
Response to Reviewer #1’s comments on the manuscript egusphere-2023-1597  

RC1: ‘Comment on egusphere-2023-1597’, Anonymous Referee #1, 07 Nov 2023 

The authors attempted to evaluate the predictive performance of eight satellite data-
derived root-zone soil moisture data. The authors provided a quantitative statistical 
analysis of each RZSM product based on average values of in-situ, and remote sensing 
estimates for the Huai River Basin. The authors concluded that the GLDAS CLSM 
RZMS products outperform other RZSM products. While the information contained in 
the manuscript is quantitative, I ended up questioning the potential contribution of this 
paper to the readers. I have tried to address why I think  

The authors thank the Reviewer #1 for her/his constructive and insightful comments that help 

us improve the quality of the manuscript. The original comments from Reviewer #1 are in 

black font, and our responses are in blue font. 

 - Major comments: 

1. Although the study provides a significant amount of comparative analysis 
between remote sensing-derived RZSM products as well as against observational 
data, the mechanistic understanding and explanation of each result are widely 
missing across the manuscript. Therefore, the author's rationale about the causes 
of differences was often too obvious or uncertain. 

Response: Thank you for your valuable comment. In this study, we presented an 
intercomparison between eight root zone soil moisture (RZSM) products and in situ 
observations. Although the different RZSM products are evaluated quantitatively, it 
should be noted that the focus of this study is to investigate the sources of error of the 
RZSM products. The SMOS Level 4 (L4) RZSM is produced by combining a 
modified exponential filter and SMOS Level 3 surface soil moisture (SSM). The other 
seven RZSM products (except SMOS L4) are produced by land surface models driven 
by surface atmospheric forcing data from atmospheric general circulation models; the 
ability of the land surface model to simulate states (e.g., RZSM) and fluxes is limited 
by uncertainties in meteorological forcing and parameters, as well as inadequate 
model physics. It is difficult to quantify the model physics because different land 
surface models are used to produce different RZSM products. Therefore, we analyzed 
the atmospheric forcing data (especially for precipitation, which dominates the 
terrestrial water cycle), which is considered as the most important factor in 
determining the accuracy of the modeled RZSM, and the model static parameters (soil 
properties), which strongly influence the movement of water in the vadose zone, and 
local underlying surface conditions. The objective of this study is to provide some 
insights on how to improve the ability of land surface models to simulate land surface 
states and fluxes by finding the common characteristics of bias existing in different 
datasets used in land surface models. 



2. Also, the authors argued that GLDAS CLSM-derived RZSM outperforms other 
RZSM estimates. However, rather than trying to explain the different predictive 
performances of each RZSM product (against in-situ observations) in relation to 
soil properties, land cover/use, and vegetation in the study catchment, the authors 
just used the average of 58 in-situ data as well as satellite products, resulting in 
'all-lumped' single time series for each dataset. Thus, it is not convincible to say a 
certain remote sensing-derived estimates outperform others since the performance 
differences can be revealed differently depending on soil properties, vegetation, 
land cover/use, etc. 

Response: Most of the in situ stations are located in the Huaibei Plain, which is a 
major grain production area. According to the land cover map of the Huai River basin 
(Figure 1c), most of them (56 of 58) is located in the cropland regions, we will add it 
in the supplement (see Table S1 below). In terms of soil properties, the lime 
concretion black soil is the main soil type in the Huaibei plain, which is shown in line 
482. Therefore, we believe that soil properties, vegetation, and land cover/use are 
homogeneous across different in situ stations. In addition, two validation strategies 
were used in the study. The first is to compare the mean RZSM averaged over all in 
situ stations with the mean RZSM averaged over all grids. The second one is the 
point-grid validation, the station measurements are compared directly with the grid 
value where the station is located, if more than one station, the measurements of these 
stations are averaged. The point-grid validation has been provided in the supplement 
and draws the same conclusion as the station-averaged validation that 
GLDAS_CLSM outperforms other RZSM products. The section “3.3 Validation 
strategies” will be added in chapter 3 Methods. 

Table S1 Overview of in situ stations in Huai River Basin 

Station Name Longitude (E) Latitude (N) Elevation (m) Land cover 

Taolaoba 117.16  32.18  48 Irrigated Crop 

Chahua 116.02  33.03  39 Rainfed Crop 

Hanting 116.32  33.02  28 Rainfed Crop 

Songji 115.27  32.82  39 Rainfed Crop 

Funan 115.57  32.64  33 Rainfed Crop 

Santa 115.70  32.81  33 Rainfed Crop 

Yaoli 116.17  31.82  58 Irrigated Crop 

Guanting 116.85  31.80  51 Irrigated Crop 

Zhuangmu 117.11  32.36  27 Irrigated Crop 

Guiji 116.62  32.78  23 Irrigated Crop 

Xiaji 116.54  32.65  25 Rainfed Crop 

Shuangfu 115.57  33.34  37 Rainfed Crop 

Fentai 115.73  33.45  35 Rainfed Crop 

Santang 115.83  33.31  32 Rainfed Crop 

Lixin 116.21  33.14  28 Rainfed Crop 



Jieshou 115.36  33.27  42 Rainfed Crop 

Yangqiao 115.39  33.02  28 Rainfed Crop 

Guangwu 115.33  33.37  42 Rainfed Crop 

Huangling 115.13  33.04  37 Rainfed Crop 

Quanyang 115.44  33.11  35 Rainfed Crop 

Kanheliu 115.85  33.10  33 Rainfed Crop 

Kouziji 116.09  32.84  26 Rainfed Crop 

Sanshilipu 116.11  32.70  27 Rainfed Crop 

Xiaqiao 116.38  32.64  26 Rainfed Crop 

Hengpaitou 116.36  31.59  72 Woodland  

Xianghongdianxia 116.18  31.58  116 Woodland  

Wangchenggang 116.53  31.74  76 Irrigated Crop 

Lumiao 115.80  34.00  39 Rainfed Crop 

Dasi 115.87  33.80  42 Rainfed Crop 

Youhe 115.79  33.63  38 Rainfed Crop 

Huagou 116.06  33.51  33 Rainfed Crop 

Dahu 116.35  33.52  31 Rainfed Crop 

Chenqiao 116.56  33.09  25 Rainfed Crop 

Heliu 116.97  33.03  25 Rainfed Crop 

Linhuanzha 116.57  33.67  29 Rainfed Crop 

Guzhenzha 117.33  33.30  18 Rainfed Crop 

Wudaogou 117.34  33.16  21 Rainfed Crop 

Hexiangzha 117.18  33.00  18 Rainfed Crop 

Tancheng 116.56  33.44  29 Rainfed Crop 

Xibakou 117.87  33.15  11 Rainfed Crop 

Xulouzha 116.75  33.92  30 Rainfed Crop 

Suxianzha 117.08  33.67  28 Rainfed Crop 

Gukouzha 116.45  34.27  39 Rainfed Crop 

Kuaitanggou 117.55  33.75  20 Rainfed Crop 

Yanglou 116.78  34.32  39 Rainfed Crop 

Langanji 117.23  33.93  25 Rainfed Crop 

Dulou 116.85  34.20  37 Rainfed Crop 

Xiangyang 117.58  33.47  24 Rainfed Crop 

Shuangdui 116.90  33.42  25 Rainfed Crop 

Shuoli 116.90  34.03  32 Rainfed Crop 

Huangmiao 117.65  33.08  19 Rainfed Crop 

Baoji 117.11  33.16  22 Rainfed Crop 

Dinghouying 117.34  33.46  24 Rainfed Crop 

Xuanmiao 116.27  34.52  54 Rainfed Crop 

Longhai 116.35  34.40  45 Rainfed Crop 

Zhangzhuangzhai 116.60  34.12  37 Rainfed Crop 

Sixian 117.92  33.43  16 Rainfed Crop 

Dazhuang 117.87  33.67  20 Rainfed Crop 



3. It is also not indicated how each satellite-based soil moisture (at multiple depths) 
and RZSM 'with different spatiotemporal resolutions were aggregated (again, 
spatially and temporally) to come up with the sets of time series that require 
consistent temporal scales between them. The method used for spatial aggregation 
of the gridded-RZSM also needs to be manifested (i.e., methods). 

Response: The following text (section 3.3 Validation strategies) will be added in 
chapter 3 Methods. 

“In terms of the temporal resolution, except for the RZSM products (e.g., 
GLDAS_CLSM, SMOS L4) provided on daily time steps, the other sub-daily RZSM 
datasets (hourly/3-hourly/6-hourly time steps, shown in Table 1) are aggregated to daily 
average values. Therefore, the aggregated RZSM products could match the 
observations at daily time intervals. In terms of spatial resolution, we didn’t change the 
spatial resolution of any RZSM products and used the original grid resolution. Two 
validation strategies were used in the study. The first is to compare the RZSM time 
series averaged over all in situ stations with the RZSM time series averaged over all 
model grids where the stations are located (Fig.2 and 3 shown in this study). The second 
one is the single point-grid validation, the measurements at each station are compared 
directly with the grid values where the station is located. If there is more than one 
station within a grid, the measurements of each station that located in the grid are 
compared to the grid values separately. The point-grid validation has been provided in 
the supplement (Fig. S2 and S3).” 

4. As this is site-specific, it sounds even less convincing that CLSM-derived soil 
moisture products outperform, and thus it gets more confusing what the authors 
want to argue from the RZSM products comparison.  

Response: On the one hand, we want to evaluate the performance of eight RZSM 
products in the agricultural crop area, which could provide a more accurate RZSM 
dataset for agricultural drought monitoring. The results show that GLDAS_CLSM 
outperforms the other RZSM products. However, it doesn’t mean CLSM-derived soil 
moisture outperforms, because SMAP L4 and MERRA-2 also use CLSM. More 
importantly, the focus of this study is to investigate the sources of error of the 
different RZSM products, which could provide some insights about how to improve 
the ability of land surface models to simulate the land surface states and fluxes. 

5. There is significant inconsistency (due to the randomness in estimating RZSM 
from the remote sensing data) between RZSM estimation methods. For example, 
the authors tried to estimate RZSM using a depth-weighted method, but equation 
1 used for in-situ RZSM is different from equation 2, which was used for RZSM 
estimation from satellite-derived modeled soil moisture.  

Response: The in situ soil moisture measurements are available at four depths (10, 20, 
40 and 100 cm). However, in addition to the GLDAS_CLSM, MERRA-2, SMAP L4 
and SMOS L4, which directly provide the 0-100 cm RZSM, the other model-based 



soil moisture datasets are provided in different soil layers, i.e., NCEP CFSv2, CLDAS 
and GLDAS_NOAH (𝜃  , 𝜃  , 𝜃  ), ERA5 (𝜃  , 𝜃  , 
𝜃  ). The in situ measurements are for each soil depth, but the model-based 
RZSM products are for each soil layer. They are not consistent. Therefore, the study 
uses two different equations to calculate the RZSM. The in situ RZSM is calculated 
using a depth-weighted mean of the measurements at four soil depths (10, 20, 40 and 
100 cm). This method (equation 1) has been used in the study by Gao et al., (2017) 
and Xing et al., (2021). The model-based RZSM is calculated with a weighted 
average of the 0-100 cm RZSM. This method (equation 2) has been used in the study 
by González-Zamora et al., (2016) and Xing et al., (2021) and calculation of SMOS 
L4 RZSM (Al bitar et al., 2021). 

-Specific comments: 

line 39-40: is this sentence needed? 

Response: We will delete this sentence in the revised manuscript. 

line 42: duplicate definition of RZSM? 

Response: We will delete this sentence in the revised manuscript. 

line 99-100: by this sentence, do you intend not to include any process-based explanation 
for the soil moisture products? What about attempting to explain the performance 
differences found among the RZSM products (as this is essentially modeled data) in 
relation to model structure? Why does CLSM outperform other land models in terms of 
RZSM products?  

Response: This study attempts to investigate the error sources of RZSM products without 
considering the model structure. While only evaluating the atmospheric forcing, soil 
texture, and local conditions, we analyze the effects of these error sources on RZSM 
estimation from the perspective of physical processes. For example, overestimated 
precipitation tends to lead to overestimated water-related states (soil moisture) or fluxes 
(runoff). The clay exhibits stronger water retention capacity compared to sand at the same 
matric potential, and high soil organic carbon leads to high soil porosity. Therefore, the 
overestimated clay fraction and soil organic carbon lead to higher water stored in the soil. 
In addition, different land surface models are used to produce different RZSM products. 
For example, ERA5 (HTESSEL), MERRA-2 (CLSM), NCEP CFSv2 (Noah), 
GLDAS_NOAH (Noah), GLDAS_CLSM (CLSM), CLDAS (CLM, CoLM, Noah-MP), 
SMAP L4 (CLSM), SMOS L4 (exponential filter, not land surface model). Even the same 
CLSM land surface model is used for both MERRA-2 and SMAP L4, but the model 
version is a bit different. Therefore, it is difficult to directly quantify the effect of model 
structure on RZSM. In this study, the GLDAS_CLSM RZSM product outperforms other 
model-based RZSM products, but this doesn't mean that CLSM outperforms other land 
surface models. The accuracy of RZSM depends on the meteorological forcing, the 
structure of the land surface model, and the parameterization scheme. 



Chapter 2.4: the information on the spatial and temporal resolution of each data needs to 
be revisited and clearly indicated. 

Response: The information on the spatial and temporal resolution of eight RZSM 
products is shown in Table 1. 

Chapter 3.2: why did you estimate satellite-derived RZSM different from in-situ RZSM? 
Why equation 1 and 2 are different? How convincing are the RZSM comparisons based 
on equation 1 and 2? 

Response: The in situ soil moisture measurements are available at four depths (10, 20, 40 
and 100 cm). However, in addition to the GLDAS_CLSM, MERRA-2, SMAP L4 and 
SMOS L4, which directly provide the 0-100 cm RZSM, the other model-based soil 
moisture datasets are provided in different soil layers, i.e., NCEP CFSv2, CLDAS and 
GLDAS_NOAH (𝜃  , 𝜃  , 𝜃  ), ERA5 (𝜃  , 𝜃  , 
𝜃  ). The in situ measurements are for each soil depth, but the model-based RZSM 
products are for each soil layer. They are not consistent. Therefore, the study uses two 
different equations to calculate the RZSM. The in situ RZSM is calculated using a depth-
weighted mean of the measurements at four soil depths (10, 20, 40 and 100 cm). This 
method (equation 1) has been used in the study by Gao et al., (2017) and Xing et al., 
(2021). The model-based RZSM is calculated with a weighted average of the 0-100 cm 
RZSM. This method (equation 2) has been used in the study by González-Zamora et al., 
(2016) and Xing et al., (2021) and calculation of SMOS L4 RZSM (Al bitar et al., 2021). 

line 293: instead of averaging all in-situ stations, can you think of disaggregating the 
study basin (and stations) using any available information such as surface soil properties, 
orography (e.g., slope, and elevation), land cover, and/or vegetation? That will help the 
readers get more generalizable information and references. 

Response: It is a very good and useful suggestion. However, this study pays more 
attention to soil moisture measured at 58 stations rather than a specific station. The 
underlying surface conditions (e.g. surface soil properties, orography, land cover and 
vegetation) is considered as homogeneous. 56 of 58 in situ stations are located in crop 
lands of the Huaibei Plain, and the elevation is quite similar (Table S1). The lime 
concretion black soil is the main soil types in the Huaibei plain. In future study, we will 
attempt to investigate the effect of different underlying surface conditions (vegetation 
types, etc.) on soil moisture estimations for specific station. 

line 306-309: This needs to be rephrased. It is hard to understand what is meant. 

Response: The text (line 306-309) will be rephrased from “Figure 3 shows time series of 
in situ RZSM observations averaged over all in situ stations with its spatial variability, 
and of 3 RZSM products, ERA5, SMOS L4, and GLDAS_CLSM, presenting a marked 
overestimation, a marked underestimation, and the best overall agreement with in situ 
observations, respectively. Other products can be seen in Fig. S1.”  



To “Figure 3 shows the time series of observed and model-based RZSM averaged over all 
in situ stations and the grids where the in situ stations are located. ERA5, SMOS L4, and 
GLDAS_CLSM show overestimation, underestimation, and the best overall agreement 
with in situ observations, respectively. Other products are shown in Fig. S1”. 

line 311: can you explain why SMOS L4 showed less rapid changes and smoother trends? 

Response: It is well known that the SSM shows a faster response to atmospheric 
variations than RZSM, especially for precipitation. Therefore, RZSM shows less rapid 
changes and smoother trends than SSM, which shows a strong variability. On the one 
hand, SMOS L4 RZSM is estimated from SMOS L3 SSM together with a modified 
exponential filter with different parameter T (characteristic time length) proposed by 
Wagner et al., (1999). The exponential filter can smooth the trend of SSM, the higher the 
T value, the smoother the RZSM trend. On the other hand, precipitation with high spatial 
and temporal variability is the main forcing input of other model-based RZSM, which 
show a strong response to precipitation. Precipitation is not used in producing SMOS L4 
RZSM. Therefore, SMOS L4 shows less rapid changes and smoother trends. 

line 321: can you explain why they did a better job in the wet season compared to the dry 
season? 

Response: In the Huai river basin, more than 60 % of the annual precipitation falls 
between June and September (wet season), which significantly increases the RZSM. 
According to Figure 1 and S1, it is obvious that RZSM shows a strong response to 
precipitation events. In general, the model-based RZSM datasets increase with the 
increasing in situ observations after a precipitation event. The model-based RZSM 
datasets show strong variability and a good agreement with observations in wet season. 
However, the in situ RZSM shows stronger variability than the model-based RZSM 
datasets in dry season, the model-based RZSM datasets show little variability and don’t 
capture the temporal trend of in situ observations. It indicates that the land surface models 
are sensitive to precipitation events than no precipitation events and show better skill in 
simulating RZSM when there is a precipitation event. This could explain the better 
performance of model-based RZSM datasets in the wet season than that in the dry season. 

line 360: can you explain why individual satellite-based RZSM products showed different 
probabilistic distributions? Some are log-normal and the others are normal. Can you add 
more explanation on this matter? 

Response: The peak of the relative frequency for model-based RZSM products ranges 
from 0.3 to 0.6. RZSM products with log-normal distribution show that low values 
dominate the RZSM time series, which could be caused by low precipitation. The 
precipitation field derived from the atmospheric general circulation model (AGCM) 
generally has too many drizzle events (<1 mm day-1). The modeled RZSM is affected by 
meteorological forcing, model structure and parameterization, etc. The RZSM estimates 
are subject to random error and systematic bias, and it is difficult to directly quantify 



which factor affects the probability distributions of different RZSM products. In addition, 
the probability distribution of RZSM may depend on the research periods, the probability 
distribution of RZSM in wet season may be different from that in dry season. 

line 375: how does this ground-based observation of precipitation (840 mm/year) 
represent the average precipitation of the basin area? You also compared gridded-
precipitation with this in-situ precipitation observation (line 430). Can you clarify how 
solid the comparison of this in-situ precipitation with gridded precipitation is? 

Response: In this study, the ground-based precipitation observation doesn't represent the 
average precipitation of the watershed area. We only compare the ground-based 
precipitation observation with the modeled precipitation of the grid where the station is 
located from the grid perspective. 

line 432: do you think MERRA-2 and GLDAS-CLSM would outperform other satellite-
derived RZSM in other basins (or area) as well? What if you perform a continental-scale 
study, will you still think there will be a certain winner? If not, how can you limit the 
scale of this sort of comparison study to be meaningful and convincing?   

Response: In this study, MERRA-2 and GLDAS-CLSM outperform other model-based 
RZSM products in the Huaibei Plain, where cropland dominates. It is uncertain whether 
MERRA-2 and GLDAS-CLSM would still outperform other products if this study were 
conducted in other basins (areas) or on a continental scale. Because the precipitation data 
derived from the atmospheric general circulation model perform differently in different 
regions. For example, these large-scale atmospheric processes over the extra-tropics are 
better resolved in the AGCM than convective processes over the tropics. It is a study for 
specific underlying surface conditions (agricultural crop region). On the one hand, the 
evaluation of eight RZSM products in the agricultural crop region could provide a more 
accurate RZSM dataset for agricultural drought monitoring. More importantly, the focus 
of this study is to investigate the sources of error of the different RZSM products, which 
could provide some insights to improve the ability of land surface models to simulate the 
land surface states and fluxes. 

line 436-438: the sentences need to be re-structured to clarify the argument. 

Response: The text (line 436-438) will be rephrased from “The MERRA-2 model 
background precipitation corrected with NOAA CPCU gauge-based precipitation 
observations was implemented in the coupled land-atmosphere reanalysis system, which 
may also contribute to the high consistency with the ground-based precipitation”  

To “Before driving the land surface water budget, the MERRA-2 model background 
precipitation was corrected with NOAA CPCU gauge-based precipitation in the coupled 
land-atmosphere reanalysis system, resulting in more accurate precipitation fields for 
MERRA-2”. 



line 453: in-situ RZSM observation does not capture irrigation effect? Can you explain 
how the irrigation water supply does not impact the soil moisture content? 

Response: We didn’t express it clearly. The original meaning of this sentence is that the 
in situ station does not capture the irrigation signal. Because the in situ stations are 
usually installed away from the cropland to avoid the effect of anthropogenic irrigation on 
the original soil water content supplied by precipitation. In addition, reviewer2 and 

reviewer3 also raise question about question. The overall comments from three reviewers 

indicate that the irrigation is not an issue in this paper, and should not be emphasized. We will 

delete relevant statements about irrigation. 

line 485-489: can you add more information on how the soil properties could end up in 
certain ranges of soil moisture values? 

Response: We have illustrated the effect of soil properties on ranges of soil moisture 
values (line 457-462). “In general, soil texture is closely related to the ability of the soil to 
retain water, as water molecules adhere more tightly to fine-textured clay particles than 
coarse-textured sand particles. Consequently, clay exhibits stronger water retention 
capacity and higher water content stored in the soil compared to sand at the same matric 
potential. In addition, the overestimated FAO/UNESCO soil organic carbon content (Fig. 
9) leads to higher soil porosity and lower bulk density. As a result, water can infiltrate 
more quickly and more water can flow through the soil and can be retained in the soil”. 
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