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Abstract. Carbonaceous aerosols constitute a crucial component of atmospheric marine aerosols, among which black carbon 

(BC) and brown carbon (BrC) are important contributors to light absorption and hence the positive climatic radiative forcing 

in the marine atmosphere. We conducted a month-long (May 05–June 09, 2021) onboard sample collections and online 

measurements of carbonaceous aerosols to characterize their morphological and optical properties during a ship cruise in the 

South China Sea (SCS), covering a marine region of 11.9–24.5 °N and 111.1–118.2 °E. Single particles were collected by a 20 

single particle sampler and offline analyses were performed to investigate the mixing state and morphology using a 

transmission electron microscope (TEM). Online measurements of BC in PM2.5 were made by a seven-wavelength 

aethalometer and organic carbon (OC)/elemental carbon (EC) mass concentrations were measured by a semi-online OC/EC 

analyzer. Single particle samples were classified into two modes: “stop” when the ship was anchored and “navigation” when 
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the ship sailed at high speed. Feret diameters of the single particles during navigation and stop showed size distributions with 25 

the lognormal fitting peaks at 307 and 325 nm, respectively. The fresh (without coating) and aged BC particles (after removal 

of coating by the electron beams in TEM) showed comparable median fractal dimensions (1.65 vs 1.66), in contrast to their 

different median lacunarities (0.53 vs 0.59). The aged BC particles showed narrower Feret diameters (298–1980 nm) during 

navigation than those (304–2982 nm) of freshly-emitted BC from the own ship during stop. Moreover, tar balls, as one 

important component of single particles from ship emissions and as the tracer of biomass burning, were identified with 30 

geometrical diameters of 160–420 nm in the TEM images. The energy dispersive X-ray spectroscopy (EDS) analyses showed 

those tar balls are mainly mixed with sea salt, organics, BC, and sulfate. We also found a significant fraction of aged BC in 

various mixing states (core-shell, embedded) with other components of the aerosol particles after long-range transport. 

The campaign was further divided into several periods (before monsoon period, BMP; transition monsoon period, TMP; 

after monsoon period, AMP; and ship pollution period, SPP) according to the wind direction during monsoon and the own ship 35 

pollution. The median OC/EC ratios were 8.14, 5.20, 6.35, and 2.63 during BMP, TMP, AMP, and SPP, respectively, showing 

higher OC/EC ratios for biomass burning emissions than for fossil fuel emissions. Additionally, the median absorption 

Angström exponent (AAE) values derived from all wavelengths were 1.14, 1.02, 1.08, and 1.06 for BMP, TMP, AMP and SPP, 

respectively. Particularly, a median AAE value of 1.93 was obtained during two significant biomass burning events. These 

results showed that biomass burning (BB) and fossil fuel (FF) combustion contributed to 18–22% and 78–82% of all the BC 40 

light absorption without the two intense biomass burning events, during which BB and FF accounted for 42% and 58%, 

respectively. The two BB events originated from the Philippines and Southeast Asia before and after the summer monsoon. 

Our results demonstrated that BC can serve as the core of aged particles but the fractal dimensions of BC aggerates were 

subject to little variation; moreover, such BC particles become much more aggerated after aging in the marine atmosphere, 

which further affects the light absorption of the BC particles in the SCS. This study provides information about the morphology 45 

and the optical properties of carbonaceous aerosols which can be used to evaluate their effects on light absorption and hence 

the climatic radiative forcing in the SCS region.  
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1 Introduction 

Carbonaceous aerosols (e.g., organic carbon (OC), elemental carbon (EC)/black carbon (BC), and brown carbon (BrC)) 50 

profoundly impact regional and global climate (Corbin et al., 2019; Lu et al., 2020; Rabha and Saikia, 2020). As an important 

component of carbonaceous aerosols, BC can serve as a tracer of anthropogenic pollution once emitted from the incomplete 

combustion of fossil fuels and biomass burning. Moreover, BC particles are generally soot-aggerated with onion-like graphite 

layer microstructures which can be observed under electron microscopy (Adachi et al., 2019). BC and EC are two components 

of carbonaceous aerosols that are measured differently. BC is typically quantified based on its light-absorbing properties, while 55 

EC is measured using thermal-optical methods (Duarte et al., 2021). However, EC can also be referred to as graphitic carbon 

or soot, with some overlap in their definitions. Another important component of carbonaceous aerosols, BrC, represents a 

series of light-absorbing organic compounds, contributing significantly to the light absorption of atmospheric aerosols (Wang 

et al., 2020b). BrC and BC show different light absorption patterns as a wavelength function. BrC typically absorbs more 

strongly in the visible range (400–700 nm), while BC absorbs more strongly in the ultraviolet (UV) and near-infrared (NIR) 60 

ranges (200–400 nm and 700–1000 nm, respectively). Therefore, BrC and BC can be distinguished by measuring the 

absorption spectra of aerosol particles at different wavelengths (Andreae and Gelencsér, 2006; Bond et al., 2013; Laskin et al., 

2015; Li et al., 2020; Yus-Díez et al., 2021). Tar balls are commonly used as typical tracers of biomass and biofuel burning 

due to their composition of amorphous carbon. These particles also belong to BrC due to their light absorption properties over 

a broad range of solar spectra, from around 300 nm in the UV range to 2500 nm in the NIR range (Adachi et al., 2019; Hand 65 

et al., 2005). Spherical tar balls emitted from biomass burning have been observed in cases of both wild fire burning (Adachi 

et al., 2019) and laboratory generated tar ball particles (Tóth et al., 2014). In the atmosphere, biomass burning produces a 

significant amount of tar balls, which are not deliquescent but can absorb water at high relative humidity (RH = ~80%), thereby 

affecting their ability to scatter and absorb light (Hand et al., 2005).  

The optical properties of BC and BrC particles are affected by several factors including the emission source, coating 70 

component, particle size, morphology, and mixing state of the particles (Wei et al., 2020). The BC configuration in the single 

particles would influence their radiative effects (Luo et al., 2021). For example, core-shell BC particles show enhanced light 
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absorption compared to bare BC particles, especially when BC particles are coated with absorptive materials such as BrC 

(Budhavant et al., 2020; Cappa et al., 2012; Shamjad et al., 2012; You et al., 2016). “Lensing effect” refers to the absorption 

enhancement if BC is coated with non-absorbing organic or inorganic materials (Luo et al., 2021; Yang et al., 2009). In contrast, 75 

if the BC coating materials are highly absorptive, no absorption enhancement may occur at shorter visible and UV wavelengths, 

a phenomenon known as “shielding effect”. When BC is well internally mixed with BrC, its total absorption enhancement 

becomes smaller than those of not well mixed counterparts due to the absorptive coating that acts as a shield (Feng et al., 2021).  

The extent to which BC and BrC contribute to light absorption in atmospheric aerosols can be assessed using the absorption 

Ångstrom exponent (AAE) (Wang et al., 2020a). AAE is a parameter used to quantify the spectral dependence of aerosol light 80 

absorption. It is calculated by fitting a power-law relationship between the aerosol absorption and wavelengths over a given 

spectral range. The AAE is used to identify sources and types of aerosols and a higher AAE value is associated with sources 

such as biomass burning or urban pollution, while a lower AAE value suggests absorption by larger particles, such as mineral 

dust or sea salt (Blanco-Donado, 2022; Duarte et al., 2021). However, many factors such as mixing state, coating, particle size, 

refractive index, wavelength, and emission source, would affect the AAE values for BC and BrC aerosols, leading to large 85 

variations among different studies (Moschos et al., 2021). For example, a previous study showed that the AAE values derived 

from wavelengths of 405 and 781 nm are very sensitive to refractive index and particle diameter (Chylek et al., 2019). The 

AAE values of 0.8–1.6 at 470 and 950 nm are attributed to traffic emissions and fuel combustion (Ezani et al., 2021). 

Comparatively, those AAE values can be as large as 2.0 for ship emissions (Helin et al., 2021). Moreover, the recommended 

AAE value for fossil fuel (FF) and biomass burning (BB) is 1 and 2 (or higher), respectively (Liu et al., 2023). Other AAE 90 

values were also found in previous studies for FF (0.9) and BB (1.68) (Zotter et al., 2017) or FF (1.2) and BB (2.2) as the 

mostly used optical pair (Milinković et al., 2021). The AAE values of 1.4 and 1.7 for BC and BrC were set to be the lower and 

upper limits in the modelling study of biomass burning particles mixed with BC and BrC (Chylek et al., 2019). However, the 

use of constant AAE values for calculating the BC fractions from BB and FF led to large uncertainties without knowledge of 

the core size or coating thickness of the BC particles (Virkkula, 2021). Currently, the effect of the light absorption is not well 95 

known for the carbonaceous particles in the marine atmosphere due to scarce ship-based measurements.  

The optical properties of BC and BrC particles can also be investigated through fractal dimension (Df) analysis based on the 
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fractal properties of BC aggerates. Df illustrates how particles aggregate and grow and it can be determined through boxing 

counting calculation, ensemble method, or soot parameter method with TEM images (Pang et al., 2022). The Df values are 

mainly related to emission sources and aging process of the particles. Previous studies showed that the Df values of fresh BC 100 

particles tend to be small but become larger after aging because the particles are more compact due to coatings (Luo et al., 

2022; Wang et al., 2017). Df values of 1.8 and 2.6 were used respectively for fluffy and compact BC particles in a numerical 

study to investigate the impact of the BC morphology on light absorption (Luo et al., 2021). Laboratory experiments simulating 

wildfires showed that the Df values of freshly emitted BC were in a range of 1.74–1.92 (Chakrabarty et al., 2006), compared 

to the range of 1.67–1.83 from a field study of the Las Conchas fire (China et al., 2013). A similar range of the Df values of 105 

1.67–1.93 were found at a remote site in the southeastern Tibetan Plateau (Wang et al., 2017). The obtained Df values for the 

traffic emissions were as large as 3 (Wei et al., 2020). In addition to the emission sources and aging process, Df is also dependent 

on the particle size. A previous experimental study found that for polystyrene latexes (PSL) particles, the Df values decreased 

with the increase of particle size up to 200 nm (Wu et al., 2013b). Nevertheless, knowledge of the fractal dimension for 

carbonaceous particles in the marine atmosphere is currently very limited, hindering our ability to understand the aging process 110 

and the optical properties of these particles. 

In the past years, carbonaceous aerosols in the marine atmosphere have been extensively studied on regional and global 

scales, focusing on the transport of anthropogenic emissions to the sea areas. The BC background concentrations in Antarctic 

and Arctic regions are below 20 ng m-3 (Fossum et al., 2022). The BC outflows from Asia to the Pacific Ocean exhibit seasonal 

variations and originate from anthropogenic and biomass-burning sources in China, Siberia, and Southeast Asia (Matsui et al., 115 

2013). Ship-based BC and EC measurements reveal significant influence of continental transport on remote oceanic regions, 

including the Bay of Bengal (Kedia et al., 2012), Indian Ocean (Kompalli et al., 2021), Southern Indian Ocean and the Southern 

Ocean (Ueda et al., 2018), North Sea (Bencs et al., 2020), Antarctic (Chaubey et al., 2013; Schmale et al., 2019), North Pacific 

(Taketani et al., 2016; Xing et al., 2014), Arctic (Pankratova et al., 2021; Sharma et al., 2019), Northeast Atlantic (Fossum et 

al., 2022), the Yellow Sea (Kwak et al., 2022), and Western Pacific (Ma et al., 2022). However, to our knowledge, the BC mass 120 

concentrations have been found to vary significantly across different oceans and seasons, with levels from 3 to 2800 ng m-3 

and being influenced by anthropogenic activities and seasonal factors. The online BC measurements in the South China Sea 
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(SCS) region are limited. An early study reported BC concentrations on Yongxing Island during the rainy season (May 16–

June 20, 2008) and the dry season (Dec. 12, 2008–Jan. 8, 2009), with average concentrations of 0.54 and 0.67 µg m-3, 

respectively (Wu et al., 2013a). Recent studies conducted at coastal sites in the SCS found that BC concentrations are strongly 125 

impacted by the land anthropogenic emissions (Wang et al., 2022). The time-resolved BC concentration varies with the vertical 

heights (Sun et al., 2020c) and the carbonaceous materials of OC and EC account for 31–62% in PM2.5 (Yan et al., 2018). 

Nevertheless, quantification of the light absorption potential of BC and BrC aerosols remains challenging due to the limited 

knowledge regarding the morphology, particle size, and mixing state of carbonaceous particles in the SCS (Kompalli et al., 

2021). Furthermore, the atmosphere in the SCS is typically influenced by the southwesterly monsoon from May to August 130 

(Wang and Wu, 2020), which affects the air masses from Southeast Asia. In this study, we conducted ship-based measurements 

of BC, OC/EC, and single particle sampling during summer (May 05–June 09, 2021) in the SCS. The morphology (i.e., the 

fractal dimension and the size of the single BC particles) and light absorption properties of carbonaceous particles were 

characterized. The source origins, relationships between the Df and BC size, as well as the impact of summer monsoon on the 

light absorption of the BC particles are discussed.  135 

2 Methods 

2.1 Cruise route and instrumentation 

The cruise measurements were carried out from May 5 to June 9, 2021, covering a marine area of 11.9–24.5 °N and 111.1–

118.2 °E in the SCS. Single particles were collected on the TEM grids (3.05 mm I.D., copper meshed and covered with lacey 

carbon film) located on the front deck during ship navigation and stop using a single particle sampler (DKL-2, Genstar 140 

Electronic Technology Co., Ltd., China) which is the same as other studies (Liu et al., 2021; Pang et al., 2022). The sampling 

flow rate and time were set at 1 L min-1 and 10 min, respectively, for each collection. The particles with aerodynamic diameters 

above 0.2 µm were collected with a collection efficiency of 50%, assuming a particle density of 1.5 kg m-3 (Marple and Olson, 

2011). More details can be found in the supplementary information (Section 1 of SI). The mixing state and morphology of the 

single particles were analyzed utilizing a transmission electron microscope (TEM, FEI Tecnai G2 Spirit, Holland) operated at 145 
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an accelerating voltage of 120 kV, in conjunction with an energy dispersive spectrometer (EDS, Bruker Nano GmbH Berlin, 

Esprit 1.9, Germany) for elemental analysis. The thickness of the EDS detector (type XFlash 5060) is 0.45 mm with a Si dead 

layer of 0.029 mm. Notably, in the EDS spectra, when analyzing particle composition, Cu should be excluded, and a 

considerable level of C and Si should be observed in the background signals due to the presence of Si in the detector, Cu and 

C in the TEM grid. 150 

The sampling inlets were installed on the bow of the research vessel with a height of ~ 15 m above sea level. The own ship 

emissions (e.g., engine, cooking, etc.) were exhausted from the chimney on the stern with a linear distance of ~ 22 m to the 

inlets. The BC mass concentrations were measured by an aethalometer (Model AE33, Magee Scientific, USA) with a high 

time resolution of one second or one minute (Drinovec et al., 2015). The sampling air was regulated by a PM2.5 cyclone (BGI 

Inc., Waltham, MA, USA) and subsequently dried by a Nafion dryer (Model MD-700 series, Perma Pure Inc., USA) with a 155 

relative humidity below 40% through the filter tape (type 8060) at a flow rate of 5 L min-1. The optical attenuation (ATN) was 

measured simultaneously from the two spots on the filter. The measured attenuation at seven wavelengths (7 channels) is used 

to determine the wavelength-dependent absorption coefficient. The mass specific absorption cross-sections (MAC) applied in 

the BC calculations were 18.47, 14.54, 13.14, 11.58, 10.35, 7.77, and 7.19 m2 g-1 for wavelengths of 370, 470, 520, 590, 660, 

880, and 950 nm, respectively (Ausmeel et al., 2020). The measured values at 880 nm (channel 6) are for black carbon 160 

concentration calculation, at 370 nm (channel 1) for UV particulate matter (UVPM) concentration (Drinovec et al., 2015). The 

detection limit of AE33 aethalometer is approximately 0.03 µg m-3 for 1-min integration period and below 0.005 µg m-3 for 1-

hour integration period. The instrument was automatically calibrated by zero air every day. Notably, significant spikes were 

observed during periods when the ship was stationary, when it was traveling at low speeds, and when the wind was blowing 

from the stern of the vessel.  165 

The OC/EC concentrations were measured by a semi-continuous OC/EC analyzer (Model-4, Sunset Laboratory Inc., USA) 

based on the optical attenuation and thermo-optical transmittance methods (Geron, 2009) under the NIOSH 5040 thermal-

optical protocol (Lappi and Ristimaki, 2017). Similarly, the sampling air passed through a PM2.5 cyclone (BGI Inc., Waltham, 

MA, USA) and was dried by a Nafion dryer (Model MD-700 series, Perma Pure Inc., USA) with a relative humidity below 

40% at a flow rate of 8 L min-1. The air then passed through a denuder for the removal of volatile organic compounds (VOCs) 170 
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and the particles were collected on the quartz filter with 45-min accumulation and 15-min analysis. The instrument was 

calibrated with the standard sucrose solution as recommended. The manufacturer-claimed detection limits are 0.4 and 0.2 µg 

m-3 for OC and EC, respectively (Brown et al., 2019). However, several previous studies showed that these values may vary 

substantially in a range of 0.04–2 and 0.001–0.5 µg m-3 for OC and EC, respectively, due to the artifact of the quartz filters 

(Bao et al., 2021; Bauer et al., 2012; Chen et al., 2017; Jung et al., 2011; Karanasiou et al., 2020; Park et al., 2018; Zhang et 175 

al., 2021). Here, we estimated the detection limits of 0.15 and 0.012 µg m-3 for OC and EC based on 26 effective blank 

measurements with 3 times standard deviation (3σ) during the campaign.  

The measurements of solar radiation (SR), temperature (T), pressure (P), relative humidity (RH), relative wind direction 

(RWD), and relative wind speed (RWS) were provided by the automatic weather station equipped on the research vessel. The 

cruise route is from the global positioning system (GPS) onboard the ship.  180 

2.2 Data analyses and processing 

2.2.1 Analyses of single particles 

A total of 34 samples (15 during navigation and 19 at stop) were analyzed and more than 20 bright-field TEM images were 

randomly captured for each sample except for those at the center of the grids where particles were easily overlapped. A total 

of 15624 single particles were statistically analyzed to obtain morphology information (i.e., the Feret diameter, area, perimeter) 185 

for each particle using the software Image J (1.53q, National Institute of Health, USA). The Df values of the BC particles were 

estimated using the boxing counting method. An example was given in the SI (section 2, Fig. S1) to show how to calculate Df 

using the software. A detailed description of the procedure using the boxing counting method and the software ImageJ can be 

found in the SI. The Df values are very sensitive to the fill extent and sizes of the particles. A previous study showed low fractal 

dimensions when the particles contain void volumes (Peyronel et al., 2010). 190 

The own ship emissions can be identified using various measures, for example, high CO, NOx concentrations (Sun et al., 

2020b), high BC concentrations (Alroe et al., 2019; Shank et al., 2012), regular cooking emissions (Cai et al., 2020), and wind 

speeds/directions between the ship stop and start operation (Ausmeel et al., 2020; Kwak et al., 2022). The contribution of ship 
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emissions to BC sources on the marine atmosphere depends on engine types, operation modes, fuel types, and loadings (Gagne 

et al., 2021; Jiang et al., 2018; Karjalainen et al., 2022; Lack and Corbett, 2012; Wu et al., 2021; Zhao et al., 2020). Here, we 195 

classify two sampling modes (navigation vs stop) of single particle analyses according to ship operation, relative wind 

direction/speed. The navigation mode is constrained by the relative wind direction of 0–80° or 280–360°, and the relative 

wind speed greater than 5 m s-1, averaged for every 10 minutes (consistent with the collection time of TEM samples). The stop 

mode is set with the relative wind direction of greater than 80° and less than 280°, or the relative wind speed lower than 5 m 

s-1. The navigation mode samples are mainly from marine air and air masses of long-range transport while the stop mode 200 

collected air masses which are mixed with the own ship emissions. The temporal profiles of ship heading directions and relative 

wind direction/speed are shown in the SI (section 3, Fig. S2). Details of the two sampling modes (navigation vs stop) on a 

vector average of 10 minutes are listed in Table S1. Here, we distinguished the own ship emissions (ship pollution) from those 

of other ships or long-range transport. In addition, an hourly averaged BC concentration above 2 μg m-3 was also considered 

as ship pollution based on the time series of BC concentration without significant interference of self-emission.  205 

2.2.2 BC, OC, EC and optical EC data 

Here, we averaged the BC mass concentrations over one minute and excluded those below the detection limit of 0.03 µg m-3 

for minimizing the variations. We also removed the own ship emissions which are characterized by spikes in particle number 

concentrations according to the wind directions (Fossum et al., 2022). AAE was calculated according to Eq. (1) using the light 

absorption at wavelengths of 470 and 950 nm, which are built-in algorithms in the AE33 aethalometer as described elsewhere 210 

(Helin et al., 2021; Kang et al., 2022; Milinković et al., 2021; Zotter et al., 2017). This method serves as a two-composition 

source apportionment for BC emitted from fossil fuels and biomass burning (AAE model).  

AAE = −
ln

𝜎𝑎𝑝(𝜆1)

𝜎𝑎𝑝(𝜆2)

ln
𝜆1
𝜆2

                                            (1) 

where σap is the aerosol absorption coefficient, σap = BC*MAC. λ1 = 470 nm and λ2 = 950 nm.  

  Alternatively, AAE can be obtained from the negative slope of linear regression between the log-transformed σap and all the 215 

wavelength spectra so that hourly AAE values (all λ) can be obtained following a similar method in Retama et al. (2022). Here, 
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we define Delta-C as the difference between the concentration derived from the aforementioned UVPM data (at 370 nm) and 

BC concentration (at 880 nm). This Delta-C parameter was employed as an indicator of smoke from biomass burning in 

previous wood biomass burning studies (Harrison, 2020; Zhang et al., 2017). 

  The OC and EC (thermal) concentrations lower than the detection limits (0.15 and 0.012 µg m-3 for OC and EC, respectively) 220 

were excluded. Additional data were removed for those with laser correction factors below 0.88 and calibration peak areas 

lower than the initial calibration levels (within 10%), and a total of 550 h data were used for further analysis. In comparison, 

the Sunset optical EC (at 660 nm) is generally consistent with the Magee AE33 aethalometer derived BC (at 880 nm) within 

9% (Brown et al., 2019) which is shown in Section 3.3. The EC concentration data from Sunset were considered as ship 

pollution and were discarded when the BC concentrations from the AE33 aethalometer were higher than 2 μg m-3, in addition 225 

to those with relative wind directions of 80–280° regardless of the BC concentrations as mentioned before.  

2.2.3 HYSPLIT backward trajectory and MODIS fire data 

The backward trajectories were calculated using NOAA HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) 

(Version 5) at heights of 100, 500 and 1000 m above sea level (AGL). Daily meteorological data with 1.0°×1.0° spatial 

resolution for trajectory calculation were downloaded from the global data assimilation system (GADS) 230 

(ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1/). Here, we calculated the 72-h back trajectories of air masses arriving at the 

single particle sampling sites along the cruise route.  

Moderate Resolution Imaging Spectrometer (MODIS) data are available from the Near real-time MODIS Collection 6 

products (https://firms.modaps.eosdis.nasa.gov/download/). Here, we selected a region of 102–127 °E and 0–30 °N fully 

covering the campaign area. The number of fire hotspots was counted each day during the campaign with a confidence level 235 

of higher or equal to 80% as recommended (Giglio et al., 2020). A detailed description of the fire detection algorithms is 

available online (https://earthdata.nasa.gov/what-is-new-collection-6-modis-active-fire-data).  
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3 Results and discussion 

3.1 Overview 

Figure 1 shows the time series of ship cruise route and the single particle sampling locations during ship navigation (marked 240 

as solid triangles) and stop (marked as open squares) over the SCS during the campaign. The cruise sequences are AB→C→

D→EB→D→A, with AB and EB being non-stop cruise, otherwise the ship stopped occasionally along the arrow routes for 

other research tasks. Figure 2 shows the time series of the meteorological variables (i.e., solar radiation (SR), temperature, 

pressure, relative humidity (RH), wind direction (WD), and wind speed (WS)) during the whole campaign (May 05–June 09, 

2021). The measurements were conducted mostly on sunny days prior to June 02 as shown by the SR data. Subsequently, it 245 

became rainy and cloudy due to the summer monsoon in the SCS. One notable meteorological feature during the campaign 

was the occurrence of the summer monsoon starting from May 27 close to the site E, during which (May 27–June 01), an 

increase of RH (~9% from campaign-averaged 78.7% to monsoon period-averaged 85.6%) and a slight decrease of pressure 

(~0.2% from 1007.4 to 1005.4 hPa) were observed. Meanwhile, the wind directions were mainly southerly during this period 

and later changed to southwest. It should be noted that Typhoon 202103 (CHOI-WAN) traveled across B→D, resulting in a 250 

bulge in the middle of the cruise route for avoiding the typhoon during June 03–05, 2021. The typhoon track is available online 

with the last accessed date Mar. 25, 2023: http://agora.ex.nii.ac.jp/digital-typhoon/summary/wnp/s/202103.html.en.  

Figure 3 shows the time series of the mass concentrations of carbonaceous aerosol components in PM2.5 (i.e., BC, UVPM, 

OC, and EC) during the whole campaign. Frequently high spikes of the mass concentrations of carbonaceous aerosol 

components were observed due to the ship pollution. We notice that ship pollution was significantly pronounced on the first 255 

two days after the ship left the harbor and on the last 3–4 days before the ship returned to the harbor, during which the spikes 

of BC concentrations were measured by the Magee AE33 aethalometer with the relative wind direction of 80–280°.  

3.2 Single particle analysis of BC and tar balls 

Particle size distribution, composition, and size-dependent BC fractals were investigated based on TEM images. The Feret 

diameter is commonly used in microscopy for particle size analysis (Zefirov et al., 2018). The size distribution of all the single 260 
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particles from the analyzed TEM images is depicted in Fig. 4. The distribution is represented with histograms starting at 50 

nm, a width interval of 20 nm, and a bin number of 200. The choice of bin width may vary depending on cases but it is close 

to the quotient value of the square root of the measured particle number divided by the overall width of the distribution (Pabst 

and Gregorova, 2007). Moreover, lognormal fitting is used for the peak size identification of particle size distribution (Rice et 

al., 2013). Figure 4a shows a fitted peak Feret diameter of 307 nm for a total of 6613 particles from 15 samples during 265 

navigation, while a fitted peak Feret diameter of 325 nm was obtained for a total of 9011 particles from 19 samples during stop 

(Fig. 4b). Particles collected during navigation were predominantly aged at high wind speeds, while particles during stop were 

mixed significantly with freshly emitted particles from the own ship and from other merchant ships or those from long-range 

transport, possibly leading to the variation of the size distribution. Although the bimodal distribution was observed from 

particles in the indoor air, which was likely caused by fresh emissions and secondary formation (Pipal et al., 2021), we did not 270 

obtain significant bimodal peaks for both navigation and stop particles.  

We obtained characteristic values for the particle shape descriptors such as circularity (0.7 ± 0.2) and aspect ratio (1.2 ± 0.3) 

for all the particles collected during navigation and stop, implying that these particles are not perfectly spherical and may vary 

in their mixing states. Figure 5 (top images) shows a comparison of the mixing states during navigation (a-c) and stop (d-f) 

from typical BC TEM images. The BC particles collected during navigation are in the embedded (a), external (b), or core-shell 275 

(c) mixing states classified with the methods which are based on single particle analysis of island and mountain samples across 

East China Sea and Japan (Adachi et al., 2014; Sun et al., 2020a). More TEM images for the heavily coated internal and 

external BC particles from navigation can be found in the SI (section 4, Fig. S3). The EDS analysis showed that the single 

particles during navigation were predominantly composed of carbon (C), oxygen (O), sulfur (S), potassium (K), sodium (Na), 

chloride (Cl), magnesium (Mg), and calcium (Ca) (Fig. S4), indicating that those BC particles were coated with sulfate, sea 280 

salt, and organics. Furthermore, small externally mixed BC particles can be transported over the sea and easily coated during 

long-range transport. Under the TEM electron beam, these coated volatile components were easily vaporized to expose the BC 

fractal frame (Fig. S3d-f). 

Comparatively, much larger BC particles as well as smaller scattered BC particles during stop were found (Fig. 5d-f), among 

which were apparently emitted from the own ship (e, f). Those BC particles with Feret diameters greater than 2 µm during 285 

https://doi.org/10.5194/egusphere-2023-1589
Preprint. Discussion started: 31 July 2023
c© Author(s) 2023. CC BY 4.0 License.



 13 

stop were fractal aggerates which unlikely survived during long-range transport due to deposition. In addition, heavily coated 

internal BC particles were found during stop due to the mixing between ship pollution and the marine air (Fig. S5). The bottom 

panels of Fig. 5 (a-f) show the corresponding images obtained by boxing counting in fractal analysis with the resultant Df, 

Feret diameter (D), Lacunarity (L), and sampling number underneath for each TEM sample image. Figure 6 shows Df and L 

as a function of D for some representative BC particles during both navigation and stop. These particles were exposed to 290 

electron beam and volatile coatings were removed so that the morphology of bare BC was clearly shown regardless of the 

mixing state of the original BC. The Df values during navigation were in a range of 1.50–1.77 with a median of 1.65, while 

the Df values during stop were 1.48–1.75 with a median of 1.66, indicating no significant differences of Df (<1%) for the 

exposed BC particles during navigation and stop. Figure 6 also shows that most of the BC particles during navigation were 

below 1 µm in Feret diameter, implying that smaller BC particles were more susceptible to be coated and aged during transport. 295 

Comparatively, the lacunarities during navigation (0.32–0.90, median: 0.53) and stop (0.35–0.77, median: 0.59) were different, 

with the former being smaller than the latter, indicating that the lacunarity tended to become smaller (~10%) after coating or 

aging of the BC particles.  

  Tar balls were frequently observed during the campaign. The spherical tar ball particles in the marine atmosphere were mixed 

with sea salt (Fig. 7a and d for TEM image and EDS spectrum, respectively), organic carbon and sulfate (Fig. 6b and e) from 300 

the samples collected on May 27 during navigation. In contrast, the particles collected on June 01 were found to be amorphous 

carbon agglomerates which were mixed with sulfate (Fig. 6c and f). During these days, the wind directions were from 

southwest, with air masses originating from both the Philippines and Southeast Asia. The difference between tar ball spheres 

and amorphous carbon agglomerates may be related to biomass burning type or source origin. Similar particle morphologies 

were found in other studies on brown carbon during aircraft measurements over the Yellow Sea in 2001 (Zhu et al., 2013). Tar 305 

balls mixed with BC during stop were also observed (Fig. S6), with geometrical diameters of 160–420 nm, much larger than 

nano-soot spheres (40–50 nm) (Fig. S7). In comparison, the laboratory-generated tar balls were measured to have AAE values 

of 2.7–3.4, with an average of 2.9 at 467–652 nm (Hoffer et al., 2016).  
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3.3 Air mass trajectories and mass concentrations of carbonaceous aerosols  

Figure 8 shows the time series of fire spots distribution and the 72-h backward trajectories at three AGLs (100, 500 and 1000 310 

m) over the SCS during the campaign. Only several backward trajectories are shown to avoid massive overlapping. Several 

fire spots located in the sea were attributed to oil or natural gas drilling processes which generate thermal energy, combustion, 

and exhaust. Such processes included the prevalent hydrocarbon exploration and production activities in this region. A 

comprehensive cartographic representation of these endeavors within the SCS can be accessed via the online platforms 

(https://amti.csis.org/south-china-sea-energy-exploration-and-development/). Note that since the ship moved along the cruise 315 

route, the air mass backward trajectories also changed with the movement of the ship. For example, significant biomass burning 

was detected in Laos, northern Vietnam, and the Philippines during May 15–24, as indicated by the corresponding fire spots. 

However, the back trajectories to the sampling route (C→D) during this period were mainly from the Philippines.  

Here, we classified the campaign period into several groups based on the cruise route, change of wind direction during 

monsoon, backward trajectories, and ship pollution, as listed in Table 1: (1) BMP-1 (before monsoon period 1), AB route 320 

mainly with northeast wind direction during May 05–09; (2) BMP-2, B→C→D route close to the Philippines primarily with 

southeast wind direction during May 10–22; (3) BMP-3, D→E close to mainland China with the same wind direction as BMP-

2 during May 23–26; (4) TMP (transition monsoon period), EB route with south wind direction during May 27–Jun 01; (5) 

AMP (after monsoon period), B→D→A route with southwest wind direction during June 02–09; (6) SPP (ship pollution 

period), ~35% of the online measurement data could be attributed to this category in this study due to the interference of the 325 

research vessel self-emission.  

The BC concentrations measured by the Magee AE33 aethalometer agree excellently with the optical EC concentrations 

obtained from the Sunset OC/EC analyzer, as evidenced by a linear regression coefficient of 0.97. However, the BC 

concentrations were considerably higher than the thermal EC concentrations, exhibiting linear regression coefficients of 1.66 

and 1.55, respectively. These findings, presented in Fig. S8 of Section 5 in the SI, are in line with previous research conducted 330 

by Brown et al. (2019). The OC/EC ratios can be used as an indicator for the source origins of the air masses. Figure 9 shows 

the median OC/EC ratios (8.14, 5.20, 6.35 and 2.63) for the classified periods (BMP, TMP, AMP, and SPP, respectively). 
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Notably, EC median mass concentrations (0.24, 0.25 and 0.17 μg m-3) for the marine air masses during BMP (0.013–0.69 μg 

m-3), TMP (0.015–0.60 μg m-3), AMP (0.014–0.74 μg m-3) were lower than the median concentration (1.70 μg m-3) during SPP. 

In addition, this study revealed a significant variation in EC concentrations during SPP, ranging from 0.15 to 22.8 μg m-3. 335 

Previous studies showed that OC/EC ratio could be characterized by various sources, ranging from 1.37–1.71 for residential 

cookstoves, 1.63–2.23 for rural emissions, 1.05–1.24 for diesel exhaust, and 0.80–1.12 for urban environments (Khan et al., 

2012). A low OC/EC ratio (<3) corresponded to the predominant contribution of the primary OC in submicron particles 

reported in a previous study in the Southern Indian Ocean, Northern Indian Ocean and Bay of Bengal (Neusüß, 2002). Here, 

the median OC/EC ratio of 2.63 during SPP is much higher than the characteristic values of diesel combustion, most likely 340 

because the sample air during SPP is composed of marine air and the own ship exhaust. Our results are consistent with a recent 

study which showed that the diesel combustion from ships accounted for 15% of BrC in the total light absorption at a coastal 

site in Shanghai during June–July, 2021 (Kang et al., 2022). In contrast, the OC/EC ratios during other periods (i.e., BMP, 

TMP and AMP) were even much higher (5.20–8.13), indicating that the aerosols were highly aged during the long-range 

transport of biomass burning aerosols. This is also consistent with our recent study in the SCS which showed that during 345 

monsoon periods in the summer of 2019. The biomass burning organic aerosols became aged through atmospheric processes 

during transport (Sun et al., 2023).  

3.5 Light absorption of carbonaceous aerosols 

The long-range biomass burning transport affects the air mass in the SCS. Figure 10 illustrates the wavelength-dependent mass 

concentration measured by the AE33 aethalometer during the campaign, showing (a) an example of a ship plume, and (b, c) 350 

two significant biomass burning events during BMP (BB-1: 6:00–7:00 on May 15 and 15:00–22:00 on May 16) and during 

TMP (BB-2: 15:00 on May 30–00:00 on May 31). The ship plumes, predominantly emitted from fossil fuel combustion, 

showed similar absorption at all seven wavelengths. In contrast, significant absorption at low wavelengths was detected during 

the biomass burning events, a phenomenon also observed in other field measurements in urban cities and towns where air 

masses were susceptible to biomass burning (Zhang et al., 2017). A comparison of the two methods for AAE calculation is 355 

presented in the SI (Section 6, Fig. S9). The fitting results demonstrate that the AAE calculated for all wavelengths was lower 
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than the AAE calculated for only 470 and 950 nm wavelengths. The fitting slope is 0.78, and the determination coefficient (R²) 

is 0.98, indicating a strong correlation between the two methods.  

Figure 11 shows the hourly averaged AAE derived from all wavelengths as a function of the BC concentrations by AE33 

aethalometer with the median (range) AAE values of 1.14 (0.57–1.48), 1.02 (0.51–1.36), 1.08 (0.54–1.42), and 1.06 (0.65–360 

1.37), respectively, for the classified periods (BMP, TMP, AMP, and SPP), and the corresponding BC median (range) mass 

concentrations of 0.28 (0.033–1.17), 0.14 (0.042–2.86), 0.17 (0.055–1.08), and 3.01 (0.21–36.5) μg m-3, respectively. Like 

EC, ship pollution led to emissions of high BC concentrations, reaching as high as 36.5 μg m-3. The median BC concentrations 

decreased significantly during TMP and AMP, likely due to the increase of the RH which further increased the scavenging of 

the BC particles during navigation as reported previously (Girach et al., 2014). Note that the biomass burning events were 365 

excluded from the above calculations and are further discussed below. 

During the biomass burning events, the correlations of AAE with AE33 BC and Delta-C concentrations are respectively 

shown in Figs. 11 and 12, characterized by very high median AAE values (1.85 and 1.86, respectively for BB-1 and BB-2) and 

BC concentrations (1.93 and 1.67 μg m-3). Notably, high BC (1.45–3.62 μg m-3) mass concentrations at 370–660 nm were 

observed during the biomass burning events due to more efficient light absorption of BrC in the range than at higher 370 

wavelengths, while no significant wavelength-dependent BC concentrations were found during ship pollution (Fig. 10a). The 

higher AAE values imply much stronger absorption of non-BC light-absorbing particles (BrC) at shorter (UV-vis) wavelengths, 

which mainly originated from the biomass burning emissions (Ponczek et al., 2022). Moreover, the median OC/EC ratios were 

5.03 and 5.29 respectively for the two biomass burning events, even much higher than those for SPP (Fig. 9). The 72-h 

backward trajectories also showed that the BB-1 air masses mainly originated from the Philippines while the BB-2 air masses 375 

were from the mainland Vietnam, both with high densities of fire spots (Fig. 8). The AAE values were also highly correlated 

with the Delta-C values with a determination coefficient (R2) of 0.92 (Fig. 12), further demonstrating a significant contribution 

of BrC to the AAE enhancement. In addition, we further correlated the observed high AAE values with the Delta-C values for 

the two biomass burning events and confirmed that these high AAE values (1.45–3.62) were indeed attributed to biomass 

burning rather than ship emitted tar balls which covered an AAE range of 2.7–3.7 at 405 and 781 nm wavelengths in a previous 380 

wood burning study (Chylek et al., 2019).  
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Our study found that the AAE values from all wavelengths for the marine atmosphere and ship pollution were 1.02–1.14 

and 1.06, respectively, except for a higher AAE value (1.93) during the two biomass burning events. The AAE values for ship 

pollution are dependent on the fuel types and loading conditions (Laskin et al., 2015). For example, heavy fuel oil operated at 

high loads can result in AAE values (at 470/950 nm, and hereafter unless specified) of 2.0, while the intermediate fuel oil has 385 

an AAE value of 1.3 at high loads (Helin et al., 2021). In addition, the presence of tar balls may contribute to the enhancement 

of BrC absorption as mentioned in Section 3.2, as tar balls from ship emission have higher AAE values (2.5–6 depending on 

the wavelengths) (Corbin et al., 2019). The occurrence of tar balls in this study was about 12% in the analyzed single samples. 

These tar balls were likely aged during long-range transport from biomass burning and hence affected the light absorption of 

BrC in the SCS.  390 

3.6 BC sources from fossil fuel vs biomass burning 

The source origins of BC particles can be investigated using the AAE model. In the model, we employed respectively the 

characteristic AAE values of 1 and 2 for FF and BB to calculate their corresponding BC concentrations, namely BC(FF) and 

BC(BB). Figure 13 shows the time series of BC(FF) and BC(BB) for different classified periods. The BC(FF) and BC(BB) 

values were much higher before the monsoon than during/after the monsoon, except for the periods during BB-1 and BB-2 395 

with significantly high BC(FF) and BC(BB) values (peaks > 1 μg m-3), while high BC(FF) values were seen during SPP. Table 

2 summarizes the average concentrations and the ranges of BC(FF) and BC(BB), along with their corresponding fractions. In 

general, both the average BC(FF) and BC(BB) values were low during BMP, TMP, and AMP, compared to those during the 

biomass burning events and SPP. BC(FF) contributed over 80% of ship pollution during SPP, whilst the BC(BB) could 

contribute to more than 40% of the total black carbon during the two BB events. We hence conclude that fossil fuel combustion 400 

is the major contributor to the light absorption of BC except during the seasonal biomass burning events and biomass burning 

can have a profound contribution to the BC light absorption in the SCS.  

Active biomass burning pollution during January–May in Southeast Asia occurs routinely because of crop residue and sugar 

cane burning. A previous study showed that during dry and wet seasons, the annual contribution of BC(BB) was 11% and 30% 

respectively in the Peninsular India (Soyam, 2021) based on the two-component AAE model (Drinovec et al., 2015; Yus-Díez 405 
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et al., 2021). Table 3 summarizes the BC concentrations, AAE values, and the corresponding fraction of biomass burning (or 

fossil fuel) in previous and present studies for the marine atmosphere conducted at coastal sites or ship-based cruise 

measurements using the AE series instrument. The BC(FF) and BC(BB) fractions of 58% and 42% were obtained respectively 

during the two BB events, while they accounted for 78–83% and 18–22% during other periods, similar to those found at the 

coastal site in Central Adriatic (79% and 21%), and significantly different from those reported at a coastal site in the East China 410 

Sea (Yu et al., 2018). However, observation data are still lacking on the contribution of BC from fossil fuel vs biomass burning 

in the sea regions which warrants more future studies during different seasons.  

3.7 Limitation of this study 

This cruise campaign for carbonaceous aerosols has several limitations which might need to be aware of due to the time and 

area coverage constraints. The presence of other light-absorption aerosol components, polluted dusts, oil and gas drilling 415 

emissions, as well as fishery policy may contribute to the uncertainties in the AAE model used for the BC source 

apportionment in this study. Firstly, the composition of aerosols and refractive index may strongly affect the AAE calculation. 

The source apportionment of BC for biomass burning and foil fuel is based on the AAE two-component model which only 

considered BC(BB) and BC(FF) as the light absorption materials. An AAE range of 0.9–1.4 is used for pure BC from foil fuel 

emissions, while it is 1.68–2.2 for biomass burning as mentioned earlier. The current AAE two-component model does not 420 

include other potential light-absorbing materials, such as mineral dust and biological particles (Pileci et al., 2021). Interestingly, 

two types of possible biological particles were observed during the campaign (Fig. S10, in the SI, section 7). A similar type of 

biological particles was observed and identified as brocosomes in another campaign near the East China Sea (Fu et al., 2012). 

However, more future studies are needed to identify the types and species of biological particles and to evaluate their 

contributions to the light-absorption.  425 

Secondly, based on the Cloud-Aerosol Lidar & Infrared Satellite Observation (CALIPSO) data on May 15 and June 07 when 

the orbit just passed over the SCS region and the Southeast Asia (Fig. S11 and S12, in the SI, section 8), we found the presence 

of polluted dust in the vertical profile over the Philippines, Indonesia, Thailand and Malaysia. Long-range transport of dust 

may affect our measured AAE data. Thirdly, oil and natural gas drilling (Liu and Li, 2021) is active in the SCS region and the 
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distribution map is available online (https://www.oilmap.xyz/). These activities potentially contribute to the BC emissions 430 

(Cordes et al., 2016), and these BC are similar to those of continental emitted BC from incomplete burning of oil or natural 

gas. 

 Lastly, Chinese fishery policy enacts fishing prohibition for about three and a half months every year in the SCS during 

summer which correspond to May 01–Aug 16 in the year of 2021 in 12°N within our campaign region. Therefore, the cruise 

measurements mainly captured ship emissions from the commercial ships in the SCS whose routes are available online 435 

(https://www.marinetraffic.com/en/ais/home/centerx:116.6/centery:20.5/zoom:4). The average BC mass concentrations (~0.2 

μg m-3 for BC(FF) and 0.05–0.08 μg m-3for BC(BB) are only limited to data of about a month and the coverage area. Hence, 

more future measurements covering more seasons and wider areas are needed to better understand the morphology and optical 

properties of the carbonaceous aerosols in the SCS.  

5. Conclusions 440 

As important components of carbonaceous aerosols, BC and BrC in the marine atmosphere may exert significantly positive 

climatic radiative forcing through light absorption on the regional and global scales. However, quantification of their absorption 

potential is tremendously challenging due to little knowledge on the microphysical properties, such as morphology, particle 

size, and mixing state of BC or BrC in the marine region such as SCS. This ship-based study was intended to investigate the 

morphological and optical properties of the BC particles in the SCS during summer using combined online aethalometer, semi-445 

online OC/EC analyzer, and offline TEM/EDS analyses. The results showed that the lognormal fitted Feret diameter 

distribution of the single particles peaks at 325 nm when the ship stopped, while it peaks at 307 nm when the ship navigated. 

This minor difference in the size distribution could be attributed to the distinguishable air mass origins of the own ship 

emissions for the former and the mixed other ship emissions and long-range transport for the latter. Furthermore, the Feret 

diameters of the single particles spread much more narrowly during navigation (298–1980 nm) than those of the freshly emitted 450 

particles during stop (304–2982 nm). In addition, the two types of single particles have similar median fractal dimension values 

(1.65 vs 1.66) but different lacunarity values (0.53 vs 0.59), indicating their different aging degrees. The aged BC particles 

were present in various mixing states (core-shell, embedded, external) with other aerosol components after long-range transport. 
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Interestingly, a fraction of single particles were identified as tar balls with geometrical diameters of 160–420 nm which were 

primarily mixed with sea salt, organics, BC, and sulfate, and those tar balls were found to originate from either ship emissions 455 

or long-range transport of biomass burning. 

Since the marine atmosphere is mainly subject to the influence of biomass burning and fossil fuel combustion, a two-

component (BB and FF) AAE model was employed to evaluate the source contributions to the light absorption of the BC 

particles. The modeling results indicated that BB and FF contributed respectively to 18–22% and 78–82% of all the BC light 

absorption except for a substantial percentage of 42% for BB (hence 58% for FF) during the two observed significant biomass 460 

burning events. The results from trajectory calculations showed that biomass burning was predominantly from the Philippines 

and South East Asia before and after the summer monsoon during the cruise campaign. However, this highly simplified two-

component AAE model may have substantial uncertainties on the evaluation of the source contributions when other sources 

of BC particles were present and those included dust, biological materials, oil and gas drilling emissions during the 

measurements. Nevertheless, this study demonstrates that emissions from commercial ships and biomass burning from 465 

Southeast Asia contribute to the enhanced light absorption of the BC particles in the SCS, especially during the crop harvest 

seasons before monsoon, and the aged BC particles became more aggerated after long-range transport of air masses containing 

biomass burning emissions.  
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Table 1. Classification of the campaign period during May 05–June 09, 2021. 

Name Date Cruise route Monsoon Wind direction 

BMP-1 May 05–09 AB before 0–90°, northeast 

BMP-2 May 10–22 B→C→D before 90–180°, southeast 

BMP-3 May 23–26 D→E before around 180°, southeast 

TMP May 27–Jun 01 EB transition around 180°, south 

AMP June 02–09 B→D→A after 180–270°, southwest 

SPP* Screened Screened N/A Screened 

* Ship pollution period is screened based on BC concentration and relative wind direction as mentioned in the method section.  775 
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Table 2. Source apportionment of BC based on the two-component AAE model. 

Period 

a.BC(FF)*  

(μg m-3) 

a.BC(BB)*  

(μg m-3) 

r.BC(BB) *  

(μg m-3) 

r.BC(FF)*  

(μg m-3) 

f.BC(FF)*  

(%) 

f.BC(BB)*  

(%) 

BMP 0.2 ± 0.1 0.08 ± 0.06 0–0.9 0–0.3 77.9 ± 5.8 22.1 ± 5.8  

TMP 0.2 ± 0.3 0.06 ± 0.1 0.02–1.8 0–1.1 82.2 ± 6.2  17.8 ± 6.2  

AMP 0.2 ± 0.1 0.05 ± 0.05 0.01–0.9 0–0.3 80.8 ± 4.0  19.2 ± 4.0 

SPP 4.4 ± 5.7 0.7 ± 0.9 0.2–32.8 0.04–10.3 83.0 ± 6.7  17.0 ± 6.7  

Bio. **  0.8 ± 0.3 0.8 ± 0.4 0.05–1.2 0–1.5 58.1 ± 16.7  41.9 ± 16.7  

* a represents average, r for range, f for fraction;  

** Bio. stands for the two biomass burning events as noted in the main text.  
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Table 3. Summary of AAE values, mass concentrations, and the relevant fractions for the BC particles in PM2.5 from coast site 

and cruise measurements using the AE series aethalometer. 

Region Time 

AAE values 

(at wavelengths, nm) 

BC avg. conc.  

(μg m-3) 

Fraction (%) Reference 

East China Seac 

May, 2017 

0.9–1.3  

(370–950) 

0.8–3.6 2.5–11 or 

45–60 for BrC 

(Yu et al., 2018) 

Central Adriaticc  Feb.–Jul., 2019 1.25–1.49  

(470/950) 

0.57 ± 0.64  79 for BC(FF) 

21 for BC(BB) 

(Milinković et al., 

2021) 

Bay of Bengalc, n Dec., 2008–Jan., 

2009 

1.81–1.98 

(370–950) 

5.1 ± 3.0c; 

2.5 ± 1.4n 

<10 for BC(FF) 

>85 for BC(BB) 

(Kedia et al., 2012) 

 

South China Sean Sep.–Oct. 2019 - 1.9 ± 0.4 - (Wang et al., 2022) 

 

South China Seac Dec. 2017 1.2–1.5  

(375/880) 

6.6–4.9  

 

- (Sun et al., 2020c) 

South China Sean May–Jun. 2021 1.02–1.14 or 1.93  

(370–950) 

0.33 ± 0.38 78–82 for BC(FF) 

18–22 for BC(BB) 

BB events:  

58 for BC(FF)  

42 for BC(BB) 

This study 

c coastal site measurement;  

n cruise (remote) measurement. 
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Figure 1. Map of the cruise route for the campaign in the South China Sea during May 05–Jun 9, 2021. The ship route is dated by 

the intensity bar at the top. The open squares and solid triangles indicate the single particle sampling location, collected during stop 

and navigation, respectively.  
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 Figure 2. Time series of meteorological variables of solar radiation (SR), temperature, pressure, relative humidity (RH), wind 

direction (WD), and wind speed (WS) during the campaign. The time resolution is 1 min for all the data except for WS and WD (3 

sec). All data points are shown in dots style. 795 
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Figure 3. Time series of the mass concentration of black carbon (BC), ultraviolet particle matter (UVPM), organic carbon (OC) 

and elemental carbon (EC) in PM2.5 during the campaign. The time resolution is 1 min for all the data except for OC and EC (1 h). 

All data points are shown in stick-to-zero style. 800 
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Figure 4. Lognormal fitting of particle size distribution using Feret diameter determined from the TEM images with the ImageJ 

analysis during navigation (a) and stop (b). The histograms are set with a bin starting at 50 nm, a bin width of 20 nm, and a total bin 

number of 200. 805 
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Figure 5. Examples of the BC TEM images and their corresponding Feret diameter (D), fractal dimension (Df) and Lacunarity 

(L) based on the boxing counting method from the fractal analysis: (a-c) BC particles collected during navigation and (d-f) during 815 

stop. More sampling information can be found in Table S1 of SI (serial numbers N4, N7, N10, S2, S13, S18, etc.). 
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Figure 6. The size-dependent fractal dimension (Df) and lacunarity (L) for each BC particle during navigation and stop.  
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Figure 7. The example TEM images and their corresponding EDS spectra of tar ball particles collected during navigation: tar balls 820 

mixed with sea salt (a, d) at 8:55 on May 27, tar balls mixed with OC, sulfate (b, e), and tar balls mixed with sulfate (c, f) at 18:07 

on Jun 01. The EDS spectra were collected by focusing the electron beam in the TEM and the illuminated area covers the particle 

for elemental analysis.  
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Figure 8. The time series of fire spots distribution and the 72-h backward trajectories over the South China Sea (SCS) during the 825 

campaign. The solid circles were dated by the intensity bar at the top, representing the detected fire spots using MODIS satellite 

with a confidence threshold of >80%. The light grey, grey and black 72-h backward trajectories were obtained at AGL heights of 

100, 500 and 1000 m using the HYSPLIT model.  
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830 

 

Figure 9. Box and whisker plots of the OC/EC ratio vs the EC concentration for (a) before the monsoon period (BMP), (b) transition 

monsoon period (TMP), (c) after the monsoon period (AMP), and (d) ship pollution period (SPP) based on the data from the Sunset 

OC/EC analyzer. The whisker top, box top, box bottom, and whisker bottom are 90%, 75%, 25% and 10%, respectively. 
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 835 

Figure 10.The wavelength-dependent mass concentration from AE33 aethalometer for example spectra for (a) example of a ship 

pollution plume, and (b, c) two significant biomass burning events during this campaign. 
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Figure 11. The absorption Angström exponent (AAE, all wavelengths) vs AE33 BC concentration for before monsoon period (BMP), 

transition monsoon period (TMP), after monsoon period (AMP), and ship pollution period (SPP). 
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  845 

Figure 12. The absorption Angström exponent (AAE) vs the Delta-C concentration for the two biomass burning events: BB-1 at 

6:00–7:00 on May 15 and 15:00–22:00 on May 16 during BMP, and BB-2 at 15:00-23:00 on May 30 and 00:00 on May 31 during 

TMP. The BB-1 and BB-2 data points are marked in solid circles and open squares, respectively.  
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 850 

 

Figure 13. Source apportionment of the BC particles using the two-component AAE model (AAE=1 for foil fuel (FF) and AAE=2 

for biomass burning (BB): (a) before monsoon period (BMP), transition monsoon period (TMP), after monsoon period (AMP), and 

(b) ship pollution period (SPP). 

https://doi.org/10.5194/egusphere-2023-1589
Preprint. Discussion started: 31 July 2023
c© Author(s) 2023. CC BY 4.0 License.


