 68-95 in the revised manuscript. 

Scale issue: 

The authors mention that the scale mismatch is a relevant aspect for the differences between 

RZSM observed in this study (L75 and Sect. 5.4). However, it is not clear from the methodology 

how the gridded products are aggregated to match the in situ measurements, and how the scale 

of the different products compare to the size of the HRB selected area. Moreover, how 

heterogeneous is the selected area in terms of precipitation, temperature, vegetation, and soil 

moisture observations? Since the results are mostly based on averages of the area, does the 

heterogeneity play a role? 

Response: The following text (section 3.3 RZSM products aggregation and validation strategies) 

will be added in chapter 3 Methods. 

“In terms of the temporal resolution, except for the RZSM products (e.g., GLDAS_CLSM, 

SMOS L4) provided at daily time intervals, the other sub-daily RZSM datasets (hourly/3-

hourly/6-hourly time steps, shown in Table 1) are aggregated to daily average values to match 

the daily sampling frequency of the in situ observations. In terms of spatial resolution, we didn’t 

change the spatial resolution of any RZSM products and used the RZSM time series for each 

grid where the in situ stations are located. Two validation strategies were used in the study. The 

first is to compare the RZSM time series averaged over all in situ stations with the RZSM time 

series averaged over all model grids where the in situ stations are located (Fig.2 and 3 shown 

in this study). The second one is the point-grid validation, the RZSM measurements at each in 

situ station are compared directly with the RZSM values for the grid where the in situ station 

is located, if there is more than one in situ station within a grid, the RZSM measurements at 

each station are compared to the grid values separately. The point-grid validation is provided 

in the supplement (Fig. S1 and S2).” 

According to the elevation and land cover map of the Huai River basin (Figure 1b-c) and the 

overview of in situ stations (see Table S1 below, we will add it in the supplement), most of the 

in situ stations are located in the Huaibei Plain, which is a major grain production area and has 

a relatively flat topography. Most of the in situ stations (56 of 58) are located in the cropland 

regions (see Table S1 below) and have quite similar topography (elevation and slope, etc.). In 

terms of soil properties, the lime concretion black soil is the dominant soil type in the Huaibei 

plain, which is shown in line 482. Since most of the stations in the Huaibei Plain are located in 
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a semi-humid region, which shares the similar meteorological conditions and topography. 

Therefore, we believe that soil properties, vegetation, precipitation and temperature are 

homogeneous among different in situ stations.  Moreover, the point-grid validation draws the 

same conclusion as the station-averaged validation. Therefore, the heterogeneity may have little 

effect on moisture.  

Table S1 Overview of in situ stations in the Huai River Basin 

Station Name 
Longitude 

(E) 
Latitude (N) Elevation (m) Land cover 

Taolaoba 117.16 32.18 48 Irrigated Crop 

Chahua 116.02 33.03 39 Rainfed Crop 

Hanting 116.32 33.02 28 Rainfed Crop 

Songji 115.27 32.82 39 Rainfed Crop 

Funan 115.57 32.64 33 Rainfed Crop 

Santa 115.70 32.81 33 Rainfed Crop 

Yaoli 116.17 31.82 58 Irrigated Crop 

Guanting 116.85 31.80 51 Irrigated Crop 

Zhuangmu 117.11 32.36 27 Irrigated Crop 

Guiji 116.62 32.78 23 Irrigated Crop 

Xiaji 116.54 32.65 25 Rainfed Crop 

Shuangfu 115.57 33.34 37 Rainfed Crop 

Fentai 115.73 33.45 35 Rainfed Crop 

Santang 115.83 33.31 32 Rainfed Crop 

Lixin 116.21 33.14 28 Rainfed Crop 

Jieshou 115.36 33.27 42 Rainfed Crop 

Yangqiao 115.39 33.02 28 Rainfed Crop 

Guangwu 115.33 33.37 42 Rainfed Crop 

Huangling 115.13 33.04 37 Rainfed Crop 

Quanyang 115.44 33.11 35 Rainfed Crop 

Kanheliu 115.85 33.10 33 Rainfed Crop 

Kouziji 116.09 32.84 26 Rainfed Crop 

Sanshilipu 116.11 32.70 27 Rainfed Crop 

Xiaqiao 116.38 32.64 26 Rainfed Crop 

Hengpaitou 116.36 31.59 72 Woodland 

Xianghongdianxia 116.18 31.58 116 Woodland 

Wangchenggang 116.53 31.74 76 Irrigated Crop 

Lumiao 115.80 34.00 39 Rainfed Crop 

Dasi 115.87 33.80 42 Rainfed Crop 

Youhe 115.79 33.63 38 Rainfed Crop 

Huagou 116.06 33.51 33 Rainfed Crop 

Dahu 116.35 33.52 31 Rainfed Crop 

Chenqiao 116.56 33.09 25 Rainfed Crop 

Heliu 116.97 33.03 25 Rainfed Crop 
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Linhuanzha 116.57 33.67 29 Rainfed Crop 

Guzhenzha 117.33 33.30 18 Rainfed Crop 

Wudaogou 117.34 33.16 21 Rainfed Crop 

Hexiangzha 117.18 33.00 18 Rainfed Crop 

Tancheng 116.56 33.44 29 Rainfed Crop 

Xibakou 117.87 33.15 11 Rainfed Crop 

Xulouzha 116.75 33.92 30 Rainfed Crop 

Suxianzha 117.08 33.67 28 Rainfed Crop 

Gukouzha 116.45 34.27 39 Rainfed Crop 

Kuaitanggou 117.55 33.75 20 Rainfed Crop 

Yanglou 116.78 34.32 39 Rainfed Crop 

Langanji 117.23 33.93 25 Rainfed Crop 

Dulou 116.85 34.20 37 Rainfed Crop 

Xiangyang 117.58 33.47 24 Rainfed Crop 

Shuangdui 116.90 33.42 25 Rainfed Crop 

Shuoli 116.90 34.03 32 Rainfed Crop 

Huangmiao 117.65 33.08 19 Rainfed Crop 

Baoji 117.11 33.16 22 Rainfed Crop 

Dinghouying 117.34 33.46 24 Rainfed Crop 

Xuanmiao 116.27 34.52 54 Rainfed Crop 

Longhai 116.35 34.40 45 Rainfed Crop 

Zhangzhuangzhai 116.60 34.12 37 Rainfed Crop 

Sixian 117.92 33.43 16 Rainfed Crop 

Dazhuang 117.87 33.67 20 Rainfed Crop 

 

Discussion: 

The authors explain potential causes for the mismatches between the satellite products and the 

observations by using specific analyses of the precipitation, temperature and soil type. Many 

performance metrics have been used throughout the analyses, but I think the use of these 

different metrics could be exploited more in the discussion. Different metrics represent different 

aspects of the timeseries, which could explain different processes. The authors could relate the 

causes in section 5.1 and 5.2 more specifically to the different metrics used. Here, also the 

vegetation/land cover aspect should be included as mentioned before. Lastly, how easily can 

we extrapolate these results to other regions? 

Response: The section 5.1 and 5.2 have been rephrased as suggested. We use the metrics more 

to explain different processes. 

Actually, caution is required when extrapolating these results to other regions. Firstly, the 

uncertainty of precipitation derived from the AGCM varies considerably across different 

regions. For example, the large-scale stratiform precipitation is better resolved than the small-

scale convective precipitation processes in the AGCM. Therefore, the precipitation simulation 

in the extratropical zone generally performs better than in the tropical zone, and performs better 

in winter than in summer (Beck et al., 2019; Lavers et al., 2022). In addition, the underlying 
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surface conditions (e.g., land cover, soil properties) are strongly dependent on the local climate 

conditions. Especially the high-vegetation regions, the parameterization for vegetation canopy 

and root is different with that for low vegetation, which affect the partitioning of rainfall into 

runoff and infiltration, and the local soil evaporation and transpiration. These differences further 

affect the near surface air temperature via land-atmosphere coupling, and finally affect the land 

surface states. Regarding the soil properties, there are no observed soil profiles incorporated 

into the global soil datasets (e.g., HWSD) for some regions, which will lead to the flawed soil 

hydraulic parameters and the inaccurate description of the vertical movement of water in the 

soil column. 

Irrigation 

The role of irrigation in this study is confusing, due to the following statements: 

- L119: ‘76% is irrigated’ 

- L135: ‘Stations are located in areas without irrigation’ 

- L562: ‘heavily irrigated HRB in China’ 

- L452: ‘a signature of irrigation’ 

- L573: ‘indirectly account for irrigation’ 

I understand that the entire HRB is heavily irrigated, but in this study we only look at the 

Huaibei Plain which has only rainfed crops as indicated in Fig. 1. It remains unclear to me 

which area is used for the gridded products, the entire HRB or only the Huaibai Plain? This is 

not entire clear from the methods. If it is the Huaibai plain (which would make more sense), 

then irrigation is not an issue in this paper, and should not be emphasized. 

Response: The Huaibei Plain is used for the gridded products in this study. According to the 

land cover map (Figure 1c), the Huaibei Plain has only the rainfed crops (e.g. winter wheat, 

corn, soybean, sorghum, sesame, etc.). The irrigated crops in this study mainly refer to rice 

fields. However, it should be noted that the Huaibei Plain still requires large amounts of 

irrigation, because the mean annual precipitation of 888 mm is less than mean annual 

evaporation demand (900-1500 mm). Therefore, the Huaibei Plain is prone to agricultural 

drought (Gou et al., 2022). Natural precipitation is the main source of water for the rainfed 

crops in the Huaibei Plain, supplemented by irrigation when there is no precipitation for a long 

time.  

We completely agree with the comment that the irrigation factor is irrelevant and should not be 

emphasized. We have deleted related statements about irrigation in the revised manuscript. 

L135, L452-453 and L573-574 are deleted. 

Specific comments: 

- L20,21: What are L4 and L3 here? 

Response: L4 and L3 refer to Level 4 and Level 3, respectively. We have replaced them with 

Level 4 (L4) and Level 3 (L3) in the revised manuscript. 

- L59: I think ERA5, MERRA2 and NCEP CFSv2 are not the only existing global products, it 

might be good to emphasize this with for example ‘amongst others’. 

Response: Agree. L49-67 has been reworded, refer to the response to Introduction.  
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- L75: etc. is not very scientific 

Response: “etc.” has been deleted. 

- L99: it is maybe not ‘difficult’, but ‘out of scope’ 

Response: L99-100 has been removed.  

- L113: Fig. 1 instead of Figure 1 

Response: Correction done. 

- Figure 1: There are two red lines in the figure, so the legend is not entirely clear 

Response: Figure 1 has been revised. 

 

Fig. 1 Overview of the study area and distribution and land cover of in situ soil moisture stations 

(green pentagon). The squares in Fig.1b and c represent 0.25° grid. 

- L144-145: performance metrics of P and T with respect to ground observations? This is not 

clear. 

Response: The text (L142-143) has been rephrased from “The dataset has been extensively 

validated and is of high quality.” 

To “The dataset has been extensively validated against ground observations and is of high 

quality.” 

- L200: ‘Saha and coauthors, 2011’ is not a valid reference 

Response: We have revised this reference, the “Saha and coauthors, 2011” was replaced by 
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“Saha et al. 2011”. 

- Chapter 2 Datasets: The authors use many different units for scale, for example 0.5°x0.5° 

(L137); 1:5 million (L150); 30x30 arcseconds (L163). It would be helpful for the reader to 

include for each scale metric a rough comparison to for instance kilometre to easily compare 

the resolution of the different products. 

Response: L137 has been replaced by “with a spatial resolution of 0.5° (approximately 55.6 

km)”.  

L150 has been replaced by “Soil databases used in many global LSMs have traditionally relied 

on the FAO/UNESCO 1:5 million scale World Soil Map with a spatial resolution of 5 arc 

minutes (approximately 10 km)”.  

L156 will be replaced by “with a resolution of 30 arcseconds (approximately 1 km)”.  

L163 will be replaced by “The dataset provides information on soil properties for eight layers 

(0-2.3 m) at a spatial resolution of 30×30 arcseconds (approximately 1 km)”. 

- Section 2.1 ‘The HRB study area’: for the reader the full name of HRB would be more clear 

Response: “The HRB study area” has been replaced by “The Huai River Basin study area”. 

- Section 2.3 and 2.4: the authors describe a lot of different products, but it is not directly clear 

from these sections what is actually used for this study. Both sections could be much more 

concise when only referring to the relevant information for this study. For example, it is not 

directly relevant that ERA5 ‘covers the period from January 1940 to present … ocean waves’ 

(L170). Table 1 gives a very concise overview, and could be valued more and referred to more 

often in the text. 

Response: The section 2.3 and 2.4 has been rephrased for a more concise and focused 

description in the revised manuscript. 

The following text has been added in “section 3.3 RZSM products aggregation and validation 

strategies”.  

“The global precipitation and air temperature forcing data are used in the production of model-

based RZSM products except for SMOS L4, which are validated against the China daily 

gridded ground precipitation and air temperature dataset V2.0 described in section 2.2. The soil 

properties data used in the eight RZSM products were all derived from the FAO/UNESCO soil 

map of World except for CLDAS, which used the soil data developed by Shangguan et al. 

(2013), and SMAP L4, which used the HWSD V1.2 soil properties over China. The China soil 

dataset developed by Shangguan et al. (2013) is used as a reference to evaluate the accuracy of 

FAO/UNESCO and HWSD V1.2 soil properties (clay and sand content, organic carbon content 

and bulk density).” 

- Table 1: a reference would be more informative than the ‘data access’ column 

Response: The data access has been replaced by the references. 
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Dataset 
Land 
surface 
model 

Time 
period 

resolution 
Soil 
map 

Soil layers References 

ERA5 
(Global) 

HTESS
EL 

January 
1979-
present 

Hourly 
/0.25° 

FAO 0-7 cm,  
7-28 cm, 
28-100 cm,  
100-289 cm 

Hersbach et al. 
(2020);  
Xu et al. (2021) 

MERRA-2 
V2.0 
(Global) 

CLSM January 
1980-
present 

Hourly 
/0.25°  

FAO 0-5 cm,  
0-100 cm 

Gelaro et al. 
(2017b);  
Reichle et al. 
(2017d) 

NCEP 
CFSv2 
V2.0 
(Global) 

Noah January 
2011-
present 

6-Hourly 
/0.20° 

FAO 0-10 cm,  
10-40 cm, 
40-100 cm,  
100-200 cm 

Qin et al. (20
17) 

GLDAS_N
OAH V2.1 
(Global) 

Noah January 
2000-
present 

3-Hourly 
/0.25° 

FAO 0-10 cm,  
10-40 cm, 
40-100 cm,  
100-200 cm 

Bi et al. (201
6);  
Xing et al. (2
021) 

GLDAS_C
LSM V2.2 
(Global) 

CLSM Februar
y  
2003-
present 

Daily 
/0.25° 

FAO 0-2 cm,  
0-100 cm 

Li et al. (201
9) 

CLDAS 
V2.0 
(Asia) 

CLM 
CoLM 
Noah-
MP 

January 
2008-
present 

Hourly 
/0.0625° 

Shuangg
uan et 
al. 
(2013) 
 

0-5 cm,  
0-10 cm, 
10-40 cm,  
40-100 cm, 
100-200 cm 

Chen and Yua
n (2020); Wan
g et al. (2021
a) 

SMAP 
Level 4 V5 
(Global) 

CLSM March  
2015-
present 

3-Hourly 
/9 km 

HWSD 
 

0-5 cm,  
0-100 cm 

Reichle et al. 
(2017a); Ma et
 al. (2019) 

SMOS 
Level 4 
V301 
(Global) 

Expone
ntial 
filter 
(no 
LSM) 

January  
2010-
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- Section 4.1: the first paragraph is not easily readable for the author due to all the numbers. 

All the numbers are also presented in Table 3, so it suffices to only mention the highly relevant 

numbers in the text here. Table 3 could also be combined with Fig. 2, same for Fig. 8 and Table 

4. 

Response: The first paragraph has been replaced by the following text:  

“Figure 2 shows scatterplots of RZSM products against the in situ measurements averaged 

across all in situ stations over the HRB, from 1 April 2015 to 31 March 2020. Regarding the 

bias, except for the underestimation by SMOS L4 (-0.047 m3 m-3), all the other products 

overestimate the RZSM observations by 0.030 m3 m-3 to 0.117 m3 m-3 (SMAP L4 and ERA5, 

respectively). ERA5 and CLDAS have the largest RMSE values among all the RZMS products 

due to the relatively large bias. Regarding correlation and ubRMSE, GLDAS_CLSM (R = 0.69, 

ubRMSE = 0.018 m3 m-3) outperforms the other RZSM products, followed by MERRA-2, 

ERA5, CLDAS, SMAP L4, GLDAS_NOAH, NCEP CFSv2 and SMOS L4. Overall, 

GLDAS_CLSM performs best among the eight RZSM products in terms of R, ubRMSE and 
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bias values, while SMAP L4 presents the lowest RMSE and the lowest bias. SMOS L4 presents 

the worst performance with the lowest R value. The detailed statistics are shown in Table 3. 

The description about Fig. 8 and Table 4 (L394-398) has been replaced by “ 

The daily air temperature data derived from ERA5, MERRA-2, NCEP CFSv2, GLDAS_CLSM, 

CLDAS, GLDAS_NOAH and SMAP L4 are validated against in situ observations of daily air 

temperature after aggregating all sub-daily products to daily time steps. Figures 8 and S3 shows 

that the modelled air temperature captures the observed temporal variation well, with R values 

above 0.96. However, all of them show slight underestimation, indicated by negative bias 

values ranging from -4.0 to -5.2 K. In terms of the comprehensive scores of the four statistical 

metrics, GLDAS_NOAH air temperature outperforms the other datasets and SMAP L4 shows 

the worst scores. Detailed statistics are shown in Table 4. 

- Figure 2 and 8: to improve visualization I would recommend to include density of points with 

colours (for example https://stackoverflow.com/questions/20105364/how-can-i-make-a- 

scatter-plot-colored-by-density) 

Response: Figures 2 and 8 have been revised to use the same layout as Figure 4. 

 

Fig. 2 Scatterplots of RZSM products vs. in situ RZSM observations averaged across all in 

situ stations from 1 April 2015 to 31 March 31 2020. Scores are given in Table 3. Darker 

regions show a higher density of data point and the blue line in each subplot represents the 

fitted trend for the data points. 
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Fig. 8 Scatterplots of model- and observation-based air temperature averaged over all stations, 

from 1 April 2015 to 31 March 2020. ERA5, MERRA-2, NCEP CFSv2, GLDAS_CLSM, 

GLDAS_NOAH, CLDAS and CMA products provide the air temperature datasets at the 2-m 

screen level. SMAP L4 product provides the air temperature at center height of the lowest 

atmospheric model layer. Darker regions show a higher density of data point and the blue line 

in each subplot represents the fitted trend for the data points. 

- Figure 4: 

o The labels are not readable because of the small font 

Response: Fig. 4 has been revised. 
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Fig. 4 Comparison of different RZSM products (volumetric water content, m3 m-3) with each 

other. The scatterplots and their corresponding statistics are located on opposite sides of each 

other, that is, the scatterplot of the data pair SMOS L4-ERA5 is in the top left-hand corner, 

while the respective statistical values are found in the bottom right-hand corner. Darker 

regions show a higher density of data point and the blue line in each subplot represents the 

fitted trend for the data points. 

o What are the lines? A fit through the data points? Why do the authors use a different lay-

out for a scatterplot than in Fig. 2 and 8? 

Response: The line in each subplot is a fit through the data points. Figures 2 and 8 have 

been revised to use the same layout as Figure 4. And we will add the explanation in the 

legend of Fig. 2, 4 and 8. 

- Figure 8 and Table 4: I think it is more convenient to use degree Celsius than Kelvin for 

temperatures. 

Response: The Kelvin is the international system (SI) of unit for thermodynamic temperature. 

The SI units should be used according to the requirement of HESS submission. 

- L381: ‘good agreement’ is a subjective statement, I think it is questionable if a R>0.4 is ‘good’. 

Response: This L381 will be replaced by “Overall, the R values between precipitation products 

and the observed precipitation are higher than 0.4 (left panel of Fig. 7)” 

- Figure 9: This figure implies that also the models differentiate soil moisture for layer 0-30cm 

and 30-100cm, while for most models this is not the case? 

Response: This figure doesn’t mean that the models differentiate soil moisture for layer 0-30 

cm and 30-100 cm. In most LSMs, the soil layers for soil moisture and temperature simulations 

are generally not for layer 0-30 cm and 30-100 cm, such as the Noah LSM simulates four soi 

layers (0-10 cm, 10-40 cm, 40-100 cm and 100-200 cm). When the soil properties (top layer: 

0-30 cm and subsurface layer 30-100 cm) provided by FAO/UNESCO and HWSD are used in 
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different LSMs, they are processed differently in the LSMs. For example, GLDAS uses the top 

layer soil parameter data for all layers (see GLDAS Soil Land Surface | LDAS (nasa.gov)), i.e. 

the soil properties for the top layer are used to represent four soil layers (0-10 cm, 10-40 cm, 

40-100 cm and 100-200 cm) for GLDAS_NOAH and two soil layers (surface:0-2 cm, root zone: 

0-100 cm) for GLDAS_CLSM in terms of soil moisture. 

- Abstract: the statements about the explanations of the differences are quite strong, because 

we know there is many other factors that play a role. 

Response: We will weaken the statements about the explanations of the differences. The 

abstract has been replaced by the following text in the revised manuscript. 

“Root zone soil moisture (RZSM) is critical for water resource management, drought 

monitoring and sub-seasonal flood climate prediction. While RZSM is not directly observable 

from space, several RZSM products are available and widely used at global and continental 

scales. This study conducts a comprehensive and quantitative evaluation of eight RZSM 

products using observations from 58 in situ soil moisture stations over the Huai River Basin 

(HRB) in China. Attention is drawn to the potential factors that contribute to the uncertainties 

of model-based RZSM, including the errors in atmospheric forcing, vegetation 

parameterizations, soil properties, and spatial scale mismatch. The results show that the Global 

Land Data Assimilation System Catchment Land Surface Model (GLDAS_CLSM) 

outperforms the other RZSM products with the highest correlation coefficient (R = 0.69) and 

the lowest unbiased root mean square error (ubRMSE = 0.018 m3 m-3), and shows the potential 

for drought monitoring and flood forecast in Huaibei Plain. While SMOS Level 4 (L4) RZSM 

shows a much lower correlation with in situ observations than model-based RZSM products 

forced by precipitation, this could be due to the fact that SMOS L4 does not contain 

precipitation information and has a weaker response to precipitation. The model-based RZSM 

products generally perform better in the wet season than in the dry season due to the enhanced 

ability to capture of the temporal dynamics of in situ observations in the wet season and the 

inertia of remaining high soil moisture values even in the dry season. While SMOS L4 performs 

better in the dry season than in the wet season, because the ground microwave radiation signal 

is more attenuated in the wet season due to a substantial increase in water vapor absorption and 

scattering than in the dry season, which is used to retrieve SMOS Level 3 (L3) SSM and is 

propagated to SMOS L4 RZSM. The underestimation of Surface Soil Moisture (SSM) in SMOS 

Level 3 (L3), caused by underestimated physical surface temperature and overestimated ERA 

interim soil moisture, may trigger the underestimation of RZSM in SMOS L4. The seven 

model-based RZSM products show an overestimation of in situ observations, which could be 

associated with the overestimation of precipitation amounts, the frequency of precipitation 

events (drizzle effects) and the underestimation of air temperature and the underestimated ratio 

of transpiration to the total terrestrial evapotranspiration. In addition, the biased soil properties 

(organic carbon, clay and sand fractions) and flawed vegetation parameterizations (e.g., canopy, 

root tissue and soil evaporation and transpiration model representation) affect the hydrothermal 

transport processes represented in different LSMs and lead to inaccurate soil moisture 

simulation. The scale mismatch between point and footprint also introduces representative 

errors. The comparison of frequency of normalized soil moisture between RZSM products and 

in situ observations indicates that the LSMs should focus on reducing the frequency of wet soil 
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moisture, increasing the frequency of dry soil moisture and the ability to capture the frequency 

peak of soil moisture.” 
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Response to Reviewer #3’s comments on the manuscript egusphere-2023-1597  

RC3: ‘Comment on egusphere-2023-1597’, Anonymous Referee #3, 23 Nov 2023 

The manuscript presents an intercomparison between eight root zone soil moisture (RZSM) 

products and in situ measurements. The differences are discussed in the light of the uncertainty 

in precipitation, air temperature and soil properties. 

Overall, I think the study could be a valuable scientific contribution. However, at the current 

status, I think the manuscript should be improved in several parts before reaching good quality 

for a possible publication. Specifically, I think the Authors should put major effort into 

improving the descriptions of the products, the methods should be extended, the discussion 

should be integrated accordingly. Below I provide additional details about my major concerns 

followed by specific comments.  

The authors thank the Reviewer #3 for her/his constructive and insightful comments that help 

us improve the quality of the manuscript. The original comments from Reviewer #3 are in 

black font, and our responses are in blue font. 

GENERAL COMMENTS 

Irrigation 

A major confusion in my opinion in the intercomparison is the role of irrigation. At L119 and 

L124 it stated that the study is conducted over a highly irrigated area. At L135 it is stated that 

soil moisture sensors are in areas without irrigation. It is not clear by reading if the RZSM 

products account for irrigation or not and if this can be a concern. Only later in the discussion 

(L452), it is stated that the overestimation of RZSM by ERA5 (Fig. 3) could be a signature of 

irrigation because the in situ RZSM observations do not capture irrigation. Does this mean that 

some RZSM products are based on model that take into account irrigation and others not? On 

the one hand, this information should better explained and discussed. On the other hand, I 

wonder what is the scientific meaning of comparing soil moisture in rainfed area to model that 

are accounting for irrigation. 

Response: We completely agree with this comment from reviewer 3, which is also proposed by 

reviewer 2. For the sake of clarification, we will not emphasize the role of irrigation any more. 

The irrigation-related statements (L135 “Stations are located in areas without irrigation” and 

L452-453 “The overestimation of RZSM by ERA5 (Fig. 3) could be a signature of irrigation 

because the in situ RZSM observations do not capture irrigation”) will be deleted in the revised 

manuscript. 

And we try to address the confusion mentioned above by reviewer 3. 

At L119 and L124 it stated that the study is conducted over a highly irrigated area. 

The Huai River Basin is highly irrigated because the mean annual precipitation of 888 mm is 

less than mean annual evaporation demand (900-1500 mm).  

At L135 it is stated that soil moisture sensors are in areas without irrigation. 

L135 “Stations are located in areas without irrigation”, it means that the soil moisture probes 

are installed away from crops, which intends to avoid capturing the irrigation signal and obtain 
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the natural soil moisture states. 

Does this mean that some RZSM products are based on model that take into account irrigation 

and others not? 

Traditionally, irrigation is not modelled in the global LSMs (Zohaib and Choi, 2020). Therefore, 

the model-based RZSM products don’t take into account irrigation, and L452-453 is incorrect 

statement and has been removed. For example, ERA5 didn’t model irrigation (Lavers et al., 

2022). Therefore, the irrigation process that is not considered in the LSMs is not related to the 

overestimation of the model-based RZSM products. The role of irrigation will not be mentioned 

in the revised manuscript.  

Soil map and soil parameters (section 4.3.2 and section 5.2). 

The assessment of the soil properties is valuable. It should be noted, however, that high 

discrepancies come with the use of different pedotransfer functions (PTF) to derive soil 

hydraulic parameters (retention curve and hydraulic conductivity). I guess these parameters are 

used in each RZSM product but estimated with different PTFs. This could also explain part of 

the uncertainty. This information is missing in the manuscript but should be integrated. 

Response: Thank you for the valuable suggestion, we have added the following statements 

about PTFs in section 5.2. 

“The soil hydraulic parameters (SHPs), such as the hydraulic conductivity and matric potential, 

are crucial parameters to describe the vertical transport of water in the soil column through the 

Richard’s equation employed in the LSMs. Generally speaking, the SHPs are derived from a 

combination of soil properties (clay, sand, silt fractions and organic content, etc.) with 

pedotransfer functions (PTFs), which can be constructed by multivariate regression models, 

nonlinear regression models or artificial neural networks (Harrison et al., 2012). Therefore, 

different input variables and functional forms of the continuous PTFs are used to derive SHPs 

in the LSMs. The Richard’s equation relying on the SHPs shows great uncertainty in the 

simulated soil moisture. For example, the HWSD soil properties used in SMAP L4 are more 

consistent with the reference dataset than FAO soil properties used in MERRA-2 by revising 

the underestimated sand content and the overestimated clay content in FAO. In addition, SMAP 

L4 adopts PTFs from Wösten et al. (2001) which take into account the organic carbon affecting 

soil hydraulic and thermal properties. MERRA-2 adopts PTFs adapted from Cosby et al. (1984) 

without considering organic carbon (De Lannoy et al., 2014). The revised soil parameters and 

new PTFs employed in SMAP L4 yield smaller shape parameter of water retention curve and 

result in less water retention than in MERRA-2, and increase the hydraulic conductivity. Thus, 

SMAP L4 has the smaller soil moisture estimates and less RZSM bias against in situ 

measurements than MERRA-2, which is consistent with the result of this study. Therefore, the 

soil properties and PTFs could also explain part of the uncertainty. 

Spatial aggregation and comparison at each site should be clarified and improved 

As far as I have understood (L267), the comparison is conducted between the spatial average 

of the 58 in situ observations. It is not well reported how much is the spatial extent of the 58 

stations but looking at figure 1 I guess the station covers an area of around 300 x 200 km2. I 

then deduce that this spatial average is compared to the spatial average of the gridded products 



30 

 

(i.e., each product has different resolutions, but more than one cell of the gridded products 

covers the area of the 58 stations). So first of all it should be better explain how many cells have 

also been aggregated for each product. Only later in the results section (L317) I discovered that 

a comparison has also been performed without aggregating spatially. So, first of all, this 

information should be provided also before in the methods. Moreover, I would also considering 

moving some plots that are now in supplement to the main manuscript to strengthen the analysis. 

Anyway, I’m confused by the fact that the comparison is performed at each station. Does this 

mean that you have always one station against one cell of the gridded products? Please clarify. 

Response: We feel sorry to make you confused. And we will try to resolve your confusion.  

1. The spatial extent of the 58 stations is approximately 310 × 330 km2.  

2. For different RZSM products, different numbers of grids are aggregated. For example, 

CLDAS: 58, GLDAS_CLSM: 50, GLDAS_NOAH: 50, ERA5: 48, MERRA-2: 50, NCEP 

CFSv2: 55, SMAP L4: 58, SMOS L4: 51. 

3. In this manuscript, Fig.2 and 3 represents that the comparison of the RZSM time series 

averaged over all in situ stations with the RZSM time series averaged over all model grids 

where the stations are located. L317 represents the single point-grid validation, the 

measurements at each station are compared directly with the grid values where the station 

is located. 

The following text (section 3.3 RZSM products aggregation and validation strategies) will be 

added in chapter 3 Methods. 

“In terms of the temporal resolution, except for the RZSM products (e.g., GLDAS_CLSM, 

SMOS L4) provided at daily time intervals, the other sub-daily RZSM datasets (hourly/3-

hourly/6-hourly time steps, shown in Table 1) are aggregated to daily average values to match 

the daily sampling frequency of the in situ observations. In terms of spatial resolution, we didn’t 

change the spatial resolution of any RZSM products and used the RZSM time series for each 

grid where the in situ stations are located. Two validation strategies were used in the study. The 

first is to compare the RZSM time series averaged over all in situ stations with the RZSM time 

series averaged over all model grids where the in situ stations are located (Fig.2 and 3 shown 

in this study). The second one is the point-grid validation, the RZSM measurements at each in 

situ station are compared directly with the RZSM values for the grid where the in situ station 

is located, if there is more than one in situ station within a grid, the RZSM measurements at 

each station are compared to the grid values separately. The point-grid validation is provided 

in the supplement (Fig. S1 and S2).” 

The RZSM validation uses two methods, (1) the spatial average validation is shown in this 

study (the figures are presented as time series, such as the Fig. 3 and Fig. 10), (2) the point-grid 

validation at each station is provided in the supplement (the figures are presented as a histogram 

and error bar, such as the Fig. 7 and Fig. 9). The validation of precipitation and soil properties 

is performed at one station against one cell of the gridded products. We have added detailed 

explanation in the legends of each figure when it comes to validation.  

Section 2.4: description of the eight RZSM products 
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The description of the eight products should be improved in several parts. The information 

provided for each product is not always consistent. Some products are better described and with 

more details than others. E.g., for MERRA-2, the description focuses on the precipitation. 

Instead, ERA5 does not have any information about. NCEP CFSv2 description is very short. 

Who provided that? What are the main properties? Some characteristics provided should also 

be put more in relation to the focus of the paper. E.g., for ERA5, the data assimilation system 

is described in detail. Is that relevant for the purpose of the paper. If yes, it should be clarified. 

Overall, the main differences between the products relevant for the present study (e.g., soil map, 

precipitation, land use, irrigation etc.) should be better highlighted. Table 1 should be extended 

accordingly.  

Response: We have revised the whole section 2.4 thoroughly and Table 1, and provide more 

focused and consistent description of the eight RZSM products in the revised manuscript. 

Please note that some relevant information are discussed only later but in my opinion they 

should be moved to the method section. This would help understanding and strengthening the 

discussion of the results. E.g., L410 The soil properties data used in the eight RZSM products 

were all derived from the FAO/UNESCO soil map of World except for CLDAS, which used 

the soil data developed by Shangguan et al. (2013), and SMAP L4, which used the HWSD soil 

properties over China. L426. Global precipitation and air temperature forcing data are used in 

the production of all RZSM products except for SMOS L4. L452. The overestimation of RZSM 

by ERA5 (Fig. 3) could be a signature of irrigation because the in situ RZSM observations do 

not capture irrigation. 

Response: L452 will be removed. The following text (section 3.3 RZSM products aggregation 

and validation strategies) will be added in chapter 3 Methods. 

“In terms of the temporal resolution, except for the RZSM products (e.g., GLDAS_CLSM, 

SMOS L4) provided at daily time intervals, the other sub-daily RZSM datasets (hourly/3-

hourly/6-hourly time steps, shown in Table 1) are aggregated to daily average values to match 

the daily sampling frequency of the in situ observations. In terms of spatial resolution, we didn’t 

change the spatial resolution of any RZSM products and used the RZSM time series for each 

grid where the in situ stations are located. Two validation strategies were used in the study. The 

first is to compare the RZSM time series averaged over all in situ stations with the RZSM time 

series averaged over all model grids where the in situ stations are located (Fig.2 and 3 shown 

in this study). The second one is the point-grid validation, the RZSM measurements at each in 

situ station are compared directly with the RZSM values for the grid where the in situ station 

is located, if there is more than one in situ station within a grid, the RZSM measurements at 

each station are compared to the grid values separately. The point-grid validation is provided 

in the supplement (Fig. S1 and S2). 

The global precipitation and air temperature forcing data are used in the production of 

model-based RZSM products except for SMOS L4, which are validated against the China daily 

gridded ground precipitation and air temperature dataset V2.0 described in section 2.2. The soil 

properties data used in the eight RZSM products were all derived from the FAO/UNESCO soil 

map of World except for CLDAS, which used the soil data developed by Shangguan et al. 

(2013), and SMAP L4, which used the HWSD V1.2 soil properties over China. The China soil 
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dataset developed by Shangguan et al. (2013) is used as a reference to evaluate the accuracy of 

FAO/UNESCO and HWSD V1.2 soil properties (clay and sand content, organic carbon content 

and bulk density).” 

Figure quality 

Figures are not always readable and meaningful. I suggest putting some more effort into 

evaluating how to present the results. E.g., 

Response: The figures have been revised thoroughly. 

Fig 1. could also shows the pixel size of the products. This would help understanding spatial 

extend and intercomparisons. 

Response: Fig. 1 has been revised and shows the grid size of 0.25 degree covering the in situ 

stations.

 

Fig. 1 Overview of the study area and distribution and land cover of in situ soil moisture 

stations (green pentagon). The squares in Fig.1b and c represent 0.25° grid. 

Fig. 4 is not readable at all. Plots and texts are too small. 

Response: Fig. 4 has been revised with improved plots and texts. 
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Fig. 4 Comparison of different RZSM products (volumetric water content, m3 m-3) with each 

other. The scatterplots and their corresponding statistics are located on opposite sides of each 

other, that is, the scatterplot of the data pair SMOS L4-ERA5 is in the top left-hand corner, 

while the respective statistical values are found in the bottom right-hand corner. Darker 

regions show a higher density of data point and the blue line in each subplot represents the 

fitted trend for the data points. 

Fig. 5 can be improved by having only 8 histograms of the RZSM products and overlapping 

each histogram with the observation’s histogram. This could help to visualize the differences. 

Response: Fig. 5 has been revised. 

 

Fig. 5 The histograms of normalised RZSM products (dashed and red lines) and in situ 

observations (black and solid lines). 

Fig.6. The plots are hardly comparable. It could be evaluated to present one plot with all the 

cumulative precipitation, or histogram of the precipitation etc. 
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Response: We have presented one new plot with all the cumulative precipitation. Since most of 

the daily precipitation ranges from 1 to 10 mm day-1, the histogram or probability density 

function of different precipitation datasets can’t be well distinguished from each other. 

Therefore, it is not included in the plot. 

 

Fig. 6 Comparison of cumulative precipitation events and cumulative precipitation amounts 

between model-derived precipitation and in situ precipitation observations averaged over all 

in situ stations. 

Fig.7. It is not clear to me what is actually presented. This is in line to the general comment 

above about aggregation. Are you comparing spatial averaged precipitation? What does 

standard deviation refer to? If you compare each rain gauge to pixel wise, how have you 

aggregated? 

Response: For Fig. 7, we compare each rain gauge to pixel wise where the rain gauge is located. 

The six statistical metrics in Fig.7 are calculated at each station, so there are 58 data points for 

each statistical metric. The histogram represents the median of 58 data points for each statistical 

metrics between modelled precipitation and observations. The stand deviation represents the 

variability in the statistical metrics. We will add more detailed descriptions to the legend of Fig. 

7. 

Take-home-message 

I’m expecting to read the overall take-home-message. After performing this intercomparison, 

what can you conclude? Could we trust this products? Where and which conditions? How 

would you suggest further improving, studies etc.? This is missing throughout the manuscript 

but should be understandable from the abstract and more extended at the conclusions. 

Response: We have reworded the abstract to provide more focused and important information 

(the following text) concluded in the study, especially the take-home-message. Furthermore, 

we have extended the key conclusions and provide some insights into how to improve the 

accuracy of modelled soil moisture.  

“Overall, the GLDAS_CLSM outperforms the other RZSM products and shows the potential 

for drought monitoring and flood forecast in the Huaibei Plain. Model-based RZSM products 

could capture the temporal dynamics of in situ observations and response to precipitation events 

well. While SMOS L4 shows a much lower correlation with in situ observations than model-

based RZSM products, which could be caused by the fact that the precipitation is not used in 
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the production of SMOS L4. So, the SMOS L4 RZSM has a weaker response to precipitation 

and low correlation with in situ observations. The model-based RZSM products generally 

perform better in the wet season than in the dry season due to the enhanced ability to capture 

of the temporal dynamics of in situ observations in the wet season and the inertia of remaining 

high soil moisture values even in the dry season. While SMOS L4 performs better in the dry 

season than in the wet season, the ground microwave radiation signal is more attenuated in the 

wet season due to a substantial increase in water vapor absorption and scattering than in the dry 

season, which is used to retrieve SMOS L3 SSM and is propagated to SMOS L4 RZSM. The 

comparison of frequency distribution between eight RZSM products and in situ observations 

indicates that MERRA-2, GLDAS_CLSM and SMAP L4 show better agreement with the in 

situ observations than the other RZSM products, although they slightly overestimate the 

frequency of wet soil moisture. However, they all don’t capture the frequency peak and 

underestimate the frequency peak of normalized soil moisture ranging from 0.2 to 0.4. In 

contrast, the other RZSM products show significant overestimation of frequency of wet soil 

moisture, underestimation of dry soil moisture and of peak frequency. Therefore, the Richard’s 

equation used to simulate the water content in different soil layers in LSMs should focus on 

producing less wet soil moisture and more dry soil moisture to obtain more accurate frequency 

distribution of modelled soil moisture. 

SPECIFIC COMMENTS IN ORDER OF APPEARANCE (L = LINE NUMBER) 

L13. I would not use the term “direct validation” but “assessment”. 

Response: Correction done. 

L29. Th abstract focused on describing the actual results. This is fine but I would also expect 

at the end to read the take-home-message. E.g., what do we learn by this study? Can we trust, 

use, apply RZSM products? Where? In which conditions? What in our view and based on this 

study would further suggest to improve the performances? 

Response: The abstract has been replaced by the following text. 

“Root zone soil moisture (RZSM) is critical for water resource management, drought 

monitoring and sub-seasonal flood climate prediction. While RZSM is not directly observable 

from space, several RZSM products are available and widely used at global and continental 

scales. This study conducts a comprehensive and quantitative evaluation of eight RZSM 

products using observations from 58 in situ soil moisture stations over the Huai River Basin 

(HRB) in China. Attention is drawn to the potential factors that contribute to the uncertainties 

of model-based RZSM, including the errors in atmospheric forcing, vegetation 

parameterizations, soil properties, and spatial scale mismatch. The results show that the Global 

Land Data Assimilation System Catchment Land Surface Model (GLDAS_CLSM) 

outperforms the other RZSM products with the highest correlation coefficient (R = 0.69) and 

the lowest unbiased root mean square error (ubRMSE = 0.018 m3 m-3), and shows the potential 

for drought monitoring and flood forecast in Huaibei Plain. While SMOS Level 4 (L4) RZSM 

shows a much lower correlation with in situ observations than model-based RZSM products 

forced by precipitation, this could be due to the fact that SMOS L4 does not contain 

precipitation information and has a weaker response to precipitation. The model-based RZSM 

products generally perform better in the wet season than in the dry season due to the enhanced 
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ability to capture of the temporal dynamics of in situ observations in the wet season and the 

inertia of remaining high soil moisture values even in the dry season. While SMOS L4 performs 

better in the dry season than in the wet season, because the ground microwave radiation signal 

is more attenuated in the wet season due to a substantial increase in water vapor absorption and 

scattering than in the dry season, which is used to retrieve SMOS Level 3 (L3) SSM and is 

propagated to SMOS L4 RZSM. The underestimation of Surface Soil Moisture (SSM) in SMOS 

Level 3 (L3), caused by underestimated physical surface temperature and overestimated ERA 

interim soil moisture, may trigger the underestimation of RZSM in SMOS L4. The seven 

model-based RZSM products show an overestimation of in situ observations, which could be 

associated with the overestimation of precipitation amounts, the frequency of precipitation 

events (drizzle effects) and the underestimation of air temperature and the underestimated ratio 

of transpiration to the total terrestrial evapotranspiration. In addition, the biased soil properties 

(organic carbon, clay and sand fractions) and flawed vegetation parameterizations (e.g., canopy, 

root tissue and soil evaporation and transpiration model representation) affect the hydrothermal 

transport processes represented in different LSMs and lead to inaccurate soil moisture 

simulation. The scale mismatch between point and footprint also introduces representative 

errors. The comparison of frequency of normalized soil moisture between RZSM products and 

in situ observations indicates that the LSMs should focus on reducing the frequency of wet soil 

moisture, increasing the frequency of dry soil moisture and the ability to capture the frequency 

peak of soil moisture.” 

L108-109. Are these two lines really needed here? I would integrate this information later when 

you speak about comparison. E.g., L133 for the definition of RZSM. 

Response: L108-109 was deleted. L133 was replaced by “Since the study aims to evaluate the 

accuracy of eight RZSM products (0-100 cm) which are summarized in Table 1, the in situ soil 

moisture measurements at the four depths are depth-weighted averaged to obtain the 0-100 cm 

soil moisture data.” 

L128. Table S1 shows the results of the assessment, and it does not provide additional 

information about the in situ stations. I would remove this cross reference here and rather add 

Figure 1 where the locations of the in situ stations are shown. 

Response: “Table S1” has been replaced by “Fig. 1”. 

L263. I would extend a bit on the meaning and interpretation for PD, FAR and CSI. 

Response: The following text has been added in section “3.1 Statistical metrics”. 

“POD is the proportion of real precipitation events simulated by AGCM relative to the actual 

precipitation events, reflecting the ability of AGCM to detect precipitation. FAR is the fraction 

of unreal precipitation events out of the total precipitation events simulated by AGCM. CSI is 

a more balanced score that combines the characteristics of false alarms and missed events, 

representing the probability of successful simulation of AGCM precipitation.” 

L280. I was expecting to read more about the description of the equation after L280. Any text 

missing? 

Response: We will add the following description after L280. 
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“where 𝜃ோ௓ௌெ  denotes 0-100 cm RZSM (m3 m-3), 𝜃଴ିଵ଴  , 𝜃ଵ଴ିସ଴௖௠  and 𝜃ସ଴ିଵ଴଴௖௠ 

denote the soil moisture estimates at 0-10 cm, 10-40 cm and 40-100 cm, respectively.” 

L293. I think here is a good place to cite table 3 as well. 

Response: L293-294 will be replaced by “Figure 2 shows scatterplots of RZSM products 

against the in situ measurements averaged across all in situ stations over the HRB, from 1 April 

2015 to 31 March 2020. The statistical metrics are shown in Table 3.” 

L295. It is stated that SMOS-L4 underestimates and the other overestimated the observations. 

By looking at figure 2, I see the opposite. Please double check what you are plotting. 

Response: Thank you for bringing up the mistake. We reversed the labels for the x and y axes 

of Figure 2. 

 

Fig. 2 Scatterplots of RZSM products vs. in situ RZSM observations averaged across all in 

situ stations from 1 April 2015 to 31 March 31 2020. Scores are given in Table 3. Darker 

regions show a higher density of data point and the blue line in each subplot represents the 

fitted trend for the data points. 
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L306. Figure 3 shows spatial average of in situ soil moisture and its spatial variability. As far 

as I have understood (see general comment above on the spatial aggregation), the spatial 

average of the RZSM products is shown but, if possible, it could be interesting to show here 

also the spatial variability of the RZSM products.  

Response: L306 was a typo and replaced by “Figure 3 shows the time series of observation- 

and model-based RZSM averaged over all in situ stations and the grids where the in situ stations 

are located”. We add the following figure in the supplement to display the spatial distribution 

pattern of eight RZSM products averaged from 1 April 2015 to 31 March 2020. 

 

Fig. S4 Spatial distribution pattern of eight RZSM products and in situ observations 

interpolated using Inverse Distance Weighting (IDW) averaged over from 1 April 2015 to 31 

March 2020. 

L317. Description of the comparison at each site should be reported as well in the method 

(section 3.1) See also general comment above on the spatial aggregation. 

Response: See the response in Spatial aggregation and comparison at each site should be 

clarified and improved (Page 27-28). 

L319. The method to calculate the anomalies is reported only in the supplement. I think should 

be moved to the method (section 3.1) 

Response: The anomalies metrics are not very important and relevant to the results and 

discussion in the study, the related statements are removed in the revised manuscript. 

L585. After summarizing the mani conclusions, I suggest summarizing the outlook of the study. 

See also general comments above. 

Response: The conclusions have been revised. 

(1) GLDAS_CLSM outperformed the other RZSM products over the HRB in terms of R, 

ubRMSE and mean bias, followed by MERRA-2, CLDAS, SMAP, ERA5, NCEP CFSv2, and 

GLDAS_NOAH. The SMOS L4 product presented the worst performance due to the fact that 

SMOS L4 does not contain precipitation information and has a weaker response to precipitation. 



39 

 

Seven model-based RZSM products overestimated the in situ observations with median bias 

values ranging from 0.033 m3 m-3 (SMAP L4) to 0.116 m3 m-3 (CLDAS). While SMOS L4 

underestimated the RZSM with a median bias value of -0.050 m3 m-3.  

(2) The intercomparison of RZSM products shows that the correlation coefficient R 

between any two of the seven model-based RZSM products varied from 0.68 (ERA5 vs. 

CLDAS) to 0.95 (SMAP L4 vs. MERRA-2). In contrast, SMOS L4 presented lower correlation 

with the other seven RZSM products with R ranging from 0.30 (MERRA-2) to 0.41 

(GLDAS_NOAH) and with a negative bias ranging from -0.165 m3 m-3 (SMOS L4 minus 

ERA5) to -0.077 m3 m-3 (SMOS L4 minus SMAP L4). The comparison of the frequency 

distribution between eight RZSM products and in situ observations indicates that MERRA-2, 

GLDAS_CLSM and SMAP L4 are in better agreement with the in situ observations than the 

other RZSM products. All RZSM products overestimate the frequency of wet soil moisture and 

underestimate the frequency of dry soil moisture. Besides, the frequency peaks of the RZSM 

products show an obvious offset towards wet soil moisture and are underestimated compared 

to the in situ observations. Therefore, the Richard’s equation used to simulate the water content 

in different soil layers in LSMs should focus on producing less wet soil moisture and more dry 

soil moisture. 

(3)  Except for CLDAS, the overestimation of in situ soil moisture observations by the 

model-based RZSM products could be associated with the overestimation of precipitation 

amounts, the frequency of precipitation events (excessive number of occurrences of drizzle 

events). The air temperature datasets used to drive the LSMs have a cold bias, which tends to 

reduce evapotranspiration and result in more soil moisture residuals. In addition, the 

underestimated ratio of transpiration to the total terrestrial evapotranspiration existing in most 

earth system models consumes less water in the root zone for transpiration and large RZSM. 

The underestimation of the SMOS L4 RZSM may be related to the underestimation of the 

SMOS L3 SSM.  

(4) The model-based RZSM products generally perform better in the wet season than in 

the dry season due to the enhanced ability to capture of the temporal dynamics of in situ 

observations in the wet season and the inertia of remaining high soil moisture values even in 

the dry season. While SMOS L4 performs better in the dry season than in the wet season, 

because the ground microwave radiation signal is more attenuated in the wet season due to a 

substantial increase in water vapor absorption and scattering than in the dry season, which is 

used to retrieve SMOS L3 SSM and is propagated to SMOS L4 RZSM. 

(5) The utilization of the HWSD soil property dataset instead of the FAO/UNESCO World 

Soil Map will contribute to improve the simulation of the hydrothermal transport processes 

represented in LSMs and thus to an improved land surface analysis. 

(6) Spatial-average validation could reduce the spatial noise of in situ soil moisture 
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measured at different locations and improve the representativeness of soil moisture 

observations to model-based grid values. 

Supplement. I think the supplement should have a title with the name of authors as well. 

Response: According to the submission requirement of HESS journal: Supplements will receive 

a title page added during the publication process including title ("Supplement of"), authors, and 

the correspondence email. Therefore, please avoid providing this information in the supplement. 
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