Edits on Equations 1-6

December 29, 2023

The equations that appear in version 3 of the manuscript:

\[\delta x(\lambda, \phi, z, t) = -\gamma(\lambda, \phi, z, t) \left(x(\lambda, \phi, z, t) - x_{ref}(\lambda, \phi, z, t) \right)/\tau, \quad (1) \]

\[\gamma(\phi, \lambda) = f(\phi, \phi_1, \phi_2) f(\lambda, \lambda_1, \lambda_2), \quad (2) \]

\[f(\phi, \phi_1, \phi_2) = \left[\frac{1}{1 + e^{-(\phi - \phi_1)/\delta_1}} \right] \left[\frac{1}{1 + e^{-(\phi - \phi_2)/\delta_2}} \right], \quad (3) \]

\[f(\lambda, \lambda_1, \lambda_2) = \left[\frac{1}{1 + e^{-(\lambda - \lambda_1)/\delta_1}} \right] \left[\frac{1}{1 + e^{-(\lambda - \lambda_2)/\delta_2}} \right], \quad (4) \]

\[f(z) = a \cdot \exp(bx) \quad (5) \]

\[f(t) = \left(\frac{1}{\exp \left(-0.5 \left(\frac{a^2}{\beta^2} \right)^{2\mu} \right)} \right) \quad (6) \]

The problems with Eqns 1-4 are fixed by writing:

\[\delta x(\lambda, \phi, z, t) = -\gamma(\lambda, \phi) g(z) h(t) \left(x(\lambda, \phi, z, t) - x_{ref}(\lambda, \phi, z, t) \right)/\tau, \quad (1a) \]

\[\gamma(\lambda, \phi) = f_1(\phi, \phi_1, \phi_2) f_2(\lambda, \lambda_1, \lambda_2), \quad (2a) \]

\[f_1(\phi, \phi_1, \phi_2) = \left[\frac{1}{1 + e^{-(\phi - \phi_1)/\delta_1}} \right] \left[\frac{1}{1 + e^{-(\phi - \phi_2)/\delta_2}} \right], \quad (3a) \]

\[f_2(\lambda, \lambda_1, \lambda_2) = \left[\frac{1}{1 + e^{-(\lambda - \lambda_1)/\delta_1}} \right] \left[\frac{1}{1 + e^{-(\lambda - \lambda_2)/\delta_2}} \right], \quad (4a) \]
Eqn 5 doesn’t align with Fig. S2: if \(z \) is height above the surface (standard notation), then \(f \) goes to infinity as you go upward. Is this what you mean to write here?

\[
g(z) = a \exp(-b z) \tag{5a}
\]

Note, the middle panel in Fig. S2 does not fit either description (the curve should go exponentially to 100\% at “model level” = 1, but the figure displays a kink).

Eqn 6 doesn’t align with Fig. S2 (as you go far from Jan 15, the denominator goes to zero and \(f \) goes to infinity. \(d \) appears to have units of month, but this isn’t mentioned in the text. A more precise formulation would be

\[
h(t) = \exp\left(-d^2/\left(2\beta^2\right)^2\mu\right) \tag{6a}
\]

where \(d \) is the time difference relative to maximum nudging time in months (e.g., \(d = 0 \) on Jan 15, \(d = -1 \) on Dec 15, etc). Outside of the nudging window, \(h = 0 \).

Additional issues with these equations:

- Eqns 3 and 4 don’t seem to align with the mask shown in Fig. S2. Why are there two nodal points in latitude \((\lambda_1, \lambda_2)\) and longitude \((\phi_1, \phi_2)\), and what are their values? Also, \(f_1 \) and \(f_2 \) do not go to zero as you go far from the center of the patch. It seems like these equations should read as follows: ”Within the nudging patch centered at \(\lambda_1, \phi_1 \),

\[
f_1(\phi, \phi_1) = \exp\left(-((\phi - \phi_1)/\delta_1)^2\right) \tag{3a}
\]

and

\[
f_2(\lambda, \lambda_1) = \exp\left(-((\lambda - \lambda_1)/\delta_2)^2\right) \tag{4a}
\]

and outside of the patch, \(f_1 = f_2 = 0 \). ” Note that I am assuming you used a smooth function around the center of the patch (a Gaussian). If instead, you used the exponential (as suggested by Eqn. 3), \(((\phi - \phi_1)/\delta_1)^2\) would be replaced with \(|\phi - \phi_1|/\delta_1\).

- In Eqns 3 and 4, \(\delta_1 \) and \(\delta_2 \) are not defined in the text).

- In Eqn 5, \(x \) and \(b \) are not defined in the text (also, presumably \(x \) should be \(z \)).

- The mathematical expressions on lines 133-134 appear to have been scrambled when the text was converted to the pdf.