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Abstract. Snow avalanches represent a natural hazard for infrastructures
::
to

:::::::::::
infrastructure

:
and backcountry recreationists. Risk

assessment of avalanche hazard is difficult due to the sparse nature of available observations informing on snowpack mechan-

ical and geophysical properties and overall stability. The spatial variability of these properties also adds complexity to the

decision-making
:::::::
decision

::::::
making

:
and route finding in avalanche terrain for mountain users. Snow cover models can simulate

snow mechanical properties with good accuracy at fairly good spatial resolution (around 100 m). However, monitoring small-5

scale variability at the slope scale (5-50 m) remains critical, since slope stability and the possible size of an avalanche are gov-

erned by that scale. To better understand and estimate the spatial variability at the slope scale, this work explores links between

snow mechanical properties and microtopographic indicators. Four
::
Six

:
spatial snow surveys were carried out at two study sites

::::::::
conducted

::
in
::::

two
:::::
study

:::::
areas across Canada. First, we compared the covariance models of snow mechanical properties and

stability metrics between surveys. Then, we estimated snow mechanical properties, including point snow stability, using GAM10

spatial models (Generalized Additives Models) with microtopographic indicators as covariates. Snow mechanical properties

such as snow density, elastic modulus , shear modulus and snow microstructural
:::
and

:::::
shear strength were estimated from a

high-resolution snow penetrometer (SMP) at multiple locations over several studied slopes, in Rogers Pass, British-Columbia,

and Mt Albert, Québec. Point snow stability such as the skier crack length, critical propagation crack length and a skier sta-

bility index were derived using the snow mechanical properties from SMP measurements. Microtopographic indicators such15

as the topographic position index (TPI), vegetation height and proximity, up-wind slope index (wind exposed/sheltered area)

:::::::::::
wind-exposed

:::::
slope

:::::
index

:
and potential radiation index were derived from Uncrewed Aerial Vehicles (UAV) surveys with

sub-meter resolution. We computed the variogram and fractal dimension of snow mechanical properties
:::
and

:::::::
stability

:::::::
metrics

:::
and

::::::::
compared

::
it
:::::::
between

:::::
them. The comparison showed some similarities in the correlation distances and fractal dimensions

between the slab thickness and the slab snow density and also between the weak layer microstructural strength and the stability20

metrics.
:::
We

::::::::
estimated

:::::
snow

::::::::::
mechanical

:::::::::
properties,

::::::::
including

:::::
point

:::::
snow

:::::::
stability,

:::::
using

:::::
GAM

::::::
spatial

:::::::
models

:::::::::::
(Generalized

::::::::
Additives

:::::::
Models)

::::
with

:::::::::::::::
microtopographic

::::::::
indicators

:::
as

:::::::::
covariates. The use of covariates in GAM models suggested that mi-

crotopographic indicators can be use to estimate
:::
used

::
to
::::::::

estimate
::::
with

::::
fair

::::::::
precision the variation of the snow mechanical
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properties, and with less precision,
::
but

:::
not

:::
the

:
stability metrics. We observed a difference in spatial pattern between the slab

and the weak layer
:::
that should be considered in snow mechanical modeling.25

1 Introduction

Snow avalanches represent a natural hazard for infrastructures
::
to

:::::::::::
infrastructure

:
and backcountry recreationists across moun-

tainous areas all across the world (Stethem et al., 2003; Techel et al., 2016). Snow avalanches can be divided into different

typesof avalanches: wet, dry, non-cohesive or slab avalanches. However, dry-snow slab avalanches are the most difficult to

predict and the ones causing
::
are

::::::::::
responsible

:::
for

:
the most fatalities (Techel et al., 2016). They require a shear crack usually30

initiated by a person or new stresses from snowfall or warming
:::::::
snowfall in a weak porous layer underneath a cohesive snow

slab. Then, the crack must be at a critical length
::::
reach

::
a
::::::
critical

::::
size in order to self-propagate across the slope for a slab

avalanche to occur. Practitioners and forecasters estimate the probability and size of an avalanche from punctual
:::::::::
point-scale

information on weak layers and slab properties across different scales. However, the sparse and punctual nature of available

observations on snowpack properties makes the forecasting of dry snow slab avalanches difficult (Hägeli and McClung, 2004).35

The snow spatial variability at different scales also adds complexity to this challenging task by adding uncertainty on whether

the properties measured in the field are representatives of the slab and weak layer system (Schweizer et al., 2008a).

The spatial variability of snow properties is well documented in climate studies (e.g. Harper and Bradford, 2003), glacier

dynamics (e.g. Pulwicki et al., 2018), snow hydrology (e.g. Deems et al., 2006), mountain meteorology (Mott et al., 2011)

::::::::::::::::::
(e.g. Mott et al., 2011), permafrost (e.g. Wirz et al., 2011) and snow avalanche (e.g. Schweizer et al., 2008a). Several studies40

have looked at
:::::::::::::::::::::::
(e.g. Schweizer et al., 2008a)

:
.
:::::::::
Numerous

::::::
studies

::::
have

::::::::::
investigated the spatial distribution of snow depth and its

water equivalent to feed
::::::
support hydrological models (e.g. Deems et al., 2006; Grünewald et al., 2010; Schirmer et al., 2011;

Winstral et al., 2002). Some authors
:::::::::
researchers

:
went further to estimate and analyze the spatial pattern of snow depth (Deems

et al., 2006; Mott et al., 2011; Schirmer and Lehning, 2011; Trujillo et al., 2007). They analyzed the scaling properties and the

fractal dimension of the snow depth, which can be estimated with the slope of a log-log variogram or with the periodogram of45

the spatial signal. The idea behind the scaling properties and fractal dimension is that many scales can define a spatial pattern

instead of one scale like the correlation length in a variogram. Fractal dimension can also characterize
::::
also

:::::::::::
characterizes

the roughness or smoothness of a spatial pattern over
:::::
across multiple scales. These authors

:::::::::
researchers

:
compared the fractal

dimension of snow depth with the fractal dimension of topographic indicators and vegetation. However, no study has studied

::::::
studies

::::
have

::::::::
explored the fractal dimension of snow mechanical properties. Most of these studies are mainly based

::::::
studies50

::::
have

:::::
relied on LiDAR or manual snow probe surveys to estimate the snow depth. However, snow depth is not a good

::::::::
sufficient

indicator of the conditions required for snow avalanches to occur.

There are better
::::
more

::::::::
effective indicators, such as snow stability tests, to estimate the conditions for snow avalanches.

These tests are widely used in the avalanche industry to assess snow stability and, ultimately, snow avalanche hazard. The

result of these tests represents
::::
These

::::
tests

:::::::
provide

:
a qualitative evaluation of the mechanical interaction between the cohesive55

slab and the weak layer. Some studies investigate
:::::::::
investigated

:
the variability of several snow stability tests on an avalanche-
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prone slope (Kronholm and Schweizer, 2003; Birkeland, 2001; Campbell and Jamieson, 2007). These results demonstrate

::::
They

:::::::::::
demonstrated

:
a variation in the test results and spatial patterns with variograms and correlation distances around 5-20 m.

However, these snow stability tests do not provide information on the snow mechanical properties of the slab and the weak

layer. Snow stability tests are also
:::::::::
Additionaly,

:::::
these

::::
tests

:::
are

:
time-consuming, causing the

::::::
leading

::
to

::::::
limited

:
spatial sampling60

density and extent to be relatively small for statistical analysis, around 20 m and below 30 measurements. The
::
m

::::::::::::
measurements

:::::::
covering

::
20

:::
m.

:::
To

::::::
address

:::
this

:::::::::
limitation,

:::
the

:
high-resolution snow penetrometer, Snowmicropen

::::::::::::::::
micro-penetrometer (SMP) ,

is
:::
was used to characterize the mechanical and structural properties of the snow, such as the thickness of the slab and the weak

layer
:::::::
including

::::
slab

::::
and

:::::
weak

::::
layer

:::::::::
thickness,

::::::
density, the density, the elastic modulus, and the microstructural strength of

the weak layer (Proksch et al., 2015; Löwe and van Herwijnen, 2012; Johnson and Schneebeli, 1999). Several authors
::::::
studies65

characterized stability based on snow mechanical properties of the slab and the weak layer (Föhn, 1987; Gaume and Reuter,

2017; Reuter et al., 2015b; Monti et al., 2016; Schweizer and Reuter, 2015; Reuter and Schweizer, 2018; Rosendahl and

Weißgraeber, 2020). Gaume and Reuter (2017) proposed a stability index that represents
:::::::
accounts

:::
for both failure initiation

and propagation propensitywith ,
:::::
using

:
an analytical method that can be easily applied

::::::::
applicable to SMP profiles.

The SMP was used in snow spatial studies because it can rapidly and accurately measure the mechanical properties of the70

snow relevant to snow stability on a slope prone to avalanche (Bellaire and Schweizer, 2011; Feick et al., 2007; Kronholm

and Schweizer, 2003; Landry et al., 2004; Lutz et al., 2007; Lutz and Birkeland, 2011). These studies report
:::::::
reported

:
spatial

patterns of weak layer properties with a correlation distance
:::::::::
correlation

::::::::
distances

:
ranging from 0.5 to 20 m. However, the

sampling density and the spatial extent of the survey were around 20 to 50 m for the spatial extent and
::::
was between 20 to

50 SMP measurements depending on the studies . Reuter et al. (2016) also
::
and

::::
the

::::::
spatial

:::::
extent

::::
was

:::::::
covering

:::
20

::
to

:::
50

:::
m.75

::::::::::::::::
Reuter et al. (2016) used stability metrics based on

::::::::::
SMP-derived

:
snow mechanical properties derived from the SMP to show

spatial patterns of snow stability with a larger
:::::
higher

:
sampling density and extent compared to the other studies. The correlation

distance obtained from this study was still in the same range as the others with some exceptions between 40 and 60 m. The

:::::::::
differences

::
in spatial patterns of snow instability differed between the surveys , and these results

::::::
among

::::::
surveys

:
were attributed

to the different
::::::
various

:
meteorological processes interacting with the terrain and the snow cover (e.g. Schweizer et al., 2008a;80

Reuter et al., 2016).

From these results
:::::
Based

:::
on

:::::
these

:::::::
findings, several studies

:::
have

:
simulated artificial spatial patterns of the weak layer in

mechanical models to explain
:::::::::
understand

:
the effect of the spatial variability of the weak layer on the slope stability, given

the likelihood of an avalanche (Gaume et al., 2014, 2013; Kronholm and Birkeland, 2005; Fyffe and Zaiser, 2004). Gaume

et al. (2015) used the same method to estimate the propensity for tensile failure in the slab and the relationship with the85

size of the avalanche release. These studies were based on the assumption
:::::::
typically

::::::::
assumed that the spatial patterns of the

weak layer ranged from 0.5 to 10 m, with the other parameters being constant for simplicity. Bellaire and Schweizer (2011)

suggested
::::::::::::::
Kronholm (2004)

:::
and

::::::::::::::::::::::::::
Bellaire and Schweizer (2011)

::::::::::
demonstrated

:
that the spatial patterns of the weak layer and

the slab could have different correlation distances for the same survey
:
,
:::::::
resulting

:::
in

::::
some

:::::
cases

:::
in

:
a
::::::::
smoother

::::
slab

::::::::
variation

:::
than

:::
the

:::::
weak

:::::
layer

::
or

:::
the

:::::::
opposite. However, the spatial extent of the snow sampling was relatively small, only twice as the90

measured correlation length, and could affect the estimation of the correlation length (e.g. Dale and Fortin, 2014; Skøien and
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Blöschl, 2006). The slab and the weak layer could have a different spatial pattern, resulting in some cases with a slab variation

smoother than the weak layer or the opposite. This matter should be further explored with a spatial sampling extent greater

than 20 m in order to improve the implementation of snow variability in mechanical models.

Spatial patterns of snow properties can also be explained and estimated by statistical models with exploratory spatial vari-95

ables. In the past, environmental variables were mapped using a linear regression model and kriging with external drift. Several

studies used kriging to map point snow stability, such as snow stability test results, SMP-derived mechanical properties, and

stability metrics (Birkeland, 2001; Mullen and Birkeland, 2008; Reuter et al., 2015a; Schweizer and Kronholm, 2007). These

studies showed
::::::::::
demonstrated

:
that point snow stability can be partially explained

:::::::
spatially

::::::::
estimated using topographic indica-

tors such as aspect, altitude, and slope angle on the regional / massif scale. These topographic indicators can express
::::::::
indicators100

::::::
capture

:
the complex interactions between the meteorological process and the terrain

::::::::::::
meteorological

::::::::
processes

::::
and

::::::
terrain

::::::
features, such as wind deposition from lee / windward slopes and

::::
snow

:::::::::
deposition

:::
by

::::
wind

::::
and

:::
the

::::::::
influence

::
of

:
solar radia-

tion on the snow surface between different slopes (Reuter et al., 2016). However, spatially autocorrelated residuals remained

from these statistical models using topographic indicators. This remaining
:::::
despite

:::
the

::::
use

::
of

::::::::
statistical

::::::
models

::::::::::::
incorporating

::::::::::
topographic

:::::::::
indicators,

:::::::
spatially

::::::::::::
autocorrelated

::::::::
residuals

:::::::::
persisted.

::::
This

:::::::
residual

:
spatial variability could be explained and105

estimated by
:::::::
attributed

::
to

:
other spatial phenomena on

::
at a smaller scale. At

::
In

::::::
studies

:::::::
focused

::
on

:
the slope scale, other authors

:::::::::
researchers

::::::::::
successfully

:
explained and estimated

::
the

:
spatial variability

of snow depthwhere slope
:
,
::::
even

::
in

:::::
cases

::::::
where

:::::
slope

:::::
angle, aspect, and altitude remained mostly stable

::::::::
elevation

::::::::
remained

:::::::
relatively

::::::::
constant (e.g. Deems et al., 2006; Grünewald et al., 2010; Pulwicki et al., 2018; Revuelto et al., 2020; Meloche et al.,

2022; Trujillo et al., 2007; Winstral et al., 2002). They used
::
in

::::
their

::::::
studies microtopographic indicators such as the shape of the110

slope (topographic position index TPI), vegetation index and microclimate indexes such as wind exposure (Winstral index) or

the potential of solar radiation. Guy and Birkeland (2013) has shown the potential to use microtopography to spatially estimate

:::::
related

:::::
these

::::::
terrain

::::::::::
parameters

::
to

:
potential trigger zones, but the characterization of their potential trigger was only with

::::::
limited

::
to the presence of depth hoar layers. However, the presence of depth hoar crystals

:
is
::::::::::
insufficient to characterize snow

stabilityis insufficient and
:
,
:::::
which

:
requires more information on snow mechanical properties for the slab and the weak layer.115

These mechanical properties can be accurately measured with the SMP (Reuter et al., 2019). No studies
::::::::::::::::
Reuter et al. (2016)

have linked snow stability and
::::
from

:::::::::::
SMP-derived

:::::
snow

:
mechanical properties with microtopography indicators in spatial

modeling. This could lead to an improvement of the potential avalanche size mapping (Veitinger et al., 2016), but integrating

variations of the snow mechanical properties as input in snow mechanical modeling. Also, the spatial studies cited above
::
at

:::
the

::::
basin

:::::
scale.

:::::
While

::::::::
previous

:::::
spatial

::::::
studies

:
explored linear relations between point snow stability and topographic indicators, but120

Reuter et al. (2016) suggests that non-linear relationships should be explored. Other statistical models like General Additive

Models (GAM’s) can represent
::::::::::::::::
Reuter et al. (2016)

::::::::
suggested

:::
that

:::
the

:::::::
relation

:::::::
between

:::::
point

:::::
snow

:::::::
stability

::::
and

::::::::::
topographic

::::::::
indicators

:::::
could

::
be

:
non-linearrelationships and should be explored.

The snow mechanical variability can also affect the overall slope stability with the so-called knockdown effect (Fyffe and

Zaiser, 2004; Gaume et al., 2014; Kronholm and Schweizer, 2003; Schweizer et al., 2008a), promoting an overall failure of125

the slope with long-scale spatial variation of snow mechanical properties. Spatial .
::::
This

:::::
effect

:::::::
denotes

:::
that

:::::::::
variations

::
in

:::::
weak
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::::
layer

:::::::
strength

:::
can

::::::
cause

:::
the

::::
slope

:::
to

:::
fail

::::::
before

:::
the

::::
load

::::::
reaches

:::
the

:::::::::::::
corresponding

::::::
average

::::::::
strength,

:::
and

::::
this

:::::
effect

::
is

:::::
more

::::::::
prominent

::::
with

::
a
::::::
longer

:::::::::
correlation

::::::
length.

::::::::::::
Additionally,

::::::
spatial variation in snow can also affect

:::::::
influence

:
the size of the

avalanche release (Gaume et al., 2015), when small-scale .
::::::::::
Small-scale

:
variation can promote slab tensile failure and smaller

avalanches.130

It is necessary to spatially explain and estimate the mechanical properties of the snow and the stability of the
::::
snow

:::
and

:::::
snow

::::::
stability

:
snow with microtopography indicators at the slope scale. This study is based on the limitations and suggestions of

Reuter et al. (2016), who was able to predict the spatial variation
::::::
modeled

:::
the

::::::
spatial

:::::::
patterns of two stability metrics at a larger

::
the

:::::
basin

:
scale with terrain-based indicators such as slope

::::
angle, aspect and elevation. This work will attempt to predict the

::::
aims

::
to

:::::::
estimate spatial variation at a smaller scale using microtopographic indicators with a

::::::
through

:
non-linear regression. As135

such, the main objectives
:::
first

::::::::
objective

:
of this paper are

:
is

:
to compare the scaling effect of the snow mechanical properties

and the stability metrics for slopes prone to avalanches with different characteristicsand spatially estimate the
:
.
::::
The

::::::
second

:::::::
objective

::
is

::
to

:::::::
spatially

::::::::
estimate snow spatial variability using microtopography indicators. A supplementary objective will be

to compare the parametrization of snow mechanical properties in relation to
:::
An

::::::::
additional

::::::::
objective

::
is

::
to

:::::::
compare

::::
our

::::::
dataset

::::
with

:::
two

::::::::
empirical

::::::
power

:::
law

:::
fits

:::::
from

:::
the

:::::::
literature

:::::::::::::::::::::::::::::::
(Bažant et al., 2003; McClung, 2009),

::::::
which

:::::::
estimate

:::
the

:::::
shear

:::::::
strength140

::
of

:::
the

::::
weak

:::::
layer

:::
and

::::
slab

::::::
density

:::::
from the slab thicknessto our dataset to improve snow mechanical modeling.

2 Data and methods

2.1 Study sites

In order to spatially estimate the spatial variability of snow using microtopography indicators, we choose three study sites

according to
::::::
selected

::::
four

:::::
study

::::
sites

:::::
based

:::
on

:
their specific microtopography and microclimate context. The first study site145

was
:
is

:
located on Mount Albert in Gaspésie National Park, Québec, Canada (Fig. 1b

:
a). The winter climate of the region is

characterized by extreme changes caused by 1) low-pressure continental systems that bring heavy snowfall up
::
to 100 cm in 48

hours followed by Artic cold air masses with strong northwestern
:::::::::::
northwesterly winds, 2) warm and wet air masses coming

from the south creating rain-on-snow events (Meloche et al., 2018). The study site is named Arete de Roc (AR) and is located

in a subalpine/tundra area heavily affected by wind and snow transport compared to the other sites. This site has a high soil150

::::::
ground roughness with large boulders and small trees (1 m high). The slope angle is constant

::::::
uniform

:
(33°) with a convex roll

at the top and a concavity at the bottom (Fig. 1). Two other surveys in Mt Albert at Épaule du Mur (EP) is added
:::
were

::::::
added

::::
only for our supplementary objective, adding

:::::
which

::::
will

::::
add more dense and thicker slabs in our comparison to classic

:::
the

:::::::::::::
parameterization

:::
of snow mechanical properties parametrization in relation to slab thickness (Bažant et al., 2003; McClung,

2009). These
::::::::
However,

:::::
these two surveys were not used for the spatial analysis because their

:
in

:::
the

:::::::::
variogram

:::::::
analysis

::::
and155

:::::
spatial

::::::::
modeling

::::
due

::
to

::::
their

::::::::::
insufficient spatial density and extent are insufficient compared to the other surveys.

::::
They

:::::
were

:::::
added

::
to

:::
the

:::::
study

::::
only

::
to

:::::
obtain

:::::
more

::::
data

:::::
points

:::
for

::::::
Figure

::
3.

Two study sites are in Glacier National Park, located in Rogers Pass, British Columbia, Canada (Fig. 1). Our study sites are

on Mount Fidelity, which receives heavy snowfall
::::
snow

:
precipitation (Hägeli and McClung, 2003), and

::
has

:
a snow cover of
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around 2-3 m and sometimes up to 4 m. The Mount Fidelity area is classified as a Transitional
:::::::::
transitional

:
snow and avalanche160

climate influenced by warm and wet air masses from the Pacific that bring heavy snowfall and cold air masses from the

North
::::
north, leading to the development of persistent weak layers (Hägeli and McClung, 2003). This study area experiences

annually several persistent weak layers consisting of buried surface hoars or facets, relevant for stability assessmentpurposes.

The first study site at Mount Fidelity is located just above the tree line at 2300 m .
::::
2020

::
m
:

a.s.l on a shoulder named Round

Hill (RH). This site is an alpine area with low soil roughness (Fig. 1). The slope angle is relatively low (near 25◦), with longer165

and smoother
:::
long

::::
and

::::::
smooth

:
convex rolls around 20-30m. The last study site, Jim Bay Corner (JBC), is located below the

tree line at 1830 m .a.s.l. It is an open forested area with relatively low soil
::::::
ground roughness with small shrubs. The site has

10 m tall trees which created
::::
create

:
some shaded areas and the slope angle is relatively constant (near 20◦) with small convex

rolls around 5-10 m (Fig. 1).

2.2 Data collection and sampling strategies170

This study presents 4
:::
For

:::
the

::::::
spatial

:::::::
analysis,

::::
this

:::::
study

:::::::
presents

::::
four snow spatial surveys collected during winter 2021-2022

(Fig. 1): 25 February 2022 at the Arête de Roc site (AR22-PP), 27 January 2022 at the Round Hill site (RH22-PP), 19 January

2022 at Jim Bay corner (JBC22-SH), and 24 January 2022 at Jim bay corner (JBC22-PP). A summary of these surveys will

be presented first in 3.1
::::
Two

::::
more

:::::::
surveys

:::::
were

:::::
added

:::
for

:::
the

::::::::::
comparison

::
of

::::::::
different

::::::::::::::
parametrizations

::
of

:::::
snow

::::::::::
mechanical

:::::::::
properties:

::
24

::::::
Janvier

:::::
2019

::
at

::::::
Épaule

::
du

::::
Mur

:::::::::
(EP19-FC)

::::
and

::
29

::::::
Février

:::::
2020

::
at

::::::
Épaule

::
du

::::
Mur

::::::::::
(EP20-DF). Snow mechanical175

properties were measured using the high-resolution SMP. To compare the spatial pattern
::::::
patterns

:
of snow mechanical properties

and snow stability, each SMP measurement was made following a sampling schemefollowing
:
,
::::::::
according

::
to
:

the concept of

the scale triplet which is the support, spacing, and extent described by Blöschl and Sivapalan (1995). The support is the

diameter of the SMP penetration cone tip which is around 5 mmwith a 1 mm vertical resolution. This ensures
:
,
:::::::::::
guaranteeing

a proper estimation of the snow mechanical properties because they are linked to their microstructural properties at the mm180

scale
::::::::::::
microstructural

:::::::::
properties

::
of

:::
the

:::::
snow. A minimum spacing of 2 m and a study site extent of

:::::::
covering

:
around 60 to 100

m were chosen in order for
::
to

:::::
allow the spacing to be at least half of the estimated correlation length reported by the literature

:::::::
expected

:::::::::
correlation

::::::
length and the extent needs to be two to five times the estimated correlation , which is

:::::::
expected

:::::::::
correlation

::::::
length.

::::
The

::::::::
expected

:::::::::
correlation

::::::
length

:::
has

::::
been

:::::::
reported

::
to
:::
be around 5-20 m reported by

:::
from

:
several studies (Bellaire and

Schweizer, 2011; Lutz et al., 2007; Reuter et al., 2016; Schweizer and Reuter, 2015). This method ensures a proper estimation185

::::::
reliable

:::::::
estimate of the spatial pattern, defined by the

:::
both

:
spatial variance and the autocorrelation distance (Skøien and Blöschl,

2006; Dale and Fortin, 2014). Our sampling scheme also needs to be adequate for the second objective, which is the spatial

estimation of snow mechanical properties and stability metrics using microtopographic indicators. Therefore, the sampling

scheme was adjusted for each specific study site in order to obtain a representative distribution of microtopographic indicator

values while respecting the scale triplets mentioned above. The sampling was conducted by randomly traversing the study site190

while adhering to the minimum spacing, and also by characterizing the down and cross-slope for an isotropic sampling. The

sampling was stopped when the study site was almost covered with 60 to 80 SMP measurements. The resulting sampling is

shown in Figure 1. Random sampling helps to have a good estimation of spatial parameters with limited samples
:::::::::
contributes

::
to

6



Figure 1. Map of the study area of a) Mount Albert, Québec, Canada, representing
:::
with

:
the study site b) Arête de Roc with the 25 February

2022 survey in blue (AR). c) Mount Fidelity study area, British Columbia, Canada, with the study sites: d) Round Hill (RH) with the 27

January 2022 survey in green and e) Jim Bay corner (JBC) with the 19 January 2022 survey in red and the 24 January 2022 survey in black.

The aerial photography is from the UAV flight of each study site and the snow spatial sampling is represented by circles for the locations of

SMP measurements and the squares are the snow profile locations.
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:::::
obtain

:
a
::::::
robust

:::::::::
estimation

::
of

:::
the

:::::::::
correlation

::::::
length

::::
with

::::::
limited

:::::
SMP

::::::::::::
measurements (Kronholm and Birkeland, 2007; Skøien

and Blöschl, 2006).195

In order to correctly interpret
::
To

::::::
ensure

::
an

:::::::
accurate

:::::::::::
interpretation

:::
of the SMP signal, the weak layer needed to be identified

and characterized from a "test" snow profile. Full characterization of the snow stratigraphy was not needed for our analysis,

so a shorter version that we called the "test"
:
of
:

snow profile was used to optimize the time on
:
in

:
the field. Two or three

test snow profiles were made
::::::::
conducted

:
per snow spatial survey

:
,
::::::
spaced

:
at least 20 m apart

:::
and

:::::::::
positioned

:
next to SMP

measurements (Fig. 1). In each test snow profile, we first performed two compression snow tests to identify the weak layer200

(Canadian Avalanche Association, 2016). The weak layer was attributed to the uppermost compression test results which were

consistent in both compression tests. Then, we visually characterized the types and sizes of the snow grains of the weak layer,

and finally.
:::::::
Finally, a propagation saw test was performed to measure the critical crack length of the weak layer (Gauthier

and Jamieson, 2008). We considered every layer
:::::
Layers

:::::::
situated above the weak layer to be

:::
were

::::::::::
considered part of the slab.

This assessment enables us to correctly
::::::
allowed

:::
us

::
to

:::::::::
accurately

:
identify the weak layer to

:
in

:
the nearest SMP profile and205

then identify the weak layer
::::::::::
subsequently

:
in the remaining SMP profiles. Each snow measurement, SMP or snow profile, was

georeferenced using a GNSS receiver with centimeter accuracy. In addition to snow measurements
:::::::::::
Furthermore,

:::
for

::::
each

:::::
study

:::
site, aerial imagery was captured by a quad-rotor UAV with RGB sensor for each study site to characterize the topography

::::
both

in the summer and in winter on the same day of
::
as

:
the spatial snow surveyto characterize the snow surface. Ground / surface

models were generated using a structure from motion (sfm) photogrammetry algorithm (Westoby et al., 2012) with ground and210

snow control pointsto georeference ,
:::::::
ensuring

::::::::::::
georeferenced

:
models with centimeter accuracy (< 2 cm in x,y and < 5 cm in z).

2.3 Snow mechanical properties and stability metrics

This section will present
::::::::
describes the workflow used to process every SMP profilein order to obtain ,

:::::::::
extracting several snow

mechanical properties needed for stability assessment. Three stability metrics were then found using
::::::
derived

::::
from

:
these snow

mechanical properties. Figure 2 presents the summary of this workflow.215

2.3.1 SMP signal processing and snow properties

Each SMP signal was visually interpreted to identify the
::::::
distinct

:
layers. First, the weak layer was identified on the SMP signal

next to the snow profile, with the corresponding depth of the
::::
based

:::
on

:::
the

:::::
failure

:::::
depth

::
in
:::
the

::::::::::::
corresponding

:
compression test.

Then homogeneous layers above the weak layer were classified into slab layers (S1, S2,...Si). This procedure was repeated to

the rest of
::
for

:
the remaining SMP signal. To obtain the macroscopic mechanical properties of snow for each snow layer, the220

SMP signal was analyzed using a Poisson shot noise model with a moving window of 2.5 mm
:::::::::::::::::::::::::::
(Löwe and van Herwijnen, 2012)

. This analysis is
:::
was used to recover microstructural parameterssuch as

:
,
::::::::
including the peak force F , the deflection at rupture δ,

and the element length L (Löwe and van Herwijnen, 2012). Then, each structural and macroscopic snow mechanical property

needed to estimate
::::::::
necessary

:::
for

::::::::
estimating

:
the stability metrics can be retrieved: the slab thickness D, the weak layer thickness

Dwl, the slab density ρ, the weak layer density ρwl, the elastic modulus of the slab E and the shear strength of the weak layer225

τp. First
:::::::::
Specifically, the slab thickness D and the weak layer thickness Dwl are extracted directly

::::::
directly

::::::::
extracted

:
from the
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Figure 2. Schematic representation of the workflow used to process the SMP signal to obtain the snow mechanical properties and the stability

metrics. The variables and the dashed square in red are the snow mechanical properties and the three stability metrics that will be analyzed

and spatially estimated in this work. The parameters of the weak layer are denoted by the subscript Xwl.

2.5 Spatial modeling

2.5.1 Covariates processing

The second objective of this study is to explore the link between microtopographic indicators and snow mechanical properties

and stability metrics to explain and
::
in

:::::
order

::
to estimate snow spatial variability. The scale of these microtopographic indicators305

is defined by the size of the moving window used
::
to

:::::
derive

:::::
them. Different sizes of moving windows were used to allow

::
for

:
a

multiscale approach in describing the spatial process (e.g. Revuelto et al., 2020; Meloche et al., 2022; Veitinger et al., 2014).

The different sizes of the moving window
:::::
choice

::
of

::::::::
different

:::::::
window

::::
sizes used in this study are

:
is

:
based on the literature and

will be developed further below. Microtopography indicators are used as exploratory spatial variables and will be referred to as

covariates in the spatial model. These covariates were generated
:::::
derived

:
from a digital terrain and surface model (DTM/DSM)310

generated by photogrammetry with
::::::
through

::::::::::::::
photogrammetry

:::::
using

:
the UAV imagery. The classification between the ground

and the vegetation was performed manually by visual inspectionbecause the
::::::
through

:::::
visual

::::::::::
inspection,

::::
given

:::
the

:::::
small

:
extent

of the study siteis small. Canopy models were also generated for every
:
.
:::::::::::
Additionally,

::::::
canopy

::::::
models

::::
were

:::::::::
generated

:::
for

::::
each

snow study site by differentiating the DSM from the DTM. Snow depth maps were generated using a snow surface model

(DSMsnow) and compared to the DTM model to retrieve the snow depth for each spatial snow survey.315

All covariates are
::::
were raster data with an original spatial resolution below 0.1 m and were upscaled to a spatial resolution

of 0.5 m. The final resolution of the spatial model is
:::
was the same as the covariates. The choice of covariates is

::::
was based

on multiple studies that focus on spatial variation of snow depth
:::
that

::::
will

::
be

:::::::::
described

:::::
below. Three groups of covariates,

terrain shape, vegetation and microclimate, are presented in Table 1. We choose two indicators
::::
Two

::::::::
indicators

:::::
were

::::::
chosen to

9



Table 1. Covariates used for the spatial models with the source (DTM/DSM) and additional parameters.

Covariates Abbr Additional parameters Processing library

Easting and northing xy NA Python implementation Terrain slope Slope NA Qgis Topographic Position index TPI515 radius min/max = 5/15 m SAGA ta-morphometry

Topographic Position index TPI2550 radius min/max = 25/50 m SAGA ta-morphometry

Vector ruggedness measure VRM5 moving window = 5 m SAGA ta-morphometry

Vector ruggedness measure VRM15 moving window = 15 m SAGA ta-morphometry

Vector ruggedness measure VRM25 moving window = 25 m SAGA ta-morphometry

:::::
Terrain

::::
slope

::::
angle

: :::::
Slope

:::
NA

:::
Qgis

:

Convexity Convex scale = 25 SAGA ta-morphometry

Canopy height Cano DSM/DTM Qgis

Distance to canopy Dist-cano Radial proximity to trees > 2 m SAGA grid tools

Incoming solar radiation Rad Hourly time steps
:::::::
Potantial

::::
solar

:::::::
radiation

::::::
summed

::
up

:
30 days before sampling SAGA ta-lighting

Snow depth Hs DSMsnow −DTM Qgis Winstral index Sx Search distance = 100 m Python Winstral et al. (2002)

::::
Snow

:::::
depth

:::
Hs :::::::::::::::

DSMsnow −DTM
: :::

Qgis
:

:::::
Easting

:::
and

:::::::
northing

:
xy

: :::
NA

:::::
Python

::::::::::::
implementation

describe the terrain shape, the topographic position index TPI and the vector ruggedness measure . The topographic position320

index
:::::
VRM.

:::
The

:
TPI is a slope descriptor indicating ridges, valleys or slopes at a given scale, it refers to

:::::::::
referencing the position

in elevation relative to the neighbor
::::::::::
neighboring cells (Weiss, 2001). The TPI is

:::
was

:
measured between a minimum radius and a

maximum radius with weighted distance from the maximum radius (less important) (Table 1). The vector ruggedness measure

:::::
VRM indicates the ruggedness of the terrain independently of the slope

::::
slope

:::::
angle

:
and aspect. The ruggedness is derived

with
:::
was

:::::::
derived

::
as

:
the sum of elevation differences with the neighbor

::::::::::
neighboring cells, but then decoupled with the slope325

::::
slope

:::::
angle

:
and aspect, meaning

:::::
which

::::::
means that a flat and a steep slope could be homogeneous with low ruggedness (?)

::::::::::::::::::::
(Sappington et al., 2007). These two indicators are widely used in the literature

::::
were

::::
used

:
to explain and estimate the snow

depth (e.g. Revuelto et al., 2020; Meloche et al., 2022; Veitinger et al., 2014). The sizes of the different moving windows

were chosen based on the values used in these studies to have a multiscale approach (Table 1). We also used the slope
:::::
angle

:::
and

::::::::
convexity

:
of the terrain and also convexity as exploratory variables. Vegetation also has an impact on the spatial variation330

of snow depth (Deems et al., 2006), we choose to use the canopy height for the influence of shrubs (around 0.3 and 0.5 m)

and small trees (around 1 or 2 m) because the snowpack
::::
snow

:::::
cover

:
can be up to 3 or 4 m in some areas in

::
of

:
JBC and

RH. Only trees above 5m
:
5
::
m

:
were masked from the study sites. We use

::::
used

:
the radial proximity to vegetation greater than

2 m, to represent proximity to trees. Some authors also found that solar radiation (e.g. Lutz and Birkeland, 2011) and wind

exposure (e.g. Winstral et al., 2002) were important to spatially estimate
::
in

:::::::
spatially

:::::::::
estimating snow properties. We selected335

as covariates the potential of
:::::::::
potentially incoming solar radiation, the algorithm simulates .

::::
The

:::::::::
algorithm

::::::::
simulated

:
over a

DSM
::::::::
(including

:::::
trees), the trajectory of the sun in the sky based on the time of the year and the latitude of the study site. The
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Each smooth function represents a combination of linear terms fitted to a covariate xj . The order of the smooth function defined

:::::::::
determines the non-linear degree or the wigliness of the fitted GAM. We choose to keep the order low

::::
kept

:
a
::::
low

::::
order

:
(k = 3)355

to avoid overfitting and non-realistic variation. Although
:::::
While

:
stepwise procedures are widely

:::::::::
commonly used, they lack

stability compared to newer methods such as shrinkage and boosting procedures (Hesterberg et al., 2008). We choose to use

::::
used the double penalty approach as a shrinkage method proposed by Marra and Wood (2011). This method ,

::::::
which

:
adds a

smoothing parameter for each covariate spline function. This method is implemented in the package mgcv
:::::::
package

:
in R. We

repeated this
::::::
applied

:::
this

:::::::::
described method for six response variables ,

::
Y :

:
the three snow mechanical properties , the

:
(slab360

thickness D, slab density ρslab,
:
and the shear strength of the weak layer τp, and also )

::::
and the three stability metrics described

above, which are the
:
(skier crack length lsk, the critical crack length ac and the skier propagation index SPI. These response

variables were estimated with
::
).

:::
The

:::::::::
estimation

::
of

:::::
these

:::::::
response

::::::::
variables

::::
used

:
GAM’s using

::::
with the 13 covariates listed in

Table 1.

The performance of our models was assessed
:::::::
evaluated

:
with the root mean square error RMSE and the mean absolute error365

MAE using a 10-fold cross-validation approach. This procedure splits the sample randomly
:::::::
involves

::::::::
randomly

::::::::
splitting

:::
the

::::::
sample into 10 subsetsand fits

:
,
:::::
fitting

:
the model to the 9 subsetsand compares

:
,
:::::::::
comparing

:
it to the remaining subset, this

procedure is repeated
:::
and

::::::::
repeating

:::
this

:::::::::
procedure 10 times. The percentage of deviance explained (sum of squared errors) is

:::
was

:
computed to demonstrate the amount of total variance accounted by the model, this metric is more suited for non-linear

model compared to R2, which is still shown in the results for comparison. Once our model is
:::
was fitted (and cross-validated)370

and the covariates are selected, we estimate
::::
were

:::::::
selected,

:
the response variable

:::
was

::::::::
estimated

:
for every location at each study

site on a 0.5 m resolution grid. A smaller resolution will not be in line with the assumption of homogeneous snowpack for the

computation of the skier crack lsk and the critical crack length ac. All statistical computations were performed in R (R Core,

2013).

3 Results375

3.1 Summary of spatial snow surveys

The first spatial snow survey is
:::
was

:::::::::
conducted at the AR site. A weak layer of precipitation particles with an observed grain

size of 0.5 - 1 mm was investigated on 25 February 2022 (AR22-PP), with 45 SMP measurements and a spatial extent of 71

m. The
:::::::
average slab thickness was on average 0.28 m with a high mean density of

:::
and

:::
the

:::::
mean

::::
slab

::::::
density

::::
was

::::::::
relatively

::::
high:

:
252 kg m−3 (Table 2). This study site is highly wind-affected, especially in the upper part of the slope with a higher slab380

density. The bottom of the slope is more protected from the wind, whereas the slab is softer with a lower density.

At the RH site
:::::::::
(RH22-PP), a weak layer of precipitation particles with an observed grain size of between 0.5 and

:
to

:
1 mm

:::
was

:::::
found beneath a relatively fresh and soft snow slab, with a

:
.
:::
The

:
mean slab thickness of

::::
was 0.19 m and a mean density of

:::
the

::::
mean

:::::::
density

:::
was

:
171 kg m−3. This surveywas done ,

:::::::::
conducted on 27 January 2022with ,

::::::::
included 64 SMP measurements

and
::::::
covered

:
a spatial extent of 116 m. The slab for this survey is made up of one layer of homogeneous

::::::::
consisted

::
of

::::
one385
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Table 2. Summary for the snow measurements of all four spatial surveys. The results of the compression test CT results and the propagation

saw test PST are shown according to the standards of Canadian Avalanche Association (2016).

Surveys Date Mean D & ρ Weak layer Nb SMP Extent CT PST (m)

AR22-PP 2022-02-25
::
25

:::
Feb

::::
2022 0.28 m & 252 kg m−3 PP 0.5-1 mm 45 71 m

CTM11 (RP) down 0.25 m

CTH23 (RP) down 0.54 m

CTH22 (RP) down 0.35 m

0.9/1.5 END

1.42/1.5 END

1.22/1.5 END

RH22-PP 2022-01-27
::
27

:::
Jan

::::
2022 0.19 m & 171 kg m−3 PP 0.5-1 mm 64 116 m

CTM19 (RP) down 0.22 m

CTM19 (RP) down 0.22 m

CTH22 (RP) down 0.24 m

0.8/1.5 END

0.28/1.5 SF

1.38/1.5 END

JBC22-SH 2022-01-19
::
19

:::
Jan

::::
2022 0.39 m & 188 kg m−3 SH 1-2 mm 53 102 m

CTH21 (RP) down 0.39 m

CTM12 (RP) down 0.5 m

1.28/1.5 END

1.46/1.5 END

JBC22-PP 2022-01-24
::
24

:::
Jan

::::
2022 0.21 m & 166 kg m−3 PP 0.5-1 mm 55 74 m

CTM13 (RP) down 0.25 m

CTM16 (RP) down 0.24 m

1.24/1.5 END

1.41/1.5 END

EP20-DF 2020-02-29
::
29

:::
Fev

::::
2020 0.32 m & 241 kg m−3 DF 0.5-1 mm 38 45 m

CTH23 (RP) down 0.38 m

CTH24 (RP) down 0.45 m

-

-

EP19-FC 2019-01-24
::
24

:::
Jan

::::
2019 0.85 m & 333 kg m−3 FC 1 mm 22 48 m

CTH20 (SP) down 0.82 m

CTM22 (RP) down 0.88 m

-

-

:::::::::::
homogeneous

:::::
layer

::
of

:
storm snow, and both the slab and the weak layer are

:::::::::
originated from the same meteorological event.

We were able to conduct

:::
We

::::::::
conducted

:
two spatial snow surveys at the JBC site in two different areas of the site. The first survey at this site was

done on January
::::
took

:::::
place

::
on

:
19 ,

::::::
January

:
2022 (JBC22-SH) when there was a weak persistent

::::::::
persistent

:::::
weak layer of buried

surface hoars
:::
hoar

:
of size 1-2 mm. The slab is

::::
was composed of multiple layers , given

::::
with a mean slab thickness of 0.39 m and390

a mean density of 188 kg m−3 above the surface hoar crystals. This survey consists
:::::::
consisted

:
of 53 SMP measurementsand

:
,

:::::::
covering a spatial extent of 102 m. The second field survey was carried out in a snowpack

:::::
survey

::::::::::
(JBC22-PP)

::::
was characterized

by a weak layer of precipitation particles buried under a fresh snow slab of 0.21 m and
:::::::
thickness

::::
and

::
an

:::::::
average

:::
slab

:::::::
density

::
of

166 kg m−3on average, which comes from ,
::::::::
deposited

:::
by the same meteorological event as RH22-PP. This survey was carried

out on 24 January 2022 (JBC22-PP) with
:::::::
included 55 SMP measurements and a spatial extent of

::
the

::::::
spatial

:::::
extent

::::
was

:
74 m395

(Table 2).

Figure 3 demonstrates slab density ρ and the
:::
The

::::
last

:::
two

:::::::
surveys

::::::::
presented

::
in

:::::
Table

::
2
::::
were

::::::
added

::
to

:::
the

:::::
study

::
to

::::::
obtain

::::
more

::::
data

:::::
points

:::
in

:::::
Figure

::
3.
::::
The

:::::
snow

::::::
spatial

:::::
survey

::::::::
EP20-DF

::::
had

:
a
:::::
mean

::::
slab

::::::::
thickness

::
of

::::
0.32

::
m
::::
and

::::
slab

::::::
density

::
of

::::
241

::
kg

:::::
m−3,

::::::
similar

::
to

:::::::::
AR22-PP.

:::
The

:::::
snow

::::::
spatial

::::::
survey

::::::::
EP19-FC

:::::::
recorded

::::
the

::::::
highest

:::::
mean

::::
slab

::::::::
thickness

::
of

::::
0.85

::
m

::::
and

:::
the
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::::::
highest

:::::
mean

:::
slab

:::::::
density

::
of

::::
333

::
kg

:::::
m−3.

::::::::
Although

:::
the

:::::::
number

::
of

:::::
SMP

::::::::::::
measurements

:::
and

::::::
spatial

:::::
extent

:::::
were

:::
not

::::::::
sufficient400

::
for

::::::
spatial

::::::::
analysis,

:::::
these

::::::
surveys

::::::::
provided

:::::::
valuable

::::
data

::::::
points

:::::::::::
characterized

:::
by

::::::
higher

::::
slab

::::::::
thickness

:::
D,

::::::::::
contributing

::
to

::
a

::::::
reliable

:::::::::
assessment

:::
of

::
the

::::
two

::::::::
empirical

:::::
power

::::
law

:::
fits

::::::::::::::::::::::::::::::
(Bažant et al., 2003; McClung, 2009)

:
.

:::::
Figure

::
3
::::::
shows

:::
slab

:::::::
density

::
ρ

:::
and

:
weak layer shear strength

::
τp:in relation to slab thickness D. These relations are well

defined in snow science, as the
::::
often

::::::::::
established,

::
as

:
snow density and the snow strength should increase as the snow weight

increases. Figure 3 shows our data set compared to two empirical power law fits (Bažant et al., 2003; McClung, 2009), which405

are used to parameterize realistic snow mechanical values in relation to the slab thickness. Two other power laws were fitted to

the slab density
:::
slab

::::
load

::::::::
increases.

::::
We

::::
fitted

::::
two

:::::
power

::::
laws

::
to
::::
our

:::::::::::
SMP-derived

::::::
dataset,

::::
and

::::::::
compared

:::::
them

::::
with

:::
two

:::::
other

::::::::
empirical

:::::
power

::::
laws

:::::::::
commonly

:::::
used

::
in

:::
the

::::::::
literature

::::::::::::::::::::::::::::::
(Bažant et al., 2003; McClung, 2009)

:
.
::::::
Figure

:
3
::::::::
indicates

:
a
:::::
poor

::
fit

:::
for

::::
both

:::::::::
parameters

:
(ρ and weak layer shear strength τp. Figure 3-a agrees well with our ’softer-slab’ surveys

:
).

::::
The

:::::
power

::::
law

::::
from

::::::::::::::
McClung (2009)

:::
was

:::::
better

::::::
suited

::
for

:::
the

::::
two

::::::
surveys

::::::::::::
characterized

::::
with

::::::::
relatively

:::
low

::::::
density

:
(ρ < 250 kg m−3),

::::::
which410

::::
were conducted at Mount Fidelity , but could easily be adjusted by increasing the initial density in the power law for the survey

where the mean density is higher. Surveys
::::::
(Figure

::::
3-a).

::::
The

:::::::
surveys with higher density (ρ > 250 kg m−3) were on Mount

Albert, which is a heavily wind-exposed area that could explain these highly dense slabs. Figure 3-b shows some surveys align

well
::::::
aligned with the two power laws, especially the surveys from Mount Fidelity (circles). The "stronger" surveys (crosses)

from Mount Albert could also be fitted if the initial cohesion is increased. However, the Mount Albert surveys contained415

:::::::
exhibited

:
more variability compared to the Mount Fidelity surveys. Our dataset demonstrates that, in

::
In general, our data set

fits approximately the power-law fits, but
::::
fitted

::::::
poorly

::::
with

:::
the

:::::
power

::::
laws

:::::
from

:::
the

::::::::
literature,

:::
and

:
a lot of variability remained

in each survey. The intra-survey variability and implication for snow mechanical modeling will
:
be

:
discussed in section 4.1.

3.2 Comparison of spatial patterns

For all spatial snow surveys, the empirical variogram showed smaller correlation lengths for the slab thickness compared to420

other properties, ranging from 5 to 10 m (Fig. 4). The slab density variograms were also small and similar to
:::::::::
variograms

:::
for

::
the

::::
slab

:::::::
density

::::::::
exhibited

:::::::::
correlation

:::::
length

::
in
:::
the

:::::
same

:::::
range

::
as

:::
for

:
the slab thicknessvariogram ,

::::::::::
particularly

:
for JBC22-PP

and RH22-PP, with 5 and 8 m,
:
respectively. These two spatial snow surveys had the same weak layer and slab meteorological

deposition event characterized by a new snowfall
::::
snow

:
instability. The correlation length for

::
the

::::
slab

::::::::
thickness

:::
and

::::
slab

::::::
density

:
at
:
AR22-PP is

:::
was

:
10 m, with the same type of new snowfall

::::
snow

:
instability. The last one at the Jim Bay corner (

::::::::
variogram425

::
for

:::
the

::::
slab

::::::
density

::
at JBC22-SH ) has longer correlation lengths of around 20 to 30 m. The empirical variogram for this survey

shows a correlation around 20 m, but shows significant variability that makes the estimation less reliable compared to the other

empirical variograms (Fig. 4). The variogram
:::
was

:::
the

::::
only

::::::
survey

:::
that

::::
had

:
a
::::::
longer

:::::::::
correlation

::::::
length

::
of

::
34

:::
m.

::::::::::
Variograms of

the slab density from JBC22-SH, JBC22-PP and AR22-PP also had fractal characteristicswith a stabilization of the variance

around 20
:::::::
appeared

::
to

::::::
exhibit

::::::
fractal

::::::::::::
characteristics.

:::::
These

::::::::::
variograms

::::::
showed

::
a
::::::
distinct

::::::
plateau

:::
of

:::::::
variance

::::::
around

:::::
10-20

:
m,430

followed by an increase in variance around 30
::::
30-40

:::
m,

:::::::::
indicating

:
a
:::::::::
multiscale

::::::
pattern

::::::
around

:::::
these

::::
two

::::::::
distances

:::
(10

:
and

40 m. If we look at the variogram of the shear strength
:
).

::::::::::
Variograms of the weak layer , the four spatial snow surveys had

::::
shear

:::::::
strength

::::::::
indicated

:
a longer correlation length around 20 m compared to slab properties,

:
which are around 10 m. The

::
In
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Figure 3. SMP derived
::::::::::
SMP-derived

::
for

::
a)
:
slab density ρslab (a) and

:
b)

:
weak layer shear strength τp (b) in relation to the slab thickness D

for each SMP measurement of all spatial survey. The
:::
full circles represent the SMP values in

:::
from

:
Mount Fidelity, British Columbia, and

the crosses are from the surveys in
::::
from Mount Albert, Québec. A power law in blue was fitted to the SMP-derived values of all the surveys,

with , respectively, a) 0.5 R2
:
=
:::
0.5

:
for ρ

:
, and b) 0.4 R2

:
=
:::
0.4

:
for τp,

:::::::::
respectively. a) The orange power law fit

:
in
:::
(a) represents ρ compared

to D, with an initial density of 100 kg m−3 from McClung (2009). b) The red power law is the power law
::
in

::
(b)

:
for τp from Bažant et al.

(2003) reported to
:::

who
:::
used

:
Mohr-Coulomb criterion

::::::
relation with an initial cohesion of 300 Pa (Gaume et al., 2014).

::
the

:
JBC22-PP and RH22-PP surveys,

:::::
which

::::::
shared

:
the same meteorological deposition event, had a

::
the

:
variance stabilized

at 20 m without any further increase in variance. The other surveys (JBC22-SH and AR22-PP) had longer correlation lengths435

and showed fractal characteristics with no stabilization in variance with increasing sampling distance . The type of variogram

models that were fit was mostly
::
as

:::
the

::::::::
sampling

:::::::
distance

::::::::
increased.

::::
The

::::::::
primarily

::::
used

:::::::::
variogram

::::::
models

:::::
were spherical and

exponential, which exhibit
:::::::::::
characterized

::
by

:
a rapid increase in variance for small

::::
short

:
distances. These models are typically

:::
tend

:::
to

::
be

:
less smooth than Gaussian models(

:
,
:::::
which

:::::
have

:
a
:
smaller variance for short distances), which .

::::::::
Gaussian

:::::::
models

were fitted for slab thickness at JBC22-SH and slab density at JBC22-PP. However, these two fitted Gaussian models still440

showed a shorter correlation (> 5 m). In general, the correlation lengths are
:::::
tended

:::
to

::
be

:
shorter for the thickness and density

of the slab compared to the shear strength of the weak layer for
::
in each snow spatial survey.

At first glance, all the correlation lengths for the stability metrics are around 20 m, thus longer than
::::
were

::::::
longer

::::
than

:::::
those

::
for

:
the slab properties. Surveys at the Jim Bay corner (JBC22-SH and JBC22-PP) had smaller correlation lengths of

::::::
showed

:::::::::
correlation

::::::
lengths

:
around 20 m compared to the other two surveys with longer correlation lengths of around 30-40 m (Fig.445

5). The same similarity can be observed for the correlation length of the critical crack lengthand also for the skier index. The

skier index is the ratio between the critical crack length and the skier crack length, so this result is quite expected
::::
other

::::
two

::::::
surveys

:::::::::
(AR22-PP

:::
and

:::::::::
RH22-PP)

::::::::
exhibited

::
an

:::::::::
empirical

::::::::
variogram

::::
that

:::
did

:::
not

:::::
show

:
a
::::
clear

:::::::
plateau

::
of

:::::::
variance

::
to

:::::::::
determine

:
a
:::::::::
correlation

::::::
length.

::::::
These

::::::
surveys

:::::
either

::::
had

:
a
::::::
longer

:::::::::
correlation

::::::
length

::::
than

:::
the

::::::
spatial

:::::
extent

::
of

:::
the

::::::::
sampling

:::
or

::::::
showed

::
a

:::::
fractal

::::::::
behavior

:::
over

::::::::
multiple

:::::
scales. The correlation length of the stability metrics is around

:::::
ranged

:::::
from 10 to 20 m, but some450
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Figure 4. Experimental variogram
::::::::
variograms

:
(circles) and fitted variogram models (line) for the snow mechanical properties. Note that the

square root of the variance gives the absolute variation.
:::
The

:::::
vertical

::::::
dashed

:::
line

::
in

:::
each

::::::::
variogram

::
is

::
the

:::::
range

::
for

:::
the

::::
fitted

::::::::
variogram

:::::
model

:
to
:::
the

:::::::::::
experimental

::::::::
variogram.
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Figure 5. Experimental variogram
::::::::
variograms

:
(circles) and fitted variogram models (line) for the stability metrics. Note that the square root

of the variance gives the absolute variation.
::
The

::::::
vertical

::::::
dashed

:::
line

::
in

::::
each

:::::::
variogram

::
is
:::
the

::::
range

::::
fitted

:::
for

::
the

:::::::::
theoretical

:::::::
variogram

:::::
(line)

:
to
:::
the

::::::::
empirical

::::::::
variogram

:::::::
(circles).
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Figure 6. Boxplot of fractal dimension for snow mechanical properties and stability metrics with the four surveys in each boxplot.

are around 30 to 40 m, which is quite large
:::::
which

::
is

::::::
longer

:
compared to the slab properties (Fig. 5). The variogram model

used is mostly
::::
most

:::::::::
frequently

::::
used

::::::::
variogram

::::::
model

:::
was

:
spherical, but also Gaussian

:::::::
Gaussian

::::::
models

:::::
were

::::
also

::::::
applied for

the skier crack length (JBC22-PP, RH22-PP, AR22-PP) and skier index (JBC22-SH, JBC22-PP). Gaussian models were fitted

more
::::
more

:::::::::
frequently

::::
fitted

:
to stability metrics than

::
to snow properties, showing

::::::::
suggesting

:
smoother spatial patterns for the

stability metrics. The variogram for the stability metrics shares
::::::::
exhibited more similarities with the variogram of the weak455

layer shear strength rather than the slab properties.

The fractal dimensions for the snow properties showed
:::::::
indicated

:
a difference in surface roughness or complexity between

the slab properties, the weak layer properties, and the stability metrics (Fig. 6). The slab properties have
:::
had

:
higher fractal

dimensionsof
:
, around 2.85, thus

::::::::
indicating a higher surface complexity, compared to the weak layer and the stability metrics,

which yield
:::
had a similar fractal dimension of around 2.7. The values for

:::::::
Despite the stability metrics are computed from the460

::::
being

:::::::::
computed

::::
from

::::
both

:
slab mechanical properties and weak layer properties, but the values of fractal dimension seem to

be in the same range as those for
::::
their

:::::
fractal

:::::::::
dimension

::::::
values

:::::
were

:::::
closer

::
to

:::::
those

::
of

:
the weak layer rather than the slab.

These results suggest that the spatial patterns of the stability metrics are
::::
were more similar to the spatial pattern

::::
those

:
of the

weak layer than to the spatial pattern
::::
those

:
of the slab properties.

3.3 Spatial modeling465

The spatial models created by GAMs were able to explain
::
the

::::::
GAMs

:::::::::
explained some of the variance of the response variable,

but not
::
far

:::::
from entirely. The R2 and the percentage of deviance explained range

:::::
ranged

:
from 0.17 to 0.84 and from 22 to 84

% (Table 3 - 4). As for the average , it is approximately around
:::
On

::::::
average

:::
for

:::
all

:::::::
models,

:::
the

:::
R2

:::
was

::::::::::::
approximately

:
0.5 and

::
the

::::::::::
percentage

::
of

::::::::
deviance

:::
was

:
55 %. The average R2 is

:::
was

:
0.47 for snow properties and 0.55 for stability metrics, but

:::
and
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Table 3. Summary of the spatial models, model selection
:::::::
selections, and performance metrics for the snow properties. The performance

metrics are the following
:
:
:
R2, the percentage of deviance % dev, scale, the cross-validated Root-mean-squared-error CV RMSE, and the

cross-validated mean-absolute-error CV MAE. The symbols next to the covariates refer to the significance levels of the p-value: > 0.1 ".", <

0.05 "*", < 0.01 "**", < 0.001 "***".

Site Snow prop. Covariates R2 % dev scale CV RMSE CV MAE

JBC22-SH D TPI2550* + VRM25 + VRM5* + Hs* + Convex. +

Dist-cano* + Sx*

0.35 42.9 9.57e-5 0.01 0.01

JBC22-SH ρslab Slope** + VRM15*** + Hs* + Convex*** + Dist-

cano*

0.57 64.1 12.22 7.91 4.78

JBC22-SH τp (x+y)* + Slope* + TPI515* + VRM15** + VRM5*

+ Convex* + Cano.

0.50 66.2 3762.3 66.29 51.70

JBC22-PP D VRM5. + Cano* 0.17 22.2 0.0001 0.01 0.01

JBC22-PP ρslab Slope** + TPI515** + TPI2550*** + VRM25** +

VRM15** + VRM5* + Hs. + Sx.

0.64 69.6 15.13 6.32 5.00v

JBC22-PP τp (x+y)*** + TPI2550*** + VRM25** + VRM15 +

VRM5*** + Dist-cano** + Sx*

0.76 80.4 864.78 41.32 30.79

RH22-PP D (x+y)*** + Slope* + TPI515*** + TPI2550* +

Cano** + Dist-cano** + Sx**

0.54 60 0.0002 0.03 0.02

RH22-PP ρslab (x+y)** + Slope. + TPI515. + VRM15** + Con-

vex*** + Cano*

0.32 38.2 64.99 11.39 8.51

RH22-PP τp (x+y)** + TPI2550*** + VRM25* + VRM5** +

Rad* + Cano**

0.42 48.3 10463 128.37 99.70

AR22-PP D (x+y). + VRM15* + VRM5. + Cano. 0.28 36.2 0.006 0.12 0.10

AR22-PP ρslab (x+y)** + TPI2550. + Hs. + Convex** 0.41 46.8 216.77 21.78 21.80

AR22-PP τp (x+y)*** + Slope* + TPI2550*** + VRM5* + Con-

vex*** + Dist-cano*

0.72 76.7 2.157e5 752.70 578.88

the average percentage of deviance explained is
:::
was

:
the same at 55 %. The performance of the models was assessed with a470

10-fold cross-validated RMSE and MAE. The cross-validated RMSE and MAE for the slab thickness D were mostly 1-2 cm

except for 12 cm at AR22-PP and were around 4 to 27 kg m−3 for the slab density. The RMSE and MAE for the shear strength

range
:::::
ranged

:
from 30 to 128 Pa except for 752 Pa for AR22-PP, but this snow spatial survey was also the one with the more

:::::
which

:::
had

:::
the

::::::
highest

:
variance (500 to 3500 Pa).

The spatial surfaces estimated by the GAM models in JBC22-SH for the snow mechanical properties are presented in Figure475

7. The estimated surface
::::::
surfaces

:
for the slab thickness and density had

::::::::
exhibited a similar variation with the same

::::::::::
comparable

maximum and minimum areas. The
:::::::
However,

:::
the

:
estimated surface for the shear strength of the weak layer differs

:::::::
differed
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Table 4. Summary of the spatial models, model selection and performance metrics for the stability metrics. The performance metrics are

the following:
:
R2, the percentage of deviance % dev, scale, the cross-validated Root-mean-squared-error CV RMSE, and the cross-validated

mean-absolute-error CV MAE. The symbols next to the covariates refer to the significance levels of the p-value: > 0.1 ".", < 0.05 "*", < 0.01

"**", < 0.001 "***".

Site Stab. metrics Covariates R2 % dev scale CV RMSE CV MAE

JBC22-SH lsk (x+y)* + Slope** + VRM15*** + VRM5. + Convex. 0.58 64.8 0.06 0.48 0.22

JBC22-SH Ac Slope*** + TPI515** + TPI2550* + VRM15*** +

VRM** + Hs***

0.60 65.9 0.06 0.20 0.14

JBC22-SH SPI Slope** + VRM15* + VRM15** + Hs* 0.35 40.3 6.66 2.5 1.89

JBC22-PP lsk (x+y)*** + TPI2550** + VRM25** + VRM5** +

Sx*

0.60 65.1 0.006 0.10 0.07

JBC22-PP Ac (x+y)* + TPI515*** + VRM5*** + Hs. + Rad** +

Sx*

0.74 77.7 0.02 0.15 0.11

JBC22-PP SPI (x+y)** + TPI515*** + VRM5*** + Rad** + Sx* 0.84 87 0.20 0.36 0.27

RH22-PP lsk (x+y)*** + TPI2550** + VRM25** + VRM15* +

VRM5* + Rad* + Cano*

0.51 57.1 0.004 0.11 0.08

RH22-PP Ac VRM25** + VRM5** 0.25 28.7 0.39 0.60 0.47

RH22-PP SPI (x+y)*** + VRM25*** + Rad. + Convex** 0.43 48.5 0.61 1.23 0.85

AR22-PP lsk (x+y)** + VRM25* 0.22 27.5 3.2 2.97 1.85

AR22-PP Ac TPI2550*** + VRM15* + Convex* + Cano. + Sx. 0.65 69.1 0.61 1.26 1.01

AR22-PP SPI TPI2550*** + Convex** 0.66 68.7 5.14 4.29 3.31

slightly from the slab properties. This result also
:::::
finding

:
reinforces the above results, showing

::::::::
indicating that the spatial pattern

of the weak layer differs
::::::
differed

:
from the slab properties in our dataset. Estimation errors for critical crack length are around

:::::
ranged

:
0.11 to 0.60 m, except for 1.2 m for AR22-PP. The RMSE and MAE for the skier propagation index ranged from 0.27 to480

4, which is very variable and quite high
:::::::
showing

:::::::::
significant

:::::::::
variability

:::
and

::::::::
relatively

::::
high

::::::
values for an index. The estimation

errors for the stability metrics were high and
::::::
notably

:::::
high,

::::::::::::
demonstrating

:::
that

:::
the

:::::
model

::::::::::
estimations

::::
were not reliable compared

to the snow mechanical properties. However, Figure 8 shows
::::::
suggests

:
that some outliers might overestimate RSME

:::::::::
contributed

::
to

::::::::::::
overestimating

:::
the

:::::::
RSME,

:::::::::
particularly

:
with low values of lsk and high SPI values (SPI ≈ 10). The spatial patterns of the

stability metrics indicate
:::::::
revealed two major weak spots

:::::::::
represented

:::
by

:::
two

:::::::
clusters

::
of

:::
low

:::
SPI

::::::
values

::::
near

::::
zero,

::::::
located

:
on the485

north side (right) and northwest (upper-middle). These weak spots correspond
::::::::::
corresponded

:
to areas with lower shear strength

values and slightly thicker and higher-density slabs.

There are no clear covariates selected by the model for every site, snow properties, or stability metrics. However, some

covariates were used more often
::::::
selected

:::::
more

::::::::
frequently

:::
by

::
the

::::::
spatial

::::::
models

:
than others. The most used covariates

::::::::
frequently
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Figure 7. Spatial estimation for the snow mechanical properties a) slab thickness D, b) slab density ρ, c) shear strength τp at the Jim bay

:::
Bay corner on 19 January 2022 (surface hoar layer - 1mm). The cross-validated root mean squared error RMSE and the mean absolute error

MAE are shown next to the map of each property. The grey
:::
gray

:
shading in

::
on

:
the background map represents a canopy shading only for the

visualization of trees.

::::
used

::::::::
covariates

:::
by

:::
the

::::::
models,

:
for both snow properties and stability metrics,

:
were multiscale TPI and VRM, but their usage is490

quite variable
:::::
varied

:
depending on the scale (Fig. 9). The

::::::
Spatial

::::::
models

:::
for

:::
the shear strength of the weak layer appeared to use

:::::
select mainly TPI2550 and VRM5compared to the ,

::::::::
whereas

::
for

:
slab density, which used mainly VRM15 and convexity . The

canopy height was used
::::
were

::::::
chosen

::::::::::::
predominantly.

:::::::
Canopy

::::::
height

:::
was

:::::::
selected

:
in the snow properties modelsbut not really

:
,
:::
but

:::::
rarely in the stability metrics models. The easting and northing coordinates

:::
(xy)

:
were widely used in the modelsshowing
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Figure 8. Spatial estimation for the stability metrics a) skier crack length lsk, b) critical crack length ac, and c) Skier propagation index

SPI at the Jim bay
::

Bay
:
corner on 2022-01-19

::
19

::::::
January

::::
2022 (surface hoar layer - 1mm). Cross-validated root mean squared error RMSE

and mean absolute error MAE are shown next to the map of each metric. The grey shading in
::
on the background map represents a canopy

shading only for the visualization of trees.
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Figure 9. The frequency usage of covariates in the GAM spatial models, the frequency is weighted with the significance levels of the p-value.

:
,
::::::::
indicating

:
the presence of

:::::::
spatially autocorrelated residuals. Surprisingly, snow depth was not used as much

::::::::
frequently

:
as495

other covariates. These results showed
:::::::::
Convexity

:::
was

:::::::
selected

:::::::::
numerous

::::::
times,

::::::::
especially

:::
for

::::
the

::::
slab

::::::
density,

::::
but

::::::
almost

::::
never

:::
for

:::
the

::::
slab

::::::::
thickness.

:::::::
Overall,

:::::
these

::::::
results

::::::
indicate

:
that there are no universal covariates or specific covariates for snow

properties or stability metrics . However, these results demonstrate the utility of using these covariates to spatially estimate

the snow properties, and also stability metricswith less precision
:::
that

:::::
could

:::
be

:::::::::::
extrapolated

::
to

:::::
other

:::::
sites.

:::
The

::::::::
selection

:::
of

::::::::
covariates

:::
by

:::
the

:::::
spatial

:::::::
models

:::
was

::::::::::
site-specific

::::
and

::::
also

::::::
specific

:::
to

:::::::
different

:::::
snow

:::::::::
properties.

:::
The

::::::
spatial

::::::
models

:::::::::
presented500

::::
using

:::::::::::::::
microtopography

::::::::
indicators

::::
were

:::::
fairly

:::::::
reliable

::
for

:::::::::
estimating

:::::::
absolute

::::::
values

::
of

:::::
snow

::::::::
properties

:::
and

::::
not

::::::
reliable

:::
for

:::
the

::::::
stability

:::::::
metrics,

:::
but

::::::
rather

::
for

::::::::
capturing

:::::::
relative

::::::
spatial

::::::::
variability.

4 Discussion

4.1
::::
Snow

::::::::::
mechanical

:::::::::::::::
parametrization

:::
Our

:::::
study

:::::
aligns

:::::
with

:::
the

::::::::::
well-known

::::::::::
relationship

:::::::
between

::::
slab

::::::::
thickness

::::
and

:::
slab

:::::::
density,

::::::::
attributed

:::
to

::::
snow

:::::::::
settlement

:::
.505

:::
The

::::::::::
comparison

:::
of

::::::
spatial

:::::::
patterns

::::::::
between

:::::::
surveys

::::::::
indicated

::::
that

:::::
these

:::
two

:::::::::
properties

:::::::::
exhibited

::::::
similar

::::::
trends

::
in

:::::
their

:::::::::
variogram,

:::
the

:::::
fractal

::::::::::
dimension,

:::
and

::::
their

:::::::::
covariates

::::
used

:::
for

:::::
spatial

:::::::::
modeling.

:::
For

::::::
further

::::::::
research,

:::
the

::::::::
empirical

:::::
power

::::
law

::
fit

::::::::::::::::
ρ∼ 100+135D0.4

::::::::
suggested

:::
by

:::::::::::::::
McClung (2009)

::::::
provides

::
a
::::::
simple

::::::::
approach

::
to

::::::
obtain

::::::
average

::::::
values

::::
that

::::::::
represent

:::
the

:::::::::
interaction

:::::::
between

::::
these

::::
two

::::::::
properties

:::
for

::::::::::
mechanical

:::::::::
simulation

:::::::::::::::::::::::::
(e.g. Gaume and Reuter, 2017)

:::
.
:::
The

::::::
power

:::
law

:::::
fitted

::
to

:::
our

:::::::::::
SMP-derived

:::
data

:::
set

:::::::
appears

::
to

::::
yield

:::::
better

::::::
average

::::::
values

:::
for

:::::
denser

:::::
slabs

::
in

:::::::::::
wind-exposed

:::::
areas.

::::::::
However,

::
it

::
is

::::::::
important510

::
to

::::
note

:::
that

:::::
these

:::::
power

::::
laws

:::::
fitted

::::::
poorly

::::
with

:::
our

:::::::
dataset,

::::::::
indicating

::::
that

:::::::::
significant

::::::::
variability

::::::::
remains.

:::::::::::
Nevertheless,

:::::
these

:::::
power

::::
laws

:::::
could

:::
be

::::
used

::
in

:::::
snow

::::::::::
mechanical

:::::
model

:::
to

:::::::
generate

::
a

:::
slab

:::::::
density

::::::::
variation

::::::::
according

::
to

:::
the

::::::
spatial

::::::
pattern

:::
of
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::
the

::::
slab

:::::::::
thickness.

:::::
Until

::::
now

::
in

:::::
snow

:::::::::
mechanical

::::::::
modeling

::::::::
research,

:::
the

::::::
spatial

::::::::
variation

::
of

:::::
snow

:::::::::
properties

:::
was

:::::::
limited

::
to

::
the

:::::
weak

:::::
layer.

::::
Our

:::::
study

:::::
shows

::
a
:::::::::
distinction

:::::::
between

:::
the

::::::
spatial

:::::::
variation

:::
of

:::
the

:::
slab

:::::::::
properties

:::
and

:::
the

:::::
weak

:::::
layer,

:::::::
already

:::::::
observed

:::
by

:::::::::::::::
Kronholm (2004)

:::
and

:::::::::::::::::::::::::
Bellaire and Schweizer (2011)

:
.
:::
We

:::::::
propose

:::::::::
accounting

:::
for

::::
both

::::
slab

:::::::::
properties

::::::::
variation515

:::
and

:::::
weak

::::
layer

::::::::
variation

::::
since

::::::
spatial

:::::::
patterns

:::
can

:::::
differ

:::::::
between

:::::
them.

:

:::::
Weak

::::
layer

:::::::::
variations

::::::::
exhibited

:::::
longer

::::::::::
correlation

::::::
lengths

:::::::::
(smoother

:::::
spatial

:::::::
pattern)

::::
than

::::
slab

:::::::::
variations,

::::
and

:::
the

:::::::
increase

::
in

::::
shear

:::::::
strength

::::
did

:::
not

:::::::::
necessarily

::::::
match

:::
the

:::::::
increase

::
in

:::
the

::::
slab

::::::::
thickness.

:::
In

:::::::
general,

::::
shear

:::::::
strength

::::::
should

::::::::
increase

::::
with

:::
slab

::::::::
thickness

::::
due

::
to

:::
the

:::
slab

:::::
load,

:::
but

:::::
some

:::::::
variation

::::
was

:::
still

:::::::
present

::
in

:::
our

::::::
dataset

::::::
(Figure

:::
3).

::::
The

:::::::::
interaction

:::::::
between

::::
slab

:::::::
thickness

::::
and

::::
shear

:::::::
strength

::::
can

::
be

::::::::
described

::::
with

::
a

:::::
power

:::
law

::::::::::::::::
τp ∼ c+1370D1.3

:::::::::::::::::
(Bažant et al., 2003),

:::::::
reported

:::::::::
according

::
to520

::
the

:::::::::::::
Mohr-Coulomb

:::::::
relation

::::
with

:::::
initial

::::::::
cohesion

:
c
::::
(300

:::
Pa

::
in

::::::
Figure

::
3)

:::::::::::::::::
(Gaume et al., 2014).

::::
This

::::::
power

:::
law

::::::::::
represented

::::
well

::
the

:::::::
average

::::::
values

::
of

:::
the

::::::
survey

:::::
from

::::::
Mount

:::::::
Fidelity,

:::
but

:::
our

:::::
fitted

::::::
power

:::
law

:::::
could

::::
also

:::
be

::::
used

:::
for

::::::
thicker

:::::::
(denser)

:::::
slabs

::
in

:::::::::::
wind-exposed

:::::
areas.

:::::::::
However,

:::
the

::::
four

:::::
power

::::
laws

:::::
tested

::::
did

:::
not

:::::::::
adequately

::::::
capture

:::
the

:::::::::
variability

::
in

::::::
values

:::
for

:
a
:::::::
specific

:::::
spatial

:::::::
survey.

:::
The

::::::::
constant

::::::::
parameter

:::::
must

::
be

::::::::
adjusted

:::
for

::::
each

::::::
spatial

::::::
survey

::
to

:::
fit

:::
the

::::::
values.

:::::::
Overall,

:::::
these

:::::
power

:::::
laws

:::::
should

:::
be

::::
used

::::
with

::::::
caution

::
to
::::::::
estimate

::
the

:::::::
average

:::::
snow

:::::
values

::::::::
(strength

:::
and

:::::::
density)

::
if
::::
only

:::
the

::::
slab

::::::::
thickness

::
is

::::::::
available.525

::::::::::::::::
Gaume et al. (2013)

::::::::
proposed

:
a
:::::::
method

::
to

:::::::
generate

:
a
:::::
weak

::::
layer

::::
with

::::::
spatial

::::::::::::
heterogeneity.

:::
The

:::::::
method

::::::::
generates

:
a
:::::::
random

::::
field

::::
with

:
a
::::::::
specified

:::::
mean,

::::::::
variance,

::::
and

:::::::::
correlation

::::::
length

:::
for

:::
the

::::::::
cohesion

::
of

:::
the

:::::
weak

:::::
layer,

:::::
where

:::
the

:::::
shear

:::::::
strength

:::
of

::
the

:::::
weak

:::::
layer

::
is

::::::
defined

:::
by

:
a
:::::::::::::
Mohr-Coulomb

::::::::
relation.

:::
The

:::::::
friction

::::
term

::
of

:::
the

::::::::::::::
Mohr-Coulomb,

:::::
which

:::::::::::
incorporates

:::
the

::::
slab

::::
load,

::::
was

:::::
added

::
to

:::
the

::::::::
cohesion

::
to

::::::
obtain

:::
the

:::::
shear

:::::::
strength.

::::::::
Although

:::::
their

:::::
fiction

:::::
term

:::
was

:::::::
constant

::::
due

::
to

::
a

:::::::
constant

::::
slab

::::::::
thickness,

:::
the

:::::::
method

:::
can

::
be

::::::
easily

::::::
adapted

:::
to

:::::::::::
accommodate

::
a
:::::::
variable

::::::
friction

:::::
term,

::::::::
reflecting

::
a

:::::::
variation

::
in
::::
slab

:::::::::
thickness.530

::::
This

::::::::
adaptation

::::::
would

::::::
enable

:::
the

:::::::::::
specification

::
of

:::
two

:::::::
distinct

::::::
random

:::::
fields

:::
for

:::
the

:::::::::
properties

::
of

:::
the

::::
slab

:::
and

:::
the

:::::
weak

:::::
layer

::::
while

::::::::
ensuring

::::::::::
consistency

::::
with

::::
load

::
of

:::
the

:::::
slab.

::::
This

:::::::
method

:::
still

:::::::
requires

:::::
input

::::::
values

:::
for

:::::
mean,

::::::::
variance,

:::
and

::::::::::
correlation

::::::
length.

::::
The

::::::::
empirical

::::::
power

:::
law

::::
can

:::::::
estimate

:::::
mean

::::::
values,

:::
but

:::::::::
according

::
to

:::
our

:::::::
dataset,

:::
the

:::::::
variance

::
is

:::
not

::::
well

::::::::::
represented

::::
(Fig.

:::
3).

::::::
Future

:::::
work

::::::
should

:::::::
explore

:::
the

:::::::::
possibility

::
to
::::::::

estimate
:::::::
variance

::::
and

::::::::::
correlation

:::::
length

:::
of

:::::
snow

:::::::::
properties

:::::
using

::
the

::::::::::
covariance

::
of

::::::::::::::
microtopography

:::::::::
combined

::::
with

:::::::::
distributed

:::::
snow

:::::
cover

::::::
model.

:::::
Such

:::::::::
approaches

:::::
could

:::::::::
contribute

::
to

:::::
more535

::::::
realistic

::::::::::
simulations

::
in

:::::::::
avalanche

::::::::
modeling,

:::::::::
enhancing

:::::::::
forecasting

::::::::::
capabilities

:::
for

::::
both

:::
the

:::::::::
probability

::
of

:::::
skier

::::::::
triggering

::::
and

::
the

::::
size

::
of

:::::::::
avalanche

:::::::
releases.

4.2 Spatial modeling

This study gathers a unique dataset describing
:::::::::::
characterizing

:
the spatial variation of snow mechanical properties and sta-

bility metrics at four different study sites. The comparison of the variograms and fractal dimensions demonstrates that the540

slab properties (depth and density) vary at a different scale compared to the
::::::::
highlights

::::::::::
differences

::
in
:::::

scale
::::::::

between
::::
slab

::::::::
properties

::::
and weak layer properties and stability metrics (smoother pattern

::::::
patterns). Spatial GAM modeling was used to

spatially predict with good
::::::
models

::::
were

::::
used

::
to

:::::::
estimate

::::
with

:::
fair

:
accuracy the snow mechanical properties using microtopog-

raphyand with less precision the stability metrics. However, Our spatial modeling did not fully explain the variance of each

response variable. Some spatial variances remain unexplained , but could also be attributed
::
the

::::::
spatial

::::::::
modeling

::
of

:::
the

:::::::
stability545

::::::
metrics

:::
was

:::::
poor

:::
and

:::
not

:::::::
reliable.

:::::::::::
Additionally,

:
a
:::::::
portion

::
of

:::::
spatial

::::::::
variances

::::::::
remained

:::::::::::
unexplained

::
by

:::
the

:::::::
models,

:::::::::
potentially
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:::
due

:
to non-spatial variances, such as instrument error or our processing data strategy. This strategy includes

:::::::
included

:
a vi-

sual interpretation of the layer in the SMP resistance profile. A
:
,
::
as

:
misclassification or misidentification of the weak layer

boundaries can influence our results by adding non-spatial variance to our dataset. However, we used the SMP parameter

L in
::::::
impact

:::
the

:::::
result.

::::::::::::
Nevertheless,

:::
the

:::::::::::
modification

::
of

:::::
using

:
the parameterization Fwl proposed by (Richter et al., 2019)550

:::::::::::::::::
Richter et al. (2019) instead of the thickness of the weak layer

::::
weak

:::::
layer

::::::::
thickness for the computation of the critical crack

length (Gaume et al., 2017) . This modification makes our
::::::
makes

:::
the method less dependent on the weak layer thickness,

which was visually identified for each SMP profile. The RMSE was still quite high for the stability metrics and, thus less

reliable for spatial estimation purposes. The SPI values were quite low (<0.5) for some areas in the spatial survey. If we had

sampled these areas walking with the SMP, these areas should have been triggered, but nothing happened. This indicates that555

the stability metrics estimations are too pessimistic. We are not sure where the error might be, maybe in the SMP processing

or the spatial modeling, or maybe both. However,
::::::::
enhancing

:::
its

:::::::::
robustness.

:::::
While

:
the cross-validated RMSE for the snow me-

chanical properties was good with reliable precisionaccording to the properties (Table 3), indicating that the SMP processing

for
:::::::
suggests

:::::::
sufficient

:::::::::
precision, the snow mechanical properties is good, as well as the GAM spatial modeling compared to the

stability metrics
::::
high

::::::
RMSE

:::
for

:::::::
stability

::::::
metrics

::::::::
indicates

::::
that

:::
the

:::::
spatial

::::::::
modeling

:::
of

::::
these

:::::::
metrics

::
is

:::
not

::::::
reliable

::::::
(Table

::
3).560

Future work could use spatial estimations of the snow mechanical properties to compute the stability metrics from the spatial

field of snow properties.

The cross-validation procedure is
:::
was performed by randomly selecting 10 subsets. The random selection could take into

account a minimum distance between observations (i.e our correlation length )
:::::
Future

:::::
work

::::::
should

:::::::
consider

:::
the

::::::::::
correlation

:::::
length

::::::
during

:::
the

:::::::
random

::::::::
selection

::
of

::::::
subsets

:::
in

:::::::::::::
cross-validation

::::::::::
procedures to ensure complete independent subsetsbefore565

computing the RMSE and MAE, and could bias the estimation of the
:::::::::::
independence

::::::::
between

::::::
subsets.

:::::
This

:::::
could

:::::::
improve

:::
the

::::::::
reliability

::
of

:
RMSE and MAE

::::::::::
estimations. However, our 10-fold cross-validation (repeated 10 times) still provides a reliable

estimation of the performance of our models. Future work should take this into account.

4.3 Microtopographic covariates

This study aimed to use microtopographic covariates to spatially predict snow spatial variation
:::
for

:::::
spatial

::::::::::
estimations

::
of

:::::
snow570

:::::
spatial

:::::::::
variability

:
and stability. Our GAM spatial modeling did not reveal a universal covariate that predicts

::::
could

::::::::
spatially

:::::::
estimate both snow mechanical properties or stability metrics. The study of Reuter et al. (2016), based on larger-scale terrain-

based covariates, did not find a universal covariate to predict
::::::::
consistent

:::::::
covariate

::
in

:::
all

::::::
surveys

::
to

:::::::
estimate instability at the basin

scale. They reported that the slope aspect was selected as a predictor
::::::::
estimator by the model in all of their surveys, but each

survey used a different combination of covariates. Like the study of Reuter et al. (2016)
::
In

:::
the

::::::
present

:::::
study, the selection of575

covariates was specific to each survey with no clear trend or takeaway regarding the choice of covariates. Surprisingly
::::::
Notably,

snow depth was not a good
::::::
reliable

::::::
spatial

:
estimator of snow mechanical properties and stability metrics. Reuter et al. (2016)

also reported that all their terrain-related covariates were used in 7 of their surveys, but snow depth was only in six of them.

In our study , snow depth was only used to predict slab depth and slab density but the model never selected snow depth

to predict the shear strength of the weak layer. A possible explanation could be that ,
::

a
::::::
finding

:::::::::
consistent

::::
with

::::
the

:::::
study580
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::::::::::::::::
Reuter et al. (2016).

::::
The

::::::
limited

:::::::
selection

::
of

:::::
snow

:::::
depth

::
as

::
an

::::::::
estimator

::
in

:::
our

:::::
study

:::::
might

:::
be

::::::::
attributed

::
to

:::
the

:::::::::::
homogeneity

::
of

::
the

::::::
dataset

:::::::::
regarding

::::
snow

:::::
depth

::
or

:
the weak layerspatial variation is not related

:
’s
::::::
spatial

:::::::
variation

:::::
being

::::::::
unrelated

:
to the snow

accumulation process, or that our dataset was too homogeneous regarding snow depth. AR22-PP is
:
.
::
It

::
is

:::
also

::::::::::
noteworthy

::::
that,

::::::
despite

::::::::
AR22-PP

:::::
being a wind-exposed study siteand, surprisingly

:::
site, the GAM model did not select the Winstral index Sx as

good predictor. The
:
a
::::::::
predictor.

::::
This

:::::
could

::
be

::::::
related

::
to

:::
the

:
research distance in Sx represents the scale of the indicator and the585

one selected in the study might be
::::
being

:
too large (100 m). Using multiple scales like in the case of

:
,
:::
and

::::::::
adjusting

:::
the

:::::
scale

::
of

:::
this

::::::::
indicator,

::::::
similar

::
to

:
TPI and VRM, could change

::::
reveal

:
Sx as a significant covariate,

:::::::::
especially at the wind-exposed site

(AR22-PP).

Unfortunately, no link could be made between our only persistent weak layer survey
::::::::
consisting

::
of

:::::::
surface

::::
hoar

:::::::
crystals

(JBC22-SH) and the remaining non-persistent weak layer surveys. A bigger dataset is needed to demonstrate clear differences590

between alpine/forested areas and persistent /
:::::::
persistent

:::
vs.

:
non-persistent weak layers

:
,
::
as

::::
well

::
as

:::::::
between

::::::
alpine

:::
vs.

:::::::
forested

::::
areas. The covariates TPI and VRM are the best

::::::
emerged

:::
as

::
the

:::::
most

:::::::::
significant covariates for estimating snow properties, this

was also observed by previous studies using spatial models (random forest) to spatially estimate snow depth
::
for

:::::
snow

:::::
depth

::::::::
estimation

:
(Meloche et al., 2022; Revuelto et al., 2020). The best scale ,

::::::
optimal

:::::
scale or window size , of

:::
for TPI and VRM

for prediction seems to be changing
:::::
varied depending on the study site, snow properties and stability metrics. Future work with595

a larger
::::
more

::::::::
extensive dataset should investigate if the best scale is related

:::::::
whether

::
the

:::::::
optimal

:::::
scale

::
is

:::::
linked

:
to the specific

scale of the terrain
:::::
terrain

:::::::
features

:
at each site, the scale of the meteorological process affecting the slab and the weak layer, or

interaction with both. Still, the multiscale covariate TPI associated with terrain shape appears to be a good spatial estimator for

backcountry recreationists. VRM could also be a good estimator for backcountry recreationists, but it could be more difficult

to identify with snow-covered terrain. Weak layer spatial variability remains the main information for monitoring the spatial600

occurrence of snow instability, but the difficulty of quickly assessing the weak layer spatial pattern in the field for backcountry

recreationists remains a challenge
:
a
::::::::::
combination

:::
of

::::
both

::::::
factors.

4.4 Snow mechanical parametrization and modeling

Our study agrees with the well-known relationship between the slab thickness and the slab density due to snow settlement .

The comparison of the spatial pattern between surveys shows that these two properties exhibit the same spatial pattern in the605

variogram, the fractal dimension, and their covariates used for spatial modeling. For further study, the empirical power-law

fit ρ∼ 100+135D0.4 suggested by McClung (2009) is a good way to easily represent the interaction between these two

properties to obtain realistic snow values for mechanical simulation (e.g. Gaume and Reuter, 2017) . However, our SMP

power law fit could be better represent denser slabs in wind-exposed areas. The power-law fit could also be used to generate the

slab density based on the spatial pattern of the slab thickness if some variation is included in the simulation. Until now in snow610

mechanical modeling, the spatial variation of snow properties was limited to the weak layer. Our study shows that there is a

difference between the spatial variation of the slab properties and the weak layer in our dataset. This difference was previously

observed by Bellaire and Schweizer (2011), in their spatial survey conduct over a smaller extent. Our study shows the need to

account for both slab properties variation and weak layer variation because spatial patterns can differ from each other.

25



Our study shows that the weak layer variation was smoother than the slab and the increase in shear strength did not615

necessarily match the increase in the slab thickness. In general, shear strength should increase with slab thickness due to

the slab weight, but some variation was still present in our dataset (Figure 3). The interaction between slab thickness and

shear strength can be described with a power law τp ∼ c+1370D1.3 (Bažant et al., 2003), but it was reported according to
:::
The

:::::::::::
transferability

::
of

::::
our

:::::
results

:::
to

:::::::
different

::::
sites

::
is

:::
not

:::::::
feasible.

::::
The

::::::::
selection

::
of

:::::::::
covariates

::
by

:
the Mohr-Coulomb criterion with

initial cohesion c (300 Pa in Figure 3) (Gaume et al., 2014). These power laws represent well the average values of the survey620

from Mount Fidelity, but our fitted power laws could also be used for thicker (denser) slabs in wind-exposed areas. However,

these power laws did not adequately capture the variability in values for a specific spatial survey. The constant parameter needs

to be adjusted for every spatial survey to fit the values. These power laws could be used to estimate the average snow values if

only the slab thickness is available, but a stochastic process could be added to generate a more realistic variability.

Gaume et al. (2013) proposed a method to generate a weak layer with spatial heterogeneity. The method generates a random625

field with a specified mean, variance, and correlation length for the cohesion of the weak layerin the Mohr-Coulomb relation.

The friction term of the Mohr-Coulomb, which incorporates the slab thickness, is added to the cohesion to obtain the shear

strength. Their fiction term was constant because the slab thickness was constant, but this method could easily be adapted with

a variable friction term following a variation in the thickness of the slab. These methods would allow two different random

fields to be specified for both the properties of the slab and the weak layerwhile respecting the friction regarding the slab630

thickness. This method still needs a mean, variance, and correlation length as input. The empirical power law can estimate mean

values, but according to our dataset, the variance is not well represented (Fig. 3). Future work should explore the possibility

of estimating the variance and the correlation length using the covariance of microtopography combined with the snow cover

model outputs. These methods could lead to more realistic simulations in avalanche modelingfor forecasting purposes, both

for the probability of skier triggering and the avalanche release size
:::::
model

::::
was

::::::
specific

:::
to

::::
each

::::
site,

:::::
snow

:::::::::
properties

::::
and635

::::::
stability

:::::::
metrics.

:::
As

::::::::::::
demonstrated

::
by

::::::::::::::::
Reuter et al. (2016)

:
,
:::
the

:::::::::
interaction

:::::::
between

:::::::::::::
meteorological

::::::::
processes

:::
and

::::::
terrain

:::::
leads

::
to

::::::
distinct

::::::
spatial

::::::::
variation

::
in

:::::
snow

:::::::::
properties

:::::
across

::::::::
different

:::::::
surveys.

:::::
These

::::::::::::::::::
micrometeorological

::::::::
processes

::::
vary

::::::::
between

::::
sites

:::
and

::::::::::
differences

::::::
emerge

:::
not

::::
only

::::::::
between

:::
slab

:::::::::
deposition

::::::::
patterns,

:::
but

::::::::
crucially,

:::::::
between

::::::::
different

:::::
types

::
of

:::::
weak

:::::
layer.

::::
More

::::::
spatial

:::::
snow

:::::::
surveys

:::
are

::::::
needed

::
to

::::::
gather

:
a
::::::
robust

::::::
dataset

::
to

::::::::
highlight

:::::
trends

::
in

::::::
spatial

::::::
pattern

:::::::
between

::::::::
different

:::::
types

::
of

::::
weak

:::::
layer,

::::
slab

:::::::::
deposition,

::::::::::::::::
microtopographic,

:::
and

::::::::::::
microclimatic

:::::::
contexts.

:::
To

:::::
obtain

::
a

::::
more

::::::
robust

::::::
dataset,

::::::
future

:::::::
research640

:::::
should

::::
aim

:::
for

:::
an

::::::::
equivalent

:::
or

::::::
higher

::::::::
sampling

::::::
density

::::
and

:::::
extent

::::::::
presented

:::
in

:::
this

:::::
study

:::
(60

::::
and

:::::
more

::::
SMP

::::::::
covering

:::
80

::
m

::::::
extent).

:::::::::
Lowering

:::
the

::::::::
sampling

::::::
density

::::
and

::::::
extent

:::::
could

::::::::::
compromise

::::
the

:::::::::
estimation

::
of

:::
the

:::::::::::
experimental

:::::::::
variogram

::::
and

::
the

::::::
spatial

:::::::::
modeling.

:::
An

:::::::::
alternative

::::::::
approach

::
to

::::::::
sampling

::::
with

:::::
fewer

::::
SMP

::::::::::::
measurements

:::::
could

:::
be

::
to

::::::::::
incorporate

:::::::::
distributed

::
3D

:::::
snow

:::::
cover

:::::::::
modeling

::::
tools

::::
like

:::::::::::
ALPINE3D.

::::
This

:::::::
avenue

:::
was

::::::::
explored

:::
by

:::::::::::::::::
(Reuter et al., 2016),

:::
but

:::::::::::::
acknowledged

:::
the

::::
need

::
to

:::::::
improve

:::::::::::
performance

::
in

:::::::::
distributed

:::::
snow

:::::
cover

:::::::::
modeling.

::::::::::::
Implementing

:::
3D

:::::
snow

:::::
cover

::::::::
modeling

:::
has

:::
the

::::::::
potential645

::
to

::::::
capture

:
a
:::::::
portion

::
of

::::
these

::::::::::
site-specific

::::::::::::::::::
micrometeorological

::::::::
processes

::::::
without

::::::::
requiring

:::
an

::::::::
extensive

:::::
spatial

::::::
survey

::
of

:::::
SMP

:::::::::::
measurements.
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5 Conclusion

The
::::
study

:::::::
provides

:::::::
insights

::::
into

:::
the spatial variability of mechanical properties has been measured, compared, and estimated

in this study
::::
snow

::::::::::
mechanical

:::::::::
properties

:::
and

:::::::
stability

:::::::
metrics. First, we show that in our dataset, the slab properties exhibit650

spatial patterns that were different from the weak layer spatial patterns. In fact, the slab properties, both the slab thickness

and density, had smaller correlation lengths in their variogram
:::::::::
variograms

:
than the weak layer strength. The slab properties

had higher fractal dimensions than the weak layer strength, which demonstrates a more "rough" spatial surface. Secondly,

we estimated the spatial variability of snow mechanical properties and also some stability metrics using spatial variables of

microtopography . Estimates were reliable and precise for
:::::
spatial

:::::::::
modeling

:::::
using

::::::::::::::
microtopography

::::::::
variables

::::::
allows

:::
for

:::
the655

::::::::
estimation

:::
of snow mechanical properties , but not for stability metrics

::::
with

:::::::::
reasonable

::::::::
accuracy,

::::::::
although

:::
the

::::::::
reliability

:::
of

::::::
stability

::::::
metric

::::::::::
estimations

:::
was

::::
poor

::::
and

:::
not

::::::
reliable. We also show the utility of using microtopography to estimate snow spa-

tial variability. However, no microtopographic indicators were predominantly used to give advice to backcountry recreationists.

The use of microtopography seems to be
:
,
:::
but

:::
the

::::::::
selection

::
of

:::
the

::::::::
indicators

::::
was

:
specific to each

:::::
study site and snow proper-

ties. The use
:::::
spatial

::::::
models

::::
did

:::
not

::::::::::::
predominantly

:::::
select

:::::::::::::::
microtopographic

:::::::::
indicators,

::::::::
resulting

::
in

::
no

::::::::
possible

:::::::::::
extrapolation660

::
to

::::
other

:::::
sites

::
or

::::::
advice

::
to

:::::::::::
backcountry

:::::::::::
recreationists.

::::::
Future

::::::::
research

:::::
could

::::::
explore

:::
the

:::::::::
capability

:
of multiscale microtopo-

graphic indicators, such as
:::
like the topographic position index TPI and the

::::
(TPI)

:::
and

:
vector ruggedness measure VRM, should

be explored in future work
:::::::
(VRM), to estimate spatial patterns of snow mechanical properties as input for snow mechanical

models. This could lead
:::
with

:::
3D

:::::
snow

:::::
cover

:::::::::
modeling.

::::
This

::::
may

:::::::::
contribute to the development of predictive methods in

:::
for

operational avalanche forecasting servicesto estimate the avalanche release size using
:
,
:::::::::
potentially

::::::::
estimating

:::::::::
avalanche

::::::
release665

::::
sizes

:::::::
through snow cover modeling and mechanical models. Additional work is needed on stability occurrence with respect to

microtopography indicators to help backcountry recreationists find a safer downhill and uphill route
:
to

::::::
gather

:
a
::::::
robust

::::::
dataset

::::::::
regarding

:::
the

:::::
spatial

::::::
pattern

:::
of

::::
snow

::::::::::
mechanical

::::::::
properties

::
in
:::::
order

::
to

::::::::
elucidate

:::::
trends

:::::::
between

::::::::
different

:::::
types

::
of

::::
weak

::::::
layers

:::
and

::::::
terrain

::::::
features.
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Figure A1. Log-Log variogram of snow mechanical properties and stability metrics for every snow spatial surveys. The fractal dimension is

computed from the slope of the regression line. The gamma represented the variance for each variable. The unit is specified in each title.
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