

Climate tipping point interactions and cascades: A review

Nico Wunderling^{1,2,3,*}, Anna von der Heydt^{4,5,*}, Yevgeny Aksenov⁶, Stephen Barker⁷, Robbin Bastiaansen^{4,8}, Victor Brovkin⁹, Maura Brunetti¹⁰, Victor Couplet¹¹, Thomas Kleinen⁹, Caroline H. Lear⁷, Johannes Lohmann¹², Rosa Maria Roman-Cuesta¹³, Sacha Sinet^{4,5}, Didier Swingedouw¹⁴, Ricarda Winkelmann^{1,15}, Pallavi Anand¹⁶, Jonathan Barichivich^{17,18}, Sebastian Bathiany¹⁹, Mara Baudena^{5,20,21}, John T. Bruun²², Cristiano M. Chiessi²³, Helen K. Coxall^{24,25}, David Docquier²⁶, Jonathan Donges^{1,2,3}, Swinda K.J. Falkena⁴, Ann Kristin Klose^{1,15}, David Obura²⁷, Juan Rocha², Stefanie Rynders⁶, Norman Julius Steinert²⁸, and Matteo Willeit¹ ¹Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany ²Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden ³High Meadows Environmental Institute, Princeton University, Princeton, USA ⁴Institute for Marine and Atmospheric research Utrecht (IMAU), Department of Physics, Utrecht University, Utrecht, The Netherlands ⁵Centre for Complex Systems Studies, Utrecht University, Utrecht, the Netherlands ⁶National Oceanography Centre, Southampton, United Kingdom ⁷School of Earth and Environmental Sciences, Cardiff University, United Kingdom ⁸Department of Mathematics, Utrecht University, Utrecht, The Netherlands ⁹Max Planck Institute for Meteorology, Hamburg, Germany ¹⁰Group of Applied Physics and Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland ¹¹Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium ¹²Physics of Ice, Climate and Earth, Niels Bohr Institute, University of Copenhagen, Denmark ¹³European Commission, Joint Research Center, Sustainable Resources, Forests and Bioeconomy Unit., Ispra, Italy ¹⁴Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), Univ. Bordeaux, CNRS, Bordeaux INP, France ¹⁵Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany ¹⁶School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, United Kingdom ¹⁷Laboratoire des Sciences du Climat et de l'Environnement (LSCE), LSCE/ IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France ¹⁸Instituto de Geografi´a, Pontificia Universidad Cato´lica de Valparai´so, Valparai´so, Chile ¹⁹Technical University Munich, Munich, Germany ²⁰Institute of Atmospheric Sciences and Climate, National Research Council of Italy (CNR-ISAC), Torino, Italy ²¹National Biodiversity Future Center, Palermo, Italy ²²Faculty of Environment, Science and Economy, University of Exeter ²³School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil ²⁴Department of Geological Science, Stockholm University, Stockholm, Sweden ²⁵The Bolin Centre for Climate Research, Stockholm, Sweden ²⁶Royal Meteorological Institute of Belgium, Brussels, Belgium ²⁷CORDIO East Africa, Mombasa, Kenva ²⁸NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway ^{*}These authors contributed equally to this work.

Correspondence: Nico Wunderling (nico.wunderling@pik-potsdam.de), Anna von der Heydt (a.s.vonderheydt@uu.nl)

Abstract. Climate tipping elements are large-scale subsystems of the Earth that may transgress critical thresholds (tipping points) under ongoing global warming, with substantial impacts on biosphere and human societies. Frequently studied examples of such tipping elements include the Greenland Ice Sheet, the Atlantic Meridional Overturning Circulation, permafrost, monsoon systems, and the Amazon rainforest. While recent scientific efforts have improved our knowledge about individual

- 5 tipping elements, the interactions between them are less well understood. Also, the potential of individual tipping events to induce additional tipping elsewhere, or stabilize other tipping elements is largely unknown. Here, we map out the current state of the literature on the interactions between climate tipping elements and review the influences between them. To do so, we gathered evidence from model simulations, observations and conceptual understanding, as well as archetypal examples of paleoclimate reconstructions where multi-component or spatially propagating transitions were potentially at play. Lastly, we 10 identify crucial knowledge gaps in tipping element interactions and outline how future research could address those gaps.
 - 1 Introduction

1.1 Climate tipping elements

Climate change can cause abrupt and irreversible environmental and societal change (Masson-Delmotte et al., 2021). Several climate subsystems have been identified as at risk of undergoing qualitative and often irreversible change when critical thresholds of global warming are transgressed (Wang et al., 2023; Armstrong McKay et al., 2022; Bathiany et al., 2016; Lenton et al., 2008). Such subsystems are termed tipping elements (TEs) and examples include the Atlantic Meridional Overturning Circulation (AMOC), polar ice sheets, tropical rainforests, permafrost regions and the marine biosphere. Nonlinear changes can occur at tipping points (TPs), where a slight change in a parameter or a small perturbation of a system's state can cause a large change in the system, driving it to transit into a completely different (often undesirable) state. From a dynamical systems

20 point of view, a tipping point can be reached when passing a critical value of a control parameter, for example, the atmospheric CO_2 concentration, which affects the equilibrium states of the system. These processes are at the heart of tipping behavior in the climate system and were found in numerous subsystems of the climate system.

In the context of this paper, we refer to a tipping element as any climate subsystem that has a nonlinear response (selfamplifying feedback) to forcing so that the system reorganizes (Armstrong McKay et al., 2022). This definition includes large-scale climate tipping elements such as the AMOC (Weijer et al., 2019) or polar ice sheets (Rosier et al., 2021), where the associated feedbacks (e.g. salt-advection, melt-elevation, or ice-albedo) are well known, but also more regional bistabilities between savanna and forest vegetation in the Amazon region. In addition, we also consider elements that can show nonlinear behavior without being tipping elements on their own.

Tipping processes involving several tipping elements can also be found in Earth's history: during the last ice age, repeated

30 abrupt shifts, so-called Dansgaard-Oeschger events, occurred between cold and warm phases lasting 1,000–4,000 years (Dansgaard et al., 1993). While mostly polar and Northern Hemisphere elements (sea ice, ocean circulation, atmospheric dynamics) appear to have been involved (Vettoretti and Peltier, 2016; Zhang et al., 2014; Clement and Peterson, 2008; Ganopolski and Rahmstorf, 2001), the climate impact of these shifts was global (Barbante et al., 2006; Shackleton et al., 2000).

1.2 Interactions in the Earth's climate system

- Most climate subsystems are linked via circulation systems in the ocean and atmosphere, which leads to statistical associations 35 between them in their natural variability, often called teleconnections. For example, El Niño-Southern Oscillation (ENSO), the monsoon systems and Atlantic multidecadal variability form global modes of climate variability (Kravtsov et al., 2018; Dommenget and Latif, 2008). In addition, sea surface temperature variability in the North Pacific coupled to tropical variability (ENSO) is transferred to other regions via atmospheric teleconnections and amplified on longer time scales by the large ocean
- 40 heat capacity (Dommenget and Latif, 2008). Similarly, multidecadal variability originating in the North Atlantic Ocean (Knight et al., 2005; Delworth and Mann, 2000), which is believed to be partly connected to the AMOC (Buckley and Marshall, 2016), has a global expression in sea surface temperature patterns due to the interaction of slow oceanic and fast (but large-scale) atmospheric processes (Kravtsov et al., 2018). Hence, most nonlinear climate subcomponents are not isolated from each other, but are connected either directly or mediated via changes to the background state (Liu et al., 2023; Kriegler et al., 2009). Via
- such connections (see Fig. 1) tipping in one subsystem the leading subsystem can therefore cause tipping in another one 45 the following subsystem (Klose et al., 2020; Dekker et al., 2018). Here we call the linkages between tipping elements and/or other nonlinear components tipping interactions, whether they have a stabilizing or a destabilizing effect. The most extreme case is the situation in which the tipping of element A causes a subsequent tipping of element B. In this paper, we define a sequence of events involving several nonlinear components of the Earth system as tipping cascades (Dekker et al., 2018;
- Wunderling et al., 2021a). These tipping cascades can come in various forms dependent on the ordering of tipping elements 50 (e.g. Klose et al., 2021) and might involve different mathematical bifurcations such as fold- and Hopf-bifurcations (e.g. Dekker et al., 2018). Eventually a tipping cascade might result in a fundamental change in the Earth's equilibrium climate.

For example, an abrupt change in AMOC strength can lead to an intensification of ENSO, while a disintegration of the Greenland Ice sheet can lead to an abrupt AMOC shift. We do not restrict our definition to specific spatial scales, time scales

55 or severity of impact of the tipping elements. Therefore, also the slow local invasion fronts in spatial (eco)systems would be considered (e.g. Bel et al., 2012). Interactions between climate tipping elements could effectively lower the thresholds for triggering a tipping event or cascade as compared to individual tipping elements (Wunderling et al., 2021a; Klose et al., 2020). Moreover, a tipping cascade could activate processes leading to additional CO_2 emissions into the atmosphere; permafrost thaw and forest dieback are typical examples of such feedbacks (Wunderling et al., 2020; Lenton et al., 2019; Steffen et al., 2018). 60

Due to the many nonlinearities in the climate system, it is also conceivable that components of the Earth system, though not necessarily tipping elements on their own, could mediate or amplify nonlinear transitions in one component, creating largerscale impacts also in other components. A prominent example is Arctic summer sea ice cover, which shows an almost linear response to the CO₂ forcing and is not expected to show tipping behavior under anthropogenic forcing (Lee et al., 2021),

nevertheless can still sharpen and amplify transitions in the ocean-atmosphere-cryosphere system (Gildor and Tziperman, 65 2003). On the other hand, an abrupt transition in one tipping element may also stabilize other climate subsystems (e.g. Nian

et al., 31 May 2023; Sinet et al., 2023) as is the case for a weakening AMOC decreasing local temperatures around Greenland (Jackson et al., 2015).

1.3 Motivation and structure of this work

- 70 While most TEs that have been proposed so far are clearly regional (with some being large scale), there are significant knowledge gaps with respect to their tipping probability, impact estimates, time scales, as well as their interactions. The potential of a tipping cascade that could lead to a global reorganization of the climate system (Steffen et al., 2018; Hughes et al., 2013) remains therefore speculative. However, since multiple individual tipping point thresholds may be crossed during this century with ongoing global warming, and lead to severe tipping element interactions and cascading transitions in the worst case, it is
- 75 critical to review the current state of the science and reveal research gaps that need to be filled in (Armstrong McKay et al., 2022; Masson-Delmotte et al., 2021; Rocha et al., 2018).

Here we provide an overview of the current knowledge of tipping element interactions and the potential for tipping cascades. Even though most potential tipping elements are regional, it does not necessarily take a tipping cascade in order to obtain global climate effects. Examples for such globalizing effects are sea level rise, and the emission of greenhouse gases. Moreover, as

- 80 mentioned above, a "cascade" does not necessarily involve a sequence of elements that all have individual tipping points, but can also arise from dynamically stable but still nonlinear elements (such as sea ice switches). We therefore do not restrict ourselves to the most plausible tipping elements in this review, but also include nonlinear components like Arctic sea ice, ENSO and monsoon systems that can act as mediators of tipping events in the Earth system.
- The main part of this paper reviews the current knowledge of interactions between specific pairs of tipping components (section 2). In section 3, we discuss three archetypal paleoclimate candidates of tipping sequences that involve more than one tipping element: one from the more distant past (Eocene-Oligocene transition; approximately 34 million years ago), one from the more recent past (Dansgaard-Oeschger events, Bølling–Allerød warm period, and Heinrich events; during and since the last glacial period), and a paleoclimatic perspective on interactions between AMOC and the Amazon rainforest. Further, we discuss a contemporary and illustrative example of a cascade between parts of tipping elements, where the decline of Arctic
- 90 sea ice deteriorates coastal permafrost through increased erosion (section 4). Next, we map out the present state of modeling tipping sequences with respect to the role of complex Earth system models and more conceptualized approaches (section 5). Lastly, we discuss current research gaps and ways forward from a knowledge, a modeling and a data perspective. We also discuss the value of newly arising methods from machine learning and Earth-observation, and how they could complement the present research on interacting climate tipping elements. Finally, we conclude the recent progress on tipping cascades and
- 95 interactions between tipping elements (both section 6).

2 Interactions between climate tipping elements and nonlinear climate components

2.1 Interactions across scales in space and time

In this section, we lay out the current state of the literature on the interaction processes between components that are known to show nonlinear behavior or are even suspected tipping elements. The summary of the detailed sections 2.2–2.8 is shown in Table 1 and Figures 1 & 2. We summarize that these elements are not isolated entities but interact across the entire globe 100 (Fig. 1). Not only do the interactions span global distances, but the elements themselves are systems of sub-continental up to (nearly) global spatial scale that may tip on temporal scales of months up to millennia, i.e. tipping elements interact across scales in space and time (Fig. 2) (Rocha et al., 2018; Kriegler et al., 2009). The respective processes of the interactions can be found in Table 1, alongside an estimation of the interaction direction and, if available, an estimation of their strength (based on 105

the in-detail literature review of sections 2.2–2.8).

Some tipping elements are of sub-continental spatial scale (e.g., coral reefs or the Greenland Ice Sheet), while others cover significant portions of the globe (e.g., AMOC). Also the temporal scales differ vastly among the different climate tipping elements: some of them are considered fast tipping elements once a tipping process has been initiated (tipping on the order of (months) years/decades to centuries, e.g., Amazon rainforest and AMOC), while others are considered slow tipping elements

110 (tipping on the order of centuries to millennia, e.g. Greenland Ice Sheet). These individual dynamics on space and time of the individual tipping elements are therefore also important for their interactions (mapped out in Fig. 2).

2.2 Interactions between ice sheets and AMOC

The AMOC, Greenland Ice Sheet (GIS) and West Antarctic Ice Sheet (WAIS) are core tipping elements and are threatened by increasing CO₂ emissions (Armstrong McKay et al., 2022; Pörtner et al., 2019). Moreover, GIS, AMOC, and WAIS interact 115 on very different timescales ranging from decades to multiple centuries. While some of those links might be stabilizing, others are destabilizing and would allow for the possibility of large-scale cascading events.

2.2.1 Differing North Atlantic from Ocean meltwater effects

Greenland Ice Sheet to AMOC: The AMOC depends on the formation of dense water in the high latitudes of the North Atlantic. In its present state, this process is widely sustained by the positive salt-advection feedback (Weijer et al., 2019) – as the 120 AMOC transports salt northward, a higher surface water density is maintained in this region. As GIS melting increases, the associated discharge of freshwater in the ocean would result in a decrease of the surface water density, inhibiting the formation of dense waters through deep convection and thereby weakening the circulation. As less salt is transported to the North Atlantic, the salt-advection feedback implies a self-sustained freshening of the high latitudes of the North Atlantic, which, in

125 the worst case, can result in the collapse of the AMOC. On top of this classical positive feedback, there exists a wide range of other feedbacks related to the AMOC, either negative (heat advection feedback, e.g. Swingedouw et al. (2007)) or positive

Table 1. List of links between elements (tipping elements and other nonlinear components) discussed in this paper. We list directed links with a short summary of the main physical mechanism(s) underlying the specific connection. Further, an estimate of whether the effect is stabilizing or destabilizing the impacted element is given. If there is incipient evidence in the literature, we also add an indication of the qualitative strength of the response (weak, moderate, strong). Otherwise the link and/or its strength is set as unclear. Lastly, key references for the specific link are noted. Abbreviations: AABW = Antarctic Bottom Water, AMAZ = Amazon rainforest, AMOC = Atlantic Meridional Overturning Circulation, ENSO = El Niño-Southern Oscillation, GIS = Greenland Ice Sheet, ISM = Indian Summer Monsoon, PERM = Permafrost, SST = Sea Surface Temperature, WAIS = West Antarctic Ice Sheet, WAM = West African Monsoon.

Link between ele- ments	Physical processes	Response (destabilizing, stabilizing, unclear) [Strength]	Key references
$GIS \longrightarrow AMOC$	Freshwater influx from GIS into the North Atlantic weakens the	Destabilizing [Strong]	Weijer et al. (2019);
(Section 2.2.1)	AMOC (consistent across models), uncertain how much freshwater		Mecking et al. (2016);
	flux is necessary to shut down AMOC		Stouffer et al. (2007)
WAIS \longrightarrow AMOC	Competing effects: (i) Freshwater from the Southern Ocean and	Unclear, likely timescale	Swingedouw et al.
(Section 2.2.1)	associated AABW reduction imply a strengthening of the AMOC	dependent	(2009, 2008); Stouffer et al.
	(deep ocean adjustment, likely on short timescales (years to decades)	[Weak/Moderate]	(2007); Seidov et al. (2005)
	through wave dynamics, (ii) Freshwater from the Southern Ocean		
	reaches North Atlantic and weakens the AMOC (likely on timescales		
	from decades to centuries), (iii) Increasing wind intensity over		
	Southern Hemisphere and sea ice cover over Southern Ocean can		
	strengthen the AMOC		
$AMOC \longrightarrow GIS$	Reduced northward heat transport in the Atlantic implies substantial	Stabilizing [Strong]	Jackson et al. (2015);
(Section 2.2.2)	cooling of the Northern Hemisphere		Stouffer et al. (2006)
$AMOC \ \longrightarrow \ WAIS$	Reduced northward heat transport in the Atlantic may lead to	Destabilizing [Unclear]	Bintanja et al. (2013);
(Section 2.2.2)	warming of the Southern Ocean, destabilizing WAIS		Swingedouw et al. (2008)
$GIS \longrightarrow WAIS (Sec{\mathchar}{-}$	Sea level rise through GIS melt destabilizes WAIS, potentially	Destabilizing [Moderate]	Gomez et al. (2020); Kopp
tion 2.2.3)	significantly since most of the WAIS bedrock lies below sea level		et al. (2010)
	(marine ice sheet instability)		
WAIS \longrightarrow GIS (Sec-	Sea level rise through WAIS melt destabilizes GIS, potentially weakly	Destabilizing [Weak]	Gomez et al. (2020);
tion 2.2.3)	since most of the GIS bedrock lies above sea level		Mitrovica et al. (2009)
Arctic sea ice \longrightarrow	Studies modeling contemporary climate find that AMOC weakens as	Destabilizing	Liu and Fedorov (2022); Li
AMOC (Section 2.3)	a result of Arctic sea ice decline due to southward advection of lighter	[Weak/Moderate]	et al. (2021); Jansen et al.
	water to the North Atlantic convection sites (reasons: (1) strong		(2020); Sévellec et al.
	anomalous heat flux into the ocean due to lowering albedo; and (2) a		(2017)
	small and transient contribution of freshwater influx from melting		
	Arctic sea ice)		
$AMOC \ \longrightarrow \ Arctic$	A weaker AMOC results in lower Atlantic Ocean heat transport and	Stabilizing	Liu and Fedorov (2022);
sea ice (Section 2.3)	slows the pace of the current Arctic sea ice loss	[Weak/Moderate]	Liu et al. (2020); Delworth
			et al. (2016)

Table 1. Continued

Link between ele- ments	Physical processes	Response (destabilizing, stabilizing, unclear)	Key references
		[Strength]	
$AMOC \longrightarrow AMAZ$	A collapsing AMOC would reduce (increase) SSTs in the North	Unclear [Moderate]	Bellomo et al. (2023);
(Section 2.4)	(South) Atlantic and cause a southward shift of the tropical rain belt.		Jackson et al. (2015);
	Therefore, precipitation would decrease in the northern part of the		Parsons et al. (2014)
	Amazon and increase in the southern part. However, exact locations		
	of precipitation changes are model dependent		
$AMOC \ \longrightarrow \ ENSO$	A weakening AMOC increases the equator-to-pole temperature	Destabilizing [Weak]	Orihuela-Pinto et al.
(Section 2.5.1)	gradient and may therefore strengthen the trade winds in general.		(2022b); Dekker et al.
	Feedbacks generating ENSO depend on the Pacific background		(2018); Timmermann et al.
	climate, i.e. on trade wind strength. Therefore, ENSO might be found		(2007)
	more often in a positive condition		
$ENSO \ \longrightarrow \ AMOC$	Enhanced El Niño can decrease Atlantic hurricane intensity and so	Unclear [Unclear]	Kim et al. (2023);
(Section 2.5.1)	limit wind induced AMOC forcing		Ayarzagüena et al. (2018)
$ENSO \ \longrightarrow \ AMAZ$	Changes in ENSO amplitude and frequency will affect rainfall and	Destabilizing [strong,	Duque-Villegas et al.
(Section 2.5.2)	temperature variability (including extreme conditions such as	regionally different]	(2019); Jiménez-Muñoz
	droughts) in various regions of the South American continent. This		et al. (2016)
	may regionally lead to rainforest dieback and transition to degraded		
	savanna-like ecosystems. Regions in the Andes and western		
	Amazonia seem less vulnerable		
$ENSO \ \longrightarrow \ WAIS$	More frequent (or stronger) El Niño events cause more frequent	Destabilizing [unclear,	Scott et al. (2019); Paolo
(Section 2.5.3)	atmospheric blocking situations, leading to West Antarctic ice melt	probably weak/moderate]	et al. (2018); Nicolas et al.
	events. This is followed by warm marine air anomalies over West		(2017)
	Antarctica, and especially over Ross and Amundsen Sea Embayment		
	regions		
$ENSO \longrightarrow Coral$	ENSO drives abnormally high ocean temperatures, which are	Destabilizing [Strong]	Muñiz-Castillo et al.
Reefs (Section 2.5.4)	superimposed on already warming oceans, leading to severe regional		(2019); Lough et al. (2018);
	to global bleaching events. With increased warming, bleaching is		Veron et al. (2009)
	decoupling from warm ENSO phases, becoming increasingly		
	frequent during cold ENSO phases (La Niña), and at quasi annual		
	frequencies at many locations. At thresholds of 1.5 and 2°C warming,		
	the expected die-off percentage is 70-90% and 90-99%, respectively		
AMOC/ENSO \longrightarrow	An AMOC weakening would cause a southward shift of the	Highly uncertain: Unclear	Orihuela-Pinto et al.
Monsoon systems	Intertropical convergence zone and the tropical rain belt (e.g., WAM	(monsoon system	(2022a); Wassenburg et al.
(Section 2.6)	and ISM). ENSO shifts in a warmer climate could lead to an opposing	dependent) [unclear]	(2021); Swingedouw et al.
	effect on its relationships with the monsoon systems, for example, the		(2009)
	ISM-ENSO relationship becomes weaker while the relationship		
	between WAM-ENSO becomes stronger with the warming climate		
$PERM \longrightarrow hydro-$	Under global warming, the PERM region could become wetter and	Highly uncertain:	de Vrese et al. (2023);
logical cycle \longrightarrow	lakes could emerge. If these lakes drain out, the global hydrological	destabilizing for AMOC	Nitzbon et al. (2020)
AMOC (Section 2.7)	cycle becomes weaker. Then, the AMOC weakens	[unclear]	

Figure 1. Interactions between tipping elements on a world map. All tipping elements discussed in this review article are shown together with their potential connections. The causal interactions links can have stabilizing (blue), destabilizing (red), or unclear (gray) effects. For some elements, it is speculative whether they are tipping elements on their own (such as ENSO or the Arctic sea ice) and they are denoted as such (blue outer ring) but they are included if they play an important role in mediating transitions towards (or from) core tipping elements (compare Section 1.2). Tipping elements that exert a notable feedback on global mean temperature when they tip are denoted by a red inner ring. This temperature feedback can be positive (i.e. amplifying warming, as likely for the permafrost, the Arctic sea ice, the Greenland and West Antarctic ice sheets, the Amazon rainforest and ENSO) or negative (i.e. dampening warming, as likely for the AMOC).

Figure 2. Interactions between tipping elements across scales in space and time. Temporal scales are transitioning times of a disintegrating tipping element from months up to millennia. Spatial scales denote the system size from sub-continental to (nearly) global scales. Transitioning times are taken from Armstrong McKay et al. (2022), and spatial scales from Winkelmann et al. (2022). The causal links can be stabilizing (blue), destabilizing (red), or unclear (gray). Some tipping elements are particularly speculative (such as ENSO or the Arctic sea ice) and denoted as such (blue border). Tipping elements that exert a feedback on the global mean temperature when they tip are shown with purple shading.

(evaporation feedback). An overall destabilizing impact of GIS melting on the AMOC is mostly consistent across models, where adding freshwater in the North Atlantic (e.g. Jackson and Wood, 2018; Mecking et al., 2016; Stouffer et al., 2007), also in combination with increasing CO_2 emissions (Bakker et al., 2016; Swingedouw et al., 2006), leads to a substantial weakening

- 130 of the circulation. Importantly, in the case of a collapse of the AMOC, some models suggest that the AMOC does not recover within human timescale (Jackson and Wood, 2018; Mecking et al., 2016). At the moment, one of the key limitations relating GIS melting and the respective AMOC response concern the way meltwater is spread along Greenland towards the open ocean. This lateral diffusion is mainly performed by oceanic eddies, whose spatial scale is of the order of 10 km at those latitudes, and necessitate oceanic resolution in AOGCMs (Atmosphere/Ocean General Circulation Model) of the order of 2-3 km to be
 - 135 properly resolved. As a consequence, the spread of GIS meltwater towards the convection sites in the Labrador, Irminger and Nordic Seas, might be underestimated in AOGCMs, which might strongly diminish the potential impact of GIS melting on

the AMOC (Martin and Biastoch, 2023; Swingedouw et al., 2022). Thus, while there exist a few attempts to couple AOGCMs with ice sheet models (e.g. Madsen et al., 2022; Kreuzer et al., 2021; Ackermann et al., 2020; Muntjewerf et al., 2020), the simulated impact of GIS melting on the AMOC remains moderate, but might be underestimated.

- 140 <u>West Antarctic Ice Sheet to AMOC</u>: In the case of a freshwater release in the Southern Hemisphere originating from West Antarctica, different opposing processes are at play that could affect the AMOC. These effects have been identified to act on different timescales and depend on the state of the circulation (Berk et al., 2021; Swingedouw et al., 2009). First, the weakening of AABW formation might lead to enhancement of the AMOC through the so-called ocean bipolar seesaw related to deep ocean adjustment through oceanic large-scale waves. Second, the increase in wind intensity over the Southern Hemisphere, related
- 145 to an increase in sea-ice cover (Li et al., 2023; Swingedouw et al., 2008), might also help to enhance the AMOC. Third, if large enough, the release of freshwater in the Southern Ocean might eventually reach the North Atlantic on a longer timescale (centuries), possibly weakening the AMOC. As a result, the impact of a WAIS collapse on the AMOC is still unclear, as most models show either a slight weakening (e.g. Stouffer et al., 2007; Seidov et al., 2005) or a slight strengthening(e.g. Swingedouw et al., 2009) of the circulation. Notably, some studies also found that a sufficient freshwater release into the Southern Ocean
- 150 allows for delaying an AMOC collapse (Sadai et al., 2020), recovering from it (Weaver et al., 2003) or even avoiding it (Sinet et al., 2023). In most cases, the impact of the WAIS melting on the AMOC remains moderate and mainly affects the southern part of the AMOC.

2.2.2 Effects of a collapsing AMOC on ice sheets

An AMOC collapse would imply a decreased northward heat transport, leading to a substantial cooling of the Northern Hemi-155 sphere, along with warming in the Southern Hemisphere (Pedro et al., 2018; Jackson et al., 2015; Stouffer et al., 2006). Cooling the high latitudes of the North Atlantic would stabilize the GIS, possibly allowing for a safe overshoot of the GIS tipping point (Wunderling et al., 2023; Ritchie et al., 2021). Conversely, the related warming of the Southern Ocean represents a destabilizing impact on the WAIS, being susceptible to these warmer ocean waters via the ice shelves and their buttressing effect on upstream ice flow (Favier et al., 2014; Joughin et al., 2014).

160 2.2.3 Direct interactions between Greenland and West Antarctic Ice Sheets via sea level feedbacks

It is known that an increase in sea level has an overall destabilizing influence on marine-based sectors of ice sheets, possibly triggering or enhancing the retreat of their grounding line (Schoof, 2007; Weertman, 1974). In the case of an ice sheet collapse, the induced sea level rise from ice-sheets would vary locally depending on gravitational effects, rotational effects and mantle deformation (Kopp et al., 2010; Mitrovica et al., 2009). Overall, sea level rise is expected to negatively impact both the GIS

and WAIS, but more strongly the latter where most of the bedrock lies well below sea level (Gomez et al., 2020).

Interactions between AMOC and Arctic sea ice 2.3

The strength of the AMOC is controlled by the deep convective activity at different sites in the North Atlantic Ocean (Labrador, Irminger and Nordic Seas), which is largely driven by its high surface density (Kuhlbrodt et al., 2007). Changing Arctic sea ice cover can modulate the latter, and thus the AMOC, mainly in two ways (Sévellec et al., 2017).

170

First, it alters radiative heating and ocean-atmosphere heat loss via changing albedo. More precisely, as the Arctic sea ice area has substantially decreased in the past 40 years, especially during summer months (Masson-Delmotte et al., 2021), the open water fraction of the Arctic Ocean has increased and will continue to do so in the future (Crawford et al., 2021). This has led to an increase in the absorption of solar radiation and to subsequent ocean warming, which can propagate to convection areas.

- Second, changes in Arctic sea ice alter the ocean density by brine rejection during sea ice formation, or conversely by 175 freshening from sea ice melt. In particular, the recent decrease in Arctic sea ice area, together with the ice loss from the Greenland Ice Sheet (Section 2.2.1), has added freshwater to the Arctic Ocean, although the trend in freshwater content has slowed down during the past decade (Solomon et al., 2021). According to model simulations performed by Sévellec et al. (2017), these warm and fresh anomalies coming from sea ice melting, could propagate southward to the subpolar North Atlantic
- Ocean. These would affect the deep ocean at the main convection sites by reducing the surface density and would thus weaken 180 the AMOC. The estimated timescale of this propagation is multi-decadal (Liu and Fedorov, 2022; Li et al., 2021; Sévellec et al., 2017).

The AMOC can also affect Arctic sea ice via the transport of warm water to the North Atlantic Ocean, and subsequently to the Arctic Ocean via the Barents Sea Opening and Fram Strait. A weaker AMOC could result in lower ocean heat transport

- 185 and increased Arctic sea ice area (Delworth et al., 2016). The estimated timescale of this effect is approximately one year (Liu and Fedorov, 2022). However, recent observations show that the ocean heat transport to the Arctic has increased, especially on the Atlantic side (Docquier and Koenigk, 2021; Polyakov et al., 2017; Onarheim et al., 2015; Årthun et al., 2012). Thus, the effect of a decreasing AMOC may merely slow down the pace of ongoing increases in ocean heat transport and the associated decrease in Arctic sea ice (Liu et al., 2020).
- Despite this tight link between the AMOC and Arctic sea ice, Arctic summer sea ice cannot be considered a tipping element. 190 A tipping point in the Arctic Ocean would mean that it loses so much sea ice that the reduced albedo results in enough warming to prevent sea ice from forming again once melted. However, according to model simulations in which a summer ice-free Arctic Ocean is simulated, Arctic sea ice recovers within two years, suggesting that the ice-albedo feedback is alleviated by large-scale recovery mechanisms (Tietsche et al., 2011). Winter sea ice extent does show very different states at the same atmospheric CO₂
- concentration, attributed to AMOC strength (Schwinger et al., 2022). 195

Effects of AMOC changes on the Amazon rainforest 2.4

The strength of the AMOC exerts a substantial influence on the climate of tropical South America, most importantly, on rainfall and its seasonal distribution. This in turn affects the state and stability of another potential tipping element in the Earth system: The Amazon rainforest.

- 200 The most important large-scale effect of the AMOC on rainfall in the Amazon works via the pattern of SSTs in the Atlantic, and the associated shifts in the ITCZ (Intertropical Convergence Zone) and the tropical rain belt. There is widespread agreement that a reduction or even collapse of the AMOC would lead to reduced SSTs in the North Atlantic and increased SSTs in the South Atlantic (Bellomo et al., 2023; Manabe and Stouffer, 1995). This change is caused by the reduction in the AMOC-related northward ocean heat transport and is amplified by wind-evaporation-feedbacks (Orihuela-Pinto et al., 2022a). The changed
- SST pattern in turn affects atmospheric circulation by strengthening the Northern Hemisphere Hadley cell particularly during 205 boreal winter (Bellomo et al., 2023). As the location of the tropical rain belt depends on the cross-equatorial energy flux and the atmosphere energy input close to the equator (Bischoff and Schneider, 2014; Schneider et al., 2014), a weakened AMOC together with a persistent Southern Ocean warming lead to a southward migration of the tropical rain belt, depending on the CO₂-forcing trajectory (Kug et al., 2022). Hence, AMOC-weakening may cause a tropical rain belt shift. This southward shift
- would cause a substantial reduction in rainfall over northern South America, and an increase in rainfall over the portion of 210 the Amazon located in the Southern Hemisphere, as well as over northeastern Brazil which is directly affected by the tropical rain belt (Jackson et al., 2015). Nevertheless, over the Amazon basin, the extent of this migration is model dependent (e.g. Swingedouw et al., 2013; Stouffer et al., 2006). Indeed, while the northern part of the Amazon might experience a decrease in precipitation, the southern part, on the opposite, might see enhanced precipitation, which has the potential to stabilize the rainforest there (Ciemer et al., 2021). The limit between the two regions is where model dependency is strongest, resulting in
- 215

a large uncertainty concerning the potential impact of AMOC weakening in the Amazon rainforest dieback.

To conclude, although different Earth system models have different biases in the location, shape and strength of the tropical rain belt, they generally agree on the AMOC-collapse induced increase in precipitation over the southern portion of the Amazon and northeastern Brazil (Bellomo et al., 2023; Nian et al., 31 May 2023; Orihuela-Pinto et al., 2022a; Liu et al., 2020). Given

- that the forests in the southern half of the basin contribute mostly to the rainfall generation over the basin (Staal et al., 2018), one 220 could speculate that this would lead to a stabilization of the Amazon, given that a substantial fraction (24-70%, Baudena et al. (2021) and references therein) of the rainfall of the basin is nonetheless produced by local moisture recycling. Furthermore, it has been shown that the altered tropical rain belt dynamics throughout the year would mean a reduction of rainfall mostly during the current wet season (peaking around March), and an increase in the dry season, peaking around September (Campos
- et al., 2019; Parsons et al., 2014). Importantly, the consequences for the rainforest of a more equalized annual cycle are unclear. 225 More generally, the full spectrum of rainforest stressors including societal-driven pressures, such as land-use changes driving deforestation, has to be taken into account when assessing AMOC effects over the Amazon rainforest (Lovejoy and Nobre, 2018).

2.5 Influences of ENSO on proposed tipping elements

- The El Niño-Southern Oscillation (ENSO) is the most important mode of climate variability on interannual time scales, fundamentally affecting regional and global atmospheric and oceanic circulation (McPhaden et al., 2006). The response to climate change of ENSO itself still remains debated, mainly because there are multiple (positive and negative) feedback processes in the tropical Pacific ocean-atmosphere system, whose relative strength determines the response of ENSO variability (Timmermann et al., 2018; Cai et al., 2015). Further, recent studies disagree about the future frequency of El Niño phases under global warming (Cai et al., 2021; Wengel et al., 2021). In particular, a decreasing frequency of El Niño phases under global warming was suggested by a global climate model resolving meso-scale oceanic eddies and consequently reduced biases in the tropical oceanic mean state (Wengel et al., 2021). Although it is debated or even unlikely whether ENSO should be considered a tip-
- ping element in itself (Armstrong McKay et al., 2022), it exerts important feedbacks on other global tipping elements. Through its global teleconnections, ENSO has the potential to influence multiple Earth system components including the AMOC, the
 Amazon rainforest and the West Antarctic Ice Sheet. Changes in ENSO amplitude or frequency could alter the strength of (stabilizing or destabilizing) feedbacks within other (remote) tipping elements. Therefore, in this section, we discuss possible interactions between ENSO and other tipping elements.

2.5.1 Interactions between ENSO and AMOC

- Various physical mechanisms have been discussed to explain how a decline in strength or complete shutdown of the AMOC
 could affect ENSO variability, mostly in terms of the amplitude of ENSO. An AMOC decline typically leads to cooling in North Atlantic surface temperatures, which affects the global atmospheric circulation, including the trade winds in the tropical Pacific. In many GCMs, upon decline of the AMOC, the northeasterly trade winds are intensified and the Intertropical Convergence Zone (ITCZ) displaces southwards, eventually leading to an intensification of ENSO amplitude through nonlinear interactions (Timmermann et al., 2007). While the response of the trade winds and ITCZ to AMOC decline seems to be relatively robust
 within different (generations of) GCMs, the response in ENSO magnitude or frequency is much more model dependent: Trade winds can also affect the thermocline depth in the eastern tropical Pacific thereby weakening the ENSO (Timmermann et al., 2007). By that, the zonal structure of winds and stratification is affected leading to zonal shifts of variability patterns but no
- significant change in amplitude (Williamson et al., 2018). Alternatively, weaker air-sea coupling due to altered trade winds affects the relevant tropical Pacific feedback balance such that the growth rate of ENSO is significantly reduced (Orihuela-
- 255 Pinto et al., 2022b). In another model study, where physically based, conceptual models of the AMOC (box model) and ENSO (Zebiak-Cane model, Zebiak and Cane (1987)) are coupled via the trade wind strength it was found that an AMOC collapse intensifies the tropical Pacific trade winds and shifts the ENSO system further into its oscillatory mode (i.e., amplitude increase) (Dekker et al., 2018). It should be noted that most GCMs still exhibit severe biases in tropical temperature patterns, partly caused by not properly resolved oceanic mesoscale processes (Wengel et al., 2021), which complicates the understanding
- 260 of the fate of ENSO under greenhouse gas increase, but also under AMOC changes.

265

The reversed pathway, i.e. ENSO impacting the AMOC, likely also exists, but also depends on several atmosphere-ocean processes which may not be adequately resolved in models. A relatively robust teleconnection exists between an El Niño event and the negative phase of the North Atlantic Oscillation (NAO) in (late) winter (Ayarzagüena et al., 2018; Brönnimann et al., 2007). The statistical relationship between the AMOC and the NAO in CMIP models depends on the subpolar North Atlantic background state; the AMOC is less sensitive in models that have extensive sea ice cover in deep-water formation areas, while in models with less sea-ice cover, the background upper ocean stratification largely determines how sensitive the AMOC reacts to surface buoyancy forcing (Kim et al., 2023). As for ENSO, the unbiased representation of the North Atlantic mean state represents a significant challenge for CMIP models, in part due to insufficient resolution of meso-scale ocean eddies.

2.5.2 Influences of ENSO on the Amazon rainforest

- 270 The frequency and amplitude of ENSO variability have changed on decadal to centennial timescales in the past (Cobb et al., 2013). In recent years, extreme El Niño events combined with global warming have become increasingly associated with unprecedented extreme drought and heat stress across the Amazon basin (Jiménez-Muñoz et al., 2016), leading to increases in tree mortality, fire and dieback (Nobre et al., 2016). Imposing the surface temperature pattern of a typical El Niño event in a global atmosphere-vegetation model suggests increased drought and warming in the Amazon rainforest region (Duque-Villegas
- et al., 2019), which could enhance rainforest dieback and transition to degraded and fire-prone, savanna-like ecosystems in some regions.

2.5.3 Influences of ENSO on the WAIS

Recent significant surface melt events on West Antarctica were associated with strong El Niño phases (Scott et al., 2019; Nicolas et al., 2017). It has been proposed that these melt events were caused by atmospheric blocking, eventually leading
to warm air temperature anomalies over West Antarctica that pass the melt point of parts of the ice sheet (Scott et al., 2019). Using reanalysis data, satellite observations and hindcasting methods, strong indications have been found that the Ross and Amundsen Sea Embayment regions are most affected by El Niño phases (Scott et al., 2019; Deb et al., 2018). In addition, it has been observed that, while ice shelves experience an increase in height (because accumulation height gains exceed basal melt height losses), they suffer from a decrease in mass (because basal ice loss exceeds ice gain from accumulation) due to increased ocean melting during significant El Niño occurrences in the Amundsen and Ross Sea area (Paolo et al., 2018). Further, it is important to note that El Niño phases are not immediately transferred to surface melting in Antarctica but only after some time

lag on the order of months (Donat-Magnin et al., 2020).

Taken together, this adds to growing body of literature that a disintegration of the West Antarctic Ice Sheet, especially along the Ross-Amundsen sector, would be favored by strong El Niño phases and tipping risks may increase if El Niño phases would

290 become more frequent or intense under ongoing climate change (Cai et al., 2021; Wang et al., 2017; Cai et al., 2014). This may be concerning in particular because the Amundsen region is where the most vulnerable glaciers of the West Antarctic Ice Sheet are located such as the Pine Island or Thwaites glacier (Favier et al., 2014; Joughin et al., 2014).

2.5.4 Influences of ENSO on warm-water coral reefs

- ENSO drives abnormally high sea temperatures (seasonal heat waves above summer maxima baselines), which are superimposed on already warming oceans. Anomalous heat destabilizes the relationship between host corals and their symbiotic dinoflagellate algae (zooxanthellae), resulting in severe bleaching and mortality across multiple species of corals on spatial scales exceeding thousands of kilometers. While ENSO is geographically modulated by other ocean dipoles (e.g. Atlantic oscillation, Indian Ocean) (Houk et al., 2020; Krawczyk et al., 2020; Zhang et al., 2017), the Pacific signal is dominant and El Niño warm phases have been related to global episodes of extreme heat stress since the 1970s, e.g. 1979/1980, 1997/98
 and 2014-2017 (Krawczyk et al., 2020; Muñiz-Castillo et al., 2019; Lough et al., 2018; Le Nohaïc et al., 2017). As global
- warming progresses and oceans become significantly warmer, the incidence of mass bleaching is decoupling from El Niño warm phase (Veron et al., 2009), with warmer conditions compared to three decades ago (McGowan and Theobald, 2023; Muñiz-Castillo et al., 2019). The global recurrence of bleaching has reduced to an average of 6 years (Hughes et al., 2018), sooner than expected from climate models and satellite-based sea temperatures. With warming temperatures and shortened
- 305 intervals between major bleaching, multiple human stressors, ocean acidification, and decreasing resilience, the recovery time for mature assemblages of corals is now insufficient across most regions (Hughes et al., 2018). At the scale of the Great Barrier Reef the emission of volatile sulfur compounds by corals adds to the local atmospheric aerosol load, increasing low level cloud albedo and reducing warming (Jackson et al., 2018). This breaks down during physiological stress and bleaching, potentially reinforcing thermal stress in a positive feedback loop. The potential contribution of this biologically-derived feedback loop
- 310 on local clouds, sea surface temperature and coral bleaching is uncertain however, needing validation in other locations, and determination of any contribution to climatic conditions at larger spatial and temporal scales. While recovery from repeated bleaching events has been observed (Palacio-Castro et al., 2023; Obura et al., 2018), the thresholds of global mean warming of 1.5°C (70-90% loss of coral reefs globally) and 2°C (90-99% loss) appear to still hold (Lough et al., 2018; Schleussner et al., 2016; Frieler et al., 2013).

315 2.6 Effects of AMOC and ENSO changes on tropical monsoon systems

Future climate projections show a weakening of the AMOC, which can be substantial in its impact on the regional and global climate via ocean-atmosphere connection (Pörtner et al., 2019). Evidence from modeling and paleo-reconstructions have shown interhemispheric, low-high latitude, climate connections via ocean-atmosphere linkage for heat and moisture transport (e.g. Nilsson-Kerr et al., 2022; Orihuela-Pinto et al., 2022a; Clemens et al., 2021; Shin and Kang, 2021).

320 Indeed, model simulations in response to a hosing in the North Atlantic show a clear southward shift of the ITCZ in response to the AMOC weakening and decrease in northward oceanic heat transport (Defrance et al., 2017; Swingedouw et al., 2013; Stouffer et al., 2006). This shift of the ITCZ impacts the various monsoon systems worldwide (Chemison et al., 2022), as also visible in paleorecords (e.g. Sun et al., 2012). For example, Nilsson-Kerr et al. (2019) compiled paleo-reconstructions of Heinrich stadial (11) of the penultimate deglaciation between 135 and 130 thousand years ago, suggesting an increase in the

transport of latent heat from the southern hemisphere (SH) to the northern hemisphere (NH), causing transient warming in the

NH (termination II interstadial, TII IS) and an increase in Indian Summer Monsoon rainfall. This transient warming facilitated the NH ice sheet melting which then might have reduced or shut down the AMOC, causing cooling of the NH and East Asia and a subsequent reduction of the length of the monsoon rain season (e.g. Wassenburg et al., 2021). Mechanistically, reduction of the AMOC strength either via warming and induced ice sheet melting or increased Eurasian/Arctic river runoff (e.g. Zhang et al., 2013) cools the NH and shifts the ITCZ southward (Chemke et al., 2022), affecting spatial rainfall patterns, distribution, and amount of rainfall in the NH semi-arid and tropical monsoon regions of India and Asia.

330

335

An AMOC weakening has also been shown to strengthen the Indo-Pacific Walker circulation via cooling of the equatorial Pacific and warming of the SH/Antarctic climate on a multidecadal timescale (e.g. Orihuela-Pinto et al., 2022a). The observed AMOC weakening during the last multiple decades might be partially affected by interannual ocean-atmosphere interactions, such as the ENSO. These superimposed effects, operating across timescales, alter relationships between the ENSO and tropical monsoon, thereby, regional rainfall patterns in a warmer climate (Mahendra et al., 2021; Pandey et al., 2020). For example, while the linear relationship between ENSO and the Indian Summer Monsoon rainfall has weakened, the ENSO-West African Monsoon relationship has increased in recent decades (Srivastava et al., 2019).

These relationships need to be further tested in paleoclimate reconstructions from both warm and cold climate states to gain a better understanding of how an abrupt change in AMOC may have an effect on ENSO and/or on tropical monsoon systems. This would allow for a more robust predictability of tropical monsoon rainfall patterns in the future. Overall the pattern of monsoon system changes in response to tipped elements depends on the respective monsoon system.

2.7 Effects of permafrost regions on the global hydrological cycle

The permafrost regions have accumulated substantial amounts of ice in the soils. With ground ice melting away in a warmer climate, permafrost landscapes experience drastic hydrological changes. The presence of ice modulates the thermophysical soil properties as well as infiltration rates and the vertical and lateral movement of water through the ground, which is often poorly represented in current Earth system models and therefore exhibits large inter-model differences. Hence, uncertainty exists about high-latitude regions becoming wetter or drier in the future. They could turn into a wetter and cooler state with many freshwater systems and lakes, which support increasing land-atmosphere moisture recycling and cloud cover, reducing ground

- 350 temperatures; or a drier state as newly formed lakes could drain, less moisture recycling supports less cloud cover and a warmer surface (Nitzbon et al., 2020; Liljedahl et al., 2016). Which parts of the Arctic will be wetter or drier in the future is uncertain, but the differences between the potential Arctic hydroclimatic futures could be very pronounced. As recently shown by de Vrese et al. (2023), the drier and warmer permafrost state would lead to less sea ice, a reduced pole-to-equator temperature gradient, and a weaker AMOC. The drier state has more boreal forest extended to the north, while higher frequency and extent of forest
- 355 wildfires. In comparison with the wetter state, the drier Arctic state also shifts the position of the Intertropical Convergence Zone which results in higher precipitation in the Sahel region and potentially also in the Amazon rainforest region. Increased forest and vegetation cover in these regions would be the consequence (de Vrese et al., 2023). Therefore, shifts in permafrost hydrology could affect climate tipping elements far beyond Arctic boundaries. Insofar the hydrological cycle due to Permafrost changes may have far-reaching impacts.

360 2.8 Interactions between multiple tipping elements and planetary cascades

Assembling the individual links mentioned before in sections 2.2–2.7 gives rise to the possibility of tipping cascades involving more than two elements. These could lead to large changes at the regional and even planetary scale. A plausible example are Dangaard-Oeschger (D-O) events (section 3.2.2). Another example comes from the study of the last interglacial period, for which proxies for sea ice, polar ice sheets, AMOC, boreal forest, and permafrost indicate abrupt changes (Thomas et al., 2020).
365 Although the dating uncertainties make it difficult to determine the causal structure of a potential cascade, positive feedbacks between these TEs could explain the amplified polar temperatures and sea level rise obtained from reconstructions (+8°C in Greenland, and +6-9m sea level rise compared to today) (Dutton et al., 2015; NEEM community members, 2013).

On a larger scale, tipping cascades could be responsible for driving the Earth system into completely different climatic states that have been identified in paleo-data (Westerhold et al., 2020), climate models of intermediate complexity (Lucarini and

- Bódai, 2017) and general circulation models at coarse spatial resolution (Brunetti et al., 2019; Popp et al., 2016; Ferreira et al., 2011; Voigt and Marotzke, 2010). For example, a tipping cascade involving ocean circulation and ice sheets might have been responsible for a transition from a greenhouse to an icehouse state at the Eocene-Oligocene boundary (section 3.1). A major concern regarding the future may be that a cascade involving several tipping elements and feedbacks could lock the Earth system in a pathway towards a hothouse state with conditions resembling that of the mid-Miocene (+4-5°C, +10-60m sea level
- 375 compared to the pre-industrial baseline) (Burke et al., 2018; Steffen et al., 2018). Feedbacks that affect global temperature could involve albedo changes (through ice sheet or sea ice loss) and additional CO_2 and CH_4 emissions (through permafrost thawing, methane hydrates release). In the worst case (and unlikely) scenario, a single tipping event could propel the Earth system into such a hothouse, for example the hypothesized breakup of stratocumulus decks (Schneider et al., 2019).
- Time scales are crucial when discussing hothouse scenarios. A potential hothouse state in the next centuries seems implausible in light of the current state of research. For example, in climate projections up to 2100, CMIP6 models show no evidence of non-linear responses on the global scale. Instead, they show a near-linear dependence of global mean temperature on cumulative CO_2 emissions (Masson-Delmotte et al., 2021). Similarly, in a recent assessment, Wang et al. (2023) concluded that a tipping point cascade with large temperature feedbacks over the next couple of centuries remains unlikely and that while the combined effect of tipping elements on temperature is significant for those time scales, it is secondary to the choice of
- 385 anthropogenic emissions trajectory. However, this does not completely rule out the possibility of a hothouse scenario in the longer term. Indeed, tipping events are not necessarily abrupt on human time scales. Positive feedbacks could have negligible impacts by 2100, for example on global mean temperature and sea level rise, but still influence Earth system trajectories on (multi-) millennial time scales (Kemp et al., 2022; Lenton et al., 2019; Steffen et al., 2018). Overall, this calls for experiments across the model hierarchy. EMICs (Earth System Models of Intermediate Complexity) in particular, and AOGCM at coarse
- 390 spatial resolution, offer an interesting trade-off as they include representations of most tipping elements while still allowing for multi-millennial simulations.

3 Archetypal examples of interactions between tipping elements from a paleoclimatic perspective

3.1 Interactions in the distant past: Eocene-Oligocene Transition

The formation of a continent-scale ice sheet on Antarctica during the Eocene-Oligocene Transition about 34 million years ago 395 is known as Earth's Greenhouse-Icehouse Transition. Following a cooling over tens of millions of years, this shift to a new climate state would have been visible from space, as Antarctic forests were replaced by a blanket of ice, and seawater receded from the continents, changing the shapes of coastlines worldwide. The climate transition is recorded as a shift in the oxygen isotopic composition of microscopic fossil shells in marine sediment cores, which reflects a combination of deep sea cooling and continental ice growth (Coxall et al., 2005). It had global consequences for Earth's flora and fauna, both in the oceans and 400 on land (Hutchinson et al., 2020).

This climate transition has been identified as a possible palaeoclimate example of cascading tipping points in the Earth system (Dekker et al., 2018; Tigchelaar et al., 2011). Examples of climatic tipping elements in this case consist of global deep water formation, the Antarctic Ice Sheet, polar sea ice, monsoon systems and tropical forests. In a conceptual model, the first part of the oxygen isotope shift is attributed to a major transition in global ocean circulation, while the second phase reflects the subsequent blanketing of Antarctica with a thick ice sheet (Tigchelaar et al., 2011).

405

The global ocean circulatory system was showing tentative signs of change a few million years before the climate transition, likely caused by changing ocean gateways in the north Atlantic (Coxall et al., 2018). Neodymium isotopes do suggest that a precursor to North Atlantic Deep Water reached the southern hemisphere close to the Eocene-Oligocene Transition, perhaps signaling the onset of Atlantic Meridional Overturning Circulation (AMOC) (Via and Thomas, 2006). However, the exact

- 410 timing remains uncertain and may not correlate to the onset of the oxygen isotope shift. Indeed, the first part of the isotope shift is associated with a cooling of both deep sea temperatures and low latitude sea surface temperatures, which therefore more likely reflects a change in radiative forcing (Kennedy et al., 2015; Lear et al., 2008). However, this does not preclude AMOC onset preconditioning the system for glaciation through heat piracy in the Southern Ocean, with the exact timing of the transition set later by a favorable orbital configuration (Coxall et al., 2005).
- In general, biomes in Earth's greenhouse state reflect warmer and wetter conditions than the icehouse state of the early Oligocene, but many of these seemed to have changed gradually as climate cooled in the Eocene, making it difficult to identify vegetation tipping elements following the glaciation of Antarctica (Hutchinson et al., 2020). The mammalian fossil record, which is coupled to vegetation through diet, suggests more acute changes in the early Oligocene. The Grand Coupure (="The Big Break"), is a long-known mammalian extinction/origination event during the Eocene-Oligocene time involving large scale
- 420 migrations of Asian mammals into Europe (Hooker et al., 2004). Thought to signal a combination of changing climate and floral changes, this abrupt faunal turnover might reflect crossing of an ecosystem tipping point caused by the crossing of a climate tipping point: a climate-ecology tipping cascade. Mammal extinctions seem to be particularly widespread in Afro-Arabia and linked to loss of dietary diversity (de Vries et al., 2021). This finding is consistent with the idea that biomes in this subtropical region are tippable elements (Armstrong McKay et al., 2022; Lenton et al., 2008). Other evidence of vegetation biomes
- 425 having tipped includes a transition from warm-temperate to cool-temperate rainforests in southeastern Australia (Korasidis

et al., 2019). Monsoon systems, sensitive to forcing and to large-scale reorganizations of the climate system, might have been important for explaining the shifts in these respective vegetation biomes. Moreover, simulations of the late Eocene climate suggest the existence of a strong monsoon-like climate over the Antarctic continent; without a major reorganization of such an atmospheric circulation regime, ice growth on Antarctica seems very unlikely (Baatsen et al., 24 May 2023, 2020).

- The glaciation of Antarctica also produced a sea level fall of several tens of meters (Lear et al., 2008), causing shallow seaways to recede, turning many marine regions into continental habitats, which experienced particularly strong seasonality (Toumoulin et al., 2022). The associated reduction of the marine carbonate factory in previously submerged tropical shelf-seas, caused the calcite compensation depth to deepen by more than one kilometer, turning enormous swathes of seafloor white as the sinking calcite shells of plankton no longer dissolved in shallow depths (Coxall et al., 2005).
- 435 In summary, Earth's Greenhouse-Icehouse Transition was likely associated with a range of interactions between components of the Earth system that are debated as potential tipping elements. Determining the extent to which these reflect a cascading series will require a major data-modeling effort, with improved correlations between marine and terrestrial records, and better constraints on the rate and magnitude of change within a range of tipping elements.

3.2 Interactions during and since the last glacial period

440 In this chapter, we discuss three important paleoclimate candidates for tipping interactions since the last glacial period (see Fig. 3).

3.2.1 Bølling-Allerød

Towards the end of the last ice age, a very prominent event is recorded in numerous geological archives. The Bølling-Allerød (B/A) started at 14.7 ka with abrupt warming in the Northern Hemisphere (with temperature increase in Greenland by 10-14°C over a few years; Andersen et al. (2004)) in response to a reinvigoration of the AMOC (McManus et al., 2004) and lasted until 12.9 ka. The B/A is an example of pronounced interactions between Earth system components and cascading impacts in the Earth system (Brovkin et al., 2021). At the onset of the B/A, atmospheric CO_2 and CH_4 concentrations rapidly increased over a few decades (Marcott et al., 2014) in response to abrupt warming and permafrost thaw (Köhler et al., 2014) and moisture changes (e.g. Kleinen et al., 2023). This was followed by fast changes in vegetation composition (Novello et al., 2017; Fletcher

450 et al., 2010). In the ocean, surface warming and circulation changes were propagated downward, leading to sedimentary anoxia across the North Pacific (Praetorius et al., 2015; Jaccard and Galbraith, 2012) as well as more severe hypoxia in the Cariaco Basin (Gibson and Peterson, 2014) and Arabian Sea (Reichart et al., 1998), indicating a link between climate warming and ocean deoxygenation.

The trigger for the rapid amplification of ocean circulation and the associated abrupt impacts at the B/A transition has been 455 a focus of debate, with opinions divided between an essentially linear response to the (possibly abrupt) cessation of freshwater forcing (e.g. Liu et al., 2009) versus a non-linear response to more gradual forcing (i.e., a tipping point, e.g., Barker and Knorr (2021); Knorr and Lohmann (2007)).

460

Gradual changes observed in key climatic variables (e.g., CO_2 and global temperature) during sustained periods of cold across the surface North Atlantic (as occurred prior to the B/A onset) were a persistent feature of glacial terminations throughout the last 800 kyr (e.g. Barker et al., 2019), as well as during the massive ice rafting events of the last glacial period (known as Heinrich events). Each of these periods is thought to have been followed by the rapid resumption of ocean circulation and other events associated with the B/A (e.g., a rapid rise of CO_2 and CH_4).

3.2.2 Dansgaard-Oeschger events

Smaller amplitude (as compared to B/A) yet equally rapid, transitions known as Dansgaard-Oeschger (D/O) events (Fig. 3) occurred repeatedly during glacial periods throughout much of the late Pleistocene (e.g. Ganopolski and Rahmstorf, 2001). In general, these consist of an abrupt (on the order of decades) warming from stadial to interstadial conditions, followed by gradual cooling over the course of hundreds to a few thousands of years, before a rapid transition back to cold stadial conditions. Evidence from Greenland ice cores and North Atlantic sediments suggest that the abrupt cooling transitions (from warm interstadial to cold stadial conditions) were systematically preceded and possibly triggered by more gradual cooling

- 470 across the high latitude Northern Hemisphere (e.g., NGRIP project partners; Barker et al. (2015)). The abrupt transitions from stadial to interstadial conditions were also preceded by more gradual changes elsewhere (for example increasing Antarctic and deep ocean temperatures and decreasing dustiness; Barker and Knorr (2007)), leading to the idea that both types of transitions may be predictable to some extent (Lohmann, 2019; Barker and Knorr, 2016). Each event was also paired with rapid changes in ocean circulation, terrestrial hydroclimate, atmospheric composition and ocean oxygenation in much the same way as observed
- 475 during the B/A. Thus, the occurrence and interactions among many subsystems that show abrupt changes make it plausible to consider it a cascade, and are a ubiquitous and common feature of late Pleistocene climate variability.

During the abrupt warming phases of D/O cycles, an abrupt decrease of Arctic and North Atlantic sea ice cover likely contributed to the onset of convection and a rapid resurgence of a much weaker, and potentially even collapsed, AMOC (Gildor and Tziperman, 2003; Li et al., 2010). D/O-type changes in coupled climate models also feature a rapid disappearance

480 of sea ice that precedes the abrupt AMOC strengthening (Vettoretti and Peltier, 2016; Zhang et al., 2014). Thus, the D/O warmings may potentially comprise a tipping cascade (Lohmann and Ditlevsen, 2021). However, such a cascading interaction may depend on the climate background state, and it is unclear whether North Atlantic sea ice cover during the last glacial period can be considered a tipping element.

3.2.3 Heinrich events

485 While the exact causes and mechanisms of the B/A transition and D/O events are still under debate, Heinrich events are better understood. They occurred during some of the cold stadial phases mentioned above and were associated with major reorganization of ocean circulation in the North Atlantic (for a review see Clement and Peterson (2008)). During Heinrich events, large masses of ice were released from the Laurentide Ice Sheet, leading to a dramatic freshening of the North Atlantic Ocean and enhanced suppression of deep-water formation and the AMOC.

Figure 3. Interactions at the end of Heinrich Stadial 4 (HS4). (a) Climate proxy indices spanning the transition from HS4 into Dansgaard-Oeschger (DO) event 8 (time goes from left to right). From top to bottom: AMOC strength (Henry et al., 2016), Norwegian Sea ice cover (Sadatzki et al., 2020), Greenland temperature (North Greenland Ice Core Project members (NGRIP), 2004), North Atlantic SST (Martrat et al., 2007), Dust accumulation in Greenland (Ruth et al., 2007), Asian monsoon intensity (Cheng et al., 2016), South American monsoon intensity (Kanner et al., 2012). Horizontal red bar indicates period when ITCZ assumed a more southerly position (Wang et al., 2004). Hatched region spans the transition from HS4 to DO8 and represents an estimate of the relative age uncertainty among the records shown (i.e. it is generally not possible to tell which changes occurred earlier or later within the overall sequence). Vertical arrows indicate the sense of increase for each parameter. (b) Interactions between Ocean, Atmosphere and Land during the end of HS4.

- 490 They can be understood as a phenomenon involving two tipping elements, the Laurentide Ice Sheet and the AMOC. The ice fluxes from the Laurentide Ice Sheet have been described as a binge/purge oscillator (MacAyeal, 1993), where a period of strong ice accumulation (the binge phase) is followed by a period of rapid ice loss (the purge phase). During the binge phase, ice is generally thought to be frozen to the bottom and thus immovable. As the ice sheet gets thicker, basal temperatures increase until the pressure melting point of the basal ice is reached. The resulting meltwater production lubricates the bed, and enables sliding of the ice. This may already be sufficient to initiate the purge phase, though further triggers like ocean 495
- subsurface warming probably also played an important role in destabilizing marine-terminating portions of the Laurentide Ice Sheet (Max et al., 2022; Alvarez-Solas et al., 2013). The purge phase lasts until the ice sheet has become too thin to maintain basal temperatures above the pressure melting point, thus re-freezing and stopping the ice flow. The resulting ice stream flows into the Atlantic Ocean, and as the resulting icebergs melt, Atlantic surface waters are freshened to the point where the AMOC 500 cannot be sustained and collapses.

The mechanisms sketched above have been demonstrated in a number of transient model experiments, using Earth System Models of Intermediate Complexity (Calov et al., 2010, 2002) and complex ice-sheet-atmosphere-ocean general circulation models (Schannwell et al., 2023; Ziemen et al., 2019). However, not all details have yet been resolved, the exact trigger mechanism (and threshold) initiating the purge phase, for example, has not yet been identified (Schannwell et al., 2023).

505 3.3 A paleoclimate perspective on the resilience of the Amazon rainforest

Two historical analogues have provided some (albeit not fully consistent) insights into the response of the Amazon to reductions in rainfall: Heinrich events during the last glacial period, and the mid-Holocene. As mentioned in the previous section, Heinrich events are remarkable intervals during the last glacial period in which the AMOC seems to have substantially weakened in response to iceberg release in the North Atlantic (Henry et al., 2016). Paleoclimate data from these events are of great help to

- evaluate the processes suggested by climate model simulations of AMOC slowdown. Häggi et al. (2017), using an isotope proxy 510 from a sediment core collected offshore the Amazon River mouth, showed savannah intrusions into the Amazon rainforest during repeated Heinrich events. The intrusions of savannah occurred in northern Amazonia (Zular et al., 2019; Häggi et al., 2017) and validate the suggested decrease in precipitation over that region in response to AMOC weakening (Campos et al., 2019). Further precipitation and, even more importantly, vegetation reconstructions with appropriate age models and sufficient
- 515 temporal resolution, will help clarify the southward extent of the drying of northern Amazonia due to an AMOC collapse, as well as its consequences to the rainforest.

Kukla et al. (2021) used pollen, charcoal, and speleothem oxygen isotope proxy data to reconstruct the response of the Amazon forest during the mid-Holocene, when precipitation was relatively low (Prado et al., 2013). Their analysis suggests that the Amazon was resilient to rainfall reductions as high as projected by climate models for the rest of the century. However,

520 it also has to be considered that in the study of Kukla et al. (2021) temperature and land use were similar to pre-industrial conditions, whereas future warming and deforestation will act as additional stressors that affect the surface water balance by increasing potential evapotranspiration and decreasing precipitation recycling, on one hand (Zemp et al., 2017), while also increasing the chances of fire and thus the possibility of the Amazon to convert into a degraded, open ecosystem

525

4 Archetypal example of nonlinear climate component interactions: Arctic sea ice loss leading to coastal permafrost erosion

As even regional tipping elements can have substantial spatial extent it is possible that only a part of a tipping element or nonlinearly behaving region is affected. Here we discuss an example of such nonlinear climate component interaction, namely the impact of accelerating Arctic sea ice loss on coastal erosion in Siberian and North American permafrost regions.

- Relic carbon-rich coastal shelf ice in Siberia and Alaska is exposed to the ocean and atmosphere (Irrgang et al., 2022). 530 Currently, Arctic coastal erosion rates are of 4 m a^{-1} , peaking at 25-50 m a^{-1} , an order of magnitude higher than elsewhere in the world (Philipp et al., 2022). The shortened sea ice season exposes the ocean to winds and increases ocean wave fetch, leading to higher ocean waves that accelerate erosion levels (Meucci et al., 2023; Hošeková et al., 2021). The Siberian and Alaskan coasts transition to a higher erosion state, with a total retreat of 500-1000 m since the 1950s, and an accelerated retreat since the mid 2000's (Figure 4) (Grigoriev, 2019).
- The shelf primary production sustains about a third of Arctic production; coastal erosion provides the majority of nitrogen and phosphorus and a third of carbon (Terhaar et al., 2021). These fluxes can be much higher in the future, changing marine food-webs. Summer sea ice disappearance increases seasonal bloom and nutrient depletion in the ocean, nutrient inputs from rivers and coastal erosion alleviate the nutrient limitation (Oziel et al., 2022). The erosion is a risk to infrastructure, settlements and economy (Clare et al., 2022). The impact of erosion on ecosystems is medium to high with the medium to high uncertainty.
- 540 Change in sea ice is gradual (Notz, D. and SIMIP Community, 2020), however, storms can abruptly change sea ice on the shelves (Lukovich et al., 2021), leading to high waves and a destabilization of parts of the permafrost coast (Casas-Prat and Wang, 2020). The impact of coastal erosion on ecosystems is irreversible, as are socioeconomic impacts (Fritz et al., 2017). Furthermore, coastline collapse and permafrost degradation can release large amounts of carbon to the ocean and atmosphere (Vonk et al., 2012; Tarnocai et al., 2009).
- In summary, this cascade operates as follows: (1) abrupt changes (a tipping point) in summer-autumn sea ice retreat from the coast leads to (2) increase in the waves, resulting in (3) abrupt increases in erosion rates (2-4 times higher) due to a wave undercut mechanism. Thus, (4) there is a potential cascading risk of large carbon releases to the ocean and atmosphere due to the coastal collapse. At the same time, coastal ecosystems would be impacted through increased nutrients and other terrigenous matter fluxes as well as local communities and economies (fisheries and infrastructure collapse).

550 5 Modeling tipping element interactions and cascading transitions

Modeling interactions between tipping elements and potential tipping cascades in the climate system is a difficult task. A key challenge is to accurately capture feedback mechanisms between different climatic components. In addition, each climate subsystem evolves over spatial scales and time scales that can span orders of magnitude from decades to centuries for biosphere components, and from centuries to millennia for the large ice sheets on Greenland and Antarctica (see Fig. 2). The ideal tool

555 to study the interaction between tipping elements would therefore be a high-resolution, comprehensive Earth system model based on general circulation models (GCM) for the atmosphere and ocean, with a sea ice component, dynamic vegetation and

Figure 4. Cascade between different elements of the Arctic climate system: sea ice and coastal permafrost erosion. (a,b) Sea ice area seasonal cycle for the 1979-2015 in Siberia and Beaufort Sea. (c,d) Time series of the October sea ice area with a tipping point, defined through changes in the mean, standard deviation and linear trends; the two ice states are marked by the cyan and red lines. (e,f) Coastal retreat in these regions. Stars show potential tipping points. The mechanism of transition, linking the sea ice retreat to the increased waves and accelerated coastal erosion, suggests a cascade, acting from the abrupt changes in the ocean and cryosphere to the changes of state in the coastal retreat and ecosystem.

interactive ice sheets and carbon cycle. Moreover, the model should be computationally fast to allow the representation of the slow processes and to run comprehensive ensembles for taking into account the uncertainties in key parameters (Murphy et al., 2004). However, such a universal tool does not exist. Instead, a hierarchy of models of different complexity is needed to explore

- 560 the interactions between tipping elements on different temporal and spatial scales (Fyke et al., 2018). The state-of-the-art Earth system models that are usually employed in climate change projections, the models in the Coupled Model Intercomparison Project 6 (CMIP6) (Eyring et al., 2016), are the first choice to investigate processes developing over centennial time scales. Since these models usually include dynamic vegetation, they are suitable to explore the interactions between abrupt changes in ocean circulation, Arctic sea ice and vegetation cover. However, CMIP6 models are computationally expensive and most of
- 565 them do not include interactive ice sheets, which limits the applicability of these models to study interactions between tipping elements and potential tipping cascades that involve slow deep-ocean dynamics or ice sheets. Also, they show some limitations to how vegetation is represented, especially in tropical areas (e.g. D'Onofrio et al., 2020). Recently, progress has been made in including interactive ice sheets in a few CMIP6 models for studying the coupled climate-Greenland evolution (Madsen et al., 2022; Ackermann et al., 2020; Muntjewerf et al., 2020) on centennial time scales.
- For studying feedbacks on millennial time scales or longer, one possible solution is to use Earth system models with 570 coarser spatial resolution, allowing for faster simulations (Brunetti and Ragon, 2023; Brunetti et al., 2019; Ferreira et al., 2011; Hawkins et al., 2011) or Earth System Models of Intermediate Complexity (EMICs, Claussen et al. (2002)). A downside of these models is that the interactions between tipping elements are necessarily less realistic and some nonlinear processes need to be parameterized at sub-grid level. In particular, EMICs are faster than GCMs of comparable spatial resolution, since
- they make use of some approximations in the representation of the atmosphere and/or ocean dynamics, and can for instance be 575 applied to investigate climate-ice sheet interactions on multi-millennia time scales (Willeit et al., 2022; Quiquet et al., 2021; Choudhury et al., 2020).

An alternative technique to speed up complex models, and therefore enable them to explore feedbacks on longer time scales, is offline (asynchronous) coupling, which has been applied to represent vegetation-climate (Betts et al., 1997; De Noblet et al., 1996; Claussen, 1994) and ice sheets-climate interactions (Scherrenberg et al., 2023; Pohl et al., 2016; Herrington and

Poulsen, 2011; Pollard, 2010). One example of asynchronous coupling is when the atmosphere evolves with fixed vegetation cover and eventually the latter is updated to the equilibrium conditions of the former (Foley et al., 1998). However, despite being less computationally expensive, feedback mechanisms and thus tipping phenomena and cascades are better represented when dynamical (synchronous) coupling is implemented (Drüke et al., 2021; Fisher et al., 2018; Fyke et al., 2018; Bonan et al., 2003). 585

590

580

Tipping phenomena and cascades at the regional scale, however, may be investigated with different approaches (Bastiaansen et al., 2022). For instance, they can be investigated using observation-based simulations coupled to energy or hydrological balance models at high spatial resolution as has been done for tipping cascades in the Amazon rainforest (Wunderling et al., 2022). Regional implementations of ice shelf/ocean interaction exist to obtain improved estimates of basal melt and to include small scale processes, like the presence of ocean eddies (Dinniman et al., 2016) that can affect the overall stability of the system

25

and potentially intensify transitions or cascades. It is indeed possible to run regional climate models (RCMs) (Noël et al., 2018;

Rae et al., 2012) at horizontal grid resolutions of a few km, thus providing more accurate spatio-temporal distributions of climatic variables like precipitation and temperature than GCMs. An alternative modeling framework is to apply grid refinement over a specified region of interest in a GCM, which avoids inconsistencies between the different dynamical cores and physical
parameterizations used in RCMs and GCMs, and (more importantly for tipping phenomena or casades) allows for two-way interactions between the refinement region and the global domain (Van Kampenhout et al., 2019). With such regionalized modeling approaches it could be possible to empirically detect local to super-regional (cascading) regime shifts (Rocha et al., 2018).

Also, more conceptual approaches based on differential equations or box models are frequently used for studying tipping
events and cascades for present-day climate and paleoclimates (Lohmann et al., 2021; Wunderling et al., 2021b; Wood et al., 2019; Boers et al., 2018). While such models offer a unique way of unraveling the complex dynamics of interacting tipping elements, it is not guaranteed that results of conceptual models can be confirmed by complex models, since the formers consider only a limited subset of dynamical variables and nonlinear processes of the climate system (Bathiany et al., 2016). For example, simple models that do not include space are suggested to over-predict the occurrence of tipping points, while
spatial pattern-formation phenomena might prevent such tipping when space is explicitly included (Rietkerk et al., 2021).

Lastly, modeling of cascading effects from the physical system to society and economy as well as vice versa are still missing from most state-of-the-art Earth system models, requiring urgent development (Franzke et al., 2022; Steffen, 2021; Beckage et al., 2020)

6 Discussion & Conclusion

interactions, their effect strengths, time scales and state-dependence.

- As anthropogenic global warming continues, tipping elements are at risk of crossing critical thresholds (Armstrong McKay et al., 2022). Several assessments have investigated the risk of crossing critical thresholds of individual tipping elements whereas interactions between tipping elements are only more recently taken into account, mostly by conceptual models (e.g. Sinet et al., 2023; Wunderling et al., 2023; Dekker et al., 2018). In this review, we summarize the current state of the literature of many central tipping element interactions. We conclude that tipping elements interact across scales in space and time (see Figs. 1 and 2), spanning from subcontinental to nearly planetary spatial scales from sub-yearly up to millennial time scales. We find that many of the discussed interactions between tipping elements are of destabilizing nature (Tab. 1), implying the possibility of cascading transitions under global warming. Out of the discussed interactions, nine are assessed as destabilizing while two are stabilizing, and three of unclear status/sign (see Fig. 1, without dashed arrows). Assessing the overall stability of the Earth system, and the possibility of a chain of nonlinear transitions, will however require more detailed assessments of
- 620

While there is more and more research on individual thresholds of climate tipping elements, substantial uncertainties prevail in the existence and strength of many links between tipping elements. In order to decrease such uncertainties, we propose four possible ways forward: (i) Observation-based approaches: Satellite observations, reanalysis and paleoclimate data sets may be evaluated using correlation measures (Liu et al., 2023), nonlinear approaches such as convergent cross-mapping (Van Nes

- 625 et al., 2015) or more advanced machine-learning approaches such as causal inference (e.g. Runge et al., 2019; Kretschmer et al., 2016; Runge et al., 2015). (ii) Earth system model-based approaches: With recent progress, Earth system models of full or intermediate complexity could be used to evaluate interactions between climate tipping elements in process-detail and quantify their interactions using specifically designed experiments. (iii) Risk analysis approaches: Since relevant parameter and structural uncertainties are large within Earth system models, analyzing model ensembles with a considerable number of ensemble members is very helpful in order to comprehensively propagate uncertainties for risk assessments (Daron and
- Stainforth, 2013; Stainforth et al., 2007; Murphy et al., 2004). While this approach often requires more simplified or emulator models designed for large-scale Monte Carlo analyses, it does not reduce model or data uncertainties per se. Therefore, it is still possible to evaluate the risk of emerging tipping events or cascades as well as the role of interactions between tipping elements. (iv) Expert elicitation: An expert elicitation on tipping element interactions would be of tremendous value to update and move beyond early investigations of this kind (Kriegler et al., 2009), since all the three aforementioned approaches (i-iii)
- have important limitations that would benefit from direct expert input.

Clearly all of these strategies have their strengths and limitations. Both (i) and (ii) could benefit from extending the established notion of correlation measures in climate networks (Liu et al., 2023; Ciemer et al., 2021; Armstrong et al., 2019; Svendsen et al., 2014; Chen et al., 2010) to causal measures such as causal inference methods, for instance informed by

- 640 Granger causality or conditional (in)dependences (Pearl, 1985; Granger, 1969). A prominent approach for causal inference has been applied in climate science using the so-called PCMCI-algorithm (Runge et al., 2019), which is a constraint-based method that considers (lagged) partial correlation to establish links between the considered variables. Such methods can be used to check whether identified correlations indeed correspond to a causal relation, where it is important to take into account all possible confounding factors. To do that one needs to start from the physical processes involved, for instance informed
- 645 by conceptual models, and test this as a hypothesis for the causal relations (Kretschmer et al., 2021; Di Capua et al., 2020). However, to apply such methods to the tipping point context it is important to know the limitations. One of the assumptions made is that of stationarity of the links between the variables considered, which may not be true once a tipping point is crossed. Another difficulty may be the different timescales of the tipping elements where, e.g., ice sheets are very slow compared to the Amazon rainforest or AMOC.
- 650 Limitations of the approaches (i)-(iv) further include: First, observation-based data from recent monitoring do not include tipping of large-scale Earth system components due to the lack of recent occurrence of such events or even cascades. Paleoclimate data can partially compensate for such disadvantages at the price that data is hard to retrieve and its availability and abundance is far from perfect. Second, complex Earth system models may not include all relevant interaction processes between tipping elements or are often computationally too expensive to run large-scale ensembles that could take into account
- and propagate all relevant uncertainties. And third, risk analysis approaches include accounting for theoretical knowledge properties of these types of physical dynamical systems. Therefore, different approaches should complement each other, requiring experts to combine observations, reconstructions, and novel computational strategies individually, but potentially also through a formalized elicitation. Thus improving model development and informing risk analyses based on ensembles of possibilistic model simulations. Taken together, all approaches mentioned above are required to obtain more reliable estimates of existen-

- 660 tial risks such as those posed by potential tipping events or even cascades (Kemp et al., 2022; Jehn et al., 2021). They could be used to inform an emulator for tipping risks taking into account properties of individual tipping elements as well as their interactions. In addition, there also exist large uncertainties not only among the known interactions as discussed above, but also not all interactions are known or quantified (known unknowns versus unknown unknowns).
- Further, in certain systems, there are forcings of non-climatic origin that could interact with climate change and lead to tipping, and thus to interactions and possibly cascades with other elements. For instance, land use change and, specifically, deforestation are threatening the Amazon and decreasing its resilience to climate change (e.g. Staal et al., 2020), since the Amazon is transpiring large parts of its own rainfall. Recent studies also indicate that Amazon and other humid forests might also affect the atmospheric convergence of moisture (Makarieva et al., 2023), which might possibly affect other climate and ecosystem elements. Therefore, non-climate related factors might also trigger cascading tipping, which would require further
- 670 research to be investigated. Lastly, systems do not necessarily tip fully in one go, but there can also be stable intermediate states (such as through the formation of spatial patterns). This has mostly been reported in ecological systems but is not limited to them (Rietkerk et al., 2021; Bastiaansen et al., 2020).

Taken together, assessing and quantifying tipping element interactions better has great potential to advance suitable risk analysis methodologies for climate tipping events and cascades, especially because it is clear that tipping elements are not isolated systems. Clearly, the relevance for developing such risk analysis tools to assess tipping events and cascades is evident,

675 isolated systems. Clearly, the relevance for developing such risk analysis tools to assess tipping events and cascades is evident, given the potential for existential risks and long-term irreversible changes (Kemp et al., 2022).

Code and data availability. There is no data or code that has been produced for this review article.

Author contributions. N.W. and A.vdH. designed the study. N.W. and A.S.vdH. led the writing of the manuscript with input from all authors.
N.W., A.S.vdH., N.J.S, Y.A., S.B., J.T.B., V.B., T.K., R.W., V.C., A.K., H.C., and C.L. designed the figures of this manuscript. All authors
have reviewed and edited the final version of the manuscript.

Competing interests. Some authors are members of the editorial board of the journal Earth System Dynamics. The peer-review process was guided by an independent editor, and the authors have also no other competing interests to declare.

Acknowledgements. This review article has been carried out within the framework of the Global Tipping Points Report 2023. N.W. and J.F.D. acknowledge support from the European Research Council Advanced Grant project ERA (Earth Resilience in the Anthropocene, ERC-2016-ADG-743080). J.F.D. is grateful for financial support by the project CHANGES funded by the German Federal Ministry for Education and Research (BMBF) within the framework 'PIK_Change' under grant 01LS2001A. R.W. acknowledges financial support via the

685

Earth Commission, hosted by FutureEarth. The Earth Commission is the science component of the Global Commons Alliance, a sponsored

project of Rockefeller Philanthropy Advisors, with support from Oak Foundation, MAVA, Porticus, Gordon and Betty Moore Foundation, Herlin Foundation and the Global Environment Facility. The Earth Commission is also supported by the Global Challenges Foundation. V.C. 690 is funded as Research Fellow by the Belgian National Fund of Scientific Research (F.S.R. - FNRS). A.K.K. and R.W. acknowledge support by the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 820575 (TiPACCs) and No. 869304 (PROTECT). T.K. acknowledges support through the project Palmod, funded by the German Federal Ministry of Education and Research (BMBF), 01LP1921A. M.Br. acknowledges the financial support from the Swiss National Science Foundation (Sinergia Project No. CR-SII5 180253). Coastal and marine sections would like to thank the generous support of the BNP PARIBAS Foundation for the CORESCAM project, part of the 2019 call on Biodiversity and Climate Change, and the USAID for support to the SWAMP project. J.T.B. gratefully 695 acknowledges the UK Research Councils funded Models2Decisions Grant (M2DPP035: EP/P0167741/1), ReCICLE (NE/M004120/1) and STFC Spark Award (ST/V005898/1) which helped fund his involvement with this work. A.S.vdH., S.K.J.F. acknowledge funding by the Dutch Research Council (NWO) under a Vici project to A.S.vdH. (with project number VI.C.202.081 of the NWO Talent programme). A.S.vdH. has worked under the program of the Netherlands Earth System Science Centre (NESSC), financially supported by the Ministry of 700 Education, Culture and Science (OCW). A.S.vdH., R.B., S.S. acknowledge funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 820970 (this paper is TiPES paper #232) and under the Marie Skłodowska-Curie Grant Agreement No. 956170 (CriticalEarth). CHL acknowledges NERC funding for SWEET grant NE/P019102/1. JB acknowledges funding by the European Research Council (ERC) under the Horizon Europe research and innovation programme (ERC-starting grant CATES, grant agreement No. 101043214). C.M.C. acknowledges the financial support from FAPESP (grants 2018/15123-4 and 2019/24349-9) and CNPq

- 705 (grant 312458/2020-7). Y.A. and S.R. acknowledge funding from the project COMFORT (grant agreement no. 820989) under the European Union's Horizon 2020 research and innovation programme, and from the EC Horizon Europe project OptimESM "Optimal High Resolution Earth System Models for Exploring Future Climate Changes", grant 101081193 and UKRI grant 10039429. Y.A. and S.R. also acknowledge funding support from the project EPOC, EU grant 101059547 and UKRI grant 10038003 and from the UK NERC projects LTS-M BIOPOLE (NE/W004933/1), CANARI (NE/W004984/1), and Consequences of Arctic Warming for European Climate and Extreme Weather (Arcti-
- 710 CONNECT, NE/V004875/1). Y.A. and S.R. acknowledge the use of the ARCHER UK National Supercomputing and JASMIN. For the EU projects the work reflects only the authors' view; the European Commission and their executive agency are not responsible for any use that may be made of the information the work contains. D.D. is funded by the Belgian Science Policy Office (BELSPO) under the RESIST project (contract no. RT/23/RESIST). M. Ba. acknowledges the Italian National Biodiversity Future Center (NBFC): National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 of the Italian Ministry of University and Research; funded by the European
- 715 Union NextGenerationEU (Project code CN_00000033). M.W. acknowledges financial support by the German climate modeling project PalMod supported by the German Federal Ministry of Education and Research (BMBF) as a Research for Sustainability initiative (FONA) (grant nos. 01LP1920B and 01LP1917D). D. S. acknowledges financial support by the RRI "Tackling Global Change" from University of Bordeaux and by the INSU/LEFE DECORATING and the UKRI DECADAL projects.

References

730

750

- 720 Ackermann, L., Danek, C., Gierz, P., and Lohmann, G.: AMOC Recovery in a multicentennial scenario using a coupled atmosphere-ocean-ice sheet model, Geophysical Research Letters, 47, e2019GL086 810, 2020.
 - Alvarez-Solas, J., Robinson, A., Montoya, M., and Ritz, C.: Iceberg discharges of the last glacial period driven by oceanic circulation changes, Proceedings of the National Academy of Sciences, 110, 16350–16354, 2013.
- Andersen, K., Azuma, N., Barnola, J., Bigler, M., Biscaye, P., Caillon, N., Chappellaz, J., Clausen, H., Dahl-Jensen, D., Fischer, H., et al.:
- 725 North Greenland Ice Core Project: High-resolution record of Northern Hemisphere climate extending into the last interglacial period, Nature, 431, 147–151, 2004.
 - Armstrong, E., Valdes, P., House, J., and Singarayer, J.: Investigating the feedbacks between CO₂, vegetation and the AMOC in a coupled climate model, Climate Dynamics, 53, 2485–2500, 2019.

Armstrong McKay, D. I., Staal, A., Abrams, J. F., Winkelmann, R., Sakschewski, B., Loriani, S., Fetzer, I., Cornell, S. E., Rockström, J., and Lenton, T. M.: Exceeding 1.5 C global warming could trigger multiple climate tipping points, Science, 377, eabn7950, 2022.

- Årthun, M., Eldevik, T., Smedsrud, L., Skagseth, Ø., and Ingvaldsen, R.: Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat, Journal of Climate, 25, 4736–4743, 2012.
 - Ayarzagüena, B., Ineson, S., Dunstone, N. J., Baldwin, M. P., and Scaife, A. A.: Intraseasonal effects of el niño-southern oscillation on North Atlantic climate, Journal of Climate, 31, 8861–8873, 2018.
- 735 Baatsen, M., von Der Heydt, A. S., Huber, M., Kliphuis, M. A., Bijl, P. K., Sluijs, A., and Dijkstra, H. A.: The middle to late Eocene greenhouse climate modelled using the CESM 1.0. 5, Climate of the Past, 16, 2573–2597, 2020.
 - Baatsen, M., Bijl, P., von der Heydt, A., Sluijs, A., and Dijkstra, H.: Resilient Antarctic monsoonal climate prevented ice growth during the Eocene, Climate of the Past Discussions [preprint], https://cp.copernicus.org/preprints/cp-2023-36/, pp. 1–19, 24 May 2023.
- Bakker, P., Schmittner, A., Lenaerts, J., Abe-Ouchi, A., Bi, D., van den Broeke, M., Chan, W.-L., Hu, A., Beadling, R., Marsland, S., et al.:
 Fate of the Atlantic Meridional Overturning Circulation: Strong decline under continued warming and Greenland melting, Geophysical Research Letters, 43, 12–252, 2016.
 - Barbante, C., Barnola, J.-M., Becagli, S., Beer, J., Bigler, M., Boutron, C., Blunier, T., Castellano, E., Cattani, O., Chappellaz, J., et al.: One-to-one coupling of glacial climate variability in Greenland and Antarctica, Nature, 444, 195–198, 2006.
- Barker, S. and Knorr, G.: Antarctic climate signature in the Greenland ice core record, Proceedings of the National Academy of Sciences,
 104, 17 278–17 282, 2007.
 - Barker, S. and Knorr, G.: A paleo-perspective on the AMOC as a tipping element, PAGES Magazine, 24, 14–15, 2016.
 - Barker, S. and Knorr, G.: Millennial scale feedbacks determine the shape and rapidity of glacial termination, Nature Communications, 12, 2273, 2021.
 - Barker, S., Chen, J., Gong, X., Jonkers, L., Knorr, G., and Thornalley, D.: Icebergs not the trigger for North Atlantic cold events, Nature, 520, 333–336, 2015.
 - Barker, S., Knorr, G., Conn, S., Lordsmith, S., Newman, D., and Thornalley, D.: Early interglacial legacy of deglacial climate instability, Paleoceanography and Paleoclimatology, 34, 1455–1475, 2019.
 - Bastiaansen, R., Doelman, A., Eppinga, M. B., and Rietkerk, M.: The effect of climate change on the resilience of ecosystems with adaptive spatial pattern formation, Ecology Letters, 23, 414–429, 2020.

760

- 755 Bastiaansen, R., Dijkstra, H. A., and von der Heydt, A. S.: Fragmented tipping in a spatially heterogeneous world, Environmental Research Letters, 17, 045 006, 2022.
 - Bathiany, S., Dijkstra, H., Crucifix, M., Dakos, V., Brovkin, V., Williamson, M. S., Lenton, T. M., and Scheffer, M.: Beyond bifurcation: using complex models to understand and predict abrupt climate change, Dynamics and Statistics of the Climate System, 1, 1–31, 2016.
 - Baudena, M., Tuinenburg, O. A., Ferdinand, P. A., and Staal, A.: Effects of land-use change in the Amazon on precipitation are likely underestimated, Global Change Biology, 27, 5580–5587, 2021.
 - Beckage, B., Lacasse, K., Winter, J. M., Gross, L. J., Fefferman, N., Hoffman, F. M., Metcalf, S. S., Franck, T., Carr, E., Zia, A., et al.: The Earth has humans, so why don't our climate models?, Climatic Change, 163, 181–188, 2020.

Bel, G., Hagberg, A., and Meron, E.: Gradual regime shifts in spatially extended ecosystems, Theoretical Ecology, 5, 591-604, 2012.

- Bellomo, K., Meccia, V. L., D'Agostino, R., Fabiano, F., Larson, S. M., von Hardenberg, J., and Corti, S.: Impacts of a weakened AMOC on precipitation over the Euro-Atlantic region in the EC-Earth3 climate model, Climate Dynamics, pp. 1–20, 2023.
 - Berk, J. v. d., Drijfhout, S., and Hazeleger, W.: Circulation adjustment in the Arctic and Atlantic in response to Greenland and Antarctic mass loss, Climate Dynamics, 57, 1689–1707, 2021.
 - Betts, R. A., Cox, P. M., Lee, S. E., and Woodward, F. I.: Contrasting physiological and structural vegetation feedbacks in climate change simulations, Nature, 387, 796–799, 1997.
- 770 Bintanja, R., van Oldenborgh, G. J., Drijfhout, S., Wouters, B., and Katsman, C.: Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion, Nature Geoscience, 6, 376–379, 2013.
 - Bischoff, T. and Schneider, T.: Energetic constraints on the position of the intertropical convergence zone, Journal of Climate, 27, 4937–4951, 2014.
- Boers, N., Ghil, M., and Rousseau, D.-D.: Ocean circulation, ice shelf, and sea ice interactions explain Dansgaard–Oeschger cycles, Proceedings of the National Academy of Sciences, 115, E11005–E11014, 2018.
 - Bonan, G. B., Levis, S., Sitch, S., Vertenstein, M., and Oleson, K. W.: A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics, Global Change Biology, 9, 1543–1566, 2003.

Brönnimann, S., Xoplaki, E., Casty, C., Pauling, A., and Luterbacher, J.: ENSO influence on Europe during the last centuries, Climate Dynamics, 28, 181–197, 2007.

780 Brovkin, V., Brook, E., Williams, J. W., Bathiany, S., Lenton, T. M., Barton, M., DeConto, R. M., Donges, J. F., Ganopolski, A., McManus, J., et al.: Past abrupt changes, tipping points and cascading impacts in the Earth system, Nature Geoscience, 14, 550–558, 2021.

Brunetti, M. and Ragon, C.: Attractors and bifurcation diagrams in complex climate models, Physical Review E, 107, 054214, 2023.

Brunetti, M., Kasparian, J., and Vérard, C.: Co-existing climate attractors in a coupled aquaplanet, Climate Dynamics, 53, 6293–6308, 2019.

- Buckley, M. W. and Marshall, J.: Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review,
 Reviews of Geophysics, 54, 5–63, 2016.
 - Burke, K. D., Williams, J. W., Chandler, M. A., Haywood, A. M., Lunt, D. J., and Otto-Bliesner, B. L.: Pliocene and Eocene provide best analogs for near-future climates, Proceedings of the National Academy of Sciences, 115, 13 288–13 293, 2018.
 - Cai, W., Borlace, S., Lengaigne, M., Van Rensch, P., Collins, M., Vecchi, G., Timmermann, A., Santoso, A., McPhaden, M. J., Wu, L., et al.: Increasing frequency of extreme El Niño events due to greenhouse warming, Nature Climate Change, 4, 111–116, 2014.
- 790 Cai, W., Santoso, A., Wang, G., Yeh, S.-W., An, S.-I., Cobb, K. M., Collins, M., Guilyardi, E., Jin, F.-F., Kug, J.-S., et al.: ENSO and greenhouse warming, Nature Climate Change, 5, 849–859, 2015.

795

815

Cai, W., Santoso, A., Collins, M., Dewitte, B., Karamperidou, C., Kug, J.-S., Lengaigne, M., McPhaden, M. J., Stuecker, M. F., Taschetto, A. S., et al.: Changing El Niño–Southern oscillation in a warming climate, Nature Reviews Earth & Environment, 2, 628–644, 2021.

Calov, R., Ganopolski, A., Petoukhov, V., Claussen, M., and Greve, R.: Large-scale instabilities of the Laurentide ice sheet simulated in a fully coupled climate-system model, Geophysical Research Letters, 29, 69–1, 2002.

Calov, R., Greve, R., Abe-Ouchi, A., Bueler, E., Huybrechts, P., Johnson, J. V., Pattyn, F., Pollard, D., Ritz, C., Saito, F., et al.: Results from the Ice-Sheet Model Intercomparison Project–Heinrich Event INtercOmparison (ISMIP HEINO), Journal of Glaciology, 56, 371–383, 2010.

Campos, M. C., Chiessi, C. M., Prange, M., Mulitza, S., Kuhnert, H., Paul, A., Venancio, I. M., Albuquerque, A. L. S., Cruz, F. W., and Bahr,

800 A.: A new mechanism for millennial scale positive precipitation anomalies over tropical South America, Quaternary Science Reviews, 225, 105 990, 2019.

Casas-Prat, M. and Wang, X. L.: Projections of extreme ocean waves in the Arctic and potential implications for coastal inundation and erosion, Journal of Geophysical Research: Oceans, 125, e2019JC015745, 2020.

- Chemison, A., Defrance, D., Ramstein, G., and Caminade, C.: Impact of an acceleration of ice sheet melting on monsoon systems, Earth
 System Dynamics, 13, 1259–1287, 2022.
 - Chemke, R., Ming, Y., and Yuval, J.: The intensification of winter mid-latitude storm tracks in the Southern Hemisphere, Nature Climate Change, 12, 553–557, 2022.
 - Chen, W., Dong, B., and Lu, R.: Impact of the Atlantic Ocean on the multidecadal fluctuation of El Niño–Southern Oscillation–South Asian monsoon relationship in a coupled general circulation model, Journal of Geophysical Research: Atmospheres, 115, 2010.
- 810 Cheng, H., Edwards, R. L., Sinha, A., Spötl, C., Yi, L., Chen, S., Kelly, M., Kathayat, G., Wang, X., Li, X., et al.: The Asian monsoon over the past 640,000 years and ice age terminations, Nature, 534, 640–646, 2016.

Choudhury, D., Timmermann, A., Schloesser, F., Heinemann, M., and Pollard, D.: Simulating Marine Isotope Stage 7 with a coupled climate– ice sheet model, Climate of the Past, 16, 2183–2201, 2020.

Ciemer, C., Winkelmann, R., Kurths, J., and Boers, N.: Impact of an AMOC weakening on the stability of the southern Amazon rainforest, The European Physical Journal Special Topics, 230, 3065—3073, 2021.

Clare, M., Yeo, I., Bricheno, L., Aksenov, Y., Brown, J., Haigh, I., Wahl, T., Hunt, J., Sams, C., Chaytor, J., et al.: Climate change hotspots and implications for the global subsea telecommunications network, Earth-Science Reviews, 237, 104 296, 2022.

Claussen, M.: On coupling global biome models with climate models, Climate Research, 4, 203–221, 1994.

- Claussen, M., Mysak, L., Weaver, A., Crucifix, M., Fichefet, T., Loutre, M.-F., Weber, S., Alcamo, J., Alexeev, V., Berger, A., et al.: Earth
 system models of intermediate complexity: closing the gap in the spectrum of climate system models, Climate Dynamics, 18, 579–586, 2002.
 - Clemens, S. C., Yamamoto, M., Thirumalai, K., Giosan, L., Richey, J. N., Nilsson-Kerr, K., Rosenthal, Y., Anand, P., and McGrath, S. M.: Remote and local drivers of Pleistocene South Asian summer monsoon precipitation: A test for future predictions, Science Advances, 7, eabg3848, 2021.
- 825 Clement, A. C. and Peterson, L. C.: Mechanisms of abrupt climate change of the last glacial period, Reviews of Geophysics, 46, 2008. Cobb, K. M., Westphal, N., Sayani, H. R., Watson, J. T., Di Lorenzo, E., Cheng, H., Edwards, R., and Charles, C. D.: Highly variable El Niño–southern oscillation throughout the Holocene, Science, 339, 67–70, 2013.
 - Coxall, H. K., Wilson, P. A., Pälike, H., Lear, C. H., and Backman, J.: Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean, Nature, 433, 53–57, 2005.

- 830 Coxall, H. K., Huck, C. E., Huber, M., Lear, C. H., Legarda-Lisarri, A., O'regan, M., Sliwinska, K. K., Van De Flierdt, T., De Boer, A. M., Zachos, J. C., et al.: Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation, Nature Geoscience, 11, 190–196, 2018.
 - Crawford, A., Stroeve, J., Smith, A., and Jahn, A.: Arctic open-water periods are projected to lengthen dramatically by 2100, Communications Earth & Environment, 2, 109, 2021.
- 835 Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjörnsdottir, A., Jouzel, J., et al.: Evidence for general instability of past climate from a 250-kyr ice-core record, Nature, 364, 218–220, 1993.

Daron, J. D. and Stainforth, D. A.: On predicting climate under climate change, Environmental Research Letters, 8, 034 021, 2013.

- De Noblet, N. I., Prentice, I. C., Joussaume, S., Texier, D., Botta, A., and Haxeltine, A.: Possible role of atmosphere-biosphere interactions
 in triggering the Last Glaciation, Geophysical Research Letters, 23, 3191–3194, 1996.
 - de Vrese, P., Georgievski, G., Gonzalez Rouco, J. F., Notz, D., Stacke, T., Steinert, N. J., Wilkenskjeld, S., and Brovkin, V.: Representation of soil hydrology in permafrost regions may explain large part of inter-model spread in simulated Arctic and subarctic climate, The Cryosphere, 17, 2095–2118, 2023.
 - de Vries, D., Heritage, S., Borths, M. R., Sallam, H. M., and Seiffert, E. R.: Widespread loss of mammalian lineage and dietary diversity in
- the early Oligocene of Afro-Arabia, Communications Biology, 4, 1172, 2021.
 Deb, P., Orr, A., Bromwich, D. H., Nicolas, J. P., Turner, J., and Hosking, J. S.: Summer drivers of atmospheric variability affecting ice shelf thinning in the Amundsen Sea Embayment, West Antarctica, Geophysical Research Letters, 45, 4124–4133, 2018.
 - Defrance, D., Ramstein, G., Charbit, S., Vrac, M., Famien, A. M., Sultan, B., Swingedouw, D., Dumas, C., Gemenne, F., Alvarez-Solas, J., et al.: Consequences of rapid ice sheet melting on the Sahelian population vulnerability, Proceedings of the National Academy of Sciences,

850 114, 6533–6538, 2017.

- Dekker, M. M., von Der Heydt, A. S., and Dijkstra, H. A.: Cascading transitions in the climate system, Earth System Dynamics, 9, 1243– 1260, 2018.
- Delworth, T. L. and Mann, M. E.: Observed and simulated multidecadal variability in the Northern Hemisphere, Climate Dynamics, 16, 661–676, 2000.
- 855 Delworth, T. L., Zeng, F., Vecchi, G. A., Yang, X., Zhang, L., and Zhang, R.: The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere, Nature Geoscience, 9, 509–512, 2016.
 - Di Capua, G., Kretschmer, M., Donner, R. V., Van Den Hurk, B., Vellore, R., Krishnan, R., and Coumou, D.: Tropical and mid-latitude teleconnections interacting with the Indian summer monsoon rainfall: a theory-guided causal effect network approach, Earth System Dynamics, 11, 17–34, 2020.
- 860 Dinniman, M. S., Asay-Davis, X. S., Galton-Fenzi, B. K., Holland, P. R., Jenkins, A., and Timmermann, R.: Modeling ice shelf/ocean interaction in Antarctica: A review, Oceanography, 29, 144–153, 2016.
 - Docquier, D. and Koenigk, T.: A review of interactions between ocean heat transport and Arctic sea ice, Environmental Research Letters, 16, 123 002, 2021.

Dommenget, D. and Latif, M.: Generation of hyper climate modes, Geophysical Research Letters, 35, 2008.

865 Donat-Magnin, M., Jourdain, N. C., Gallée, H., Amory, C., Kittel, C., Fettweis, X., Wille, J. D., Favier, V., Drira, A., and Agosta, C.: Interannual variability of summer surface mass balance and surface melting in the Amundsen sector, West Antarctica, The Cryosphere, 14, 229–249, 2020.

Drüke, M., von Bloh, W., Petri, S., Sakschewski, B., Schaphoff, S., Forkel, M., Huiskamp, W., Feulner, G., and Thonicke, K.: CM2Mc-LPJmL v1. 0: biophysical coupling of a process-based dynamic vegetation model with managed land to a general circulation model,

870

- 0 Geoscientific Model Development, 14, 4117–4141, 2021.
 - Duque-Villegas, M., Salazar, J. F., and Rendón, A. M.: Tipping the ENSO into a permanent El-Niño can trigger state transitions in global terrestrial ecosystems., Earth System Dynamics, 10, 2019.
 - Dutton, A., Carlson, A. E., Long, A. J., Milne, G. A., Clark, P. U., DeConto, R., Horton, B. P., Rahmstorf, S., and Raymo, M. E.: Sea-level rise due to polar ice-sheet mass loss during past warm periods, Science, 349, 2015.
- 875 D'Onofrio, D., Baudena, M., Lasslop, G., Nieradzik, L. P., Wårlind, D., and von Hardenberg, J.: Linking vegetation-climate-fire relationships in sub-Saharan Africa to key ecological processes in two dynamic global vegetation models, Frontiers in Environmental Science, 8, 136, 2020.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geoscientific Model Development, 9, 1937–1958, 2016.

- 880 Favier, L., Durand, G., Cornford, S. L., Gudmundsson, G. H., Gagliardini, O., Gillet-Chaulet, F., Zwinger, T., Payne, A., and Le Brocq, A. M.: Retreat of Pine Island Glacier controlled by marine ice-sheet instability, Nature Climate Change, 4, 117–121, 2014.
 - Ferreira, D., Marshall, J., and Rose, B.: Climate determinism revisited: Multiple equilibria in a complex climate model, Journal of Climate, 24, 992–1012, 2011.
 - Fisher, R. A., Koven, C. D., Anderegg, W. R., Christoffersen, B. O., Dietze, M. C., Farrior, C. E., Holm, J. A., Hurtt, G. C., Knox, R. G.,
- 885 Lawrence, P. J., et al.: Vegetation demographics in Earth System Models: A review of progress and priorities, Global Change Biology, 24, 35–54, 2018.
 - Fletcher, W. J., Goni, M. F. S., Allen, J. R., Cheddadi, R., Combourieu-Nebout, N., Huntley, B., Lawson, I., Londeix, L., Magri, D., Margari, V., et al.: Millennial-scale variability during the last glacial in vegetation records from Europe, Quaternary Science Reviews, 29, 2839–2864, 2010.
- 890 Foley, J. A., Levis, S., Prentice, I. C., Pollard, D., and Thompson, S. L.: Coupling dynamic models of climate and vegetation, Global Change Biology, 4, 561–579, 1998.
 - Franzke, C. L., Ciullo, A., Gilmore, E. A., Matias, D. M., Nagabhatla, N., Orlov, A., Paterson, S. K., Scheffran, J., and Sillmann, J.: Perspectives on tipping points in integrated models of the natural and human Earth system: cascading effects and telecoupling, Environmental Research Letters, 17, 015 004, 2022.
- 895 Frieler, K., Meinshausen, M., Golly, A., Mengel, M., Lebek, K., Donner, S., and Hoegh-Guldberg, O.: Limiting global warming to 2 C is unlikely to save most coral reefs, Nature Climate Change, 3, 165–170, 2013.

Fritz, M., Vonk, J. E., and Lantuit, H.: Collapsing arctic coastlines, Nature Climate Change, 7, 6–7, 2017.

Fyke, J., Sergienko, O., Löfverström, M., Price, S., and Lenaerts, J. T.: An overview of interactions and feedbacks between ice sheets and the Earth system, Reviews of Geophysics, 56, 361–408, 2018.

- 900 Ganopolski, A. and Rahmstorf, S.: Rapid changes of glacial climate simulated in a coupled climate model, Nature, 409, 153–158, 2001. Gibson, K. A. and Peterson, L. C.: A 0.6 million year record of millennial-scale climate variability in the tropics, Geophysical Research Letters, 41, 969–975, 2014.
 - Gildor, H. and Tziperman, E.: Sea-ice switches and abrupt climate change, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 361, 1935–1944, 2003.

2019.

- 905 Gomez, N., Weber, M. E., Clark, P. U., Mitrovica, J. X., and Han, H. K.: Antarctic ice dynamics amplified by Northern Hemisphere sea-level forcing, Nature, 587, 600–604, 2020.
 - Granger, C. W.: Investigating causal relations by econometric models and cross-spectral methods, Econometrica: journal of the Econometric Society, pp. 424–438, 1969.

Grigoriev, M.: Coastal retreat rates at the Laptev Sea key monitoring sites, PANGAEA. doi: https://doi.org/10.1594/PANGAEA, 905519,

910

- Häggi, C., Chiessi, C. M., Merkel, U., Mulitza, S., Prange, M., Schulz, M., and Schefuß, E.: Response of the Amazon rainforest to late Pleistocene climate variability, Earth and Planetary Science Letters, 479, 50–59, 2017.
- Hawkins, E., Smith, R. S., Allison, L. C., Gregory, J. M., Woollings, T. J., Pohlmann, H., and De Cuevas, B.: Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport, Geophysical Research Letters, 38, 2011.
- 915 Henry, L., McManus, J., Curry, W., Roberts, N., Piotrowski, A., and Keigwin, L.: North Atlantic ocean circulation and abrupt climate change during the last glaciation, Science, 353, 470–474, 2016.

Herrington, A. R. and Poulsen, C. J.: Terminating the Last Interglacial: The role of ice sheet–climate feedbacks in a GCM asynchronously coupled to an ice sheet model, Journal of Climate, 25, 1871–1882, 2011.

Hooker, J. J., Collinson, M. E., and Sille, N. P.: Eocene–Oligocene mammalian faunal turnover in the Hampshire Basin, UK: calibration to
the global time scale and the major cooling event, Journal of the Geological Society, 161, 161–172, 2004.

- Hošeková, L., Eidam, E., Panteleev, G., Rainville, L., Rogers, W. E., and Thomson, J.: Landfast ice and coastal wave exposure in northern Alaska, Geophysical Research Letters, 48, e2021GL095 103, 2021.
 - Houk, P., Yalon, A., Maxin, S., Starsinic, C., McInnis, A., Gouezo, M., Golbuu, Y., and Van Woesik, R.: Predicting coral-reef futures from El Niño and Pacific Decadal Oscillation events, Scientific Reports, 10, 7735, 2020.
- 925 Hughes, T. P., Carpenter, S., Rockström, J., Scheffer, M., and Walker, B.: Multiscale regime shifts and planetary boundaries, Trends in Ecology & Evolution, 28, 389–395, 2013.
 - Hughes, T. P., Anderson, K. D., Connolly, S. R., Heron, S. F., Kerry, J. T., Lough, J. M., Baird, A. H., Baum, J. K., Berumen, M. L., Bridge, T. C., et al.: Spatial and temporal patterns of mass bleaching of corals in the Anthropocene, Science, 359, 80–83, 2018.

Hutchinson, D. K., Coxall, H. K., Lunt, D. J., Steinthorsdottir, M., De Boer, A. M., Baatsen, M., von der Heydt, A., Huber, M., Kennedy-

- 930 Asser, A. T., Kunzmann, L., et al.: The Eocene-Oligocene transition: a review of marine and terrestrial proxy data, models and model-data comparisons, Climate of the Past Discussions, 2020, 1–71, 2020.
 - Irrgang, A. M., Bendixen, M., Farquharson, L. M., Baranskaya, A. V., Erikson, L. H., Gibbs, A. E., Ogorodov, S. A., Overduin, P. P., Lantuit, H., Grigoriev, M. N., et al.: Drivers, dynamics and impacts of changing Arctic coasts, Nature Reviews Earth & Environment, 3, 39–54, 2022.
- 935 Jaccard, S. L. and Galbraith, E. D.: Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation, Nature Geoscience, 5, 151–156, 2012.
 - Jackson, L., Kahana, R., Graham, T., Ringer, M., Woollings, T., Mecking, J., and Wood, R.: Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM, Climate Dynamics, 45, 3299–3316, 2015.

Jackson, L. C. and Wood, R. A.: Timescales of AMOC decline in response to fresh water forcing, Climate Dynamics, 51, 1333–1350, 2018.

940 Jackson, R., Gabric, A., and Cropp, R.: Effects of ocean warming and coral bleaching on aerosol emissions in the Great Barrier Reef, Australia, Scientific Reports, 8, 14048, 2018.

research, Environmental Research Letters, 16, 084 036, 2021.

Jansen, E., Christensen, J. H., Dokken, T., Nisancioglu, K. H., Vinther, B. M., Capron, E., Guo, C., Jensen, M. F., Langen, P. L., Pedersen, R. A., et al.: Past perspectives on the present era of abrupt Arctic climate change, Nature Climate Change, 10, 714–721, 2020.

Jehn, F. U., Schneider, M., Wang, J. R., Kemp, L., and Breuer, L.: Betting on the best case: Higher end warming is underrepresented in

945

950

Jiménez-Muñoz, J. C., Mattar, C., Barichivich, J., Santamaría-Artigas, A., Takahashi, K., Malhi, Y., Sobrino, J. A., and Schrier, G. v. d.: Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016, Scientific Reports, 6, 33 130, 2016.

Kanner, L. C., Burns, S. J., Cheng, H., and Edwards, R. L.: High-latitude forcing of the South American summer monsoon during the last glacial, Science, 335, 570–573, 2012.

Kemp, L., Xu, C., Depledge, J., Ebi, K. L., Gibbins, G., Kohler, T. A., Rockström, J., Scheffer, M., Schellnhuber, H. J., Steffen, W., et al.: Climate Endgame: Exploring catastrophic climate change scenarios, Proceedings of the National Academy of Sciences, 119, e2108146119, 2022.

- 955
 - Kennedy, A. T., Farnsworth, A., Lunt, D., Lear, C. H., and Markwick, P.: Atmospheric and oceanic impacts of Antarctic glaciation across the Eocene–Oligocene transition, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373, 20140419, 2015.
 - Kim, H.-J., An, S.-I., Park, J.-H., Sung, M.-K., Kim, D., Choi, Y., and Kim, J.-S.: North Atlantic Oscillation impact on the Atlantic Meridional

960 Overturning Circulation shaped by the mean state, npj Climate and Atmospheric Science, 6, 25, 2023.

- Kleinen, T., Gromov, S., Steil, B., and Brovkin, V.: Atmospheric methane since the last glacial maximum was driven by wetland sources, Climate of the Past, 19, 1081–1099, 2023.
 - Klose, A. K., Karle, V., Winkelmann, R., and Donges, J. F.: Emergence of cascading dynamics in interacting tipping elements of ecology and climate, Royal Society Open Science, 7, 200 599, 2020.
- 965 Klose, A. K., Wunderling, N., Winkelmann, R., and Donges, J. F.: What do we mean, 'tipping cascade'?, Environmental Research Letters, 16, 125 011, 2021.
 - Knight, J. R., Allan, R. J., Folland, C. K., Vellinga, M., and Mann, M. E.: A signature of persistent natural thermohaline circulation cycles in observed climate, Geophysical Research Letters, 32, 2005.
- Knorr, G. and Lohmann, G.: Rapid transitions in the Atlantic thermohaline circulation triggered by global warming and meltwater during the
 last deglaciation, Geochemistry, Geophysics, Geosystems, 8, 2007.
 - Köhler, P., Knorr, G., and Bard, E.: Permafrost thawing as a possible source of abrupt carbon release at the onset of the Bølling/Allerød, Nature Communications, 5, 5520, 2014.
- Kopp, R. E., Mitrovica, J. X., Griffies, S. M., Yin, J., Hay, C. C., and Stouffer, R. J.: The impact of Greenland melt on local sea levels: a partially coupled analysis of dynamic and static equilibrium effects in idealized water-hosing experiments: a letter, Climatic Change, 103, 619–625, 2010.
 - Korasidis, V. A., Wallace, M. W., Wagstaff, B. E., and Hill, R. S.: Terrestrial cooling record through the Eocene-Oligocene transition of Australia, Global and Planetary Change, 173, 61–72, 2019.
 - Kravtsov, S., Grimm, C., and Gu, S.: Global-scale multidecadal variability missing in state-of-the-art climate models, npj Climate and Atmospheric Science, 1, 34, 2018.

Joughin, I., Smith, B. E., and Medley, B.: Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica, Science, 344, 735–738, 2014.

985

1000

- 980 Krawczyk, H., Zinke, J., Browne, N., Struck, U., McIlwain, J., O'Leary, M., and Garbe-Schönberg, D.: Corals reveal ENSO-driven synchrony of climate impacts on both terrestrial and marine ecosystems in northern Borneo, Scientific Reports, 10, 3678, 2020.
 - Kretschmer, M., Coumou, D., Donges, J. F., and Runge, J.: Using causal effect networks to analyze different Arctic drivers of midlatitude winter circulation, Journal of Climate, 29, 4069–4081, 2016.
 - Kretschmer, M., Adams, S. V., Arribas, A., Prudden, R., Robinson, N., Saggioro, E., and Shepherd, T. G.: Quantifying causal pathways of teleconnections, Bulletin of the American Meteorological Society, 102, E2247–E2263, 2021.
 - Kreuzer, M., Reese, R., Huiskamp, W. N., Petri, S., Albrecht, T., Feulner, G., and Winkelmann, R.: Coupling framework (1.0) for the PISM (1.1. 4) ice sheet model and the MOM5 (5.1. 0) ocean model via the PICO ice shelf cavity model in an Antarctic domain, Geoscientific Model Development, 14, 3697–3714, 2021.
- Kriegler, E., Hall, J. W., Held, H., Dawson, R., and Schellnhuber, H. J.: Imprecise probability assessment of tipping points in the climate
 system, Proceedings of the National Academy of Sciences, 106, 5041–5046, 2009.
 - Kug, J.-S., Oh, J.-H., An, S.-I., Yeh, S.-W., Min, S.-K., Son, S.-W., Kam, J., Ham, Y.-G., and Shin, J.: Hysteresis of the intertropical convergence zone to CO2 forcing, Nature Climate Change, 12, 47–53, 2022.
 - Kuhlbrodt, T., Griesel, A., Montoya, M., Levermann, A., Hofmann, M., and Rahmstorf, S.: On the driving processes of the Atlantic meridional overturning circulation, Reviews of Geophysics, 45, 1–32, 2007.
- 995 Kukla, T., Ahlström, A., Maezumi, S. Y., Chevalier, M., Lu, Z., Winnick, M. J., and Chamberlain, C. P.: The resilience of Amazon tree cover to past and present drying, Global and Planetary Change, 202, 103 520, 2021.
 - Le Nohaïc, M., Ross, C. L., Cornwall, C. E., Comeau, S., Lowe, R., McCulloch, M. T., and Schoepf, V.: Marine heatwave causes unprecedented regional mass bleaching of thermally resistant corals in northwestern Australia, Scientific Reports, 7, 14 999, 2017.
 - Lear, C. H., Bailey, T. R., Pearson, P. N., Coxall, H. K., and Rosenthal, Y.: Cooling and ice growth across the Eocene-Oligocene transition, Geology, 36, 251–254, 2008.
 - Lee, J.-Y., Marotzke, J., Bala, G., Cao, L., Corti, S., Dunne, J. P., Engelbrecht, F., Fischer, E., Fyfe, J. C., Jones, C., et al.: Future global climate: scenario-based projections and near-term information (pp. 553-672), Cambridge University Press, 2021.
 - Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., and Schellnhuber, H. J.: Tipping elements in the Earth's climate system, Proceedings of the National Academy of Sciences, 105, 1786–1793, 2008.
- 1005 Lenton, T. M., Rockström, J., Gaffney, O., Rahmstorf, S., Richardson, K., Steffen, W., and Schellnhuber, H. J.: Climate tipping points—too risky to bet against, Nature, 575, 592–595, 2019.
 - Li, C., Battisti, D. S., and Bitz, C. M.: Can North Atlantic sea ice anomalies account for Dansgaard–Oeschger climate signals?, Journal of Climate, 23, 5457–5475, 2010.
- Li, H., Fedorov, A., and Liu, W.: AMOC stability and diverging response to Arctic sea ice decline in two climate models, Journal of Climate, 34, 5443–5460, 2021.
 - Li, Q., Marshall, J., Rye, C. D., Romanou, A., Rind, D., and Kelley, M.: Global Climate Impacts of Greenland and Antarctic Meltwater: A Comparative Study, Journal of Climate, 36, 3571–3590, 2023.
- Liljedahl, A. K., Boike, J., Daanen, R. P., Fedorov, A. N., Frost, G. V., Grosse, G., Hinzman, L. D., Iijma, Y., Jorgenson, J. C., Matveyeva, N., et al.: Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology, Nature Geoscience, 9, 312–318, 2016.
 - Liu, T., Chen, D., Yang, L., Meng, J., Wang, Z., Ludescher, J., Fan, J., Yang, S., Chen, D., Kurths, J., et al.: Teleconnections among tipping elements in the Earth system, Nature Climate Change, 13, 67–74, 2023.

2017.

1025

1045

- Liu, W. and Fedorov, A.: Interaction between Arctic sea ice and the Atlantic meridional overturning circulation in a warming climate, Climate Dynamics, pp. 1–17, 2022.
- 1020 Liu, W., Fedorov, A. V., Xie, S.-P., and Hu, S.: Climate impacts of a weakened Atlantic Meridional Overturning Circulation in a warming climate, Science Advances, 6, eaaz4876, 2020.
 - Liu, Z., Otto-Bliesner, B., He, F., Brady, E., Tomas, R., Clark, P., Carlson, A., Lynch-Stieglitz, J., Curry, W., Brook, E., et al.: Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming, Science, 325, 310–314, 2009.
 - Lohmann, J.: Prediction of Dansgaard-Oeschger Events From Greenland Dust Records, Geophysical Research Letters, 46, 12427–12434, 2019.
 - Lohmann, J. and Ditlevsen, P. D.: Risk of tipping the overturning circulation due to increasing rates of ice melt, Proceedings of the National Academy of Sciences, 118, e2017989 118, 2021.
 - Lohmann, J., Castellana, D., Ditlevsen, P. D., and Dijkstra, H. A.: Abrupt climate change as a rate-dependent cascading tipping point, Earth System Dynamics, 12, 819–835, 2021.
- Lough, J., Anderson, K., and Hughes, T.: Increasing thermal stress for tropical coral reefs: 1871–2017, Scientific Reports, 8, 6079, 2018.
 Lovejoy, T. E. and Nobre, C.: Amazon tipping point, Science Advances, 4, eaat2340, 2018.
 Lucarini, V. and Bódai, T.: Edge states in the climate system: exploring global instabilities and critical transitions, Nonlinearity, 30, R32,
- Lukovich, J. V., Stroeve, J. C., Crawford, A., Hamilton, L., Tsamados, M., Heorton, H., and Massonnet, F.: Summer extreme cyclone impacts on Arctic sea ice, Journal of Climate, 34, 4817–4834, 2021.
 - MacAyeal, D. R.: Binge/purge oscillations of the Laurentide ice sheet as a cause of the North Atlantic's Heinrich events, Paleoceanography, 8, 775–784, 1993.
 - Madsen, M., Yang, S., Aðalgeirsdóttir, G., Svendsen, S., Rodehacke, C., and Ringgaard, I.: The role of an interactive Greenland ice sheet in the coupled climate-ice sheet model EC-Earth-PISM, Climate Dynamics, 59, 1189–1211, 2022.
- 1040 Mahendra, N., Chowdary, J. S., Darshana, P., Sunitha, P., Parekh, A., and Gnanaseelan, C.: Interdecadal modulation of interannual ENSO-Indian summer monsoon rainfall teleconnections in observations and CMIP6 models: Regional patterns, International Journal of Climatology, 41, 2528–2552, 2021.
 - Makarieva, A. M., Nefiodov, A. V., Nobre, A. D., Baudena, M., Bardi, U., Sheil, D., Saleska, S. R., Molina, R. D., and Rammig, A.: The role of ecosystem transpiration in creating alternate moisture regimes by influencing atmospheric moisture convergence, Global Change Biology, 29, 2536–2556, 2023.
- Manabe, S. and Stouffer, R. J.: Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean, Nature, 378, 165–167, 1995.
 - Marcott, S. A., Bauska, T. K., Buizert, C., Steig, E. J., Rosen, J. L., Cuffey, K. M., Fudge, T., Severinghaus, J. P., Ahn, J., Kalk, M. L., et al.: Centennial-scale changes in the global carbon cycle during the last deglaciation, Nature, 514, 616–619, 2014.
- 1050 Martin, T. and Biastoch, A.: On the ocean's response to enhanced Greenland runoff in model experiments: relevance of mesoscale dynamics and atmospheric coupling, Ocean Science, 19, 141–167, 2023.
 - Martrat, B., Grimalt, J. O., Shackleton, N. J., de Abreu, L., Hutterli, M. A., and Stocker, T. F.: Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin, Science, 317, 502–507, 2007.
 - Masson-Delmotte, V. P., Zhai, A., Pirani, S., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M., Gomis, M., Huang, K.,
- 1055 Leitzell, E., Lonnoy, J., Matthews, T., Maycock, T., Waterfield, O., Yelekci, R. Y., and Zhou, B. e.: IPCC, 2021: Climate Change 2021:

The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2021.

- Max, L., Nürnberg, D., Chiessi, C. M., Lenz, M. M., and Mulitza, S.: Subsurface ocean warming preceded Heinrich Events, Nature Communications, 13, 4217, 2022.
- 1060 McGowan, H. and Theobald, A.: Atypical weather patterns cause coral bleaching on the Great Barrier Reef, Australia during the 2021–2022 La Niña, Scientific Reports, 13, 6397, 2023.
 - McManus, J. F., Francois, R., Gherardi, J.-M., Keigwin, L. D., and Brown-Leger, S.: Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes, Nature, 428, 834–837, 2004.
 - McPhaden, M. J., Zebiak, S. E., and Glantz, M. H.: ENSO as an integrating concept in earth science, Science, 314, 1740–1745, 2006.
- 1065 Mecking, J., Drijfhout, S. S., Jackson, L. C., and Graham, T.: Stable AMOC off state in an eddy-permitting coupled climate model, Climate Dynamics, 47, 2455–2470, 2016.

Meucci, A., Young, I. R., Hemer, M., Trenham, C., and Watterson, I. G.: 140 years of global ocean wind-wave climate derived from CMIP6 ACCESS-CM2 and EC-Earth3 GCMs: Global trends, regional changes, and future projections, Journal of Climate, 36, 1605–1631, 2023.
 Mitrovica, J. X., Gomez, N., and Clark, P. U.: The sea-level fingerprint of West Antarctic collapse, Science, 323, 753–753, 2009.

- 1070 Muñiz-Castillo, A. I., Rivera-Sosa, A., Chollett, I., Eakin, C. M., Andrade-Gómez, L., McField, M., and Arias-González, J. E.: Three decades of heat stress exposure in Caribbean coral reefs: a new regional delineation to enhance conservation, Scientific Reports, 9, 11013, 2019.
 - Muntjewerf, L., Petrini, M., Vizcaino, M., Ernani da Silva, C., Sellevold, R., Scherrenberg, M. D., Thayer-Calder, K., Bradley, S. L., Lenaerts, J. T., Lipscomb, W. H., et al.: Greenland Ice Sheet contribution to 21st century sea level rise as simulated by the coupled CESM2. 1-CISM2.
 1, Geophysical Research Letters, 47, e2019GL086 836, 2020.
- 1075 Murphy, J. M., Sexton, D. M., Barnett, D. N., Jones, G. S., Webb, M. J., Collins, M., and Stainforth, D. A.: Quantification of modelling uncertainties in a large ensemble of climate change simulations, Nature, 430, 768–772, 2004.

NEEM community members: Eemian interglacial reconstructed from a Greenland folded ice core, Nature, 493, 489-494, 2013.

- Nian, D., Bathiany, S., Ben-Yami, M., Blaschke, L., Hirota, M., Rodrigues, R., and Boers, N.: The combined impact of global warming and AMOC collapse on the Amazon Rainforest, ResearchSquare [preprint], https://www.researchsquare.com/article/rs-2673317/v1, 31 May 2023.
 - Nicolas, J. P., Vogelmann, A. M., Scott, R. C., Wilson, A. B., Cadeddu, M. P., Bromwich, D. H., Verlinde, J., Lubin, D., Russell, L. M., Jenkinson, C., et al.: January 2016 extensive summer melt in West Antarctica favoured by strong El Niño, Nature Communications, 8, 15799, 2017.
- Nilsson-Kerr, K., Anand, P., Sexton, P., Leng, M., Misra, S., Clemens, S., and Hammond, S.: Role of Asian summer monsoon subsystems in
 the inter-hemispheric progression of deglaciation, Nature Geoscience, 12, 290–295, 2019.
 - Nilsson-Kerr, K., Anand, P., Sexton, P. F., Leng, M. J., and Naidu, P. D.: Indian Summer Monsoon variability 140–70 thousand years ago based on multi-proxy records from the Bay of Bengal, Quaternary Science Reviews, 279, 107 403, 2022.
 - Nitzbon, J., Westermann, S., Langer, M., Martin, L. C., Strauss, J., Laboor, S., and Boike, J.: Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate, Nature Communications, 11, 2201, 2020.
- 1090 Nobre, C. A., Sampaio, G., Borma, L. S., Castilla-Rubio, J. C., Silva, J. S., and Cardoso, M.: Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm, Proceedings of the National Academy of Sciences, 113, 10759–10768, 2016.

- Noël, B., Van De Berg, W. J., Van Wessem, J. M., Van Meijgaard, E., Van As, D., Lenaerts, J., Lhermitte, S., Kuipers Munneke, P., Smeets, C., Van Ulft, L. H., et al.: Modelling the climate and surface mass balance of polar ice sheets using RACMO2–Part 1: Greenland (1958–2016), The Cryosphere, 12, 811–831, 2018.
- 1095 North Greenland Ice Core Project members (NGRIP): High-resolution record of Northern Hemisphere climate extending into the last interglacial period, Nature, 431, 147–151, 2004.
 - Notz, D. and SIMIP Community: Arctic sea ice in CMIP6, Geophysical Research Letters, 47, e2019GL086749, 2020.
- Novello, V. F., Cruz, F. W., Vuille, M., Stríkis, N. M., Edwards, R. L., Cheng, H., Emerick, S., De Paula, M. S., Li, X., Barreto, E. d. S., et al.:
 A high-resolution history of the South American Monsoon from Last Glacial Maximum to the Holocene, Scientific Reports, 7, 44267,
 2017.
 - Obura, D. O., Bigot, L., and Benzoni, F.: Coral responses to a repeat bleaching event in Mayotte in 2010, PeerJ, 6, e5305, 2018.
 - Onarheim, I. H., Eldevik, T., Årthun, M., Ingvaldsen, R. B., and Smedsrud, L. H.: Skillful prediction of Barents Sea ice cover, Geophysical Research Letters, 42, 5364–5371, 2015.
- Orihuela-Pinto, B., England, M. H., and Taschetto, A. S.: Interbasin and interhemispheric impacts of a collapsed Atlantic Overturning Circulation, Nature Climate Change, 12, 558–565, 2022a.
 - Orihuela-Pinto, B., Santoso, A., England, M. H., and Taschetto, A. S.: Reduced ENSO variability due to a collapsed Atlantic Meridional Overturning Circulation, Journal of Climate, 35, 5307–5320, 2022b.
 - Oziel, L., Schourup-Kristensen, V., Wekerle, C., and Hauck, J.: The pan-Arctic continental slope as an intensifying conveyer belt for nutrients in the central Arctic Ocean (1985–2015), Global Biogeochemical Cycles, 36, e2021GB007 268, 2022.
- 1110 Palacio-Castro, A. M., Smith, T. B., Brandtneris, V., Snyder, G. A., van Hooidonk, R., Maté, J. L., Manzello, D., Glynn, P. W., Fong, P., and Baker, A. C.: Increased dominance of heat-tolerant symbionts creates resilient coral reefs in near-term ocean warming, Proceedings of the National Academy of Sciences, 120, e2202388 120, 2023.

Pandey, P., Dwivedi, S., Goswami, B., and Kucharski, F.: A new perspective on ENSO-Indian summer monsoon rainfall relationship in a warming environment, Climate Dynamics, 55, 3307–3326, 2020.

- 1115 Paolo, F., Padman, L., Fricker, H., Adusumilli, S., Howard, S., and Siegfried, M.: Response of Pacific-sector Antarctic ice shelves to the El Niño/Southern oscillation, Nature Geoscience, 11, 121–126, 2018.
 - Parsons, L. A., Yin, J., Overpeck, J. T., Stouffer, R. J., and Malyshev, S.: Influence of the Atlantic Meridional Overturning Circulation on the monsoon rainfall and carbon balance of the American tropics, Geophysical Research Letters, 41, 146–151, 2014.
- Pearl, J.: Bayesian networks: A model cf self-activated memory for evidential reasoning, in: Proceedings of the 7th conference of the Cognitive Science Society, University of California, Irvine, CA, USA, pp. 15–17, 1985.
 - Pedro, J. B., Jochum, M., Buizert, C., He, F., Barker, S., and Rasmussen, S. O.: Beyond the bipolar seesaw: Toward a process understanding of interhemispheric coupling, Quaternary Science Reviews, 192, 27–46, 2018.
 - Philipp, M., Dietz, A., Ullmann, T., and Kuenzer, C.: Automated extraction of annual erosion rates for Arctic permafrost coasts using Sentinel-1, deep learning, and change vector analysis, Remote Sensing, 14, 3656, 2022.
- 1125 Pohl, A., Donnadieu, Y., Le Hir, G., Ladant, J.-B., Dumas, C., Alvarez-Solas, J., and Vandenbroucke, T. R.: Glacial onset predated Late Ordovician climate cooling, Paleoceanography, 31, 800–821, 2016.

Pollard, D.: A retrospective look at coupled ice sheet-climate modeling, Climatic Change, 100, 173-194, 2010.

- Polyakov, I. V., Pnyushkov, A. V., Alkire, M. B., Ashik, I. M., Baumann, T. M., Carmack, E. C., Goszczko, I., Guthrie, J., Ivanov, V. V., Kanzow, T., et al.: Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean, Science, 356, 285–291, 2017.
- 1130
 - Popp, M., Schmidt, H., and Marotzke, J.: Transition to a moist greenhouse with CO2 and solar forcing, Nature Communications, 7, 10627, 2016.
 - Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., and Weyer, N.: The ocean and cryosphere in a changing climate, IPCC special report on the ocean and cryosphere in a changing climate, 1155, 2019.
- 1135 Prado, L. F., Wainer, I., Chiessi, C. M., Ledru, M.-P., and Turcq, B.: A mid-Holocene climate reconstruction for eastern South America, Climate of the Past, 9, 2117–2133, 2013.
 - Praetorius, S. K., Mix, A. C., Walczak, M., Wolhowe, M. D., Addison, J. A., and Prahl, F. G.: North Pacific deglacial hypoxic events linked to abrupt ocean warming, Nature, 527, 362–366, 2015.
- Quiquet, A., Roche, D. M., Dumas, C., Bouttes, N., and Lhardy, F.: Climate and ice sheet evolutions from the last glacial maximum to the pre-industrial period with an ice-sheet–climate coupled model, Climate of the Past, 17, 2179–2199, 2021.
 - Rae, J., Aðalgeirsdóttir, G., Edwards, T. L., Fettweis, X., Gregory, J., Hewitt, H., Lowe, J., Lucas-Picher, P., Mottram, R., Payne, A., et al.:
 Greenland ice sheet surface mass balance: evaluating simulations and making projections with regional climate models, The Cryosphere, 6, 1275–1294, 2012.
 - Reichart, G.-J., Lourens, L., and Zachariasse, W.: Temporal variability in the northern Arabian Sea oxygen minimum zone (OMZ) during
- the last 225,000 years, Paleoceanography, 13, 607–621, 1998.
 - Rietkerk, M., Bastiaansen, R., Banerjee, S., van de Koppel, J., Baudena, M., and Doelman, A.: Evasion of tipping in complex systems through spatial pattern formation, Science, 374, eabj0359, 2021.
 - Ritchie, P. D., Clarke, J. J., Cox, P. M., and Huntingford, C.: Overshooting tipping point thresholds in a changing climate, Nature, 592, 517–523, 2021.
- 1150 Rocha, J. C., Peterson, G., Bodin, Ö., and Levin, S.: Cascading regime shifts within and across scales, Science, 362, 1379–1383, 2018. Rosier, S. H., Reese, R., Donges, J. F., De Rydt, J., Gudmundsson, G. H., and Winkelmann, R.: The tipping points and early warning indicators for Pine Island Glacier, West Antarctica, The Cryosphere, 15, 1501–1516, 2021.
 - Runge, J., Petoukhov, V., Donges, J. F., Hlinka, J., Jajcay, N., Vejmelka, M., Hartman, D., Marwan, N., Paluš, M., and Kurths, J.: Identifying causal gateways and mediators in complex spatio-temporal systems, Nature Communications, 6, 1–10, 2015.
- 1155 Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., and Sejdinovic, D.: Detecting and quantifying causal associations in large nonlinear time series datasets, Science Advances, 5, eaau4996, 2019.
 - Ruth, U., Bigler, M., Röthlisberger, R., Siggaard-Andersen, M.-L., Kipfstuhl, S., Goto-Azuma, K., Hansson, M. E., Johnsen, S. J., Lu, H., and Steffensen, J. P.: Ice core evidence for a very tight link between North Atlantic and east Asian glacial climate, Geophysical Research Letters, 34, 2007.
- 1160 Sadai, S., Condron, A., DeConto, R., and Pollard, D.: Future climate response to Antarctic Ice Sheet melt caused by anthropogenic warming, Science Advances, 6, eaaz1169, 2020.
 - Sadatzki, H., Maffezzoli, N., Dokken, T. M., Simon, M. H., Berben, S. M., Fahl, K., Kjær, H. A., Spolaor, A., Stein, R., Vallelonga, P., et al.: Rapid reductions and millennial-scale variability in Nordic Seas sea ice cover during abrupt glacial climate changes, Proceedings of the National Academy of Sciences, 117, 29478–29486, 2020.

2016.

1165 Schannwell, C., Mikolajewicz, U., Ziemen, F., and Kapsch, M.-L.: Sensitivity of Heinrich-type ice-sheet surge characteristics to boundary forcing perturbations, Climate of the Past, 19, 179–198, 2023.

Scherrenberg, M. D., Berends, C. J., Stap, L. B., Van De Wal, R. S., et al.: Modelling feedbacks between the Northern Hemisphere ice sheets and climate during the last glacial cycle, Climate of the Past, 19, 399–418, 2023.

Schleussner, C.-F., Lissner, T. K., Fischer, E. M., Wohland, J., Perrette, M., Golly, A., Rogelj, J., Childers, K., Schewe, J., Frieler, K., et al.:
Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 C and 2 C, Earth System Dynamics, 7, 327–351,

- Schneider, T., Bischoff, T., and Haug, G. H.: Migrations and dynamics of the intertropical convergence zone, Nature, 513, 45–53, 2014.
- Schneider, T., Kaul, C. M., and Pressel, K. G.: Possible climate transitions from breakup of stratocumulus decks under greenhouse warming, Nature Geoscience, 12, 163–167, 2019.
- 1175 Schoof, C.: Ice sheet grounding line dynamics: Steady states, stability, and hysteresis, Journal of Geophysical Research: Earth Surface, 112, 1–19, 2007.

Schwinger, J., Asaadi, A., Steinert, N. J., and Lee, H.: Emit now, mitigate later? Earth system reversibility under overshoots of different magnitudes and durations, Earth System Dynamics, 13, 1641–1665, 2022.

Scott, R. C., Nicolas, J. P., Bromwich, D. H., Norris, J. R., and Lubin, D.: Meteorological drivers and large-scale climate forcing of West Antarctic surface melt, Journal of Climate, 32, 665–684, 2019.

- Seidov, D., Stouffer, R. J., and Haupt, B. J.: Is there a simple bi-polar ocean seesaw?, Global and Planetary Change, 49, 19–27, 2005.
- Sévellec, F., Fedorov, A. V., and Liu, W.: Arctic sea-ice decline weakens the Atlantic meridional overturning circulation, Nature Climate Change, 7, 604–610, 2017.

Shackleton, N. J., Hall, M. A., and Vincent, E.: Phase relationships between millennial-scale events 64,000-24,000 years ago, Paleoceanog-

1185 raphy, 15, 565–569, 2000.

Shin, Y. and Kang, S. M.: How Does the High-Latitude Thermal Forcing in One Hemisphere Affect the Other Hemisphere?, Geophysical Research Letters, 48, e2021GL095 870, 2021.

Sinet, S., von der Heydt, A., and Dijkstra, H.: AMOC stabilization under the interaction with tipping polar ice sheets, Geophysical Research Letters, 50, e2022GL100 305, 2023.

1190 Solomon, A., Heuzé, C., Rabe, B., Bacon, S., Bertino, L., Heimbach, P., Inoue, J., Iovino, D., Mottram, R., Zhang, X., et al.: Freshwater in the arctic ocean 2010–2019, Ocean Science, 17, 1081–1102, 2021.

Srivastava, G., Chakraborty, A., and Nanjundiah, R. S.: Multidecadal see-saw of the impact of ENSO on Indian and West African summer monsoon rainfall, Climate Dynamics, 52, 6633–6649, 2019.

Staal, A., Tuinenburg, O. A., Bosmans, J. H., Holmgren, M., van Nes, E. H., Scheffer, M., Zemp, D. C., Dekker, S. C., et al.: Forest-rainfall cascades buffer against drought across the Amazon, Nature Climate Change, 8, 539–543, 2018.

- Staal, A., Fetzer, I., Wang-Erlandsson, L., Bosmans, J. H., Dekker, S. C., van Nes, E. H., Rockström, J., and Tuinenburg, O. A.: Hysteresis of tropical forests in the 21st century, Nature Communications, 11, 1–8, 2020.
 - Stainforth, D. A., Downing, T. E., Washington, R., Lopez, A., and New, M.: Issues in the interpretation of climate model ensembles to inform decisions, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365, 2163–2177, 2007.
- 1200 Steffen, W.: Introducing the Anthropocene: The Human Epoch, Ambio, 50, 1784–1787, 2021.

- Steffen, W., Rockström, J., Richardson, K., Lenton, T. M., Folke, C., Liverman, D., Summerhayes, C. P., Barnosky, A. D., Cornell, S. E., Crucifix, M., et al.: Trajectories of the Earth System in the Anthropocene, Proceedings of the National Academy of Sciences, 115, 8252– 8259, 2018.
- Stouffer, R. J., Yin, J.-j., Gregory, J., Dixon, K., Spelman, M., Hurlin, W., Weaver, A., Eby, M., Flato, G., Hasumi, H., et al.: Investigating
- 1205 the causes of the response of the thermohaline circulation to past and future climate changes, Journal of Climate, 19, 1365–1387, 2006. Stouffer, R. J., Seidov, D., and Haupt, B. J.: Climate response to external sources of freshwater: North Atlantic versus the Southern Ocean, Journal of Climate, 20, 436–448, 2007.
 - Sun, Y., Clemens, S. C., Morrill, C., Lin, X., Wang, X., and An, Z.: Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon, Nature Geoscience, 5, 46–49, 2012.
- 1210 Svendsen, L., Kvamstø, N. G., and Keenlyside, N.: Weakening AMOC connects equatorial Atlantic and Pacific interannual variability, Climate Dynamics, 43, 2931–2941, 2014.

Swingedouw, D., Braconnot, P., and Marti, O.: Sensitivity of the Atlantic Meridional Overturning Circulation to the melting from northern glaciers in climate change experiments, Geophysical Research Letters, 33, 2006.

Swingedouw, D., Braconnot, P., Delécluse, P., Guilyardi, E., and Marti, O.: Quantifying the AMOC feedbacks during a 2× CO 2 stabilization
 experiment with land-ice melting, Climate Dynamics, 29, 521–534, 2007.

- Swingedouw, D., Fichefet, T., Huybrechts, P., Goosse, H., Driesschaert, E., and Loutre, M.-F.: Antarctic ice-sheet melting provides negative feedbacks on future climate warming, Geophysical Research Letters, 35, 2008.
 - Swingedouw, D., Fichefet, T., Goosse, H., and Loutre, M.-F.: Impact of transient freshwater releases in the Southern Ocean on the AMOC and climate, Climate Dynamics, 33, 365–381, 2009.
- 1220 Swingedouw, D., Rodehacke, C. B., Behrens, E., Menary, M., Olsen, S. M., Gao, Y., Mikolajewicz, U., Mignot, J., and Biastoch, A.: Decadal fingerprints of freshwater discharge around Greenland in a multi-model ensemble, Climate Dynamics, 41, 695–720, 2013.

Swingedouw, D., Houssais, M.-N., Herbaut, C., Blaizot, A.-C., Devilliers, M., and Deshayes, J.: AMOC recent and future trends: a crucial role for oceanic resolution and Greenland melting?, Frontiers in Climate, 4, 32, 2022.

- Tarnocai, C., Canadell, J. G., Schuur, E. A., Kuhry, P., Mazhitova, G., and Zimov, S.: Soil organic carbon pools in the northern circumpolar
 permafrost region, Global Biogeochemical Cycles, 23, 2009.
 - Terhaar, J., Lauerwald, R., Regnier, P., Gruber, N., and Bopp, L.: Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion, Nature Communications, 12, 169, 2021.
 - Thomas, Z. A., Jones, R. T., Turney, C. S., Golledge, N., Fogwill, C., Bradshaw, C. J., Menviel, L., McKay, N. P., Bird, M., Palmer, J., et al.: Tipping elements and amplified polar warming during the Last Interglacial, Quaternary Science Reviews, 233, 106 222, 2020.
- 1230 Tietsche, S., Notz, D., Jungclaus, J., and Marotzke, J.: Recovery mechanisms of Arctic summer sea ice, Geophysical Research Letters, 38, 2011.
 - Tigchelaar, M., von Der Heydt, A., and Dijkstra, H.: A new mechanism for the two-step δ 18 O signal at the Eocene-Oligocene boundary, Climate of the Past, 7, 235–247, 2011.
 - Timmermann, A., Okumura, Y., An, S.-I., Clement, A., Dong, B., Guilyardi, E., Hu, A., Jungclaus, J., Renold, M., Stocker, T. F., et al.: The
- influence of a weakening of the Atlantic meridional overturning circulation on ENSO, Journal of Climate, 20, 4899–4919, 2007.
 Timmermann, A., An, S.-I., Kug, J.-S., Jin, F.-F., Cai, W., Capotondi, A., Cobb, K. M., Lengaigne, M., McPhaden, M. J., Stuecker, M. F., et al.: El Niño–southern oscillation complexity, Nature, 559, 535–545, 2018.

- Toumoulin, A., Tardif, D., Donnadieu, Y., Licht, A., Ladant, J.-B., Kunzmann, L., and Dupont-Nivet, G.: Evolution of continental temperature seasonality from the Eocene greenhouse to the Oligocene icehouse–a model–data comparison, Climate of the Past, 18, 341–362, 2022.
- 1240 Van Kampenhout, L., Rhoades, A. M., Herrington, A. R., Zarzycki, C. M., Lenaerts, J., Sacks, W. J., and Van Den Broeke, M. R.: Regional grid refinement in an Earth system model: impacts on the simulated Greenland surface mass balance, The Cryosphere, 13, 1547–1564, 2019.
 - Van Nes, E. H., Scheffer, M., Brovkin, V., Lenton, T. M., Ye, H., Deyle, E., and Sugihara, G.: Causal feedbacks in climate change, Nature Climate Change, 5, 445–448, 2015.
- 1245 Veron, J. E., Hoegh-Guldberg, O., Lenton, T. M., Lough, J. M., Obura, D. O., Pearce-Kelly, P., Sheppard, C. R., Spalding, M., Stafford-Smith, M. G., and Rogers, A. D.: The coral reef crisis: The critical importance of< 350 ppm CO2, Marine Pollution Bulletin, 58, 1428–1436, 2009.

Vettoretti, G. and Peltier, W. R.: Thermohaline instability and the formation of glacial North Atlantic super polynyas at the onset of Dansgaard-Oeschger warming events, Geophysical Research Letters, 43, 5336–5344, 2016.

1250 Via, R. K. and Thomas, D. J.: Evolution of Atlantic thermohaline circulation: Early Oligocene onset of deep-water production in the North Atlantic, Geology, 34, 441–444, 2006.

Voigt, A. and Marotzke, J.: The transition from the present-day climate to a modern Snowball Earth, Climate Dynamics, 35, 887–905, 2010. Vonk, J. E., Sánchez-García, L., Van Dongen, B., Alling, V., Kosmach, D., Charkin, A., Semiletov, I. P., Dudarev, O. V., Shakhova, N., Roos,

P., et al.: Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia, Nature, 489, 137–140, 2012.

1255 Wang, G., Cai, W., Gan, B., Wu, L., Santoso, A., Lin, X., Chen, Z., and McPhaden, M. J.: Continued increase of extreme El Niño frequency long after 1.5 C warming stabilization, Nature Climate Change, 7, 568–572, 2017.

Wang, S., Foster, A., Lenz, E. A., Kessler, J. D., Stroeve, J. C., Anderson, L. O., Turetsky, M., Betts, R., Zou, S., Liu, W., et al.: Mechanisms and impacts of Earth system tipping elements, Reviews of Geophysics, 61, e2021RG000757, 2023.

Wang, X., Auler, A. S., Edwards, R. L., Cheng, H., Cristalli, P. S., Smart, P. L., Richards, D. A., and Shen, C.-C.: Wet periods in northeastern
Brazil over the past 210 kyr linked to distant climate anomalies, Nature, 432, 740–743, 2004.

Wassenburg, J. A., Vonhof, H. B., Cheng, H., Martínez-García, A., Ebner, P.-R., Li, X., Zhang, H., Sha, L., Tian, Y., Edwards, R. L., et al.: Penultimate deglaciation Asian monsoon response to North Atlantic circulation collapse, Nature Geoscience, 14, 937–941, 2021.

Weaver, A. J., Saenko, O. A., Clark, P. U., and Mitrovica, J. X.: Meltwater pulse 1A from Antarctica as a trigger of the Bølling-Allerød warm interval, Science, 299, 1709–1713, 2003.

1265 Weertman, J.: Stability of the junction of an ice sheet and an ice shelf, Journal of Glaciology, 13, 3–11, 1974.

- Weijer, W., Cheng, W., Drijfhout, S. S., Fedorov, A. V., Hu, A., Jackson, L. C., Liu, W., McDonagh, E., Mecking, J., and Zhang, J.: Stability of the Atlantic Meridional Overturning Circulation: A review and synthesis, Journal of Geophysical Research: Oceans, 124, 5336–5375, 2019.
- Wengel, C., Lee, S.-S., Stuecker, M. F., Timmermann, A., Chu, J.-E., and Schloesser, F.: Future high-resolution El Niño/Southern Oscillation
 dynamics, Nature Climate Change, 11, 758–765, 2021.
 - Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S., Bohaty, S. M., De Vleeschouwer, D., Florindo, F., et al.: An astronomically dated record of Earth's climate and its predictability over the last 66 million years, Science, 369, 1383–1387, 2020.
- Willeit, M., Ganopolski, A., Robinson, A., and Edwards, N. R.: The Earth system model CLIMBER-X v1. 0–Part 1: Climate model description and validation, Geoscientific Model Development, 15, 5905–5948, 2022.

- Williamson, M. S., Collins, M., Drijfhout, S. S., Kahana, R., Mecking, J. V., and Lenton, T. M.: Effect of AMOC collapse on ENSO in a high resolution general circulation model, Climate Dynamics, 50, 2537–2552, 2018.
- Winkelmann, R., Donges, J. F., Smith, E. K., Milkoreit, M., Eder, C., Heitzig, J., Katsanidou, A., Wiedermann, M., Wunderling, N., and Lenton, T. M.: Social tipping processes towards climate action: a conceptual framework, Ecological Economics, 192, 107 242, 2022.
- 1280 Wood, R. A., Rodríguez, J. M., Smith, R. S., Jackson, L. C., and Hawkins, E.: Observable, low-order dynamical controls on thresholds of the Atlantic Meridional Overturning Circulation, Climate Dynamics, 53, 6815–6834, 2019.
 - Wunderling, N., Willeit, M., Donges, J. F., and Winkelmann, R.: Global warming due to loss of large ice masses and Arctic summer sea ice, Nature Communications, 11, 1–8, 2020.
- Wunderling, N., Donges, J. F., Kurths, J., and Winkelmann, R.: Interacting tipping elements increase risk of climate domino effects under
 global warming, Earth System Dynamics, 12, 601–619, 2021a.
 - Wunderling, N., Krönke, J., Wohlfarth, V., Kohler, J., Heitzig, J., Staal, A., Willner, S., Winkelmann, R., and Donges, J. F.: Modelling nonlinear dynamics of interacting tipping elements on complex networks: the PyCascades package, The European Physical Journal Special Topics, 230, 3163–3176, 2021b.
- Wunderling, N., Staal, A., Sakschewski, B., Hirota, M., Tuinenburg, O. A., Donges, J. F., Barbosa, H. M., and Winkelmann, R.: Recurrent
 droughts increase risk of cascading tipping events by outpacing adaptive capacities in the Amazon rainforest, Proceedings of the National Academy of Sciences, 119, e2120777 119, 2022.
 - Wunderling, N., Winkelmann, R., Rockström, J., Loriani, S., Armstrong McKay, D. I., Ritchie, P. D., Sakschewski, B., and Donges, J. F.: Global warming overshoots increase risks of climate tipping cascades in a network model, Nature Climate Change, 13, 75–82, 2023.
 - Zebiak, S. E. and Cane, M. A.: A model el niñ-southern oscillation, Monthly Weather Review, 115, 2262-2278, 1987.
- 1295 Zemp, D. C., Schleussner, C.-F., Barbosa, H. M., Hirota, M., Montade, V., Sampaio, G., Staal, A., Wang-Erlandsson, L., and Rammig, A.: Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks, Nature Communications, 8, 1–10, 2017.
 - Zhang, N., Feng, M., Hendon, H. H., Hobday, A. J., and Zinke, J.: Opposite polarities of ENSO drive distinct patterns of coral bleaching potentials in the southeast Indian Ocean, Scientific Reports, 7, 2443, 2017.
- Zhang, X., He, J., Zhang, J., Polyakov, I., Gerdes, R., Inoue, J., and Wu, P.: Enhanced poleward moisture transport and amplified northern
 high-latitude wetting trend, Nature Climate Change, 3, 47–51, 2013.
 - Zhang, X., Lohmann, G., Knorr, G., and Purcell, C.: Abrupt glacial climate shifts controlled by ice sheet changes, Nature, 512, 290–294, 2014.
 - Ziemen, F. A., Kapsch, M.-L., Klockmann, M., and Mikolajewicz, U.: Heinrich events show two-stage climate response in transient glacial simulations, Climate of the Past, 15, 153–168, 2019.
- 1305 Zular, A., Sawakuchi, A. O., Chiessi, C. M., d'Horta, F. M., Cruz, F. W., Demattê, J. A. M., Ribas, C. C., Hartmann, G. A., Giannini, P. C. F., and Soares, E. A. A.: The role of abrupt climate change in the formation of an open vegetation enclave in northern Amazonia during the late Quaternary, Global and Planetary Change, 172, 140–149, 2019.