Edits on Equations 1-6

December 29, 2023

The equations that appear in version 3 of the manuscript:

$$
\begin{gather*}
\delta x(\lambda, \phi, z, t)=-\gamma(\lambda, \phi, z, t)\left(x(\lambda, \phi, z, t)-x_{r e f}(\lambda, \phi, z, t)\right) / \tau, \tag{1}\\
\gamma(\phi, \lambda)=f\left(\phi, \phi_{1}, \phi_{2}\right) f\left(\lambda, \lambda_{1}, \lambda_{2}\right), \tag{2}\\
f\left(\phi, \phi_{1}, \phi_{2}\right)=‘\left[1 /\left(1+e^{-\left(\phi-\phi_{1}\right) / \delta_{1}}\right]\left[1 /\left(1+e^{-\left(\phi-\phi_{2}\right) / \delta_{2}}\right]\right.\right. \tag{3}\\
f\left(\lambda, \lambda_{1}, \lambda_{2}\right)=‘\left[1 /\left(1+e^{-\left(\lambda-\lambda_{1}\right) / \delta_{1}}\right]\left[1 /\left(1+e^{-\left(\lambda-\lambda_{2}\right) / \delta_{2}}\right]\right.\right. \tag{4}\\
f(z)=a \cdot \exp (b x) \tag{5}\\
f(t)=\left(\frac{1}{\exp \left(-0.5\left(\frac{d^{2}}{\beta^{2}}\right)\right)^{2 \mu}}\right) \tag{6}
\end{gather*}
$$

The problems with Eqns 1-4 are fixed by writing:

$$
\begin{gather*}
\delta x(\lambda, \phi, z, t)=-\gamma(\lambda, \phi) g(z) h(t)\left(x(\lambda, \phi, z, t)-x_{r e f}(\lambda, \phi, z, t)\right) / \tau \tag{1a}\\
\gamma(\lambda, \phi)=f_{1}\left(\phi, \phi_{1}, \phi_{2}\right) f_{2}\left(\lambda, \lambda_{1}, \lambda_{2}\right) \tag{2a}\\
f_{1}\left(\phi, \phi_{1}, \phi_{2}\right)='\left[1 /\left(1+e^{-\left(\phi-\phi_{1}\right) / \delta_{1}}\right]\left[1 /\left(1+e^{-\left(\phi-\phi_{2}\right) / \delta_{2}}\right]\right.\right. \tag{3a}\\
f_{2}\left(\lambda, \lambda_{1}, \lambda_{2}\right)='\left[1 /\left(1+e^{-\left(\lambda-\lambda_{1}\right) / \delta_{1}}\right]\left[1 /\left(1+e^{-\left(\lambda-\lambda_{2}\right) / \delta_{2}}\right]\right.\right. \tag{4a}
\end{gather*}
$$

Eqn 5 doesn't align with Fig. S2: if z is height above the surface (standard notation), then f goes to infinity as you go upward. Is this what you mean to write here?

$$
\begin{equation*}
g(z)=a \exp (-b z) \tag{5a}
\end{equation*}
$$

Note, the middle panel in Fig. S2 does not fit either description (the curve should go exponentially to 100% at "model level" $=1$, but the figure displays a kink).

Eqn 6 doesn't align with Fig. S2 (as you go far from Jan 15, the denominator goes to zero and f goes to infinity. d appears to have units of month, but this isn't mentioned in the text. A more precise formulation would be

$$
\begin{equation*}
h(t)=\exp \left(-d^{2} /\left(2 \beta^{2}\right)^{2 \mu}\right) \tag{6a}
\end{equation*}
$$

where d is the time difference relative to maximum nudging time in months (e.g., $d=0$ on Jan $15, d=-1$ on Dec 15, etc). Outside of the nudging window, $h=0$.

Additional issues with these equations:

- Eqns 3 and 4 don't seem to align with the mask shown in Fig. S2. Why are there two nodal points in latitude $\left(\lambda_{1}, \lambda_{2}\right)$ and longitude $\left(\phi_{1}, \phi_{2}\right)$, and what are their values? Also, f_{1} and f_{2} do not go to zero as you go far from the center of the patch. It seems like these equations should read as follows: "Within the nudging patch centered at λ_{1}, ϕ_{1},

$$
\begin{equation*}
f_{1}\left(\phi, \phi_{1}\right)=\exp \left(-\left(\left(\phi-\phi_{1}\right) / \delta_{1}\right)^{2}\right) \tag{3a}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{2}\left(\lambda, \lambda_{1}\right)=\exp \left(-\left(\left(\lambda-\lambda_{1}\right) / \delta_{2}\right)^{2}\right) \tag{4a}
\end{equation*}
$$

and outside of the patch, $f_{1}=f_{2}=0$. "Note that I am assuming you used a smooth function around the center of the patch (a Gaussian). If instead, you used the exponential (as suggested by Eqn. 3), $\left(\left(\phi-\phi_{1}\right) / \delta_{1}\right)^{2}$ would be replaced with $\left|\phi-\phi_{1}\right| / \delta_{1}$.

- In Eqns 3 and $4, \delta_{1}$ and δ_{2} are not defined in the text).
- In Eqn $5, x$ and b are not defined in the text (also, presumably x should be z).
- The mathematical expressions on lines 133-134 appear to have been scrambled when the text was converted to the pdf.

