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Abstract. Snow avalanches represent a natural hazard for infrastructures and backcountry recreationists. Risk assessment of

avalanche hazard is difficult due to the sparse nature of available observations informing on snowpack mechanical and geo-

physical properties and overall stability. The spatial variability of these properties also adds complexity to the decision-making

and route finding in avalanche terrain for mountain users. Snow cover models can simulate snow mechanical properties with

good accuracy at fairly good spatial resolution (around 100 m). However, monitoring small-scale variability at the slope scale5

(5-50 m) remains critical, since slope stability and the possible size of an avalanche are governed by such a scale. To better

understand and estimate the spatial variability at the slope scale, this work explores existing links between snow mechanical

properties and microtopographic indicators. First, we compared the covariance models of snow mechanical properties and sta-

bility metrics between surveys. Then, we estimated snow mechanical properties, including point snow stability, using GAM

spatial models (Generalized Additives Models) with microtopographic indicators as covariates. Snow mechanical properties10

such as snow density, elastic modulus, shear modulus and snow microstructural strength were estimated from a high-resolution

snow penetrometer (SMP) at multiple locations over several studied slopes, in Rogers Pass, British-Columbia, and Mt Albert,

Québec. Point snow stability such as the skier crack length, critical propagation crack length and a skier stability index were

derived using the snow mechanical properties from SMP measurements. Microtopographic indicators such as the topographic

position index (TPI), vegetation height and proximity, Up-wind slope index (wind exposed/sheltered area) and potential radia-15

tion index were derived from Unmanned Aerial Vehicles (UAV) surveys with sub-meter resolution. We computed the variogram

and fractal dimension of snow mechanical properties. The comparison showed some similarities in the correlation distances

and fractal dimensions between the slab thickness and the slab snow density and also between the weak layer microstructural

strength and the stability metrics. The use of covariates in GAM models suggested that microtopographic indicators can be

used to predict the snow mechanical properties, and with less precision, stability metrics. The snow stability maps that were20

generated represent good teaching material in avalanche skill training and awareness courses. The difference in spatial pattern

between the slab and the weak layer should be considered in snow mechanical modeling.
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1 Introduction

Snow avalanches represent a natural hazard for infrastructures and backcountry recreationists across mountainous areas all

across the world (Stethem et al., 2003; Techel et al., 2016). Snow avalanches can be divided into different types of avalanches:25

wet, dry, non-cohesive or slab avalanches. However, dry-snow slab avalanches are the most difficult to predict and the ones

causing the most fatalities (Techel et al., 2016). It requires a shear crack usually initiated by a person or new stresses from

snowfall or warming in a weak porous layer underneath a cohesive snow slab. Then, the crack must be at a critical length in

order to self-propagate across the slope for a slab avalanche to occur. Practitioners and forecasters estimate the probability

and size of an avalanche from punctual information on weak layers and slab properties across different scales. However, the30

sparse and punctual nature of available observations on snowpack properties makes the forecasting of dry snow slab avalanches

difficult (Hägeli and McClung, 2004). The snow spatial variability at different scales also adds complexity to this challenging

task by adding uncertainty on whether the properties measured in the field are representatives of the slab and weak layer system

(Schweizer et al., 2008a).

The spatial variability of snow properties is well documented in climate studies (e.g. Harper and Bradford, 2003), glacier35

dynamics (e.g. Pulwicki et al., 2018), snow hydrology (e.g. Deems et al., 2006), mountain meteorology (Mott et al., 2011),

permafrost (e.g. Wirz et al., 2011) and snow avalanche (e.g. Schweizer et al., 2008a). Several studies have looked at the spatial

distribution of snow depth and its water equivalent to feed hydrological models (e.g. Deems et al., 2006; Grünewald et al.,

2010; Schirmer et al., 2011; Winstral et al., 2002). Some authors went further to estimate and analyze the spatial pattern of

snow depth (Deems et al., 2006; Mott et al., 2011; Schirmer and Lehning, 2011; Trujillo et al., 2007). They analyzed the scaling40

properties and the fractal dimension of the snow depth, which can be estimated with the slope of a log-log variogram or with

the periodogram of the spatial signal. The idea behind the scaling properties and fractal dimension is that many scales can

define a spatial pattern instead of one scale like the correlation length in a variogram. Fractal dimension can also characterize

the roughness or smoothness of a spatial pattern over multiple scales. These authors compared the fractal dimension of snow

depth with the fractal dimension of topographic indicators and vegetation. However, no study has studied the fractal dimension45

of snow mechanical properties. Most of these studies are mainly based on LiDAR or manual snow probe surveys to estimate

the snow depth. However, snow depth is not a good indicator of the conditions required for snow avalanches to occur.

There are better indicators, such as snow stability tests, to estimate the conditions for snow avalanches. These tests are

widely used in the avalanche industry to assess snow stability and, ultimately, snow avalanche hazard. The result of these

tests represents a qualitative evaluation of the mechanical interaction between the cohesive slab and the weak layer. Some50

studies investigate the variability of several snow stability tests on an avalanche-prone slope (Kronholm and Schweizer, 2003;

Birkeland, 2001; Campbell and Jamieson, 2007). These results demonstrate a variation in the test results and spatial patterns

with variograms and correlation distances around 5-20 m. However, these snow stability tests do not provide information on

the snow mechanical properties of the slab and the weak layer. Snow stability tests are also time-consuming, causing the spatial

sampling density and extent to be relatively small for statistical analysis, around 20 m and below 30 measurements. The high55

resolution
::::::::::::
high-resolution

:
snow penetrometer, Snowmicropen (SMP), is used to characterize the mechanical

::
and

:::::::::
structural
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properties of the snow, of the snow, such as the thickness of the slab and the weak layer, the density, the elastic modulus, and

the microstructural strength of the weak layer (Proksch et al., 2015; Löwe and van Herwijnen, 2012; Johnson and Schneebeli,

1999). Several authors characterized stability based on snow mechanical properties of the slab and the weak layer (Föhn, 1987;

Gaume and Reuter, 2017; Reuter et al., 2015b; Monti et al., 2016; Schweizer and Reuter, 2015; Reuter and Schweizer, 2018;60

Rosendahl and Weißgraeber, 2020). Gaume and Reuter (2017) proposed a stability index that represents both failure initiation

and propagation propensity with an analytical method that can be easily applied to SMP profiles.

The SMP was used in snow spatial studies because it can rapidly and accurately measure the mechanical properties of the

snow relevant to snow stability on a slope prone to avalanche (Bellaire and Schweizer, 2011; Feick et al., 2007; Kronholm

and Schweizer, 2003; Landry et al., 2004; Lutz et al., 2007; Lutz and Birkeland, 2011). These studies report spatial patterns65

of weak layer properties with a correlation distance ranging from 0.5 to 20 m. However, the sampling density and the spatial

extent of the survey were around 20 to 50 m for the spatial extent and between 20 to 50 SMP measurements depending on

the studies. Reuter et al. (2016) also used stability metrics based on snow mechanical properties derived from the SMP to

show spatial patterns of snow stability with a larger sampling density and extent compared to the other studies. The correlation

distance obtained from this study was still in the same range as the others with some exceptions between 40 and 60 m. The70

spatial patterns of snow instability differed between the surveys, and these results were attributed to the different meteorological

processes interacting with the terrain and the snow cover (e.g. Schweizer et al., 2008a; Reuter et al., 2016).

From these results, several studies simulated artificial spatial patterns of the weak layer in mechanical models to explain

the effect of the spatial variability of the weak layer on the slope stability, given the likelihood of an avalanche (Gaume et al.,

2014, 2013; Kronholm and Birkeland, 2005; Fyffe and Zaiser, 2004). Gaume et al. (2015) used the same method to estimate75

the propensity for tensile failure in the slab and the relationship with the size of the avalanche release. These studies were based

on the assumption that the spatial patterns of the weak layer ranged from 0.5 to 10 m, with the other parameters being constant

for simplicity. Bellaire and Schweizer (2011) suggested that the spatial patterns of the weak layer and the slab could have

different correlation distances for the same survey. However, the spatial extent of the snow sampling was relatively small, only

twice as the measured correlation length, and could affect the estimation of the correlation length (e.g. Dale and Fortin, 2014;80

Skøien and Blöschl, 2006). The slab and the weak layer could have a different spatial pattern, resulting in some cases with a

slab variation smoother than the weak layer or the opposite. This matter should be further explored with a spatial sampling

extent greater than 20 m in order to improve the implementation of snow variability in mechanical models.

Spatial patterns of snow properties can also be explained and estimated by statistical models with exploratory spatial vari-

ables. In the past, environmental variables were mapped using a linear regression model and kriging with external drift. Several85

studies used kriging to map point snow stability, such as snow stability test results, SMP-derived mechanical properties, and

stability metrics (Birkeland, 2001; Mullen and Birkeland, 2008; Reuter et al., 2015a; Schweizer and Kronholm, 2007). These

studies showed that point snow stability can be partially explained using topographic indicators such as aspect, altitude, and

slope angle on the regional / massif scale. These topographic indicators can express the complex interactions between the

meteorological process and the terrain, such as wind deposition from lee / windward slopes and solar radiation on the snow90

surface between different slopes (Reuter et al., 2016). However, spatially autocorrelated residuals remained from these statis-
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tical models using topographic indicators. This remaining spatial variability could be explained and estimated by other spatial

phenomena on a smaller scale. At the slope scale, other authors explained and estimated spatial variability of snow depth

where slope, aspect, and altitude remained mostly stable (e.g. Deems et al., 2006; Grünewald et al., 2010; Pulwicki et al.,

2018; Revuelto et al., 2020; Meloche et al., 2022; Trujillo et al., 2007; Winstral et al., 2002). They used microtopographic95

indicators such as the shape of the slope (topographic position index TPI), vegetation index and microclimate indexes such as

wind exposure (Winstral index) or the potential of solar radiation. Guy and Birkeland (2013) has shown the potential to use

microtopography to spatially estimate potential trigger zones, but the characterization of their potential trigger was only with

the presence of depth hoar layers. However, the presence of depth hoar crystals to characterize snow stability is insufficient and

requires more information on snow mechanical properties for the slab and the weak layer. These mechanical properties can be100

accurately measured with the SMP (Reuter et al., 2019). No studies have linked snow stability and mechanical properties with

microtopography indicators in spatial modeling. This could lead to a more accurate
::
an

:::::::::::
improvement

::
of

:::
the potential avalanche

size mapping (Veitinger et al., 2016)using the variation ,
:::
but

::::::::::
integrating

::::::::
variations

:
of the snow mechanical properties as in-

put in snow mechanical modeling. Also, the spatial studies cited above explored linear relations between point snow stability

and topographic indicators
:
,
:::
but

::::::::::::::::
Reuter et al. (2016)

:::::::
suggests

::::
that

:::::::::
non-linear

::::::::::
relationships

::::::
should

:::
be

:::::::
explored. Other statistical105

models like General Additive Models (GAM’s) can represent nonlinear
:::::::::
non-linear relationships and should be explored.

The snow mechanical variability can also affect the overall slope stability with the so-called knockdown effect (Fyffe and

Zaiser, 2004; Gaume et al., 2014; Kronholm and Schweizer, 2003; Schweizer et al., 2008a), promoting an overall failure

of the slope with long-scale spatial variation of snow mechanical properties. Spatial variation in snow can also affect the

size of the avalanche release (Gaume et al., 2015), when small-scale variation can promote slab tensile failure and smaller110

avalanche
:::::::::
avalanches. It is necessary to spatially explain and estimate the mechanical properties of the snow and the stability

of the snow with microtopography indicators at the slope scale.
::::
This

:::::
study

::
is
:::::
based

:::
on

:::
the

::::::::::
limitations

:::
and

::::::::::
suggestions

:::
of

::::::::::::::::
Reuter et al. (2016),

::::
who

::::
was

::::
able

::
to

::::::
predict

:::
the

::::::
spatial

::::::::
variation

::
of

::::
two

:::::::
stability

::::::
metrics

::
at

::
a

:::::
larger

:::::
scale

::::
with

:::::::::::
terrain-based

::::::::
indicators

::::
such

::
as

::::::
slope,

:::::
aspect

::::
and

::::::::
elevation.

::::
This

:::::
work

::::
will

::::::
attempt

::
to
:::::::

predict
:::
the

::::::
spatial

:::::::
variation

::
at

::
a
::::::
smaller

:::::
scale

:::::
using

::::::::::::::
microtopographic

:::::::::
indicators

::::
with

:
a
:::::::::
non-linear

:::::::::
regression. As such, the main objectives of this paper are to compare the scaling115

effect of the snow mechanical properties and the stability metrics for slopes prone to avalanches with different characteristics

and spatially estimate the snow spatial variability using microtopography indicators.
::
A

::::::::::::
supplementary

::::::::
objective

::::
will

::
be

:::
to

:::::::
compare

:::
the

:::::::::::::
parametrization

::
of

:::::
snow

::::::::::
mechanical

:::::::::
properties

::
in

:::::::
relation

::
to

:::
the

::::
slab

::::::::
thickness

::
to

:::
our

::::::
dataset

:::
to

:::::::
improve

:::::
snow

:::::::::
mechanical

:::::::::
modeling.

2 Data and methods120

2.1 Study sites

In order to spatially estimate the spatial variability of snow using microtopography indicators, we choose three study sites

according to their specific microtopography and microclimate context. The first study site was located on Mount Albert in

Gaspésie National Park, Québec, Canada (Fig. 1b). The winter climate of the region is characterized by extreme changes caused
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by 1) low-pressure continental systems that bring heavy snowfall up 100 cm in 48 hours followed by Artic cold air masses with125

strong northwestern winds, 2) warm and wet air masses coming from the south creating rain-on-snow events (Meloche et al.,

2018). The study site is named Arete de Roc (AR) and is located in a subalpine/tundra area heavily affected by wind and snow

transport compared to the other sites. This site has a high soil roughness with large boulders and small trees (1 m high). The

slope angle is constant (33°) with a convex roll at the top and a concavity at the bottom (Fig. 1).
:::
Two

:::::
other

::::::
surveys

::
in
:::
Mt

::::::
Albert

:
at
:::::::

Épaule
::
du

::::
Mur

:::::
(EP)

::
is

:::::
added

:::
for

:::
our

:::::::::::::
supplementary

::::::::
objective,

::::::
adding

:::::
more

:::::
dense

:::
and

:::::::
thicker

::::
slabs

::
in

::::
our

::::::::::
comparison

::
to130

:::::
classic

:::::
snow

::::::::::
mechanical

::::::::
properties

:::::::::::::
parametrization

::
in

:::::::
relation

::
to

::::
slab

::::::::
thickness

:::::::::::::::::::::::::::::::
(Bažant et al., 2003; McClung, 2009a).

::::::
These

:::
two

::::::
surveys

:::::
were

:::
not

::::
used

:::
for

:::
the

:::::
spatial

:::::::
analysis

:::::::
because

::::
their

::::::
spatial

::::::
density

:::
and

::::::
extent

:::
are

:::::::::
insufficient

::::::::
compared

::
to

:::
the

:::::
other

:::::::
surveys.

Two study sites are in Glacier National Park, located in Rogers Pass, British Columbia, Canada (Fig. 1). Our study sites are

on Mount Fidelity, which receives heavy snowfall precipitation (Hägeli and McClung, 2003), and a snow cover of around 2-3135

m and sometimes up to 4 m. The Mount Fidelity area is classified as a Transitional snow and avalanche climate influenced

by warm and wet air masses from the Pacific that bring heavy snowfall and cold air masses from the North, leading to the

development of persistent weak layers (Hägeli and McClung, 2003). This study area experiences annually several persistent

weak layers consisting of buried surface hoars or facets, relevant for stability assessment purposes. The first study site at Mount

Fidelity is located just above the tree line at 2300 m.a.s.l on a shoulder named Round Hill (RH). This site is an alpine area140

with low soil roughness (Fig. 1). The slope angle is relatively low (near 25◦), with longer and smoother convex rolls around

20-30m. The last study site, Jim Bay Corner (JBC), is located below the tree line at 1830 m.a.s.l. It is an open forested area

with relatively low soil roughness with small shrubs. The site has 10 m tall trees which created some shaded areas and the

slope angle is relatively constant (near 20◦) with small convex rolls around 5-10 m (Fig. 1).

2.2 Data collection and sampling strategies145

This study presents 4 snow spatial surveys collected during winter 2021-2022 (Fig. 1): 25 February 2022 at the Arête de Roc site

(AR22-PP), 27 January 2022 at the Round Hill site (RH22-PP), 19 January 2022 at Jim Bay corner (JBC22-SH), and 24 January

2022 at Jim bay corner (JBC22-PP). A summary of these surveys will be presented first in 3.1. Snow mechanical properties

were measured using the high-resolution SMP. To compare the spatial pattern of snow mechanical properties and snow stability,

each SMP measurement was made following a sampling scheme following the concept of the scale triplet which is the support,150

spacing, and extent described by Blöschl and Sivapalan (1995). The support is the diameter of the SMP penetration cone tip

which is around 5 mm with a 1 mm vertical resolution. This ensures a proper estimation of the snow mechanical properties

because they are linked to their microstructural properties at the mm scale. A minimum spacing of 2 m and a study site extent

of around 60 to 100 m were chosen in order for the spacing to be at least half of the estimated correlation length reported by

the literature and the extent needs to be two to five times the estimated correlation, which is around 5-20 m reported by several155

studies (Bellaire and Schweizer, 2011; Lutz et al., 2007; Reuter et al., 2016; Schweizer and Reuter, 2015). This method ensures

a proper estimation of the spatial pattern, defined by the spatial variance and the autocorrelation distance (Skøien and Blöschl,

2006; Dale and Fortin, 2014). Our sampling scheme also needs to be adequate for the second objective, which is the spatial
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Figure 1. Map of the study area of a) Mount Albert, Québec, Canada, representing the study site b) Arête de Roc with the 25 February 2022

survey in blue (AR). c) Mount Fidelity study area, British Columbia, Canada, with the study sites: d) Round Hill (RH) with the 27 January

2022 survey in green and e) Jim Bay corner (JBC) with the 19 January 2022 survey in red and the 24 January 2022 survey in black. The

aerial photography is from the UAV flight of each study site and the snow spatial sampling is represented by circles for the locations of SMP

measurements and the squares are the snow profile locations.
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estimation of snow mechanical properties and stability metrics using microtopographic indicators. Therefore, the sampling

scheme was adjusted for each specific study site in order to obtain a representative distribution of microtopographic indicator160

values while respecting the scale triplets mentioned above. The sampling was conducted by randomly traversing the study site

while adhering to the minimum spacing, and also by characterizing the down and cross-slope for an isotropic sampling. The

sampling was stopped when the study site was almost covered with 60 to 80 SMP measurements. The resulting sampling is

shown in Figure 1. Random sampling helps to have a good estimation of spatial parameters with limited samples (Kronholm

and Birkeland, 2007; Skøien and Blöschl, 2006).165

In order to correctly interpret the SMP signal, the weak layer needed to be identified and characterized from a "test" snow

profile. Full characterization of the snow stratigraphy was not needed for our analysis, so a shorter version that we called the

"test" snow profile was used to optimize the time on the field. Two or three test snow profiles were made per snow spatial

survey at least 20 m apart next to SMP measurements (Fig. 1). In each test snow profile, we first performed two compression

snow tests to identify the weak layer (Canadian Avalanche Association, 2016). The weak layer was attributed to uppermost170

compression tests results which was
::
the

:::::::::
uppermost

:::::::::::
compression

:::
test

::::::
results

:::::
which

:::::
were consistent in both compression tests.

Then, we visually characterized the types and sizes of the snow grains of the weak layer, and finally,
:
a propagation saw test

was performed to measure the critical crack length of the weak layer (Gauthier and Jamieson, 2008). We considered every

layer above the weak layer to be part of the slab. This assessment enables us to correctly identify the weak layer to the nearest

SMP profile and then identify the weak layer in the remaining SMP profiles. Each snow measurement, SMP or snow profile,175

was georeferenced using a GNSS receiver with centimeter accuracy. In addition to snow measurements, aerial imagery was

captured by a quad-rotor UAV with RGB sensor for each study site to characterize the topography in the summer and also in

winter at
:
in

::::::
winter

::
on

:
the same day of the spatial snow survey to characterize the snow surface. Ground / surface models were

generated using a structure from motion (sfm) photogrammetry algorithm (Westoby et al., 2012) with ground and snow control

points to georeference models with centimeter accuracy (< 2 cm in x,y and < 5 cm in z).180

2.3 Snow mechanical properties and stability metrics

This section will present the workflow used to process every SMP profile in order to obtain several snow mechanical properties

needed for stability assessment. Three stability metrics were then found using these snow mechanical properties. Figure 2

presents the summary of this workflow.

2.3.1 SMP signal processing and snow properties185

Each SMP signal was visually interpreted to identify the layers. First, the weak layer was identified on the SMP signal next to

the snow profile, with the corresponding depth of the compression test. Then homogeneous layers above the weak layer were

classified into slab layers (S1, S2,...Si). This procedure was repeated to the rest of the remaining SMP signal. To obtain the

macroscopic mechanical properties of snow for each snow layer, the SMP signal was analyzed using a Poisson shot noise model

with a moving window of 2.5 mm. This analysis is used to recover microstructural parameters such as the peak force F , the190

deflection at rupture δ, and the element length L (Löwe and van Herwijnen, 2012). Then, each structural and macroscopic snow
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mechanical property needed to estimate the stability metrics can be retrieved: the slab thickness D, the weak layer thickness

Dwl, the slab density ρ, the weak layer density ρwl, the elastic modulus of the slab E and the shear strength of the weak layer

τp. First, the slab thicknessD and the weak layer thicknessDwl are extracted directly from the SMP profile. Then, slab density

ρ and weak layer density ρwl are derived using the F and L parameters based on the method proposed by Proksch et al. (2015):195

ρ= 295.8+65.1ln(F )− 43.2ln(F )L+47.1L, (1)

where ρ is in kg m−3, L in mm and F in N. The constant parameters
:::::::::
coefficients were obtained by Calonne et al. (2019). The

slab density ρ is the mean value of all sub-slab layers above the weak layer and ρwl is the mean value of the signal inside the

weak layer. The effective macroscale elastic modulus of the slab (E) was derived with the new formulation recently adapted200

by Reuter et al. (2019) originally developed by Johnson and Schneebeli (1999).

E = 880
Fδ

L3 · δ
L
, (2)

The SMP cannot measure specifically the shear strength of the weak layer because of the mixed-mode loading on the weak

layer due to the slope angle on the field. Reuter et al. (2015a) previously assumed that the shear strength of the weak layer τp is

approximately equal to the microstructural strength of the element defined by σth
micro = F/L2. We used the same assumptions205

but used the macroscale strength σth
macro (eq.3), which is the same formulation but scaled with the number of active contacts

δ
L over the 2.5 mm processing moving window of the SMP, following the formulation of Johnson and Schneebeli (1999).

σth
macro =

F

L2
· δ
L

(3)

Therefore, we assumed that the shear strength of the weak layer is equivalent to the macro-structural strength of the weak layer

τp ≡ σth
macro.210

2.3.2 Stability metrics

The skier propagation index (SPI) proposed by Gaume and Reuter (2017) was used to describe the skier stability. The SPI is

the ratio of two lengths: the skier crack length lsk and the critical crack length ac. The skier crack length defines the length of

the crack in the weak layer that will be induced by the weight of a skier staying on top of a slab. The critical crack length is the

length of the crack required to begin a dynamic crack propagation. The skier crack length is computed by solving the equation:215

τ +∆τ = τp, where τ = ρgDsinψ is the shear stress due to the slab weight with g as the gravitational acceleration, and ∆τ ,

is the stress due to the skier defined by (Föhn, 1987):

∆τ =
2Rcosαsin2αsin(α+ψ)

πDe
, (4)

where R is the skier load set to 780 N and ψ is the snow surface slope angle derived from UAV imagery, α is the angle between

the point at the snow surface under the skier load to the point of maximum induced shear stress at the weak layer, and De is220
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the new multilayered slab thickness, replacing the D only for the skier stress Eq.(4). Slabs are often composed
:::::
made

::
up

:
of

multiple layers with different properties that can affect stress redistribution and potentially damage the weak layer (Habermann

et al., 2008; Monti et al., 2016; Weißgraeber and Rosendahl). To account for this process, the method following equations

2,3,4 in Monti et al. (2016), is used to obtain a new equivalent multilayered slab thickness (De) based on each layer elastic

modulus E that composed the slab. For example, a slab can be composed of many soft layers and one rigid layer with a very225

high elastic modulus (ex. melt-freeze crust). This slab would have an equivalent thickness De compared to D. Then, the roots

of the equation are found where τ +∆τ = τp. The roots defined two angles, α1 and α2, describing the area of stress from the

surface beneath the skier to the weak layer. From these two angles, we found the skier crack length (lsk) with the following

equation (Gaume and Reuter, 2017):

lsk =De

[
1

tanα1
− 1

tanα2

]
. (5)230

It is important to note here that De is only used in the lsk formulation, and the real slab thickness D is still used in the ac

formulation, explained below, and in the spatial analysis and estimation.

The critical crack length is computed using the formulation from Gaume et al. (2017):

ac = Λ

[
−τ +

√
τ +2σ(τp − τ)

σ

]
, (6)

where σ = ρgDcosψ and Λ is a characteristic length of the system defined by:235

Λ =

√
E′DDwl

Gwl
, (7)

with E
′
= E/(1− v2), v is the Poisson ratio set to 0.3, Dwl is the weak layer thickness and Gwl is the shear modulus of the

weak layer. However, Richter et al. (2019) proposed to change the formulation of Λ to not use Dwl due to the sensitivity of

this parameter in snow cover modeling (SNOWPACK), which is also sensitive in the visual interpretation of an SMP profile.

They proposed to use a Fwl parametrization based on the weak layer density and the optical grain size, replacing the ratio Dwl

Gwl
240

into the characteristic length Λ =
√
E′DFwl. They normalized the optical grain size with a critical grain size (1.25 mm) from

Schweizer et al. (2008b). The critical grain size of 1.25 mm comes from statistical analysis, which determines a grain size

threshold that classifies stable snow from unstable. We choose to use the same approach, but with the parameters of the SMP

L to replace the optical grain size, and we use a critical L0 of 1.09 mm (Pielmeier and Marshall, 2009), which also classifies a

stable and unstable snowpack from the same statistical analysis.245

Fwl = 4.7× 10−9

(
ρwl

ρice
· Lwl

L0

)−2.1

[mPa−1] (8)

where ρwl is the weak layer density, Lwl is the L parameter from the SMP signal averaged in the weak layer. The values are

slightly different from those reported by Richter et al. (2019). Critical crack lengths were also obtained in the field with the

propagation saw test (PST) next to the snow profile for each snow sampling survey. We compare the critical crack lengths ac

from the SMP with the critical crack length from the PST tests to validate our approach. It is important to note here that the goal250
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Figure 2. Schematic representation of the workflow used to process the SMP signal to obtain the snow mechanical properties and the stability

metrics. The variables and the dashed square in red are the snow mechanical properties and the three stability metrics that will be analyzed

and spatially estimated in this work. The parameters of the weak layer are denoted by the subscript Xwl.

of the study is not to predict with high accuracy the stability metrics, but to model the spatial variation. The skier propagation

index SPI is defined by the critical crack length (ac) over the skier crack length (lsk) (Gaume and Reuter, 2017):

SPI =
ac
lsk

(9)

A stable snowpack with a skier standing on top will be above 1 and an unstable snowpack below 1.

2.4 Analysis of spatial pattern255

The first objective of this paper is to compare the scaling effect on snow mechanical properties and stability metrics for slopes

prone to avalanches with different characteristics. We choose three mechanical properties, the slab thickness D, slab density

ρslab and the shear strength of the weak layer τp, and also the three stability metrics described above, which are the skier

crack length lsk, the critical crack length ac and the skier propagation index SPI. The spatial pattern of each snow mechanical

properties and stability metrics mentioned above were compared between the snow spatial surveys as an exploratory analysis.260

The omnidirectional sample variogram y was computed following the equation for a variable x (Chilès and Delfiner, 1999).

γ(h) =
1

2N

N∑
i=1

[(xi +h)−xi]
2 (10)

with N = number of observations and h = distance between observations. The experimental variogram is defined by three

parameters, the nugget or the non-spatial variance, the sill, which is the spatial variance, and the correlation length, which

is the distance where the variance stabilized. The sill is difficult to compare between properties because they do not have265

the same units. However, the correlation length will be compared between snow mechanical properties and stability metrics
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because they share the same unit. The correlation length gives an indication of the size of the spatial pattern. Covariance models

::::
Four

:::::::
different

:::::
types

::
of

:::::::::
covariance

::::::
models

:::::::::
(Gaussian,

::::::::::
Exponential,

:::::::::
Spherical,

:::::::
Matern) were fitted to the experimental variogram

using the
::::::
iterative

::::::::::
reweighted

::::
least

::::::
squares

:::::::::
estimation

::::
with

:
function fit.variogram from the gstat package in Rstudio (R Core,

2013).
:::
The

::::::
fractal

:::::::::
dimension

::::::::
expresses

::::
the

:::::::::
roughness

::
or

::::::::::
complexity

::
of

::
a
:::::::
segment

:::::::
(1-2D),

::
a

::::::
surface

:::::::
(2-3D),

::
or

::
a
:::::::
volume270

::::::
(3-4D),

::
in

:
a
::::::::::

noninteger
::::::::
dimension

:::::::::::::::::
(Gao and Xia, 1996)

:
. From the variogram, we estimate the slope ϕ of the transformed log-

log variogram, then follow this equation to get the fractal dimension:

dfractal = 3− (
ϕ

2
) (11)

2.5 Spatial modeling

2.5.1 Covariates processing275

The second objective of this study is to explore the link between microtopographic indicators and snow mechanical properties

and stability metrics to explain and estimate snow spatial variability. The scale of these microtopographic indicators is defined

by the size of the moving window used. Different sizes of moving windows were used to allow a multiscale approach in

describing the spatial process (e.g. Revuelto et al., 2020; Meloche et al., 2022; Veitinger et al., 2014). The different sizes

of the moving window used in this study are based on the literature and will be developed further below. Microtopography280

indicators are used as exploratory spatial variables and will be referred to as covariates in the spatial model. These covariates

were generated from a digital terrain and surface model (DTM/DSM) generated by photogrammetry with the UAV imagery.

The classification between the ground and the vegetation was performed manually by visual inspection because the extent of

the study site is small. Canopy models were also generated for every snow study site by differentiating the DSM from the

DTM. Snow depth maps were generated using a snow surface model (DSMsnow) and compared to the DTM model to retrieve285

the snow depth for each spatial snow survey.

All covariates are raster data with an original spatial resolution below 0.1 m and were upscaled to a spatial resolution of

0.5 m. The final resolution of the spatial model is the same as the covariates. The choice of covariates is based on multiple

studies that focus on spatial variation of snow depth. Three groups of covariates, terrain shape, vegetation and microclimate,

are presented in Table 1. We choose two indicators to describe the terrain shape, the topographic position index TPI and the290

vector ruggedness measure.
:::
The

::::::::::
topographic

:::::::
position

:::::
index

::::
TPI

::
is

:
a
:::::
slope

:::::::::
descriptor

::::::::
indicating

::::::
ridges,

::::::
valleys

:::
or

:::::
slopes

::
at

::
a

::::
given

:::::
scale,

::
it
:::::
refers

::
to
::::

the
:::::::
position

::
in

::::::::
elevation

::::::
relative

::
to

:::
the

::::::::
neighbor

::::
cells

::::::::::::
(Weiss, 2001).

::::
The

::::
TPI

::
is

::::::::
measured

:::::::
between

::
a

::::::::
minimum

:::::
radius

:::
and

::
a
::::::::
maximum

::::::
radius

::::
with

:::::::
weighted

:::::::
distance

:::::
from

::
the

:::::::::
maximum

:::::::::
radius(less

:::::::::
important)

:::::
(Table

:::
1).

:::
The

::::::
vector

:::::::::
ruggedness

:::::::
measure

::::::::
indicates

:::
the

::::::::::
ruggedness

::
of

:::
the

::::::
terrain

:::::::::::
independently

:::
of

:::
the

:::::
slope

:::
and

::::::
aspect.

::::
The

:::::::::
ruggedness

::
is
:::::::
derived

::::
with

:::
the

::::
sum

::
of

::::::::
elevation

:::::::::
differences

::::
with

::::
the

:::::::
neighbor

:::::
cells,

:::
but

::::
then

:::::::::
decoupled

::::
with

:::
the

:::::
slope

::::
and

::::::
aspect,

::::::::
meaning

:::
that

::
a295

:::
flat

:::
and

:
a
:::::
steep

:::::
slope

:::::
could

::
be

::::::::::::
homogeneous

::::
with

:::
low

::::::::::
ruggedness

:::::::::::::::::::::::::::
(Sappington J. Mark et al., 2007).

:
These two indicators are

widely used in the literature to explain and estimate the snow depth (e.g. Revuelto et al., 2020; Meloche et al., 2022; Veitinger

et al., 2014). The sizes of the different moving windows were chosen based on the values used in these studies to have a

multiscale approach (Table 1). We also used the slope of the terrain and also convexity as exploratory variables. Vegetation
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Table 1. Covariates used for the spatial models with the source (DTM/DSM) and additional parameters.

Covariates Abbr Additional parameters Processing library

Easting and northing xy NA Python implementation

Terrain slope Slope NA Qgis

Topographic Position index TPI515 moving window
::::
radius

:::::::
min/max = 5/15 m SAGA ta-morphometry

Topographic Position index TPI2550 moving window
:::::
radius

:::::::
min/max = 25/50 m SAGA ta-morphometry

Vector ruggedness measure VRM5 moving window = 5 m SAGA ta-morphometry

Vector ruggedness measure VRM15 moving window = 15 m SAGA ta-morphometry

Vector ruggedness measure VRM25 moving window = 25 m SAGA ta-morphometry

Convexity Convex scale = 25 SAGA ta-morphometry

Canopy height Cano DSM/DTM Qgis

Distance to canopy Dist-cano Radial proximity to trees > 2 m SAGA grid tools

Incoming solar radiation Rad Hourly time steps 30 days before sampling SAGA ta-lighting

Snow depth Hs DSMsnow −DTM Qgis

Winstral index Sx Search radius
::::::
distance = 100 m Python Winstral et al. (2002)

also has an impact on the spatial variation of snow depth (Deems et al., 2006), we choose to use the canopy height and also the300

::
for

:::
the

::::::::
influence

::
of

::::::
shrubs

::::::
(around

:::
0.3

::::
and

:::
0.5

::
m)

::::
and

::::
small

:::::
trees

::::::
(around

::
1

::
or

:
2
:::
m)

:::::::
because

::
the

:::::::::
snowpack

:::
can

::
be

:::
up

::
to

:
3
::
or

::
4

::
m

::
in

::::
some

:::::
areas

::
in

::::
JBC

:::
and

::::
RH.

::::
Only

::::
trees

:::::
above

:::
5m

:::::
were

::::::
masked

:::::
from

::
the

:::::
study

:::::
sites.

:::
We

:::
use

:::
the radial proximity to vegetation

greater than 2 m, to represent proximity to trees. Some authors also found that solar radiation (e.g. Lutz and Birkeland, 2011)

and wind exposure (e.g. Winstral et al., 2002) were important to spatially estimate snow properties. We selected as covariates

the potential of incoming solar radiation, using a DSMto represent the shading and the sunshine area
::
the

:::::::::
algorithm

::::::::
simulates305

:::
over

::
a
:::::
DSM,

:::
the

::::::::
trajectory

::
of

:::
the

:::
sun

::
in

:::
the

:::
sky

:
based on the Sun trajectory over a DSM in a time period

::::
time

::
of

:::
the

::::
year

:::
and

:::
the

::::::
latitude

::
of

:::
the

:::::
study

::::
site.

::::
The

:::::::
covariate

:::::::::
represents

:::::
direct

:::::::::
insolation

::::::
(shade

:::
and

::::::::
sunshine

:::::
areas),

:::::::::
calculated

::::
over

::
a

:::::
month

:::::
prior

::
to

::
the

::::::
survey. The Winstral index

::
or

::::::
upwind

:::::::::
maximum

::::
slope

:::::::::
parameter Sx (Winstral et al., 2002) described the wind exposure

in a DSM
::::::::
represents

:::
the

::::::
shelter

::
or

::::::::
exposure

:::::
areas

::::::::
provided

::
by

:::
the

::::::
terrain

:::::::
upwind

::
of

:::::
each

::::
pixel

::::::::::::::::::
(Winstral et al., 2002)

:
.
::::
The

::::::
upwind

::::::
terrain

::
is

::::::
defined

:::::
with

:::
the

:::::::::
maximum

:::::
search

::::::::
distance

:::
and

:::
the

::::::::
prevalent

:::::
wind

::::::::
direction based on the dominant wind310

direction
::::
mean

::::
wind

::::::::
direction

::::
from

:::
the

::::::
nearest

:::::::
weather

::::::
station of the study sites

::::
over

:::
the

:::::
winter. The last covariates used were

:::::::
covariate

::::
used

::::
was

:
the spatial coordinates (easting and northing). The fitting of a smooth function, explained below, to spatial

coordinates will take into account the residual spatial autocorrelation (Nussbaum et al., 2017). The processing of the covariates

is described in Table 1, using the geoprocessing library SAGA (Conrad et al., 2015), Qgis 3.14, and a python implementation

of the Winstral index Sx according to Winstral et al. (2002).315
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2.5.2 General additive model

General additive models (GAMs) can represent nonlinear
::::::::
non-linear

:
relationships between the covariates and the response

variable. GAMs have been used in the past for spatial estimation of environmental variables (Nussbaum et al., 2017). They

produce good results while remaining easy to interpret compared to more complex tree classification methods and machine

learning algorithms (Nussbaum et al., 2017). A GAM model can be described as a generalized linear model with a linear320

prediction involving a sum of smooth functions of covariates (Wood, 2006):

g[K(Yi)] =X∗iθ+ s1(x1i)+ s2(x2i)+ s3(x3i)+ ...sj(xji) (12)

where g is a link function to a family distribution, Yi is a response variable from some exponential family distribution K, Xi

is a row of the model matrix for any strictly parametric component with vector parameter θ. Each smooth function or spline sj

can be expressed by a basis expansion b with a weight parameter β and k defining the order of the basis expansion.325

sj(xj) =

k∑
k=1

βkbk(xj) (13)

Each smooth function represents a combination of linear terms fitted to a covariate xj . The order of the smooth function

defined the non-linear degree or the wigliness of the fitted GAM. We choose to keep the order low (k = 3) to avoid overfitting

and non-realistic variation. Although stepwise procedures are widely used, they lack stability compared to newer methods such

as shrinkage and boosting procedures (Hesterberg et al., 2008). We choose to use the double penalty approach as a shrinkage330

method proposed by Marra and Wood (2011). This method adds a smoothing parameter for each covariate spline function.

This method is implemented in the package mgcv in R. Once our model is fitted and the covariates are selected, we estimated

the response variable for every location at each study site on a 0.5 m resolution grid. Finally, the
:::
We

:::::::
repeated

:::
this

:::::::
method

:::
for

::
six

::::::::
response

::::::::
variables,

:::
the

::::
three

:::::
snow

::::::::::
mechanical

:::::::::
properties,

:::
the

:::
slab

::::::::
thickness

:::
D,

::::
slab

::::::
density

:::::
ρslab :::

and
:::
the

:::::
shear

:::::::
strength

::
of

::
the

:::::
weak

:::::
layer

:::
τp,

:::
and

::::
also

:::
the

::::
three

:::::::
stability

:::::::
metrics

::::::::
described

::::::
above,

:::::
which

:::
are

:::
the

:::::
skier

:::::
crack

:::::
length

::::
lsk,

:::
the

::::::
critical

:::::
crack335

:::::
length

::
ac::::

and
:::
the

::::
skier

:::::::::::
propagation

:::::
index

:::
SPI.

::::::
These

:::::::
response

::::::::
variables

:::::
were

::::::::
estimated

::::
with

:::::::
GAM’s

:::::
using

:::
the

::
13

:::::::::
covariates

::::
listed

::
in
:::::
Table

::
1.
::::
The

:
performance of our models was assessed with the root mean square error RMSE and the mean absolute

error MAE using a 10-fold cross-validation approach. This procedure splits the sample randomly in
:::
into

:
10 subsets and fits

the model to the 9 subsets and compares it to the remaining subset, this procedure is repeated 10 times. The computation

was done
:::::::::
percentage

::
of

::::::::
deviance

::::::::
explained

:::::
(sum

::
of

:::::::
squared

::::::
errors)

:
is
:::::::::

computed
::
to

::::::::::
demonstrate

:::
the

:::::::
amount

::
of

::::
total

::::::::
variance340

::::::::
accounted

:::
by

:::
the

:::::
model,

::::
this

:::::
metric

::
is
:::::
more

:::::
suited

:::
for

:::::::::
non-linear

:::::
model

::::::::
compared

:::
to

:::
R2,

:::::
which

::
is

::::
still

:::::
shown

::
in

:::
the

::::::
results

:::
for

::::::::::
comparison.

:::::
Once

:::
our

:::::
model

::
is
:::::
fitted

::::
(and

:::::::::::::
cross-validated)

::::
and

:::
the

:::::::::
covariates

:::
are

:::::::
selected,

:::
we

:::::::
estimate

:::
the

::::::::
response

:::::::
variable

::
for

:::::
every

:::::::
location

::
at

::::
each

:::::
study

:::
site

:::
on

:
a
:::
0.5

:::
m

::::::::
resolution

::::
grid.

::
A

:::::::
smaller

::::::::
resolution

::::
will

:::
not

::
be

::
in

::::
line

::::
with

:::
the

::::::::::
assumption

::
of

:::::::::::
homogeneous

:::::::::
snowpack

::
for

:::
the

:::::::::::
computation

::
of

:::
the

::::
skier

:::::
crack

:::
lsk:::

and
:::
the

::::::
critical

:::::
crack

::::::
length

::
ac.

:::
All

::::::::
statistical

::::::::::::
computations

::::
were

:::::::::
performed in R (R Core, 2013).345
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Table 2.
:::::::
Summary

:::
for

:::
the

::::
snow

:::::::::::
measurements

::
of

::
all

:::
four

:::::
spatial

:::::::
surveys.

:::
The

:::::
results

::
of

:::
the

:::::::::
compression

:::
test

:::
CT

:::::
results

:::
and

:::
the

:::::::::
propagation

:::
saw

:::
test

:::
PST

:::
are

:::::
shown

::::::::
according

:
to
:::
the

:::::::
standards

::
of

::::::::::::::::::::::::::::::
Canadian Avalanche Association (2016).

::::::
Surveys

::::
Date

::::
Mean

::
D

::
&

::
ρ

::::
Weak

::::
layer

: ::
Nb

::::
SMP

: :::::
Extent

:::
CT

:::
PST

:::
(m)

:

:::::::
AR22-PP

: :::::::::
2022-02-25

:::
0.28

::
m
::
&

:::
252

::
kg

::::
m−3

: ::
PP

:::::
0.5-1

:::
mm

::
45

: ::
71

:
m
:

::::::
CTM11

::::
(RP)

::::
down

::::
0.25

:
m
:

::::::
CTH23

:::
(RP)

:::::
down

:::
0.54

::
m
:

::::::
CTH22

::::
(RP)

::::
down

::::
0.35

:
m

:::::
0.9/1.5

:::::
END

::::::
1.42/1.5

::::
END

::::::
1.22/1.5

::::
END

:::::::
RH22-PP

: :::::::::
2022-01-27

:::
0.19

::
m
::
&

:::
171

::
kg

::::
m−3

: ::
PP

:::::
0.5-1

:::
mm

::
64

: :::
116

::
m

::::::
CTM19

::::
(RP)

::::
down

::::
0.22

:
m
:

::::::
CTM19

::::
(RP)

::::
down

::::
0.22

:
m
:

::::::
CTH22

::::
(RP)

::::
down

::::
0.24

:
m

:::::
0.8/1.5

:::::
END

::::::
0.28/1.5

::
SF

:

::::::
1.38/1.5

::::
END

::::::::
JBC22-SH

:::::::::
2022-01-19

:::
0.39

::
m
::
&

:::
188

::
kg

::::
m−3

: ::
SH

:::
1-2

:::
mm

: ::
53

: :::
102

::
m :::::

CTH21
::::
(RP)

:::::
down

:::
0.39

::
m

:

:::::
CTM12

::::
(RP)

::::
down

:::
0.5

::
m

::::::
1.28/1.5

::::
END

::::::
1.46/1.5

::::
END

::::::::
JBC22-PP

:::::::::
2022-01-24

:::
0.21

::
m
::
&

:::
166

::
kg

::::
m−3

: ::
PP

:::::
0.5-1

:::
mm

::
55

: ::
74

:
m
:

::::::
CTM13

::::
(RP)

::::
down

::::
0.25

:
m
:

::::::
CTM16

::::
(RP)

::::
down

::::
0.24

::
m

::::::
1.24/1.5

::::
END

::::::
1.41/1.5

::::
END

:::::::
EP20-DF

:::::::::
2020-02-29

:::
0.32

::
m
::
&

:::
241

::
kg

::::
m−3

: :::
DF

::::
0.5-1

:::
mm

::
38

: ::
45

:
m
:

:::::
CTH23

::::
(RP)

:::::
down

:::
0.38

::
m

:

::::::
CTH24

:::
(RP)

:::::
down

:::
0.45

::
m

:
-

:
-

:::::::
EP19-FC

:::::::::
2019-01-24

:::
0.85

::
m
::
&

:::
333

::
kg

::::
m−3

: ::
FC

:
1
:::
mm

: ::
22

: ::
48

:
m
:

:::::
CTH20

::::
(SP)

::::
down

::::
0.82

::
m

::::::
CTM22

::::
(RP)

::::
down

::::
0.88

:
m

:
-

:
-

3 Results

3.1 Summary of spatial snow surveys

The first spatial snow survey is at the AR site. A weak layer of precipitation particles between
::::
with

::
an

::::::::
observed

::::
grain

::::
size

::
of 0.5

- 1 mm was investigated on 25 February 2022 (AR22-PP), with 45 SMP measurements and a spatial extent of 71 m. The slab

thickness was on average 0.28 m with a high mean density of 252 kg m−3 (Table 2). This study site is highly wind-affected,350

especially in the upper part of the slope with a higher slab density. The bottom of the slope is more protected from the wind,

whereas the slab is softer with a lower density. At the RH site, a weak layer of precipitation particles
::::
with

::
an

::::::::
observed

:::::
grain

:::
size

::
of

:
between 0.5 and 1 mm beneath a relatively fresh and soft snow slab, with a mean slab thickness of 0.19 m and a mean

density of 171 kg m−3. This survey was done on 27 January 2022 with 64 SMP measurements and a spatial extent of 116 m.

The slab
:::
for

:::
this

::::::
survey is made up of one layer

::
of

:::::::::::
homogeneous

:::::
storm

:::::
snow, and both the slab and the weak layer are from the355

same meteorological event. We were able to conduct two spatial snow surveys at the JBC site in two different areas of the site.

The first survey at this site was done on January 19, 2022 (JBC22-SH) when there was a weak persistent layer of buried surface

hoars
::
of

:::
size

:::
1-2

::::
mm. The slab is composed of multiple layers, given a mean slab thickness of 0.39 m and a mean density of
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188 kg m−3 above the surface hoar crystals. This survey is made up
:::::::
consists of 53 SMP measurements and a spatial extent

of 102 m. The second field survey was carried out on
::
in a snowpack characterized by a weak layer of precipitation particles360

buried under a fresh snow slab of 0.21 m and 166 kg m−3 on average, which comes from the same meteorological event as

RH22-PP. This survey was carried out on 24 January 2022 (JBC22-PP) with 55 SMP measurements and a spatial extent of 74

m (Table 2).

Summary for the snow measurements of all four spatial surveys. The results of the compression test CT results and the

propagation saw test PST are shown according to the standards of Canadian Avalanche Association (2016). Surveys Date365

Mean slab
:::::
Figure

::
3
:::::::::::
demonstrates

::::
slab

::::::
density

::
ρ
::::
and

:::
the

:::::
weak

::::
layer

:::::
shear

:::::::
strength

::
in

:::::::
relation

::
to

::::
slab

::::::::
thickness

:
D& .

::::::
These

:::::::
relations

:::
are

::::
well

:::::::
defined

::
in

:::::
snow

:::::::
science,

::
as

::::
the

:::::
snow

::::::
density

::::
and

:::
the

:::::
snow

:::::::
strength

::::::
should

:::::::
increase

:::
as

:::
the

:::::
snow

::::::
weight

::::::::
increases.

::::::
Figure

:
3
:::::
shows

::::
our

:::
data

:::
set

::::::::
compared

::
to
::::
two

::::::::
empirical

:::::
power

::::
law

:::
fits

:::::::::::::::::::::::::::::::
(Bažant et al., 2003; McClung, 2009a),

::::::
which

::
are

:::::
used

::
to

::::::::::
parameterize

:::::::
realistic

:::::
snow

:::::::::
mechanical

::::::
values

::
in

:::::::
relation

::
to

:::
the

:::
slab

:::::::::
thickness.

::::
Two

::::
other

::::::
power

::::
laws

::::
were

:::::
fitted

::
to

::
the

::::
slab

:::::::
density ρ Weak layer Nb SMP Extent CT ac PSTAR22-PP 25-02-2022 0.28 m & 252

:::
and

::::
weak

:::::
layer

:::::
shear

:::::::
strength370

::
τp.

::::::
Figure

:::
3-a

::::::
agrees

::::
well

::::
with

:::
our

:::::::::::
’softer-slab’

::::::
surveys

:::
(ρ

:
<
::::
250 kg m−3PP 0.5-1 mm 45 71 m CTM15 RP @down 0.25 m

1.11 m RH22-PP 27-02-2022 0.19 m & 171
:
)
:::::::::
conducted

:
at
::::::
Mount

:::::::
Fidelity,

:::
but

:::::
could

:::::
easily

:::
be

:::::::
adjusted

::
by

:::::::::
increasing

:::
the

:::::
initial

::::::
density

::
in

:::
the

:::::
power

:::
law

:::
for

:::
the

::::::
survey

:::::
where

:::
the

:::::
mean

::::::
density

::
is

::::::
higher.

::::::
Surveys

::::
with

::::::
higher

::::::
density

::
(ρ

::
>

:::
250

:
kg m−3PP 0.5-1

mm 64 116 m CTM19 RP @down 0.22 m 0.8 m JBC22-SH 19-01-2022 0.39 m & 188 kg m−3 SH 1-2 mm 53 102 m CTH21

Brk @down 0.39 m 1.28 m JBC22-PP 24-01-2022 0.21 m & 166 kg m−3 PP 0.5-1 mm 55 74 m CTM13 RP @down 0.25 m375

1.24m )
:::::
were

::
on

::::::
Mount

::::::
Albert,

::::::
which

::
is

:
a
:::::::
heavily

:::::::::::
wind-exposed

::::
area

::::
that

:::::
could

::::::
explain

:::::
these

::::::
highly

:::::
dense

:::::
slabs.

:::::
Figure

::::
3-b

:::::
shows

:::::
some

::::::
surveys

:::::
align

::::
well

::::
with

:::
the

:::
two

::::::
power

:::::
laws,

::::::::
especially

:::
the

:::::::
surveys

::::
from

::::::
Mount

:::::::
Fidelity

:::::::
(circles).

::::
The

:::::::::
"stronger"

::::::
surveys

::::::::
(crosses)

::::
from

::::::
Mount

:::::
Albert

:::::
could

::::
also

::
be

:::::
fitted

:
if
:::
the

:::::
initial

::::::::
cohesion

::
is

::::::::
increased.

::::::::
However,

:::
the

::::::
Mount

:::::
Albert

:::::::
surveys

::::::::
contained

::::
more

:::::::::
variability

:::::::::
compared

::
to

:::
the

:::::
Mount

:::::::
Fidelity

:::::::
surveys.

::::
Our

::::::
dataset

:::::::::::
demonstrates

::::
that,

::
in

:::::::
general,

:::
our

::::
data

:::
set

:::
fits

::::::::::::
approximately

:::
the

::::::::
power-law

::::
fits,

:::
but

:
a
:::
lot

::
of

:::::::::
variability

::::::::
remained

::
in

::::
each

::::::
survey.

::::
The

::::::::::
intra-survey

:::::::::
variability

:::
and

::::::::::
implication380

::
for

:::::
snow

::::::::::
mechanical

::::::::
modeling

:::
will

::::::::
discussed

:::
in

::::::
section

:::
4.1.

:

3.2 Comparison of spatial patterns

For all spatial snow surveys, the empirical variogram showed smaller correlation lengths for the slab thickness compared to

other properties, ranging from 5 to 10 m (Fig. 4). The slab density variograms were also small and similar to the slab thickness

variogram for JBC22-PP and RH22-PP, with 5 and 8 m respectively. These two spatial snow surveys had the same weak layer385

and slab meteorological deposition event characterized by a new snowfall instability. The correlation length for AR22-PP is

10 m, with the same type of new snowfall instability. The last one at the Jim Bay corner (JBC22-SH) has longer correlation

lengths of around 20 to 30 m. The empirical variogram for this survey shows a correlation around 20 m, but shows significant

variability that makes the estimation less reliable compared to the other empirical variograms (Fig. 4). The variogram of the

slab density from JBC22-SH, JBC22-PP and AR22-PP also had fractal characteristics with a stabilization of the variance390

around 20 m, followed by an increase in variance around 30 and 40 m. If we look at the variogram of the shear strength of the

weak layer, the four spatial snow surveys had a longer correlation length around 20 m compared to slab properties which are
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Figure 3.
:::
SMP

:::::::
derived

:::
slab

::::::
density

:::::
ρslab ::

(a)
::::

and
::::
weak

::::
layer

:::::
shear

:::::::
strength

::
τp:::

(b)
::
in

::::::
relation

::
to
:::

the
::::
slab

:::::::
thickness

:::
D

::
for

::::
each

:::::
SMP

::::::::::
measurement

::
of

::
all

::::::
spatial

:::::
survey.

::::
The

:::::
circles

:::::::
represent

:::
the

:::::
SMP

:::::
values

::
in

:::::
Mount

:::::::
Fidelity,

:::::
British

:::::::::
Columbia,

:::
and

:::
the

::::::
crosses

:::
are

::::
from

::
the

::::::
surveys

::
in
::::::
Mount

:::::
Albert,

:::::::
Québec.

::
A

:::::
power

:::
law

::
in

::::
blue

:::
was

::::
fitted

::
to

:::
the

::::::::::
SMP-derived

:::::
values

::
of
:::
all

::
the

:::::::
surveys,

::::
with,

::::::::::
respectively,

::
a)

::
0.5

:::
R2

:::
for

:
ρ
:::
and

::
b)
:::

0.4
:::
R2

:::
for

::
τp.

::
a)
::::
The

:::::
orange

:::::
power

:::
law

::
fit
::::::::

represents
::
ρ
::::::::
compared

::
to

::
D,

::::
with

::
an

:::::
initial

::::::
density

::
of

:::
100

:::
kg

::::
m−3

::::
from

:::::::::::::
McClung (2009a).

::
b)

:::
The

:::
red

:::::
power

:::
law

::
is

::
the

:::::
power

:::
law

::
for

:::
τp :::

from
:::::::::::::::
Bažant et al. (2003)

::::::
reported

::
to
::::::::::::
Mohr-Coulomb

::::::
criterion

::::
with

::
an

:::::
initial

::::::
cohesion

::
of
:::
300

:::
Pa

:::::::::::::::
(Gaume et al., 2014).

:

around 10 m. The JBC22-PP and RH22-PP surveys, the same meteorological deposition event, had a variance stabilized at 20

m without any further increase in variance. The other surveys (JBC22-SH and AR22-PP) had longer correlation lengths and

show
::::::
showed fractal characteristics with no stabilization in variance with increasing sampling distance. The type of variogram395

models that were fit was mostly spherical , characterized by
:::
and

::::::::::
exponential,

::::::
which

:::::
exhibit

:
a rapid increase in variance for small

distances. Gaussian models were also
:::::
These

::::::
models

:::
are

::::::::
typically

:::
less

::::::
smooth

::::
than

::::::::
Gaussian

::::::
models

:::::::
(smaller

:::::::
variance

:::
for

:::::
short

::::::::
distances),

::::::
which

::::
were

:
fitted for slab thickness at JBC22-SH and slab density at JBC22-PP, characterized by stable variance

for short distances followed by an increase.
:::::::::

However,
::::
these

::::
two

:::::
fitted

::::::::
Gaussian

::::::
models

::::
still

::::::
showed

::
a
::::::
shorter

:::::::::
correlation

:::
(>

:
5
:::
m). In general, the correlation lengths are smaller

:::::
shorter

:
for the thickness and density of the slab compared to the shear400

strength of the weak layer , for each snow spatial survey.

At first glance, all the correlation lengths for the stability metrics are around 20 m, thus longer than the slab properties.

Surveys at the Jim Bay corner (JBC22-SH and JBC22-PP) had smaller correlation lengths of around 20 m compared to the

other two surveys with longer correlation lengths of around 30-40 m (Fig. 5). The same similarity can be observed for the

correlation length of the critical crack length and also for the skier index. The skier index is the ratio between the critical crack405

length and the skier crack length, so this result is quite expected. The correlation length of the stability metrics is around 10 to

20 m, but some are around 30 to 40 m, which is quite large compared to the slab properties (Fig. 5). The variogram model used

is mostly spherical, but also gaussian for the slab thickness
:::::::
Gaussian

:::
for

:::
the

::::
skier

:::::
crack

:::::
length (JBC22-PP, RH22-PP, AR22-PP)

and skier index (JBC22-SH, JBC22-PP).
:::::::
Gaussian

:::::::
models

::::
were

:::::
fitted

::::
more

::
to
:::::::
stability

:::::::
metrics

::::
than

::::
snow

:::::::::
properties,

::::::::
showing
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Figure 4. Experimental variogram (circles) and fitted variogram models (line) for the snow mechanical properties. Note that the square root

of the variance gives the absolute variation.
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Figure 5. Experimental variogram (circles) and fitted variogram models (line) for the stability metrics. Note that the square root of the

variance gives the absolute variation.
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Figure 6. Boxplot of fractal dimension for snow mechanical properties and stability metrics
:::
with

::
the

::::
four

::::::
surveys

::
in

:::
each

:::::::
boxplot.

:::::::
smoother

::::::
spatial

:::::::
patterns

:::
for

::::
the

:::::::
stability

:::::::
metrics. The variogram for the stability metrics shares more similarities with the410

variogram of the weak layer shear strength rather than the slab properties.

The fractal dimensions for the snow properties showed a difference in surface roughness
::
or

:::::::::
complexity

:
between the slab

properties, the weak layer properties, and the stability metrics (Fig. 6). The slab properties have higher fractal dimensions of

around 2.85, thus a higher surface roughness
:::::::::
complexity, compared to the weak layer and the stability metrics, which yield a

similar fractal dimension of around 2.7. The values for the stability metrics are computed from the slab mechanical properties415

and weak layer properties, but the values of fractal dimension seem to be in the same range as those for the weak layer rather

than the slab. These results suggest that the spatial patterns of the stability metrics are more similar to the spatial pattern of the

weak layer than to the spatial pattern of the slab properties.

3.3 Spatial modeling

The spatial models created by GAMs were able to explain some of the variance
::
of

:::
the

::::::::
response

:::::::
variable, but not entirely. The420

R2 and the percentage of deviance explained range from 0.17 to 0.84 and from 22 to 84 %
:::::
(Table

::
3

:
-
::
4). As for the average,

it is approximately around 0.5 and 55 %. The average R2 is 0.47 for snow properties and 0.55 for stability metrics, but the

average percentage of deviance explained is the same at 55 %. The performance of the models was assessed with a 10-fold

cross-validated RMSE and MAE. The cross-validated RMSE and MAE for the slab thickness D were mostly 1-2 cm except

for 12 cm at AR22-PP and were around 4 to 27 kg m−3 for the slab density. The RMSE and MAE for the shear strength range425

from 30 to 128 Pa except for 752 Pa for AR22-PP, but this snow spatial survey was also the one with the more variance (500 to

3500 Pa).
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Table 3. Summary of the spatial models, model selection, and performance metrics for the snow properties. The performance metrics are

the following R2, the percentage of deviance % dev, scale, the cross-validated Root-mean-squared-error CV RMSE, and the cross-validated

mean-absolute-error CV MAE.
:::
The

::::::
symbols

::::
next

:
to
:::
the

::::::::
covariates

::::
refer

:
to
:::
the

:::::::::
significance

:::::
levels

::
of

::
the

::::::
p-value:

::
>
:::
0.1

::
".",

::
<
:::
0.05

::::
"*",

:
<
::::
0.01

::::
"**",

:
<
:::::
0.001

:::::
"***".

Site Snow prop. Covariates R2 % dev scale CV RMSE CV MAE

JBC22-SH D TPI2550* + VRM25 + VRM5* + Hs* + Convex. +

Dist-cano* + Sx*

0.35 42.9 9.57e-5 0.01 0.01

JBC22-SH ρslab Slope** + VRM15*** + Hs* + Convex*** + Dist-

cano*

0.57 64.1 12.22 7.91 4.78

JBC22-SH τp (x+y)* + Slope* + TPI515* + VRM15** + VRM5*

+ Convex* + Cano.

0.50 66.2 3762.3 66.29 51.70

JBC22-PP D VRM5. + Cano* 0.17 22.2 0.0001 0.01 0.01

JBC22-PP ρslab Slope** + TPI515** + TPI2550*** + VRM25** +

VRM15** + VRM5* + Hs. + Sx.

0.64 69.6 15.13 6.32 5.00v

JBC22-PP τp (x+y)*** + TPI2550*** + VRM25** + VRM15 +

VRM5*** + Dist-cano** + Sx*

0.76 80.4 864.78 41.32 30.79

RH22-PP D (x+y)*** + Slope* + TPI515*** + TPI2550* +

Cano** + Dist-cano** + Sx**

0.54 60 0.0002 0.03 0.02

RH22-PP ρslab (x+y)** + Slope. + TPI515. + VRM15** + Con-

vex*** + Cano*

0.32 38.2 64.99 11.39 8.51

RH22-PP τp (x+y)** + TPI2550*** + VRM25* + VRM5** +

Rad* + Cano**

0.42 48.3 10463 128.37 99.70

AR22-PP D (x+y). + VRM15* + VRM5. + Cano. 0.28 36.2 0.006 0.12 0.10

AR22-PP ρslab (x+y)** + TPI2550. + Hs. + Convex** 0.41 46.8 216.77 21.78 21.80

AR22-PP τp (x+y)*** + Slope* + TPI2550*** + VRM5* + Con-

vex*** + Dist-cano*

0.72 76.7 2.157e5 752.70 578.88

The spatial surfaces estimated by the GAM models in JBC22-SH for the snow mechanical properties are presented in Figure

7. The estimated surface for the slab thickness and density had the same
:
a
::::::
similar

:
variation with the same maximum and

minimum areas. The estimated surface for the shear strength of the weak layer differs slightly from the slab properties. The430

areas of maximum and minimum values are not necessarily in the same areas as the slab properties, but the main areas of

maximum and minimum values are relatively the same as the slab properties. This result also reinforces the above results,

showing that the spatial pattern of the weak layer differs from the slab properties in our dataset. Estimation errors for critical

crack length are around 0.11 to 0.60 m, except for 1.2 m for AR22-PP. The RMSE and MAE for the skier propagation index

ranged from 0.27 to 4, which is very variable and quite high for an index. The estimation errors for the stability metrics435
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Table 4. Summary of the spatial models, model selection and performance metrics for the stability metrics. The performance metrics are

the following R2, the percentage of deviance % dev, scale, the cross-validated Root-mean-squared-error CV RMSE, and the cross-validated

mean-absolute-error CV MAE.
:::
The

::::::
symbols

::::
next

:
to
:::
the

::::::::
covariates

::::
refer

:
to
:::
the

:::::::::
significance

:::::
levels

::
of

::
the

::::::
p-value:

::
>
:::
0.1

::
".",

::
<
:::
0.05

::::
"*",

:
<
::::
0.01

::::
"**",

:
<
:::::
0.001

:::::
"***".

Site Stab. metrics Covariates R2 % dev scale CV RMSE CV MAE

JBC22-SH lsk (x+y)* + Slope** + VRM15*** + VRM5. + Convex. 0.58 64.8 0.06 0.48 0.22

JBC22-SH Ac Slope*** + TPI515** + TPI2550* + VRM15*** +

VRM** + Hs***

0.60 65.9 0.06 0.20 0.14

JBC22-SH SPI Slope** + VRM15* + VRM15** + Hs* 0.35 40.3 6.66 2.5 1.89

JBC22-PP lsk (x+y)*** + TPI2550** + VRM25** + VRM5** +

Sx*

0.60 65.1 0.006 0.10 0.07

JBC22-PP Ac (x+y)* + TPI515*** + VRM5*** + Hs. + Rad** +

Sx*

0.74 77.7 0.02 0.15 0.11

JBC22-PP SPI (x+y)** + TPI515*** + VRM5*** + Rad** + Sx* 0.84 87 0.20 0.36 0.27

RH22-PP lsk (x+y)*** + TPI2550** + VRM25** + VRM15* +

VRM5* + Rad* + Cano*

0.51 57.1 0.004 0.11 0.08

RH22-PP Ac VRM25** + VRM5** 0.25 28.7 0.39 0.60 0.47

RH22-PP SPI (x+y)*** + VRM25*** + Rad. + Convex** 0.43 48.5 0.61 1.23 0.85

AR22-PP lsk (x+y)** + VRM25* 0.22 27.5 3.2 2.97 1.85

AR22-PP Ac TPI2550*** + VRM15* + Convex* + Cano. + Sx. 0.65 69.1 0.61 1.26 1.01

AR22-PP SPI TPI2550*** + Convex** 0.66 68.7 5.14 4.29 3.31

were high and not reliable compared to the snow mechanical properties. However, Figure A1 shows that the RSME might

be overestimated by some outliers
:::::
some

::::::
outliers

:::::
might

:::::::::::
overestimate

::::::
RSME

:
with low values of lsk and high SPI values

::::
(SPI

::
≈

:::
10). The spatial patterns of the stability metrics indicate 2

:::
two

:
major weak spots on the north side (right)

:::
and

:::::::::
northwest

::::::::::::
(upper-middle). These weak spots correspond to areas with lower shear strength values and slightly thicker and higher-density

slabs.440

There are no clear covariates that are used
:::::::
selected

::
by

:::
the

:::::
model

:
for every site, snow properties, or stability metrics. However,

some covariates were used more often than others. The most used covariates for both snow properties and stability metrics were

multiscale TPI and VRM, but their usage is quite variable depending on the scale (Fig. 9). The shear strength of the weak layer

appeared to use mainly TPI2550 and VRM5 compared to the slab density, which used mainly VRM15 and convexity. The

canopy height was used in the snow properties models but not really in the stability metrics models. The easting and northing445

coordinates were widely used in the models showing the presence of autocorrelated residuals. Surprisingly, snow depth was

not used as much as other covariates. These results showed that there are no universal covariates or specific covariates for snow
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Figure 7. Spatial estimation for the snow mechanical properties a) slab thickness D, b) slab density ρ, c) shear strength τp at the Jim bay

corner on 19 January 2022 (surface hoar layer - 1mm). The cross-validated root mean squared error RMSE and the mean absolute error MAE

are shown next to the map of each property.
:::
The

:::
grey

::::::
shading

::
in
:::
the

:::::::::
background

:::
map

::::::::
represents

:
a
::::::

canopy
::::::
shading

::::
only

::
for

:::
the

::::::::::
visualization

:
of
:::::

trees.

properties or stability metrics. However, these results demonstrate the utility of using these covariates to spatially estimate the

snow properties, and also stability metrics with less precision.
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Figure 8. Spatial estimation for the stability metrics a) skier crack length lsk, b) critical crack length ac, and c) Skier propagation index

SPI at the Jim bay corner on 2022-01-19 (surface hoar layer - 1mm). Cross-validated root mean squared error RMSE and mean absolute

error MAE are shown next to the map of each metric.
:::
The

::::
grey

::::::
shading

::
in

:::
the

:::::::::
background

:::
map

::::::::
represents

::
a
:::::
canopy

:::::::
shading

:::
only

:::
for

:::
the

:::::::::
visualization

::
of

::::
trees.
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Figure 9. The frequency usage of covariates in the GAM spatial models, the frequency is pondered
:::::::
weighted with the significance levels of

the p-value.

4 Discussion450

4.1
::::::

Spatial
::::::::
modeling

::::
This

::::
study

:::::::
gathers

:
a
::::::
unique

::::::
dataset

:::::::::
describing

:::
the

::::::
spatial

:::::::
variation

::
of

:::::
snow

::::::::::
mechanical

::::::::
properties

::::
and

:::::::
stability

::::::
metrics

::
at

::::
four

:::::::
different

:::::
study

::::
sites.

::::
The

:::::::::
comparison

:::
of

::
the

::::::::::
variograms

:::
and

::::::
fractal

:::::::::
dimensions

:::::::::::
demonstrates

::::
that

:::
the

:::
slab

:::::::::
properties

:::::
(depth

::::
and

::::::
density)

::::
vary

::
at
::
a
:::::::
different

:::::
scale

::::::::
compared

::
to

:::
the

:::::
weak

::::
layer

:::::::::
properties

:::
and

:::::::
stability

:::::::
metrics

::::::::
(smoother

:::::::
pattern).

:::::::
Spatial

:::::
GAM

::::::::
modeling

:::
was

:::::
used

::
to

:::::::
spatially

::::::
predict

::::
with

:::::
good

::::::::
accuracy

:::
the

::::
snow

::::::::::
mechanical

:::::::::
properties

:::::
using

::::::::::::::
microtopography

::::
and

::::
with455

:::
less

::::::::
precision

:::
the

:::::::
stability

::::::
metrics.

:::::::::
However, Our spatial modeling did not fully explain the variance

::
of

::::
each

:::::::
response

:::::::
variable.

Some spatial variance could
::::::::
variances remain unexplained, but it could also be attributed to a nonspatial variance

:::::::::
non-spatial

::::::::
variances, such as instrument error or our processing data strategy. This strategy includes a visual interpretation of the layer in

the SMP resistance profile. A misclassification or misidentification of the weak layer boundaries can influence our results by

adding non-spatial variance to our dataset. However, we used the SMP parameter L in the parameterization Fwl proposed by460

(Richter et al., 2019) instead of the thickness of the weak layer for the computation of the critical crack length (Gaume et al.,

2017). This modification makes our method less dependent on the weak layer thickness, which was visually identified for each

SMP profile. The RMSE was still quite high for the stability metrics
:::
and, thus less reliable for spatial estimation purposes.

The SPI values were quite low (>
:
<0.5) for some areas in the spatial survey. If we had sampled these areas walking with the

SMP, these areas should have been triggered, but nothing happened. This indicates that the stability metrics estimations are465

too pessimistic. We are not sure where the error might be, maybe in the SMP processing or the spatial modeling, or maybe

both. However, the cross-validated RMSE for the snow mechanical properties was good with reliable precision according

to the properties (Table 3), indicating that the SMP processing for the snow mechanical properties is good, as well as the
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:::::
GAM spatial modeling compared to the stability metrics.

:::::
Future

:::::
work

:::::
could

:::
use

::::::
spatial

::::::::::
estimations

::
of

:::
the

:::::
snow

::::::::::
mechanical

::::::::
properties

::
to

:::::::
compute

:::
the

:::::::
stability

::::::
metrics

::::
from

:::
the

::::::
spatial

::::
field

::
of

::::
snow

:::::::::
properties.

::::
The

:::::::::::::
cross-validation

::::::::
procedure

::
is

:::::::::
performed470

::
by

::::::::
randomly

::::::::
selecting

:::
10

:::::::
subsets.

:::
The

:::::::
random

::::::::
selection

:::::
could

::::
take

::::
into

:::::::
account

:
a
:::::::::
minimum

:::::::
distance

:::::::
between

:::::::::::
observations

:::
(i.e

:::
our

:::::::::
correlation

::::::
length)

::
to

::::::
ensure

::::::::
complete

::::::::::
independent

::::::
subsets

::::::
before

:::::::::
computing

:::
the

::::::
RMSE

:::
and

::::::
MAE,

:::
and

:::::
could

::::
bias

:::
the

::::::::
estimation

::
of

:::
the

::::::
RMSE

:::
and

:::::
MAE

::::::::
However,

:::
our

:::::::
10-fold

:::::::::::::
cross-validation

::::::::
(repeated

::
10

::::::
times)

:::
still

:::::::
provides

::
a

::::::
reliable

:::::::::
estimation

::
of

:::
the

::::::::::
performance

::
of

::::
our

::::::
models.

::::::
Future

:::::
work

:::::
should

::::
take

::::
this

:::
into

::::::::
account.

4.2
:::::::::::::::

Microtopographic
:::::::::
covariates475

::::
This

::::
study

::::::
aimed

::
to

:::
use

:::::::::::::::
microtopographic

::::::::
covariates

::
to

::::::::
spatially

::::::
predict

::::
snow

::::::
spatial

::::::::
variation

:::
and

:::::::
stability.

::::
Our

:::::
GAM

::::::
spatial

::::::::
modeling

:::
did

:::
not

:::::
reveal

::
a

:::::::
universal

::::::::
covariate

::::
that

:::::::
predicts

::::
both

:::::
snow

:::::::::
mechanical

:::::::::
properties

::
or

:::::::
stability

:::::::
metrics.

::::
The

::::
study

:::
of

::::::::::::::::
Reuter et al. (2016),

:::::
based

:::
on

::::::::::
larger-scale

:::::::::::
terrain-based

:::::::::
covariates,

:::
did

:::
not

::::
find

::
a
::::::::
universal

::::::::
covariate

::
to

::::::
predict

:::::::::
instability

::
at

::
the

:::::
basin

:::::
scale.

:::::
They

:::::::
reported

::::
that

:::
the

:::::
slope

:::::
aspect

::::
was

:::::::
selected

::
as

::
a
::::::::
predictor

::
by

:::
the

::::::
model

::
in

:::
all

::
of

::::
their

:::::::
surveys,

:::
but

:::::
each

:::::
survey

::::
used

::
a

:::::::
different

::::::::::
combination

::
of
:::::::::
covariates.

::::
Like

:::
the

:::::
study

::
of

::::::::::::::::
Reuter et al. (2016)

:
,
:::
the

:::::::
selection

::
of

:::::::::
covariates

:::
was

:::::::
specific480

::
to

::::
each

::::::
survey

::::
with

:::
no

::::
clear

:::::
trend

::
or

::::::::
takeaway

:::::::::
regarding

:::
the

:::::
choice

:::
of

:::::::::
covariates.

:
Surprisingly, snow depth was not a good

estimator of snow mechanical properties and stability metricsfor our dataset. Slope seems to be a better spatial estimator for

snow instability. The
:
.
::::::::::::::::
Reuter et al. (2016)

:::
also

::::::::
reported

:::
that

:::
all

::::
their

::::::::::::
terrain-related

::::::::
covariates

:::::
were

::::
used

::
in

:
7
::
of
:::::

their
:::::::
surveys,

:::
but

::::
snow

:::::
depth

::::
was

::::
only

:::
in

:::
six

::
of

:::::
them.

::
In

::::
our

:::::
study,

:::::
snow

:::::
depth

::::
was

::::
only

::::
used

:::
to

::::::
predict

::::
slab

:::::
depth

:::
and

::::
slab

:::::::
density

:::
but

::
the

::::::
model

:::::
never

:::::::
selected

:::::
snow

:::::
depth

:::
to

::::::
predict

:::
the

:::::
shear

:::::::
strength

:::
of

:::
the

:::::
weak

:::::
layer.

::
A

:::::::
possible

::::::::::
explanation

:::::
could

:::
be

::::
that485

::
the

:::::
weak

:::::
layer

::::::
spatial

::::::::
variation

::
is

:::
not

::::::
related

::
to
::::

the
::::
snow

::::::::::::
accumulation

:::::::
process,

:::
or

:::
that

::::
our

::::::
dataset

::::
was

:::
too

::::::::::::
homogeneous

::::::::
regarding

::::
snow

::::::
depth.

::::::::
AR22-PP

::
is
::
a
::::::::::::
wind-exposed

:::::
study

:::
site

::::
and,

:::::::::::
surprisingly,

:::
the

:::::
GAM

::::::
model

:::
did

:::
not

:::::
select

:::
the

::::::::
Winstral

::::
index

:::
Sx::

as
:::::
good

::::::::
predictor.

::::
The

:::::::
research

:::::::
distance

::
in

:::
Sx:::::::::

represents
:::
the

::::
scale

::
of

:::
the

::::::::
indicator

:::
and

:::
the

::::
one

:::::::
selected

::
in

:::
the

:::::
study

:::::
might

::
be

:::
too

:::::
large

::::
(100

:::
m).

:::::
Using

:::::::
multiple

::::::
scales

:::
like

::
in

:::
the

::::
case

::
of

::::
TPI

:::
and

::::::
VRM,

:::::
could

::::::
change

:::
Sx ::

as
:
a
:::::::::
significant

::::::::
covariate

:
at
::::

the
:::::::::::
wind-exposed

::::
site

::::::::::
(AR22-PP).

::::::::::::
Unfortunately,

:::
no

::::
link

:::::
could

:::
be

:::::
made

:::::::
between

:::
our

:::::
only

::::::::
persistent

:::::
weak

:::::
layer

::::::
survey490

::::::::::
(JBC22-SH)

:::
and

:::
the

:::::::::
remaining

::::::::::::
non-persistent

:::::
weak

::::
layer

:::::::
surveys.

::
A

::::::
bigger

::::::
dataset

::
is

::::::
needed

::
to

::::::::::
demonstrate

::::
clear

::::::::::
differences

:::::::
between

::::::::::::
alpine/forested

:::::
areas

:::
and

::::::::::::::::::::
persistent/non-persistent

:::::
weak

::::::
layers.

::::
The covariates TPI and VRM are the best covariates

for estimating snow properties, also in accordance with
:::
this

::::
was

::::
also

::::::::
observed

::
by

:
previous studies using spatial models to

:::::::
(random

::::::
forest)

::
to

:::::::
spatially estimate snow depth (Meloche et al., 2022; Revuelto et al., 2020).

:::
The

:::
best

::::::
scale,

::
or

:::::::
window

::::
size,

::
of

:::
TPI

:::
and

:::::
VRM

:::
for

:::::::::
prediction

:::::
seems

::
to

::
be

::::::::
changing

:::::::::
depending

:::
on

::
the

:::::
study

::::
site,

:::::
snow

::::::::
properties

:::
and

:::::::
stability

:::::::
metrics.

::::::
Future495

::::
work

::::
with

::
a

:::::
larger

::::::
dataset

::::::
should

:::::::::
investigate

:
if
:::
the

::::
best

:::::
scale

:
is
::::::
related

::
to
:::
the

:::::::
specific

::::
scale

:::
of

:::
the

:::::
terrain

::
at
::::
each

::::
site,

:::
the

:::::
scale

::
of

:::
the

::::::::::::
meteorological

:::::::
process

:::::::
affecting

:::
the

::::
slab

:::
and

:::
the

:::::
weak

:::::
layer,

::
or

:::::::::
interaction

::::
with

:::::
both. Still, the multiscale covariate TPI

associated with the terrain shape seems
:::::
terrain

:::::
shape

:::::::
appears

:
to be a good spatial estimator for backcountry recreationists.

VRM could also be a good estimator for backcountry recreationists, but it might
::::
could

:
be more difficult to identify with a

snow-covered terrain. Weak layer spatial variability remains the main information to monitor for
::
for

::::::::::
monitoring the spatial500

occurrence of snow instabilitybut it is difficult to assess quickly on the
:
,
:::
but

:::
the

::::::::
difficulty

::
of

::::::
quickly

::::::::
assessing

:::
the

:::::
weak

:::::
layer

:::::
spatial

::::::
pattern

::
in

:::
the

:
field for backcountry recreationists

:::::::
remains

:
a
::::::::
challenge.
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Our study shows

4.3
::::

Snow
::::::::::
mechanical

:::::::::::::::
parametrization

:::
and

:::::::::
modeling

:::
Our

:::::
study

:::::
agrees

::::
with

:
the well-known relationship between the slab thickness and the slab density due to snow settlement. Our505

results also show
:::
The

::::::::::
comparison

::
of

:::
the

:::::
spatial

::::::
pattern

:::::::
between

:::::::
surveys

:::::
shows that these two properties exhibit the same spatial

pattern in the variogram, the fractal dimension, and their covariates used for spatial modeling. For further study, the empirical

power-law fit ρ∼ 100+135D0.24 suggested by McClung (2009b)
::::::::::::::::
ρ∼ 100+135D0.4

::::::::
suggested

:::
by

::::::::::::::::
McClung (2009a) is a

good way to easily represent the interaction between these two properties to obtain realistic snow values for mechanical

simulation (e.g. Gaume and Reuter, 2017). Figure 3 agrees well with our ’softer-slab’ surveys (ρ < 250 kg m−3) conducted510

at Mount Fidelity, but could easily be adjusted by increasing the initial density in the power law relation for the survey where

the mean density is higher. The surveys with very high density (ρ > 250 kg m−3) were on Mount Albert, which is a heavily

::::::::
However,

:::
our

:::::
SMP

:::::
power

::::
law

::
fit

:::::
could

:::
be

:::::
better

::::::::
represent

::::::
denser

:::::
slabs

::
in

:
wind-exposed area that could explain this result

caused by these really dense slabs
::::
areas. The power-law fit could also be used to generate the slab density based on the spatial

pattern of the slab thickness if some variation is included in the simulation. Thus far
::::
Until

::::
now in snow mechanical modeling,515

the spatial variation of snow properties was limited to the weak layer. Our study shows that there is a difference between

the spatial variation of the slab properties and the slab weak layer in our dataset. This difference was previously observed by

Bellaire and Schweizer (2011), in their spatial survey to
::::::
conduct

::::
over

:
a smaller extent. Our study shows the need to account

for both slab properties variation and weak layer variation because spatial patterns can differ from each other.

Our results show
::::
study

::::::
shows that the weak layer variation was smoother than the slab and the increase in shear strength did520

not necessarily match the increase in the slab thickness. In general, shear strength should increase with slab thickness due to

the slab weight, but some variation was still present in our dataset
::::::
(Figure

::
3). The interaction between slab thickness and shear

strength can be described with a power law τp ∼ c+1370D1.3 (Bažant et al., 2003), but it was reported according to the Mohr-

Coulomb criterion with initial cohesion c (Gaume et al., 2014). Figure 3shows our SMP dataset with this power law relation

between τp and D. Some surveys are well aligned with this power law, especially the surveys from Mount Fidelity (circles) .525

The "stronger" surveys (crosses) from Mount Albert could also be fitted if the initial cohesion is increased. However, the Mount

Albert surveys contained more variability compared to the Mount Fidelity surveys. Figure 3 shows two power law fits taken

from the literature with our SMP dataset.
::::
(300

::
Pa

:::
in

:::::
Figure

:::
3)

:::::::::::::::::
(Gaume et al., 2014).

:
These power laws could represent well

the average values of the survey from Mount Fidelity, the average value of Mount Albert
::
but

::::
our

::::
fitted

::::::
power

::::
laws

:
could also

be represented if the initial values were increased
:::
used

:::
for

::::::
thicker

:::::::
(denser)

:::::
slabs

::
in

:::::::::::
wind-exposed

:::::
areas. However, these power530

laws did not adequately capture the variability in values for a specific spatial survey. The constant parameters need
::::::::
parameter

:::::
needs to be adjusted for every spatial survey to fit the values. These power laws could be used to estimate the average snow

values if only the slab thickness is available, but a stochastic process could be added to generate a more realistic variability.

Gaume et al. (2013) proposed a method to generate a weak layer with spatial heterogeneity. The method generates a random

field with a specified mean, variance, and correlation length for the cohesion of the weak layer in the Mohr-Coulomb relation.535

The friction term of the Mohr-Coulomb, which incorporates the slab thickness, is added to the cohesion to obtain the shear
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strength. Their fiction term was constant because the slab thickness was constant, but this method could easily be adapted

with a variable friction term following a variation in the thickness of the slab. These methods would allow two different

random fields to be specified for both the properties of the slab and the weak layer while respecting the friction regarding

the slab thickness. This method still needs a mean, variance, and correlation length as input. The empirical power law can540

estimate mean values, but according to our dataset, the variance is not well represented (Fig. 3). Future work should explore

the possibility of estimating the variance and the correlation length using the covariance of microtopography combined with

the snow cover model outputs. These methods could lead to more realistic simulations in avalanche modeling for forecasting

purposes, both for the probability of skier triggering and the avalanche release size.

SMP derived ρslab and τp in relation to theD for each SMP measurement of all spatial survey. The circles represent the SMP545

values in Mount Fidelity, British Columbia, and the crosses are from the surveys in Mount Albert, Québec. A power law in blue

was fitted to the SMP-derived values of all the surveys, with, respectively, 0.5 R2 for ρ and 0.4 R2 for τp. The orange power

law is the empirical power law for τp from Bažant et al. (2003) reported to Mohr-Coulomb criterion with an initial cohesion

of 300 Pa (Gaume et al., 2014). The second fit of the power law for ρ compared to D, with an initial density of 100 kg m−3

(McClung, 2009b). Two surveys in Mount Albert were added to this plot, EP20DF and EP19FC, to obtain more values but550

these surveys were not presented because the sampling density and extent were not adequate for spatial modeling.

5 Conclusion

The spatial variability of mechanical properties has been measured, compared, and estimated in this study. First, we show that

in our dataset, the slab properties exhibit spatial patterns that were different from the weak layer spatial patterns. In fact, the slab

properties, both the slab thickness and density, had smaller correlation lengths in their variogram than the weak layer strength.555

The slab properties had higher fractal dimensions than the weak layer strength, which demonstrates a more "rough" spatial

surface. Secondly, we estimated the spatial variability of snow mechanical properties and also some stability metrics using

spatial variables of microtopography. Estimates were reliable and precise for snow mechanical properties, but not for stability

metrics. We also show the utility of using microtopography to estimate snow spatial variability. However, no microtopographic

indicators were predominantly used to give advice to backcountry recreationists. The use of microtopography seems to be560

specific to each site and snow properties. The use of multiscale microtopographic indicators, such as the topographic position

index TPI and the vector ruggedness measure VRM, should be explored in future work to estimate spatial patterns of snow

mechanical properties as input for snow mechanical models. This could lead to the development of predictive methods in

operational avalanche forecasting services to estimate the avalanche release size using snow cover modeling and mechanical

models. Additional work is needed on stability occurrence with respect to microtopography indicators to help backcountry565

recreationists find a safer downhill and uphill route.

Code and data availability. The code and the data are available upon request.
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Figure A1.
::::::
Log-Log

::::::::
variogram

::
of

::::
snow

:::::::::
mechanical

:::::::
properties

:::
and

:::::::
stability

:::::
metrics

:::
for

::::
every

::::
snow
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spatial
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surveys.

:::
The
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fractal

::::::::
dimension
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is

:::::::
computed
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from
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the

:::::::
regression

::::
line.

:::
The

::::::
gamma

:::::::::
represented
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the

:::::::
variance
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for

::::
each

:::::::
variable.

:::
The

:::
unit

::
is

:::::::
specified

::
in

:::
each

::::
title.
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