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Abstract. Biogeochemical Argo (BGC Argo) float profiles provide substantial information for key vertical biogeochemical

dynamics and are successfully integrated in biogeochemical models via data assimilation approaches. Although results on the

BGC-Argo assimilation are encouraging, data scarcity remains a limitation for their effective use in operational oceanography.

To address availability gaps in the BGC-Argo profiles, an Observing System Experiment (OSE), that combines Neural

Network (NN) and Data Assimilation (DA), has been performed here. NN was used to reconstruct nitrate profiles starting5

from oxygen profiles and associated Argo variables (pressure, temperature, salinity), while a variational data assimilation

scheme (3DVarBio) has been upgraded to integrate BGC Argo and reconstructed observations in the Copernicus Mediterranean

operational forecast system (MedBFM). To ensure high quality of oxygen data, a post-deployment quality control method has

been developed with the aim of detecting and eventually correcting potential sensors drift.

The Mediterranean OSE features three different setups: a control run without assimilation; a multivariate run with assimila-10

tion of BGC-Argo chlorophyll, nitrate, and oxygen; and a multivariate run that also assimilates reconstructed observations.

The general improvement of skill performance metrics demonstrated the feasibility in integrating new variables (oxygen and

reconstructed nitrate). Major benefits have been observed in reproducing specific BGC process-based dynamics such as the

nitracline dynamics, primary production and oxygen vertical dynamics.

The assimilation of BGC-Argo nitrate corrects a generally positive bias of the model in most of the Mediterranean areas, and15

the addition of reconstructed profiles makes the corrections even stronger. The impact of enlarged nitrate assimilation propa-

gates to ecosystem processes (e.g., primary production) at basin wide scale, demonstrating the importance of the assimilation

of BGC-profiles in forecasting the biogeochemical ocean state.

1 Introduction

The Argo programme appears to be one of the better examples of countries and human resource capacities in working together20

to provide global data coverage (Miloslavich et al., 2019) that supports the investigation of the present (analysis), future (fore-
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cast) and past years (reanalysis) ocean state conditions. In the last 10 years, the increase of in situ observations from autonomous

platforms (Johnson et al. 2013 and Johnson and Claustre 2016) has opened up new perspectives for biogeochemical oceanogra-

phers. Indeed, BGC Argo (Argo 2023) has yielded new insights in describing the interior of the global ocean (Le Traon, 2013)

and key processes such as the deep chlorophyll maximum (Mignot et al. 2014, Barbieux et al. 2019, D’Ortenzio et al. 2020,25

Ricour et al. 2021, and Barbieux et al. 2022), nutrients vertical fluxes (Taillandier et al. 2020 and Wang et al. 2021b), carbon

exports (Dall’Olmo and Mork 2014 and Wang and Fennel 2023) and oxygen dynamic (Capet et al., 2016).

With approximately 270,000 profiles worldwide (as of July 2023), oxygen (O2) is currently the most commonly measured

variable. The count of O2 profiles is double that of suspended particles and chlorophyll, and more than four times that of

nitrate, downwelling irradiance, and pH (
::::::
source:

:
https://biogeochemical-argo.org). Since 2019, the availability of nitrate and30

chlorophyll profiles has progressively decreased due to the high cost of the sensor (Dall’Olmo personal communication). The

number of oxygen profiles instead decreased initially (2019-2022), but since 2022 is stable or slightly increasing. In the future,

Argo Italy envisages mounting oxygen sensors on all Argo floats in the Mediterranean Sea (Discussion in the workshop on

“Copernicus Marine requirements for the in situ Observing System”, 14-15 September 2023).

The BGC-Argo data are distributed by the Global Data Assembly Centres (GDACs, e.g., Coriolis, NOAA) in Real Time35

(RT) Adjusted (AM) and Delayed Mode (DM). The quality of AM data is controlled within 24 hours using internationally

agreed
::::::::::
agreed-upon

:
and automatic quality-control (QC) procedures, while DM data are generally distributed a few months

later (nearly six months) in
:
a more rigorous form (Li et al., 2020). The QC tests, conducted across all the data mode levels, aim

to assign a quality flag to every observation. Data labeled as 1, 2, 5, and 8 are categorized as good, probably good, changed,

and interpolated value, respectively. The flag 9 indicates missing data, while flags 3 and 4 denote data as probably bad or bad.40

In the case of oxygen, the QC mainly perform at the surface, along the entire vertical profiles and along the trajectory (Thierry

and Bittig, 2021), excluding specific tests at depth. The implementation of O2 QC tests is mainly devoted to improving the long-

term reliability and accuracy of autonomous measurements (Sauzède et al., 2017)in particular with respect to the ,
::::::::::
particularly

:::::::::
concerning sensor drift (the optode drift).

When the sensor drift exists, it is higher in the storage, out of the water, than during the deployment. As described in45

Takeshita et al. (2013) and in Maurer et al. (2021), raw oxygen data from floats may exhibit errors of up to 20% in terms of

oxygen saturation (at the surface) due to sensor drift occurring during the storage. This drift is generally
:::::::
typically corrected

by multiplying the oxygen concentrations for a gain factor term that is derived from a reference dataset (Johnson et al., 2015).

Despite this correction can improve the accuracy up to
:::::
efforts

::
to

::::::
correct

::::
drift

::::::
during

:::::::
storage,

::::::
which

::::
may

:::::::
enhance

::::::::
accuracy

::
by

:
5-10%, Maurer et al. (2021) and Bushinsky et al. (2016) found a drift

:
it
::
is
:::::
likely

::::
that

:::
an

::
in

::::
situ

:::
(or

::::::
during

:::::::::::
deployment)50

:::
drift

::
is
::::

still
:::::::::
observed.

:::
For

::::::::
instance,

:::::::::::::::::
Maurer et al. (2021)

:::::::
observed

::::
drift

:::::
rates in about 25% (with a mean of -0.07

::
of

:::
the

::::
126

::::
floats

::::::::
analyzed

:::
for

:::
the

:::::::
Southern

::::::
Ocean

::::::
Carbon

::::
and

:::::::
Climate

:::::::::::
Observations

:::
and

::::::::
Modeling

:::::::::::
(SOCCOM)

::::::
project.

:::::
These

::::
drift

:::::
rates

:::::::
spanned

:
a
::::
total

:::::
range

::
of

:::
-1.1

::
to

:::
1.2% per year,

:::
with

:
a standard deviation of 0.65% , and a total range of 1.1 to 1.2% per year) and

:::
per

::::
year.

::::::::
Similarly,

::::::::::::::::::::
Bushinsky et al. (2016)

:::::
found

:::
the

::::::::
presence

::
of

:
a
:::::

drift
::::
rates

::
in

:::::
about

:
70% of analyzed floats, respectively.

Given the logistical challenges in recovering deployed floats , an in situ (or during deployment) drift >1% per year can be55

likely observed (Bushinsky et al., 2016). The drift can be both positive or negative as found in Johnson and Claustre (2016)
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and Bittig et al. (2018a)
::
the

:::::
floats

::::::::
deployed

::
in

:::
the

:::::::
Northern

::::::
Pacific

::::::
Ocean.

::::::::
Notably,

::::
both

:::::::
positive

:::
and

:::::::
negative

::::
drift

::::
rates

:::::
were

:::::::
observed

::::::
across

::::::
various

::::::
studies,

::::::::
including

:::::
those

::
by

::::::::::::::::::::::::
Johnson and Claustre (2016)

:
,
:::::::::::::::::::
Bushinsky et al. (2016),

:::::::::::::::::
Bittig et al. (2018a)

:::
and

::::::::::::::::
Maurer et al. (2021).

The development and dissemination of a post-deployment oxygen QC aims to avoid spurious results (Wang et al., 2020) and60

to distinguish between ocean signals or trends (e.g., deoxygenation) from potential drifts. This allows to obtain more robust

datasets suitable for specific numerical modelling applications.

Aiming at optimally combining observations and model information to obtain a closer description of reality, the data assim-

ilation (DA) underpins decades of progress in ocean prediction (Geer, 2021). On one hand, progresses began with an increase

in the number of available observations over the past decade encompassing both the number of measured variables and the65

total observations used for model tuning (Wang et al. 2020, Yumruktepe et al. 2023 and Wang and Fennel 2023) and validation

(Terzić et al. 2019, Salon et al. 2019 and Wang et al. 2021a). On the other hand
:
, DA scheme were progressively updated to

enable multivariate and multiplatform assimilation (Cossarini et al. 2019, Teruzzi et al. 2021 and D’Ortenzio et al. 2021),

retrieve associated uncertainty into
:
in

:
prediction models, and solving

::::
solve

:
problems connected to uneven distribution and/or

scarcity of the observations (Buizza et al., 2022).70

In recent years,
:::
data

::::::::::
assimilation

:::::
(DA)

::::::::::
techniques

::::
have

:::::::::::
increasingly

:::::::::::
incorporated neural network (NN)algorithms have

been increasingly used to solve and analyze specific tasks related to observation processing and DA
:::::
-based

:::::
tools. The main

strength of NN algorithms lies in their ability to approximate continuous functions (Hornik et al., 1989) in remarkably low

computational times. For these reasons, DA techniques have been recently augmented with
:::::
These

:
NN-based tools , e.g., for:

::::
have

::::
been

::::::::
integrated

::::
into

:::
DA

::::::::::
frameworks

::
to

:::::
tackle

::::::
various

::::
DA

:::::::::
challenges,

::::
such

::
as

:
bias correction (Kumar et al. 2015 and Zhou75

et al. 2021), reformulation of observation operators (Storto et al., 2021) , cross calibration and new product creation or dataset

reconstruction (Lary et al., 2018).
:::
and

::::::::::::::
cross-calibration

:::::::::::::::
(Lary et al., 2018)

:
.
::::::::::
Furthermore,

::::
NN

:::::::::
algorithms

:::
are

::::::::
frequently

:::::
used

::
as

::::::::::
independent

:::::
tools,

::::::
distinct

::::
from

::::
data

::::::::::
assimilation,

:::
for

:::::::::
generating

::::
new

:::::::
products

:::::
and/or

::::::::::::
reconstructing

:::::::
datasets

:::::::::::::::
(Lary et al., 2018)

:
.
:::
The

::::
use

::
of

:::::::::::
reconstructed

:::::::
datasets

::::
may

:::::::::::
compensate

::
for

::::::::
potential

::::
gaps

:::
in

::::::::::
observation

::::::::::
availability,

:::::::::
potentially

:::::::::
enhancing

:::
the

::::::::
predictive

::::
skill

::
of

::::::::
numerical

:::::::
models. As an example, ocean colour (OC) datasets were employed to test Multi-Layer Perceptrons80

(MLP, namely
::
), the most common NN) by ,

:::
for

:
retrieving past and long-term BGC time-series

::::::::
timeseries

:
of phytoplankton

and chlorophyll (Martinez et al. 2020a, Martinez et al. 2020b, Roussillon et al. 2023). Moreover, in Sauzède et al. (2016), MLP

serves to infer chlorophyll vertical BGC distribution from OC. High performance in predicting biogeochemical states (e.g.,

oxygen) from physical profiling floats measurements were
:::
was

:
achieved in Stanev et al. (2022) for the Black Sea.

In Sauzède et al. (2017), a MLP-NN is used to approximate nutrient concentration and carbonate system from physi-85

cal Argo and BGC-Argo oxygen profiles, and the
:
.
:::
The

:
updated version of Bittig et al. (2018b) allows refining the previous

work
::
the

:::::::
method

::::::::
presented

::
in

:::::::::::::::::
Bittig et al. (2018b)

:::::
allows

:::
for

::::::
further

:::::::::
refinement

::
of

::::
this

:::::::
approach

:
with the so-called Canyon-b

::::::::::
CANYON-b

:
NN method. A configuration to adapt global Canyon-b

::
the

::::::
global

:::::::::::
CANYON-b NN in the Mediterranean Sea

region is developed by Fourrier et al. (2020). A further update of the application of the MLP method in the Mediterranean Sea

is provided in Pietropolli et al. (2023), by achieving a lower error in the nutrients predictions through a larger training dataset,90

a hyperparameter refinement and a two-step quality control of the input data. Given its potential in predicting nutrient profiles,
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the MLP-NN model outputs are valuable datasets that can be used to fill the gap in the availability of in situ observations in

data assimilation.

In the context of operational oceanography, the biogeochemical modelling component of the Copernicus Marine Service

for the Mediterranean Sea (MedBFM) provides analysis, short term forecast (Salon et al., 2019) and long term reanalysis95

(Cossarini et al., 2021), including the assimilation of satellites OC and BGC-Argo observations (Salon et al., 2019). In the

MedBFM, the 3DVarBio variational assimilation scheme, has evolved over time by including a greater number of observation

types and variables. Starting from the first release that included OC data assimilation in the open ocean (Teruzzi et al., 2014),

the assimilation has progressively developed to handle coastal OC observations (Teruzzi et al., 2018), chlorophyll and nitrate

profiles from BGC Argo (Cossarini et al. 2019 and Teruzzi et al. 2021 respectively). Considering the growing availability of100

O2 from BGC Argo, this paper presents an additional upgrade of the MedBFM to include BGC-Argo oxygen assimilation,

with a novel post-deployment quality control, and the integration of NN reconstructed profiles in the assimilation scheme.

The constant evolution of the observation networks and assimilation capacities requires an updated understanding of the

impact of observation on the numerical model result (Gasparin et al., 2019). This can be achieved by using the numerical

assimilative models in Observing System Experiments (OSEs) where the impact of existing observations on the model per-105

formance is assessed (Le Traon et al., 2019). In this paper, the OSE experiment, which combines data assimilation and neural

network in a modular approach, aims to quantify how the Argo and BGC-Argo network can be exploited. The sequential use

of the NN and DA schemes provides flexibility in using one module independently of the other, depending on the needs of the

overall system (Buizza et al., 2022). The DA module used in this work is the 3DVarBio data assimilation scheme described in

Teruzzi et al. 2021 and updated to assimilate oxygen BGC-Argo
::::::
oxygen profiles. The NN module is the NN-MLP described110

in Pietropolli et al., 2023 for the Mediterranean Sea (hereafter NN-MLP-MED).

Spatial and temporal impacts of the OSE have been evaluated using classic and new skill performance metrics in three two-

year (2017-2018) numerical experiments performed using the MedBFM coupled with the 3DVarBio: a control run (HIND)

without assimilation; a multivariate run (DAfl) with assimilation of BGC-Argo chlorophyll, nitrate, and oxygen
::::::
profiles; and a

multivariate run that also assimilates
:::
the in situ observations and reconstructed ones

:::
NN

:::::::::::
reconstructed

:::::::
profiles (DAnn). Because115

of its particular characteristics and
:::::
Given

:::
its

:::::::::::::
characterization

::
as

:
a
::::::::
miniature

:::::
ocean

:::::::
suitable

::
for

:::::::
climate

::::::
studies

::::::::::::::::::
(Bethoux et al., 1999)

:::
and

::::::::::
considering

:
the density of BGC-Argo profiles, the Mediterranean Sea represents an ideal site for OSE experiments to

evaluate the potentiality of the BGC-profiles assimilation
::::::::
conducting

:::::::::
Observing

:::::::
System

::::::::::
Experiment

::::::
(OSE)

::::::
studies

::
to

::::::
assess

::
the

:::::::::
feasibility

::
of

::::::::::
assimilating

::::::::::
BGC-Argo

::::::
profiles

::::
and

::::::::
analyzing

::::
their

:::::::
impacts.

The
::::::
Indeed,

:::
the

:
Mediterranean Sea is an anti-estuarine semi-enclosed sea characterized by specific physical and biogeochemical120

dynamics (Pinardi et al., 2015) ,
:::::::::::::::::
(Pinardi et al., 2015) with a complex horizontal circulationconsisting of

:::::::::
overturning

::::::::::
circulation.

::::
This

:::::::::
circulation

:::::::
consists

::
of

:::::::::
horizontal mesoscale and sub-basins scale gyre structures, transitional cyclonic and anticyclonic

gyres and eddies, .
::::::
These

::::::::
dynamics

:::
are

:
influenced by bathymetric features interconnected by currents and jets (Oddo et al.,

2009). Despite its relatively limited extent in the mid-latitude temperate zone, the Mediterranean Sea has a considerable

BGCvariability that
:
,
::::
along

::::
with

::::::::
vigorous

::::::
vertical

:::::::::
velocities.

::::::::::
Furthermore,

:::
the

:::::::
shallow

:::::
Sicily

:::::
Strait,

::::
with

:
a
:::::
depth

::
of

::::::::::::
approximately125

:::
500

::::::
meters,

::::::::
separates

:::
the

:::::::
Western

:::::::::::::
Mediterranean

::::
from

:::
the

:::::::
Eastern

::::::::::::
Mediterranean.

:::::
This

::::::::::
geographical

:::::::
feature

:::::
allows

::::::::
different
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::::::::
processes

::
to

:::::::
dominate

::
in
::::
each

::
of

:::
the

::::
two

::::::
regions

:::
and

:::::
limits

:::::::::
exchanges

::::
only

:::::::
between

::::::
surface

:::
and

:::::::::::
intermediate

:::::
waters

:::::::::::::::::
(Pinardi et al., 2015)

:
.
::::
Even

:::::
from

:
a
:::::::::::::
biogeochemical

::::::
(BGC)

::::::::::
perspective,

:::
the

::::::::::::
Mediterranean

::::
Sea can be roughly approximated in

:::::::::
subdivided

::::
into

:::
the

:::::::
Western

:::
and

:::::::
Eastern

::::::::::::
Mediterranean

:::::::
sectors,

:::::::::::
characterized

:::
by an oligotrophic West-East gradientwith .

:::::
This

:::::::
gradient

::::::
results

::
in low nutrient availability at the surface,

:::::
which

::
is

::::::::
generally insufficient to sustain significant

:::
high

:
phytoplankton biomass130

(Siokou-Frangou et al. 2010 and Marañón et al. 2021)and .
::::::::::::

Additionally,
::::
there

::
is a deeper nitracline in the east (>120m) with

respect
::::::::
compared

:
to the west (<100m). Additionally, chlorophyll

::::::::::
Chlorophyll

:
has a particular seasonal cycle with pronounced

winter/early spring surface blooms only in the western part and a few locations in the eastern part. During summer, a deep

chlorophyll maximum follows the stratified and oligotrophic conditions at increasing depth moving eastward (>100m at East

and <100m in the West) (Teruzzi et al., 2021). Dissolved oxygen has a subsurface maximum at about 50m, with higher values135

in the west (partly due to the dependence of oxygen solubility on temperature). Noticeable differences are observed in the

intermediate layers where the oxygen minimum ranges between 300 (west) and 1000 m (east) (Di Biagio et al., 2022)
:
.

:::::
While

:::
the

::::::
general

::::::::
dynamics

:::
of

:::::::::::::
biogeochemical

::::::::
processes

:::
can

:::
be

::::::::::
summarized

::
in

:
a
:::::::::
two-basin

:::::::
gradient,

:::
it’s

:::::::::
important

::
to

::::
note

:::
that

:::::::::
mesoscale

:::
and

:::::::::::::
sub-mesoscale

:::::
events

::::
can

::::::
impact

:::
the

::::::::::::
Mediterranean

::::
Sea

::
at

:::
the

:::::::::
sub-basin

:::::
scale.

:::::
These

::::::
events

:::
can

::::::
create

::::::
intense

::::
local

:::::::::
dynamics,

::::
such

:::
as

::::::
blooms

::::
and

:::::
water

::::::
column

:::::::::::
stratification,

::::::
which

:::
are

:::::
often

:::::::::
associated

::::
with

::::
eddy

::::::::
activities

::::
and140

::::::
peculiar

:::::::
vertical

::::::::::
circulation.

::::::::::
Reproducing

:::::
these

::::::::::
phenomena

::
in

::::::::
numerical

::::::
model

::::::::::
simulations

:::
can

:::
be

::::
more

:::::::::::
challenging,

::
as

::::
they

::
are

:::::
prone

:::
to

::::::::::
encountering

:::::
high

:::::
model

::::
bias

::
or

:::::::::::::::
representativeness

::::
error.

The paper is organized as follows. After a brief presentation of the OSE approach, each component and the experimental

setup are described in detail (Section 2). In the following section (Section 3), we describe the results of the novel NN-MLP-

MED and the assimilation simulations by using different skill metrics to assess model capability in reproducing the main145

biogeochemical seasonal dynamics. A discussion of some key issues involved in the NN and DA is provided in Section 4, then

the paper closes with some final remarks (Section 5).

2 Methods

A novel combined Neural Network (NN-MLP-MED) and Data Assimilation (3DVarBio) approach is included in the Mediter-

ranean MedBFM model system to integrate BGC-Argo and
:::
NN

:
reconstructed profiles into biogeochemical simulations of the150

Mediterranean Sea.

Our OSE experiment is based on a sequential modular approach (Buizza et al., 2022) consisting of a post-deployment quality

control method of O2, hereafter QC O2 procedure, a trained multi-layer perceptron NN (Pietropolli et al., 2023) and a data

assimilation scheme (the 3DVarBio variational scheme of MedBFM, Figure 1).

The input of the first two modules, QC O2 and NN-MLP-MEDare the ,
::::
uses

:
BGC-Argo and Argo datasets , while the final155

::
as

:::::
input.

::::
The 3DVarBio module also takes the enhanced datasets as input:

::::::
dataset, quality checked O2 (qcO2

::::
QCed

::::
O2) and

reconstructed nitrate (recNO3, Figure 1)
:
,
::
as

:::::
input.

In the following sections, the novel modules
::
we

::::::::
introduce

:::
the

:::::::::::
components

:
of the MedBFM system(i.e., the ,

:::::::::
including

::
the

::::::::
transport

::::::
model

:::::::::
(OGSTM,

:::::::::::
Foujols et al.

::::
2000

:
,
::::::::::::
Lazzari et al.

::::
2012

:::
and

::::::::::::
Lazzari et al.

::::
2016

:
)
:::
and

::::
the

:::::::::::::
biogeochemical

::::
flux

5



:::::
model

::::::
(BFM,

::::::::::
Vichi et al.

::::::
2007a

::
and

::::::::::
Vichi et al.

:::::
2007b

::
).

:::::::::::
Additionally,

:::
we

::::::::
describe

:::
the

:::::
novel

::::::::
modules,

:::::::
namely

:::
the

:
QC O2160

procedure and the NN-MLP-MED scheme) and the dataset(.
:::::::::::
Furthermore,

:::
we

::::::
outline

:::
the

::::::
dataset,

::::::
which

::::::::
comprises

:
BGC-Argo

and reconstructed datasets) are described together with
:::
NN

:::::::::::
reconstructed

:::::::
datasets,

::::
and

::::::
discuss the revised 3DVarBio

:::::::
approach.

Figure 1. Flowchart of the NN-MLP-MED and DA approach. In green boxes: the modules. In plain boxes: the datasets. Arrows refers to Argo

(temperature and salinity) and BGC Argo profiles of chlorophyll (Chla), oxygen (qcO2) nitrate (NO3) and reconstructed nitrate (recNO3).

2.1 The regional model for the Mediterranean Sea, MedBFM

The MedBFM consists of the OGS transport model (OGSTM) based on the OPA 8.1 system (Foujols et al., 2000) and updated

according to the Lazzari et al. (2012) and Lazzari et al. (2016) versions, the BFM, Biogeochemical Flux Model described in165

Vichi et al. (2007a) and Vichi et al. (2007b), and the 3DVarBio variational assimilation scheme as in Teruzzi et al. (2014) and

Teruzzi et al. (2018).

OGSTM solves
:::
for advection, diffusion, sinking termsand the

:
,
:::
and

::::::::
considers

::::
the

:::::
effects

:::
of

:::
the

:
free surface and variable

volume-layer effects on the transport of tracers (Salon et al., 2019), and it
::::
tracer

::::::::
transport

::::::::::::::::
(Salon et al., 2019)

:
.
::
It

:
is forced

by the output (current, T, S
:::::
output

::::::::
variables

::::
such

:::
as

:::::::
current,

::::::::::
temperature

:::
(T),

:::::::
salinity

::::
(S), and sea surface height ) of

::::
from170

the NEMO3.2 model
::
.6

:::::
model

:::::::::::::::::::
(Clementi et al., 2017). OGSTM and NEMO3.2

::
.6 share the same bathymetry and z* grid

configuration,
::
as

::::
well

::
as

:
open boundary and river conditions (Coppini et al., 2023).

:::::::::::
Atmospheric

:::::::
forcing,

::::::::
including

:::::
solar

::::::::
shortwave

:::::::::
irradiance

:::
and

:::::
wind

:::::
stress,

::
is
::::::::

acquired
::
as

::::
2-D

:::::
daily

:::::
fields

::::
from

:::
the

::::::::
European

::::::
Centre

:::
for

:::::::::::::
Medium-Range

::::::::
Weather

::::::::
Forecasts

:::::::::
(ECMWF),

::
as

:::::::
detailed

:::
by

:::::::::::::::
Salon et al. (2019).

:

The Biogeochemical Flux Model, BFM, is a biomass and functional group based marine ecosystem model. BFM solves175

governing equations for nine living-organic state variables (diatoms, autotrophic nanoflagellates, picophytoplankton, dinoflag-
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ellates, carnivorous and omnivorous mesozooplankton, bacteria, heterotrophic nanoflagellates, and microzooplankton, macro-

nutrients (nitrate, phosphate, silicate and ammonium ) and labile, semi-labile, and refractory organic matter and oxygen. In

addition, the BFM includes a carbonate system model (Cossarini et al. 2015a and Canu et al. 2015).

2.2 3DVarBio data assimilation scheme180

Based on 3DVarBio (Teruzzi et al. 2014, Teruzzi et al. 2018, Cossarini et al. 2019 and Teruzzi et al. 2021), the assimilation

module adopted in the present work integrates oxygen, chlorophyll and nitrate to update all the assimilated variables as well as

all the phytoplankton biomasses and phosphate.

The 3DVarBio is a variational data assimilation scheme (Teruzzi et al., 2014) based on the minimization of a cost function

(J)which relies on .
::::
This

::::::::
function

::::::::
comprises

::::
two

:::::
terms:

:::
(i) the misfit between the model background (xb) and the observations185

(y) weighted with the
:::::
model

::::::
control

::::
state

::::::::
variable,

::
or

:::::::
analysis

::::
(i.e.,

:::
the

::::::::::
assimilation

:::::
result

:::
xa:

)
:::
and

:::
(ii)

:::
the

::::::::
mismatch

::::::::
between

::
the

:::::::::::
observations

:::
(y)

:::
and

:::
the

:::::::
analysis

::
(
::
xa :

).
::::
Both

:::::
terms

:::
are

::::::::
weighted

:::
by

::::
their respective error covariance matrices (B and R) as

follows:

J(xa) = (xa −xb)
TB−1(xa −xb)+ (y−H(xba))

TR−1(y−H(xba)) (1)

Here, the observation operator (H) maps the values of model background state in the observation space. Following Dobricic190

et al. (2006), the background error covariance matrix, B, is factorised as B=V V T with V=VV VHVB . The V operators describe

different aspects of the error covariances: the vertical error covariance (VV ), the horizontal error covariance (VH ), and the state

variable error covariance (VB). VV is defined by a set of reconstructed profiles evaluated by means of an Empirical Orthogonal

Function (EOF) decomposition applied to a validated multi-annual 1998-2015 run (Teruzzi et al., 2018). EOFs are computed

for 12 months and 30 coastal and open sea sub-regions in order to account for the variability of biogeochemical anomaly195

fields. VH is built using a Gaussian filter whose correlation radius modulates the smoothing intensity. As in Cossarini et al.

(2019), in this work the correlation radius is non-uniform, direction-dependent, and ranges between 12 and 20 km (16 km on

average). VB operator consists of prescribed monthly and sub-region varying covariances among the biogeochemical variables

(e.g., nitrate to phosphate). Specifically, for the assimilation of chlorophyll, the VB operator includes a balance scheme that

maintains the ratio among the phytoplankton groups and preserves the physiological status of the phytoplankton cells (i.e.,200

preserves the internal ratios between the chlorophyll, carbon and nutrients as described in Teruzzi et al. 2014).

The operators VV and VB of the 3DVarBio have been updated for the assimilation of oxygen. VV involved the calculation

of specific EOF profiles for oxygen including a localization function to avoid unrealistic corrections due to possible spurious

error covariances in the deepest part of the water column.

VB included only a new direct relation for oxygen (i.e., oxygen assimilation update only the oxygen itself), given that it has205

been shown that it barely affects other variables (Skakala et al., 2021). In the BFM model equations, few formulations depend

on oxygen concentration (e.g., nitrification). Indeed, when the euphotic zone of the open ocean is well oxygenated, oxygen

dynamics has
::::
have

:
a limited impact on the biogeochemical cycles.
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Assimilated observations are composed by the QC
:::
The

::::::::::
assimilated

:::::::::::
observations

::::::
consist

::
of

::::
the

:::::
QCed

:
BGC-Argo

::::::
dataset

listed in Table 1. Oxygen and nitrate profiles in the 0-600 m layer are used in the assimilation, while chlorophyll is assimilated210

in the 0-200 m layer.

The observation error covariance matrix R is diagonal with a monthly varying error in chlorophyll (Cossarini et al., 2019).

In both nitrate and reconstructed nitrate profiles, the observation error remains constant in
:::
over

:
time and increases along the

vertical
:::::::
direction. Within the 0-450 m layer the error is set at 0.25

:::
0.24

:
mmol m−3 as in Mignot et al.and

:
, then linearly

increases up to 0.35 mmol m−3 between 450 and 600 m (the maximum assimilation depth). This adjustment aims to avoid215

::::::
prevent

:
inconsistencies between the deeper (below 600 m) and the lower part of the assimilated layer

::::::::::
(450-600m)

::::
and

:::
the

:::::
deeper

:::::
layer

::
of

:::
the

:::::
water

:::::::
column

::::::
(below

::::::
600m). Although the accuracy of the reconstruction of profiles is 0.87 mmol m−3

(Pietropolli et al., 2023), we decided to not use different values of error for the two nitrate subsets in order to show the highest

potential impact of the OSE.

Observation error for oxygen is set to 5 mmol m−3 in the upper 200 meters of depth and gradually goes
:::::::
increases

:
to 20220

mmol m−3 in correspondence of the maximum assimilation depth. These values correspond to the uncertainty associated with

the oxygen dataset described in Feudale et al. (2022)
:
.

2.3 The Architecture of the Neural Network module and the Reconstructed Nitrate Dataset

The NN-MLP-MED (Pietropolli et al., 2023) is the evolution of previous MLP architectures developed to predict low-sampled

variables (e.g., nutrients) starting from high-sampled ones (e.g., temperature) (Sauzède et al. 2017 , Bittig et al. 2018b and225

Fourrier et al. 2020).

NN-MLP-MED is a deterministic Feed-Forward Neural Network based on a MLP structure. It consists of the merging of 10

different MLP architectures, each one with the same input and output features, composed by two hidden layers with varying

numbers of neurons per layer. The final prediction resulting from the NN-MLP-MED is the mean of all the predictions of these

components. The data flow of the MLP-based approach follows the forward direction from the input to the output layers through230

the neurons which compose the layers. In our OSE experiment, the trained NN-MLP-MED reconstructs nitrate profiles from

temperature and salinity(Argo), oxygen(BGC Argo) and float
:::
sets

::
of
:::::::::::
temperature,

:::::::
salinity,

:::::::
oxygen, date, latitude and longitude

:::::::::
BGC-Argo

::::::
profiles.

The NN-MLP-MED presents some novel elements with respect
::::::::
introduces

::::::
several

:::::::::
innovative

:::::::
features

:::::::::
compared

:
to the

mentioned methods (and in particular with respect to Canyon-Med in
::::
e.g.,

::::::::::::::
CANYON-Med; Fourrier et al. 2020) , which lead235

::::::
leading to improved results.

Firstly, the input dataset includes
:::::::::::
encompasses a larger sample size and broader coverage of the Mediterranean Sea region,

i.e., the quality controlled EMODnet2018_int data collection that integrates the in situ aggregated EMODnet data collections

(Buga et al., 2018) and the observations listed in
:
.
::::
The

:::::::::
EMODnet

:::::::::
(European

:::::::
Marine

::::::::::
Observation

::::
and

::::
Data

:::::::::
Network)

::::
data

::::::::
collection,

:::
as

::::::::
described

:::
by

:::::::::::::::
(Buga et al., 2018)

:
,
:::::::
consists

::
of

:::::::::::::
multi-platform

::::
data

:::::::
gathered

:::::
from

::::::::
different

:::::::
research

::::::
cruises

::::
and240

:::::::::
monitoring

::::::::
activities

::
in

::::::::
Europe’s

::::::
marine

::::::
waters

::::
and

:::::
global

:::::::
oceans.

::::
This

:::::::
dataset

::
is

:::::::::::
characterized

:::
by

::
its

:::::::::::
multivariate

::::::
nature,

::::::::
including

::::::
various

:::::::::::::
biogeochemical

:::::::::::
observations

::::
such

::
as

::::::::::
chlorophyll,

::::::
nitrate,

:::::::::
phosphate,

:::::::::
dissolved

::::::
oxygen,

:::::
DIC,

:::
and

:::::::::
alkalinity,
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:::::::
collected

:::::::
between

:::::
1999

::::
and

:::::
2018.

:::::::::::
Additionally,

:::
this

::::::
dataset

::
is
::::::
further

::::::::
enriched

::::
with

::
in

::::
situ

::::::::::
observations

::::::::
spanning

:::
the

::::::
period

::::
from

::::
1999

::
to
:::::
2016,

:::
as

::::::
detailed

::
in
:
Lazzari et al. (2016) and Cossarini et al. (2015b).

Secondly, the input dataset benefits from a two-step quality check process, removing noisy and unreliable samples. The245

neural network architecture was also modified to enhance prediction performance by accurately selecting a performing non-

linear function, adjusting and optimizing the amount of neurons for each layer of the MLP model, and choosing a different

optimization strategy to train the algorithm. NN-MLP-MED also includes a vertical smoothing step (running mean of 5-10 m

window) and a climatological adjustment at depth (600 m) derived from the EMODnet dataset (Salon et al., 2019).

Uncertainty of
:::
The

::::::::::
uncertainty

::
of

:::
the

:
reconstructed nitrate associated to

::::
with the EMODnet validation dataset is 0.5 mmol250

m−3, while it reaches 0.87 mmol m−3 when it predicts
::::::::
predicting the BGC-Argo dataset (Pietropolli et al., 2023).

After incorporating the
:::
NN reconstructed profiles (recNO3), the nitrate dataset used for the assimilation expands to 2146 pro-

files from the initial 938 nitrate (NO3) profiles (Table 1). Generated by the NN-MLP-MED module, the reconstructed dataset

offers a broad spatial coverage across the 16 regions of the Mediterranean Sea (Figure 2)
:
,
:
as well as a

::::
quite balanced distri-

bution of nitrate data throughout both winter and summer
:::
the seasons (Figure 3)

:
,
::::
with

:::
the

:::::::
addition

::
of

::::
218

:::
NN

::::::::::::
reconstructed255

::::::
profiles

::
of

::::::
nitrate

::
in

:::::
winter

::::
and

:::
361

::
in
::::::::
summer,

::::::::::
respectively.

2.4 BGC-Argo data and the post-deployment QC O2 module

BGC-Argo profiles from 2017-2018 were downloaded from the Coriolis GDAC (Argo 2022, last visited in July 2022). We

collected both AM and DM data for oxygen and chlorophyll. For nitrate we selected DM data, while AM data were incorporated

after undergoing correction via Canyon-b
::::::::::
CANYON-b

:
NN method or using the World Ocean Atlas (WOA18) collection260

(Garcia et al., 2019) as explained in Johnson et al. (2021). For the three variables we use data flagged as good, probably good,

changed and interpolated values (flags 1,2, 5 and 8).

Table 1 reports the total number of BGC-Argo profiles, characterized by a significant
::::
high number of oxygen and chlorophyll

data against the relative paucity of nitrate. Figure 2 shows the spatial distribution of BGC profiles of chlorophyll and nitrate

across the Mediterranean Sea. The oxygen coverage can be approximated by merging nitrate and reconstructed nitrate profiles265

locations.

To provide more clarity in analyzing the data availability, the Mediterranean Sea has been divided into 16 sub-basins:

– in the Western Mediterranean Sea: Alboran Sea (alb), South Western Mediterranean west (swm1), South Western

Mediterranean east (swm2), North Western Mediterranean (nwm), Northern Tyrrhenian (tyr1) and Southern Tyrrhenian

(tyr2).270

– in the Eastern Mediterranean Sea: Northern Adriatic (adr1), Southern Adriatic (adr2), Western Ionian (ion1), Eastern

Ionian (ion2), Northern Ionian (ion3), Western Levantine (lev1), Northern Levantine (lev2), Southern Levantine (lev3)

Eastern Levantine (lev4) and Aegean Sea (aeg).
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All the three BGC variables have a fairly homogeneous spatial coverage between the Western and Eastern Mediterranean

Sea, except for few sub-basins not covered (alb, ion1 and adr1 see Figure 2) , and a generally 5-day temporal sampling275

frequency. Higher sampling frequencies (< 5 days) are registered for the 20% of profiles.

Figure 2. BGC-profiles of chlorophyll (Chl, in white), nitrate in situ (NO3, in red) and reconstructed nitrate (recNO3, in blue) assimilated

in Mediterranean Sea (2017-2018). Subdivision of the Mediterranean domain in sub-basins used for the validation. According to data avail-

ability and to ensure consistency and robustness of the metrics, different subsets of the sub-basins or some combinations among them can be

used for the different metrics: lev=lev1+lev2+lev3+lev4; ion=ion1+ion2+ion3; tyr=tyr1+tyr2; adr=adr1+adr2; swm=swm1+swm2.

Since oxygen sensors may drift and lose accuracy over time, the accurate determination of dissolved oxygen is typically more

challenging and requires some form of correction (Johnson et al., 2015). Expressed in % per year, the
::::
The loss of accuracy

:
,

::::::::
expressed

::
as

:
a
:::::::::
percentage

:::
per

:::::
year, is observed over the time, particularly 12 months after the deployment (

::::::::::
deployment

:::::::
(source:

https://www.euro-argo.eu).280

Deep ocean drift is considered as a proxy for oxygen sensor drift because of the lack of seasonal and annual signals for

oxygen at depth (Takeshita et al., 2013). Here, the optode drift is evaluated through non parametric methods (RANSAC and

Theil-Sen) at two different depths (600 and 800 m) to avoid possible fake drift detection because of changes in the water

masses. Tests are applied when the life of a float is longer than one year. Conversely, if the available float time series is less

than one year, the profiles are not corrected because the float lifetime is considered too short to account for in situ sensor drift.285

Used for linear and non-linear regression problems, the RANSAC and Theil-Sen methods automatically partition the oxygen

dataset into inliers and outliers. In order to avoid possible biases (Dang et al. 2008 and Fischler and Bolles 1981), these methods

calculate the drift based on the data subset identified as inliers.
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Figure 3. Nitrate and reconstructed nitrate profiles seasonal availability. Light gray (autumn and spring), cyan (winter), and yellow (summer)

bars represent the availability of nitrate in situ data (used in the run called DAfl). Gray (autumn and spring), light blue (winter), and orange

(summer) striped bars indicate the availability of reconstructed nitrate (used in the run called DAnn).

In our approach, the presence of a drift is established when all four drift estimates (RANSAC at 600 and 800 m, Theil-Sen

at 600 and 800 m) agree in sign and their average value (D_avg) exceeds 1 mmol m−3 y−1. This threshold is chosen on the290

basis of results in Bittig et al. (2018a). Subsequently, the identified drift is removed from the oxygen profiles. This is achieved

by setting the D_avg at 600 meters and linearly interpolating toward the surface, where drift is set equal to zero. As highlighted

by Thierry and Bittig (2021), there is a lack of specific tests at depth, although several tests are performed near the surface by

the GDACs. The presence of near-surface tests motivates our decision to mitigate the correction’s impact at the surface.

2.5 Design of numerical experiments295

Three numerical experiments are performed to analyze the impact of different assimilation setups. The simulated period is

1.1.2017-31.12.2018, and the MedBFM module setup mostly corresponds to the standard adopted in the Mediterranean Anal-

ysis and Forecast biogeochemical system of the Copernicus Marine Service. This set up includes: open boundary conditions in

the Atlantic; climatological input of nutrients, carbon and alkalinity for 39 rivers and the Dardanelles Straits; initial conditions

from EMODnet dataset (details are provided in Salon et al. 2019); and a 3-years spin up using the 2017 forcings in perpetual300

mode.

Our experimental setup differs from the standard one for the
::::
setup

:::
for

:
physical forcing, which are from

::
is

::::::
sourced

:::::
from

:::
the

Mediterranean Copernicus reanalysis (Escudier et al., 2021), and the initial conditions of oxygen which are retrieved from
::
as

:::
well

:::
as

:::
for

:::
the

:::::
initial

::::::
oxygen

::::::::::
conditions.

:::::
These

:::::::::
conditions

:::
are

:::::::
derived

::::
from

:::
the

:
BGC-Argo float climatology computed after

::::::
dataset

::
by

:::::::::
generating

:::
16

::::::::::::
climatological

:::::::
profiles

::
of

::::::
oxygen

:::::
after

:::::::::
performing

:::
the

:
QC O2 procedure(described in section 2.4)

:
,305

:::
and

::::
then

::::::::
uniformly

::::::::
assigning

:::::
them

::
to

::::
each

::::
grid

::::
point

:::
of

:::
the

::
16

:::::::::
sub-basins

::::::
shown

::
in

:::::
Figure

::
2.
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Test Case Chl O2 NO3 Updated variables

HIND – – – –

DAfl 1773 1924 938 phyto biomass, NO3 , O2 and PO4

DAnn 1773 1924 2146 phyto biomass, NO3 , O2 and PO4

Table 1. Summary of the numerical experiments and assimilated BGC-profiles.

The three simulations, which share the same setup except for the assimilated datasets, are: (1) control run without as-

similation (HIND); (2) assimilation of BGC-Argo chlorophyll, nitrate and oxygen (DAfl) and (3) assimilation of additional

reconstructed nitrate profiles used to enhance the DAfl assimilative set up (DAnn).

Before integrating data in the 3D-VarBio, the same pre-assimilation assessment described in Teruzzi et al. (2021) is applied310

to the chlorophyll profiles. Nitrate profiles are rejected if concentration at the surface is higher than 3 mmol m−3. At surface,

the oxygen profile exclusion is evaluated by calculating the difference between the uppermost oxygen measurement and the

oxygen saturation (derived from temperature and salinity data from the Argo dataset as in Garcia et al. 2019). Profiles are

excluded when this difference reaches the threshold of 10 mmol m−3. At 600 meters, the difference between oxygen and

a climatological reference oxygen at depth is calculated. Profiles are excluded when the difference reaches the threshold of315

2 times the standard deviation of the same reference dataset. As reference dataset, we chose the EMODnet2018_int data

collection that integrates the in situ aggregated EMODnet data (Buga et al., 2018)) and the datasets listed in Lazzari et al.

(2016) and Cossarini et al. (2015b). The EMODnet2018_int dataset is available for 16 sub-basins in the Mediterranean Sea

(Figure 2).

During the data assimilation, profiles are excluded when innovation exceeds specific threshold rules. For chlorophyll, the320

threshold is set at 2mg m−3. For nitrate, the thresholds are 2 and 3
:
1

:::
and

::
2
:
mmol m−3 for the 0-50 m and 250-600 m

layers, respectively (as in Teruzzi et al. 2021). Oxygen thresholds are 30 and 50 mmol m−3 for the 0-150 m and 150-600

m layers respectively (thresholds are roughly 3 times the standard deviation of the climatology computed on EMODnet data

for the different sub-basins). Exceeding values have to be found in at least 5 vertical levels within the specified layers. These

exclusions aim to prevent corrections that could trigger unstable dynamics after the assimilation (Teruzzi et al. 2021, Storto325

et al. 2011, Sakov and Sandery 2017 and Waller et al. 2018). The excluded profiles range from 0.1% for chlorophyll to less

than 1% for nitrate.

3 Results

3.1 The post-deployment QC O2 module

The product of our QC O2 module is a QCed dataset available at https://zenodo.org/records/10391759.330
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The QC O2 module allowed for
::::::
enabled the automatic correction of in situ sensor drifts. Out of

::
Of

:
the 40 floats available

between 2017-2018, we conducted
::::
2017

::::
and

:::::
2018,

:::
we

:::::::::
performed

:::
the

:
drift analysis on 16 floats, while 24 floats remained

unanalyzed due to the limited length of the timeseries. Among
:::
Of these 16 floats, we identified a significant

:::::
found

::
a drift in

13: 4 with a positive drift and 9 with a negative one. The
::::
drift.

:::
For

:::
the

:
remaining 3 floatshad a drift values

:
,
:::
the

::::
drift

::::::
values

::::
were below the prescribed threshold (Section 2.4). At a depth of 600 meters, the absolute average correction for the 13 floats335

is about
:::::::::::
approximately

:
4.3 mmol m−3 y. This value aligns with the ranges expressed in terms of sensor drift percentage in ?

::::::::::::::::
Bittig et al. (2018a) (1-1.5%).

Figure 4 shows the evolution of oxygen profiles for a quasi-stationary float (6902687) following the application of
::::
after

:::::::
applying

:::
the drift correction. Consistent with findings in various studies (e.g., ?

::::::::::::::::
Bittig et al. (2018a) and Maurer et al. (2021)),

the detection of drift by our QC O2 suggests a possible tendency of the optode to slowly degrade over time. After 2 years, the340

bias due to the drift reaches approximately 5 mmol m−3 (1st December
::::::
profiles

::::
from

:::::::::
December

::
1,

:
2017 profiles in Figure 4).

The removal of drift brings the oxygen concentration at 600 m closer to the EMODnet climatological data (as exemplified

:::::
shown

:
in Figure 4, green star). This leads us to infer that our drift correction enables the inclusion of more profiles in the

assimilated oxygen datasets.

Figure 4. Depiction of original (black) and corrected (blue) oxygen profiles for float 6902687 across four selected dates. The green star refers

to the EMODnet O2 climatological value in the nwm sub-basin and the horizontal line to the EMODnet O2 standard deviation at 600 m.
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3.2 Validation using Satellite and BGC-Argo datasets345

Skill performances of the simulations listed in Table 1 are evaluated by comparing model results with satellite
::
(i)

:::
the

:::::::
satellite

::::::
Marine Copernicus OC product (i.e.,

:::::::::::
non-gap-filled

:::
L3

:::::::
product OCEANCOLOUR_MED_BGC_L3_MY_009_143 from ma-

rine.copernicus.eu, last visited in July 2023) of chlorophyll and
::
(ii)

:
BGC-Argo profiles

::
of

::::::::::
chlorophyll,

:::::::
nitrate,

:::
and

:::::::
oxygen

(Argo, 2022). The satellite comparison used
:::
OC

:::
L3

:::::::
satellite

::::::::
products

::::::::::
downloaded

:::::
from

:::
the

::::::::::
Copernicus

:::::::
Marine

:::::::
Service

::::::::
catalogue

:::
are

::::::::::
interpolated

::::
from

::
1

:::
km

::
to

:::::
1/24°

:::::
model

:::::::::
resolution.

:
350

::::::::::
Specifically,

:::
we

::::::::
compared

:::
the

:
daily model output . The model

::::
with

:::
the

::::::
satellite

:::::::
dataset

:::
and

:::
the

:::::::
model’s first guess (i.e., the

model state at 1pm before the assimilation) is instead used for the metrics based on
::::::::::
assimilation)

::::
with

:::
the

:
BGC-Argo profiles.

While the use of the first guess is a common practice in DA applications
:::
data

:::::::::::
assimilation

:
(Hollingsworth et al., 1986), it

is worth to remind that this comparison should be considered as a semi-independent validation, given that two consecutive

profiles of the same BGC-Argo float can share a certain degree of correlation
::
in

::::
their

:::::
errors.355

The Root Mean Square Error (RMSE) metric is
:::::
chosen

::
to

:::::::
quantify

:::
the

::::::
model

::::::::
capability

::
to

:::::::::
reproduce

:::::::
seasonal

:::::::::
variability

::
of

::
the

:::::
main

:::::::::::::
biogeochemical

::::::
(BGC)

::::::::
processes

:::
at

:::
the

::::::
surface

:::::::
(satellite

:::::::
dataset)

::
or

:::::
along

:::
the

:::::::
vertical

::::::
column

::::::
(BGC

::::
Argo

::::::::
dataset),

::::
such

::
as

::::::::::::
phytoplankton

::::::
surface

::::::
bloom

:::
and

::::::::
dynamics

::::::
during

:::::
water

::::::
column

:::::::::::
stratification.

:

::::::
Indeed,

:::
the

::::::
RMSE

::
is evaluated during winter (from February to April, FMA) and summer (from June to August, JJA) 2017

and 2018 to investigate the model’s capability to reproduce specific bloom and stratification conditions within 16 sub-basins360

of the Mediterranean Sea (
::
as described in Section 2.4 and in Figure 2) or in an aggregated combination of them.This latter

includes six macro-basins: the South Western Mediterranean Sea (Swm) consisting of swm1 and swm2; the North Western

Mediterranean (Nwm/NWM) represented solely by the nwm; the Tyrrhenian Sea (Tyr), consisting of tyr1 and tyr2; the Ionian

Sea (Ion), consisting of ion1, ion2, and ion3; the Adriatic Sea (Adr), consisting of adr1 and adr2; and the Levantine Sea (Lev),

consisting of lev1, lev2, lev3 and lev4.365

The satellite OC L3 products downloaded from the Copernicus Marine Service catalogue are interpolated from 1 km to the

model resolution and a composite weekly average was computed to ensure gap-free maps, as in Teruzzi et al. (2014).

The Winter RMSE concerning the OC chlorophyll in HIND spans between ca.
:::::::::::
approximately

:
0.09 to 0.21 mg m−3 with a

maximum in the alb region (Figure 5). The inclusion of multivariate DA (in DAfl) positively impact the model performances,

reducing surface errors by 6.5% mainly observed in the eastern sub-basins. A further reduction of RMSE (up to 10%) with370

respect to HIND is then obtained with DAnn highlighting that enlarging the nitrate float network leads to improvements in

reproducing surface phytoplankton dynamics. Except for alb and swm1, where no nitrate data (in situ and reconstructed) were

available, all the Mediterranean sub-basins exhibit a reduction in RMSE during winter. In the nwm, the RMSE in the DAfl

assimilative setup is higher than in the HIND run. However, in DAnn (light-blue striped bar of nwm in Figure 3) the enlarged

nitrate dataset positively affects the chlorophyll dynamics at surface.375

A generalized slight worsening in the assimilated runs can generally be observed during the summer stratification period

and especially the Eastern sub-basins. The RMSE with respect to OC chlorophyll, which
::::
From

:::::
DAfl

::
to
::::::

DAnn,
::::

the
:::::
value

::
of

::::::
RMSE

::::::
slightly

:
increases in all sub-basins, is fairly similar in the two assimilation runs: .

::::::
These

:::::
values

::::::::::
correspond

::
to

:::
an
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::::::
average

:::::::::
worsening

::
of

:
about 6%

:
in
:::::

DAfl and 7.5% in DAfl and DAnn , respectively
::::
DAnn

:::::::::
compared

::
to

:::
the

:::::
HIND

::::
run. Despite

the introduction of a significant
:::
high

:
number of reconstructed nitrates

:::::
nitrate

:::::::
profiles in some sub-basins (e.g., orange stripped380

:::::
striped

:
lines of nwm and ion2 in Figure 3), the inclusion of recNO3 profiles

:::
this

::::::::
inclusion

:
does not positively impact summer

chlorophyll shallow statistics
::
the

:::::::
summer

::::::::::
chlorophyll

:::::::
RMSE

::
at

:::
the

:::::::
surface. The RMSE values in summer are an order of

magnitude lower than in winter, reflecting the seasonal chlorophyll variability in the Mediterranean Sea (i.e., the very low

values of chlorophyll at the surface).

Figure 5. Seasonal chlorophyll RMSE: Winter bloom and Summer stratification seasons in the Mediterranean Sea sub-basins for the HIND

run (light blue), the DAfl run (in orange) and the DAnn run (dotted-green). The black vertical line represents the subdivision of the Mediter-

ranean Sea in West and East sectors.

The RMSE metrics based on BGC-Argo are computed for the six selected aggregated macro-basins and in selected layers385

(0-10 m, 10-30 m, 30-60 m, 60-100 m, 100-150 m, 150-300 m and 300-600 m) and are shown in Figure 6 for nitrate (top panel),

chlorophyll (middle panel) and oxygen (bottom panel). The statistics computed over the aggregate basin provide a more robust

results (e.g., they are computed over a larger number of profiles) even if possible spatial patterns of the errors can be damped.

Thus, this choice might limit the analysis on whether/how different nitrate assimilation setups affect chlorophyll and oxygen

dynamics (see Section 3.3).390

As expected, the assimilation of in situ BGC-Argo considerably improves the quality of modelled nitrate with respect to the

HIND run. During winter, the average RMSE reduction is 40% in DAfl, and increases to 46% in DAnn, while in summer the

average reduction reaches 59% in DAfl and 63% in DAnn (first row in Figure 6). The most significant RMSE reduction of

DAnn compared to DAfl is observed in Nwm and Tyr (0-450 m) during winter, and in Ion (0-100 m) in summer. This impact

can be directly ascribed to the profiles availability (Figure 3 ) and additional profiles generate more persistent corrections.395
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Since the DAfl and DAnn simulation share the same chlorophyll assimilative setup, the RMSE improvements in terms of

chlorophyll assimilation can be evaluated comparing the HIND with the DAfl or DAnn simulations (Figure 6 middle panel). We

observe slight enhancements in simulating chlorophyll in Nwm (0-100 m) and Lev (0-200 m) during winter and in Tyr, Ion and

Lev (50-200 m) during summer (Figure 6 middle panel). Even if phytoplankton dynamics depend on nutrients dynamics, the

positive impact of DAnn on nitrate RMSE does not transfer to the the vertical chlorophyll statistics in the DAnn. This is because400

the direct chlorophyll assimilation is more effective than the dynamical model adjustment after nitrate and reconstructed nitrate

assimilation in the areas close to the observed chlorophyll profiles.

Assimilating oxygen profiles enables reducing the model-BGC floats RMSE by about 30% during winter and summer. In

winter, the correction involves the whole water columns in the East (Lev and Ion, third row in Figure 6) and deeper layers

(150-600 m) in the West (Swm, Nwm) and Adr. In summer, the impact is mainly observed in Tyr, Ion and Lev. As discussed405

in Section 2.2, the integration of
:::
The

:::::::::
integration

:::
of

:::
NN

:
reconstructed profiles in the DAnn simulation does not significantly

impact the oxygen dynamics . Finally, it is important to note that whenever a reconstructed nitrate is assimilated, oxygen is also

assimilated
:::::
affect

::::::
oxygen

::::::::
dynamics

:::::::::
compared

::
to

:::
the

::::
DAfl

::::::::::
simulation,

:::::
given

:::
that

:::::::
oxygen

:::
has

:::::::
already

::::
been

::::::::
markedly

::::::::
modified

::
by

:::
the

:::
O2

::::::::::
assimilation

::::::::
occurring

::
at

:::
the

:::::
same

:::::::
location

::
as

:::::
nitrate

:::::::::::::::
NN-reconstructed

:::::::
profiles.
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Figure 6. Seasonal Nitrate, Chlorophyll and Oxygen profile of RMSE (top, middle, bottom): Bloom (left) and Stratification (right) seasons

in the Mediterranean Sea aggregated sub-basins for the HIND run (pale blue), DAfl run (orange) and DAnn (green).
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3.3 Integration of NN-MLP-MED and DA modules: the impact410

3.3.1 Impacts on biogeochemical vertical dynamics

To assess the impact of profile assimilation in changing the vertical gradients of biogeochemical variables, Figures 7, 8, 9 and

10 show the Hovmöller diagrams of the spatial averages of nitrate, phosphate, chlorophyll and oxygen for two selected sub-

basins (first and second columns for Nwm
::::
nwm

:
and ion2 with boundaries indicated in the map of Figure 2) and for the entire

Mediterranean Sea (third column). This representation offers additional details on the vertical impact of the reconstructed415

nitrate profile assimilation with respect to the validation of Figure 6 that considers only model points corresponding to the

location of BGC-Argo profiles. Nwm
::::
nwm

:
and ion2 represent distinct trophic conditions in the Mediterranean Sea and are also

characterized by high number of assimilated reconstructed nitrate profiles (Figure 3). The North Western Mediterranean has

higher level of nutrient concentrations and more intense surface blooms in winter (Siokou-Frangou et al. 2010 and Di Biagio

et al. 2022). During summer, Nwm
::::
nwm

:
exhibits a shallow nitracline, higher chlorophyll concentration at the deep chlorophyll420

maximum (DCM) and shallow subsurface oxygen maximum (SOM) (first column in Figures 7, 8, 9 and 10). Conversely, the

eastern sub-basin is characterized by a deeper nitracline and DCM and more oligotrophic conditions (ion2, second column of

Figures 7, 8, 9 and 10).

Considering nitrate, the multivariate assimilation (DAfl) corrects
::::::
reduces

:
a general positive bias of the model in all the

Mediterranean areas (blue pattern in Figure 7). The addition of
:::
NN

:
reconstructed profiles makes the corrections stronger. On425

average, the nitrate concentration below the nitracline (the depth at which nitrate concentration is 2 mmol m−3) decreases by

8% and 11% in DAfl and DAnn runs, respectively. Both the assimilation runs also exhibit changes of the nitracline depth with

more intense deepening in the DAnn simulation. Differences between the assimilation and the reference
:::::
HIND run accumulate

over time. The rate of this accumulation is highest during the first year and decreases during the second year. These differences

remain almost constant in sub-basins with a high number of BGC-Argo and
:::
NN

:
reconstructed profiles (e.g., Nwm

::::
nwm in430

Figure 7). On the other hand, considering the ion2 and the whole Mediterranean Sea, which comprises some under-sampled

areas (e.g., ion1 and ion3), the effect of DA corrections is still propagating after the two years (third column of Figure 7).

Very similar patterns are also observed in the Hovmöller diagrams of phosphate (Figure 8), which is an updated variable of

the multivariate variational assimilation scheme through nitrate-phosphate covariance. In fact, the general negative corrections

on phosphate fields are linked to the high positive values of the covariance matrix between nitrate and phosphate (Teruzzi et al.,435

2021).

Considering chlorophyll (Figure 9), the main difference between DAfl and HIND is a slight reduction of the DCM chloro-

phyll concentration (e.g., variation smaller than 5% with respect to HIND simulation) and a correction of the timing of the

surface winter blooms (second row in Figure 9). Even if the chlorophyll validation (Figure 6) does not show significant
:::::
strong

differences between DAfl and DAnn, the basin wide averages of DAnn display more intense corrections with respect to DAfl in440

terms of DCM depth and chlorophyll intensity and overall chlorophyll concentration (Figure 9). Over the 0-200 m layer of the

whole Mediterranean Sea, the chlorophyll decreases with respect to HIND are 4% and 5% for DAfl and DAnn, respectively.
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Corrections on oxygen dynamics after the multivariate assimilation (DAfl, second row in Figure 10) are either positive or

negative depending on the area and the period of the year. In particular, corrections are mostly positive in ion2, while the

Nwm
::::
nwm

:
sub-basin shows negative corrections in the subsurface layer and positive ones in the upper layer of the second445

year. On the Mediterranean basin-wide scale, the average correction is 0.2% for the 0-200 m layer. The addition of the nitrate

reconstructed profiles does not alter the correction pattern with an average correction of 0.3%. However, the largest differences

between the two assimilation runs can be spotted in areas with a high density of
:::
NN

:
reconstructed profiles during summer (e.g.,

Nwm
::::
nwm, first column in Figure 10). As observed in the nitrate and chlorophyll Hovmöller diagrams, the assimilation of

:::
NN

reconstructed profiles causes a decrease of the summer productivity in the DCM layer. Consequently, less oxygen is produced450

generating the negative changes in the DCM layer in the bottom left panel of Figure 10. Because of the smaller amount of

subsequent sinking organic matter, less oxygen is consumed in remineralization processes in layers below the DCM in late

summer and autumn, and positive oxygen changes are generated, particularly during 2018.

Figure 7. Hovmöller diagram of nitrate of HIND simulation (first row) and differences between assimilation runs and HIND (second and

third rows) for 2 sub-basins (nwm and ion2) and the Mediterranean Sea (med). Evolution of the depth of nitracline (the depth at which nitrate

concentration is 2 mmol m−3) for the three runs: red (HIND) and black (DAfl and DAnn) lines. The averages of 0-200m concentration and

of nitracline for the simulated period are reported.
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Figure 8. Hovmöller diagram of phosphate of HIND simulation (first row) and differences between assimilation runs and HIND (second

and third rows) for 2 sub-basins (nwm and ion2) and the Mediterranean Sea (med). Evolution of the depth of phosphocline (the depth at

which phosphate concentration is 0.1 mmol m−3) for the three runs: red (HIND) and black (DAfl and DAnn) lines. The averages of 0-200m

concentration and of phosphocline for the simulated period are reported.

Figure 9. Hovmöller diagram of chlorophyll of HIND simulation (first row) and differences between assimilation runs and HIND (second

and third rows) for 2 sub-basins (nwm and ion2) and the Mediterranean Sea (med). Evolution of the depth of Deep Chlorophyll Maximum

(DCM) for the three runs: red (HIND) and black (DAfl and DAnn) lines. The averages of 0-200m concentration and of nitracline for the

simulated period are reported.
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Figure 10. Hovmöller diagram of oxygen of HIND simulation (first row) and differences between assimilation runs and HIND (second and

third rows) for 2 sub-basins (nwm and ion2) and the Mediterranean Sea (med). Evolution of the depth of subsurface oxygen maximum (SOM)

for the three runs: red (HIND) and black (DAfl and DAnn) lines). The averages of 0-200m concentration and of SOM for the simulated period

are reported.

3.3.2 Impact on ecosystem indicator (net primary production)

Net primary production (NPP) integrates phytoplankton growth and respiration processes which are at the basis of the marine455

trophic food web. The assimilation of chlorophyll and nitrate together with the updates of phosphate, directly and indirectly

affect primary production, as they influence both phytoplankton biomass and nutrient availability. Thus, the comparison of

primary production among the three simulations reveals how the assimilation impacts on a key indicator that integrates several

marine ecosystem processes. Seasonal maps of net primary production integrated over the 0-200 m layer in the HIND, DAfl

and DAnn simulations (Figure 11) confirm that the assimilation’s impact varies spatially and temporally.460

In the DAfl simulation, the most significant
::::::
evident differences in primary production compared to the HIND simulation are

located in the Eastern Mediterranean Sea with a decrease of NPP of nearly 10% in the Levantine macro-basin and in the Ionian

Sea close to the Greek coast (first and second row of Figure 11). This reduction is particularly pronounced during winter. In the

Western Mediterranean the impacts on primary production are negligible
:::
less

::::::
evident

:
in both seasons with a slight reduction

(5%) in winter in the Tyrrhenian Sea.465

The DAnn simulation shows more pronounced impacts on primary production compared to the DAfl simulation (second and

third rows of Figure 11). The main differences between the DAnn and DAfl are highlighted by the black contour line in Figure

11 (differences larger than 15 mgC m−2 d−1). Specifically, during winter, a decrease in NPP is mainly observed in the Nwm,

Ion, and Tyr, while in summer the reductions in NPP is observable in the Nwm and Ion.
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As shown in Figure 3,
:::::
basins lev1 and lev4 exhibit a considerable abundance

::::
have

:
a
:::::

high
::::::
number

:
of reconstructed nitrate470

profiles in
:::::
during both winter and summer seasons. This enhanced profile availability results in spatially localized increases of

impacts. The absence of recNO3 data and the presence of NO3 data in
::::::::
abundance

::
of

::::
NN

:::::::::::
reconstructed

::::::
profiles

:::::::::
contributes

::
to
:::
an

:::::::
increase

::
in

::::::
impact

::
in

::::::::::
reproducing

:::
the

::::
NNP

:::::::::
dynamics,

:::::
which

::
is

:::::::
spatially

::::::::
localized.

::::::::::
Conversely,

:
lev2 and lev3 seem to damp the

eventual propagation of impacts across lev2 and lev3
::
the

:::::::::
sub-basins

:::::::
dividing

::::::
basins

::::
lev1

::::
from

:::::
lev4,

::::::
contain

::
in

::::
situ

:::::
nitrate

::::
and

:::
lack

:::
of

:::::::::::
reconstructed

::::::
nitrate

:::::::
profiles.

::::
This

::::
lack

::::
may

:::::::
spatially

::::
limit

:::
the

:::::::
impacts

::::
that

::::::::::
assimilating

:::::::::::
reconstructed

::::::
nitrate

:::::::
profiles475

::::
could

:::::
have

::
on

::::
NPP

::::::::::
throughout

:::
the

:::::
entire

::::::::
Levantine

::::::
region

::::
(Lev).

In general, the impact on primary production is greater where nitrate observations or nitrate reconstructed observations are

assimilated (Figure 3), suggesting a dynamical bottom-up control of primary production. In fact, the weaker fertilization of the

surface layer in DAnn, which occurs for both macronutrients after assimilation (Figure 7 and 8), causes a reduction of the net

primary production.480
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Figure 11. Maps of winter (FMA) and summer (JJA) net primary production [NPP, mgC m-2 d-1] in the three simulations: HIND (first row);

DAfl (second row). DAnn (third row). Seasonal averages were calculated for the period 2017-2018. The black contour lines in the third row

encompass areas where the NPP difference between DAnn and DAfl exceeds 15 mgC m−2 d−1
:
.

3.3.3 Impact on Argo Observing system design

Analyzing the departure of an assimilated simulation from a reference solution provides insights into the impact of the observ-

ing system design and several data impact indicators can be used (Ford 2021, Teruzzi et al. 2021 and Raicich and Rampazzo

2003). In this work, we adopted the impact indicator Iij(t) as described in Teruzzi et al. (2021). This indicator supports

the quantification of the vertically integrated response resulting from assimilating BGC Argo profiles compared to the non-485

assimilative run:
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Iij(t) =
|Simij(t)−HINDij(t)|0−maxdepth

(HIND(0−maxdepth)mean
(2)

HIND is the reference, while Sim refers to one of the different DA set-ups. |Simij(t)−HINDij(t)| is the absolute differ-

ence between two simulations (for each day and grid point), while the subscript maxdepth indicates the vertical integrated layer

of 0-300 m and 0-600 m for chlorophyll and nitrate respectively. The indicator Iij(t) quantifies how much an assimilated run490

deviates from the reference simulation (HIND) for every grid point of the Mediterranean Sea domain and its 95th percentile

permits to highlight the highest impacts.

Figures 12 and 13 show the nitrate and chlorophyll Iij(t) 95th percentile of the seasonal indicator in winter (left column)

and in summer (right column) in the DAfl (first row) and DAnn (second row) simulations.

In DAfl, the extent of nitrate Iij(t) 95
th above 0.1 (

:::::
which

::::::::
represents

:
the mean of the 95th percentile impact indicator in495

the Mediterranean Sea
::::::::
calculated

::::
after

:::::::
merging

:::
all

:::
the

:::::
DAnn

::::
and

::::
DAfl

:::::
Iij(t):95

th
:::::
values) is 16.5% and 18.7% in winter and

in summer respectively, with
:
a
:

clear spatial distribution mapping the BGC-Argo density
:::::
density

:::
of

:::::::::
BGC-Argo

:::::
floats. The

introduction of
:::
NN

:
reconstructed profiles in DAnn make it possible to increase the nitrate impacted areas up to about 35% and

39% in winter and summer respectively. The DAnn impact increase is mainly localized in the western Mediterranean Seas and

in the Ion, while the less evident impact in the Lev, especially in summer, is mainly due to the low number of NN reconstructed500

nitrate in the area.

Chlorophyll impact maps (Figure 13) show that besides the direct impact of chlorophyll profiles assimilation, phytoplankton

is also affected by the reconstructed nitrate assimilation. Compared to a threshold of 0.4 (the mean of the 95th percentile

impact indicator in the Mediterranean Sea), the impacted areas increase from 18.2% to 29.8% in winter and from 10.8% to

14.5% in summer in the DAfl and DAnn runs. These results suggest that the inclusion of reconstructed nitrate assimilation can505

potentially extend the impact to almost all the
:::
has

:::
the

:::::::
potential

::
to

::::::
extend

::
its

::::::
impact

::::::
across

:::
the

:::::::
majority

::
of

:::
the

:::
16

:::::::::
sub-basins

::
of

::
the

:
Mediterranean Sea. The

:::::::
However,

:::
the

:
scarcity or absence of available data for assimilation prevents us from observing an

impact in the marginal seas (Adr and Aeg), the southern part of
:::
the Ionian (ion1),

:
and Western sub-basins (alb and swm1).

Oxygen impact maps (not shown) are very similar to the nitrate DAnn maps and do not show significant differences between

the two DA simulation
:::::::::
simulations, since the same QC oxygen dataset was assimilated in DAfl and DAnn . Moreover, as detailed510

in Section 2.2,
:::
and

:
the oxygen assimilation exclusively updates the oxygen itself and have minimal impact on its dynamics

from the other biogeochemical cycles
::::::
largely

::::::::
overcome

:::
any

:::::
other

:::::::
potential

::::::
model

:::::::::
adjustment

::::
after

::::::
nitrate

::::::::::
assimilation.
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Figure 12. Maps of Iij(t)
::::
Iij(t):95

th percentiles for Nitrate in winter (left column) and summer (right column) in the DAfl (first row) and

DAnn (second row); white contour lines identify the areas within three correlation radii from the float profiles.

25



Figure 13. Maps of Iij(t)
::::
Iij(t) 95

th percentiles for Chlorophyll in winter (left column) and summer (right column) in the DAfl (first row)

and DAnn (second row); white contour lines identify the areas within three correlation radii from the float profiles.

4 Discussion

Our quality check procedure (QC O2) for oxygen drift detection and comparison with a reference dataset successfully integrates

the official BGC Argo (Argo, 2022), making the oxygen BGC Argo a robust and valuable dataset (Amadio et al., 2023) for515

initial conditions, data assimilation, validation and new product reconstruction
::::::::::::
reconstruction

::
of

::::
new

::::::
datasets. Even if the dis-

tinction between real oxygen depletion signals and optode drift can remain problematic without in situ high quality
::::
high

::::::
quality

::
in

:::
situ data, we believe that literature and prior knowledge can be used as a baseline for drift discrimination

:::::::::::
distinguishing

::::
drift.

In particular, the oxygen concentration in the mesopelagic layer of the Mediterranean Sea can show basin scale (Mavropoulou et al., 2020)

and local (Sisma-Ventura et al., 2021)
:::::
exhibit

::::::::::
basin-scale

::::::::
variability

:::::::::::::::::::::::
(Mavropoulou et al., 2020)

::
as

::::
well

::
as

::::
local

:
intense multi-520

year variability
::::::::::::::::::::::
(Sisma-Ventura et al., 2021). For example, one of the most evident signals was the early 1990’s East Mediter-

ranean Transient (EMT) associated with the variations of thermohaline circulationwhich caused a
:
in

:::::::::::
thermohaline

::::::::::
circulation.

:::
The

:::::
EMT

::::::
caused

::::
both negative and positive variation

::::::::
variations (e.g., about 10 mmol m−3 on a decadal time scale) of oxygen

::
in

::::::
oxygen

:::::
levels

:
in the Western and Eastern Mediterranean Sea (Mavropoulou et al., 2020). However, in the last decades, a

much smaller inter-annual variability of oxygen in the mesopelagic layer was
:::
has

::::
been

:
observed in both western and eastern525

basins (Coppola et al. 2018 and Mavropoulou et al. 2020). Therefore, the threshold of 1 mmol m−3 y at 600 and 800 meters

appears
:
to
:::

be
:
a prudent limit for sensor drift discrimination

:::::::::::
discriminating

::::::
sensor

::::
drift

:
from real long term signals for our

specific application.
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Up to now, oceanographer visual checks have been necessary to distinguish ocean signals from sensor drift (Wang et al.,

2020) and the ongoing debate about replacing visual checks with automatic statistical procedures is still open. Consequently,530

our work seeks to contribute by proposing a new tool designed to automatically handle deep ocean signal or optode drift issues.

This method can be further developed by applying oxygen drift analysis at fixed isopycnals, in conjunction with analysis at

constant isobaths. This approach might allow us to filter out potential oxygen concentration changes caused by floats moving

across different water masses.

The assimilation of vertical profiles provides complementary information with respect to satellite ocean colour assimilation535

( Verdy and Mazloff 2017 and Cossarini et al. 2019), which remains the most commonly used
::::::
method

:
in operational systems

(Fennel et al., 2019). In fact, the effectiveness of the profiles assimilation, which has the capability to constrain vertical biogeo-

chemical dynamics in subsurface layers (Kaufman et al. 2018, Teruzzi et al. 2021, Ford 2021, Skakala et al. 2021 and Wang

et al. 2022), lies in the amount of available
::::::
depends

:::
on

:::
the

::::::::::
availability

::
of

:
BGC-Argo data, that

:::::
which

:
are generally insuffi-

cient to constrain a basin wide-simulation. Previous findings (Teruzzi et al., 2021) have primarily demonstrated the efficiency540

of ocean colour assimilation in constraining chlorophyll dynamics, especially during winter and the advantages of assimilat-

ing BGC-Argo profiles in summer. Our work highlights the larger and more extensive benefits of profile assimilation during

summer due to the incorporation of reconstructed nitrate profiles.

Through the integration of NN and DA, the count of nitrate profiles ingested can potentially be as high as the BGC Argo

equipped with an oxygen sensor (i.e., more than double of the nitrate profiles), which corresponds to a density of 1 profile545

in each 2.5deg x 2.5deg box every 10 days for the 2017-2018 period. This means that seasonal sub-basins scale dynamics

(e.g., bloom or stratification) can effectively be constrained, while the mesoscale dynamics can be only locally constrained

(D’Ortenzio et al., 2021).

Apart from an increase in the numbers of floats, a further increase of the area impacted from a float assimilation can be

achieved
::::::::
optimized

:
by redefining horizontal covariance errors in the data assimilation scheme. Indeed, benefits of non-uniform550

correlation radius in the horizontal scale have been previously investigated (Cossarini et al., 2019) and additional improvements

could be provided by a 3D varying correlation radius (Storto et al., 2014).

Looking at the recent evolution in the availability of BGC-Argo sensors (Figure 14), our combined NN and DA approach

would allow keeping the benefits of the BGC-Argo Observing System in the Mediterranean operational system. Even if nitrate

and chlorophyll profiles have dramatically decreased after 2020, the assimilation of
::
NN

:
reconstructed profiles can potentially555

overcome this lack. Nevertheless, as shown in our Observing System Experiment (Figure 12 and 13), there are still under-

sampled areas by the Argo and oxygen sensors, such as Alboran, Southern Ionian seas and the marginal seas (Northern Adriatic

and Northern Aegean Sea) which would require specific deployments.

With respect to previous BGC Observing System Simulation Experiments, (Yu et al. 2018, Ford 2021), we show how to

exploit the current Argo and BGC-Argo networks for reconstructing biogeochemical variables.560

MLP feed-forward methods to reconstruct biogeochemical variables are good enough (Bittig et al. 2018b, Sauzède et al.

2020 Fourrier et al. 2021 and Pietropolli et al. 2023) to reach our purposes, even if their application to generate smooth and

consistent profiles still has some limitations (Pietropolli et al., 2023). The MLP-NN-MED method exhibits a validation error
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of 0.50 mmol m−3 for nitrate
:::::
when

::::
used

::
to

::::::
predict

::::::
nitrate

::::
from

:::
the

:::::::::
EMODnet

::::
data

:::
set,

:
and 0.87 mmol m−3 when applied to

predict
::::
used

::
to

::::::
predict

::::::
nitrate

::::
from

:
BGC-Argo data (Pietropolli et al., 2023). These uncertainties related to the reconstructed565

nitrate dataset are higher then the one used in our study (0.25
::::
0.24 mmol m−3) for both BGC Argo and reconstructed profiles.

Using
:::::
Thus,

:::::
while

:
it
::
is
:::::::::
reasonable

::
to
::::::
assign

:
a
::::::
higher

::::::::::
observation

::::
error

::
to

::::
NN

:::::::::::
reconstructed

::::::
nitrate,

::::::::
applying the same error

for both datasets revealed the highest potential impact of the reconstructed nitrate
:
to
::::
both

:::
in

:::
situ

:::
and

::::
NN

:::::::::::
reconstructed

:::::::
datasets

:::
has

:::::::
resulted

::
in

:
a
::::::::
potential

::::::::::::
overestimation

::
of

:::
the

::::::::::
assimilation

::::::
impact

::::
that

:::
can

:::
be

:::::::
achieved. On the other hand, using a possibly

underestimated error could unbalance the assimilation results toward observation over-fitting, and we recognize the potential570

benefits of using different error values for BGC-Argo and reconstructed profiles. Over-fitting effects towards observations

may similarly derive from our choice of not explicitly including the nitrate representation error. However, our nitrate error

definition is an evolution of the approach used in Teruzzi et al. (2021), which demonstrated a well-established balance between

assimilation impacts and over-fitting towards the observations.

The larger error in MLP-NN-MED prediction of BGC-Argo profiles derives the fact that the MLP methods, being pointwise575

based, are unaware of the vertical gradient (e.g., typical shape) of the profiles of biogeochemical variables that they seek to

infer. This fact can lead to irregularities and lack of smoothness in the predicted profiles (Pietropolli et al., 2023), which we

partly solved by adding a smoothing operator. However, one way to increase the reliability of profile reconstruction would be

to include information with a physical meaning from observed data (Buizza et al., 2022). 1D Convolutional Neural Networks

represent a viable alternative approach considering their ability to treat the coherence of the 1D signals (e.g., typical shapes of580

profiles) as shown in Li et al. (2021).

Integration of NN and DA have been tested in several geoscience applications (Buizza et al. 2022, Brajard et al. 2021,

Stanev et al. 2022) to infer unresolved spatial scales or reproduce missing data. In our application, the integration of NN,

which retrieves a large number of profiles (Pietropolli et al., 2023), and DA, which can apply the correction to all nutrients

through error covariances (Teruzzi et al., 2021), allows spatial and multivariate changes to be captured both at the local scale585

and across the basin to constrain Mediterranean productivity (Figure 11). Although the corrections take time to extend to the

entire basin (Figure 7), our simulations have shown that constraining bottom-up ecosystem processes (e.g., productivity, organic

matter sink) has proven effective and might be used in conjunction with the classical ocean colour correction to phytoplankton

biomass.

Any plan to learn directly from observations will have to face with some challenges, such as the use of observations whose590

time and space coverage is uneven or related to specific processes (Geer, 2021). The modular approach followed in this work

represents a successful example of exploiting the strengths of neural networks and data assimilation to enhance the observing

system impact in the operational biogeochemical system of the Mediterranean Sea.
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Figure 14. Monthly availability of BGC-Argo profiles (number of profiles/month) from 2013 to 2022 for nitrate (green), chlorophyll (grey)

and oxygen (yellow).

5 Conclusions

Combining deterministic Feed-Forward Neural Network and Data Assimilation to design an Observing System Experiment595

has enabled demonstrating the enhanced positive impact of profiles assimilation in the Copernicus Operational System for

Short-Term Forecasting of the Biogeochemistry of the Mediterranean Sea (MedBFM).

The development of the oxygen QC procedure allowed to statistically deal with optode in situ drift and to derive accurate

reconstructed profiles of nitrate, keeping the number of assimilated observations at a much higher level despite the current

negative trend in BGC-Argo availability.600

Achieved BGC profiles density
::::
The

:::::::
achieved

::::::
density

:::
of

::::
BGC

:::::::
profiles provides valuable and additional information to com-

plement that of ocean colour in describing phytoplankton seasonal
::
the

::::::::::
description

:::
of

:::::::
seasonal

::::::::::::
phytoplankton

:
blooms and

stratification dynamics at sub-basins
::
the

::::::::
sub-basin

:
scale.

The assimilation of BGC-Argo nitrate corrects a general positive bias of the model in several Mediterranean areas, and the

addition of reconstructed profiles makes the correction stronger.605

Together with nitrate assimilation, the phosphate update through error covariances, sustains spatial and multivariate changes

that are capable of correcting key biogeochemical processes (e.g., nitracline and deep chlorophyll maximum) and to constrain

ecosystem processes (e.g., productivity) at basin-wide scale.
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