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Abstract 12 

Flooding associated with Hurricane Maria in 2017 had devastating consequences for lives and livelihoods in 13 

Puerto Rico. Yet, an understanding of current and future flood risk in small islands like Puerto Rico is limited. 14 

Thus, efforts to build resilience to flooding associated with hurricanes remain constrained. Here, we take an 15 

event set of hurricane rainfall estimates from a synthetic hurricane rainfall simulator as the input to an event-16 

based rainfall-driven flood inundation model using hydrodynamic code LISFLOOD-FP. Validation of our 17 

model against High Water Mark data for Hurricane Maria demonstrates the suitability of this model for 18 

estimating flood hazard in Puerto Rico. We produce event-based flood hazard and population exposure 19 

estimates for the present day, and the future under the 1.5oC and 2oC Paris Agreement goals. Population 20 

exposure to flooding from hurricane rainfall in Puerto Rico for the present day climate is approximately 8-10% 21 

of the current population for 5-year return period, with an increase in population exposure to flooding by 2-15% 22 

and 1-20% under 1.5oC and 2oC futures (5-year return period). This research demonstrates the significance of 23 

the 1.5oC Paris Agreement goal for Small Island Developing States, providing the first event-based estimates of 24 

flooding from hurricane rainfall under climate change in a small island.  25 

1 Introduction 26 

Climate change is amplifying the probability of high intensity tropical cyclone events globally (Patricola and 27 

Wehner, 2018; Kossin et al., 2020; Mei and Xie, 2016; Knutson et al., 2020), compounding the rising social and 28 

economic costs associated with disasters due to increasing population and asset exposure (Jiménez Cisneros et 29 

al., 2014). The adoption of the Paris Agreement in 2015 aimed to limit global warming to well below 2°C above 30 

pre-industrial levels, and if possible to 1.5°C (United Nations Framework Convention on Climate Change, 31 

2015). Following this, numerous studies have investigated how these global temperature changes could impact 32 

societies, ecosystems, and places (IPCC, 2018; Mitchell et al., 2016). Under the upper Paris Agreement goal of 33 

2°C, there will likely be a higher proportion of tropical cyclones that become the most intense storms (i.e. 34 

Category 4 and 5 hurricanes), with an increase in precipitation intensity (Knutson et al., 2020). Whilst flooding 35 

accounts for the largest proportion of loss of life and economic damages from tropical cyclones (Rappaport, 36 

2014; Czajkowski et al., 2017), there is a lack of literature exploring how flooding might be affected by changes 37 

in tropical cyclone characteristics under climate change. This is particularly pertinent for Small Island 38 
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Developing States where the difference between the 1.5°C and 2°C temperature goals may be critically 39 

important (Hoegh-Guldberg et al., 2018). 40 

 41 

Small Island Developing States (SIDS) are a group of small island nations and territories with an acute risk of 42 

disasters and the impacts of climate change, who were an instrumental force in the implementation of the 1.5°C 43 

goal in the Paris Agreement (Ourbak and Magnan, 2018). Considering risk as a function of hazard, exposure and 44 

vulnerability (Terminology, 2019), high hazard frequency, high exposure in relation to size and underlying 45 

vulnerabilities drive the risk of hydrometeorological disasters and climate change in SIDS (Nurse et al., 2014; 46 

Mycoo et al., 2022). Climate change is likely to exacerbate current flood risk in SIDS (Joyette et al., 2014; 47 

Thomas et al., 2017) based on projected changes in tropical cyclone precipitation (Vosper et al., 2020), 48 

increased coastal storm surge heights (Knutson et al., 2020; Monioudi et al., 2018) and sea level rise (Storlazzi 49 

et al., 2018; Nicholls et al., 2018; Rasmussen et al., 2018). Yet, very little island-scale quantitative assessment of 50 

flood risk has been conducted in SIDS. This is largely due to the inadequacy of existing methods as well as 51 

insufficient data resolution and quality suitable for the scale of small island modelling (typically <10,000km2) 52 

(Thomas et al., 2019).  53 

 54 

Recent work by Vosper et al., (2020) demonstrates that total rainfall associated with tropical cyclones (also 55 

known as hurricanes) in the Caribbean will increase under both the 1.5oC and 2oC Paris Agreement goals in 56 

comparison to the present day climate. They also estimate that a 100-year return period event similar to 57 

Hurricane Maria in Puerto Rico would be twice as likely to occur under the 2oC scenario than the 1.5oC scenario 58 

(Vosper et al., 2020). Puerto Rico is an unincorporated territory of the United States located in the Greater 59 

Antilles islands of the Caribbean (see Figure 1). The urgent need to understand both current and future flood risk 60 

was recently reinforced following Hurricane Maria in 2017, which made landfall as a high-end Category 4 61 

hurricane, causing catastrophic wind and flood damage (Pasch et al., 2018). Hurricane Maria was the strongest 62 

hurricane to hit Puerto Rico since Hurricane San Felipe II in 1928, resulting in at least 2975 deaths (Audi et al., 63 

2018). The estimated economic loss of US$90 billion made it the third costliest disaster in US history (Pasch et 64 

al., 2018). Despite the underlying structural failures and inadequate emergency response that also contributed to 65 

the scale of the disaster in Puerto Rico (Towe et al., 2020; Rivera, 2020; Caban, 2019; Willison et al., 2019), the 66 

volume and intensity of the rainfall associated with Hurricane Maria was unprecedented and exacerbated the 67 

scale of the impact on communities on the island (Keellings and Hernández Ayala, 2019; Ramos-Scharrón and 68 

Arima, 2019). Historically, hurricane rainfall has been the key cause of flooding in Puerto Rico (Hernández 69 

Ayala et al., 2017; Smith et al., 2005). Consequently, it is pertinent that estimates of current and future rainfall-70 

driven flood risk associated with these hurricane rainfall events are developed to assist disaster risk management 71 

in Puerto Rico. Yet, there are currently no complete estimates of flooding associated with Hurricane Maria, or 72 

indeed for any other events in Puerto Rico. Dated FEMA flood zone maps do exist for larger river systems in 73 

Puerto Rico, but these do not include pluvial flooding which is a key focus of this paper. They are therefore 74 

likely to provide a considerable underestimate of risk (Wing et al., 2017). 75 
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 76 

Figure 1 - Map showing the island of Puerto Rico within the Caribbean region. 77 

 78 

Tropical cyclones can generate pluvial, fluvial and coastal floods, all of which interact. Of these pluvial flooding 79 

is a comparatively lesser modelled phenomenon (Blanc et al., 2012; Rözer et al., 2019; Tanaka et al., 2020). 80 

Pluvial flooding is defined here as ‘flooding resulting from rainfall-generated overland flow and ponding before 81 

the runoff enters any watercourse or drainage system, or cannot enter it because the network is full to capacity’ 82 

(Falconer et al., 2009, p.199). There has been a historical split between the modelling and assessment of pluvial 83 

and fluvial – or river - flooding. However, in reality both of these inland flood types are in a continuum, and 84 

both driven by rainfall. Thus, the distinction between the two is unhelpful in many cases. This is particularly 85 

true in small islands where much of the inland flooding is primarily driven by heavy rainfall (Jetten, 2016; 86 

Burgess et al., 2015). Pluvial flooding is also a contested term, with some defining it as including small river 87 

channels (Wing et al., 2018), and other defining it as completely independent of rivers (Rosenzweig et al., 2018; 88 

Hankin et al., 2008). The rain on grid approach documented here therefore overcomes this pluvial/fluvial 89 

distinction by explicitly modelling both flood types and their interactions. Here we define the flooding modelled 90 

in this approach as ‘rainfall-driven flooding’. 91 

 92 
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Rainfall-driven flood events can often occur with a high frequency but low magnitude. This can lead to a 93 

significant cumulative impact on a community’s resilience over time which can undermine efforts to reach the 94 

UN’s Sustainable Development Goals (Moftakhari et al., 2017; Hamdan, 2015; United Nations Office for 95 

Disaster Risk Reduction, 2019). However, most studies investigating flooding under climate change focus on 96 

changes in the 100-year flood extent because this is often used as a design standard (Hirabayashi et al., 2013; 97 

Arnell and Gosling, 2016; Lehner et al., 2006). This means the critical understanding of how smaller, more 98 

frequent events might vary under climate change remains, which have a crucial importance for improving the 99 

resilience-building and climate change adaptation needed in local communities (Moftakhari et al., 2017). This 100 

paper aims to address this gap by investigating how changing hurricane rainfall characteristics influence 101 

rainfall-driven flood risk estimates in Small Island Developing State Puerto Rico, with an emphasis on 102 

understanding changes in lower magnitude, higher frequency events (<30-year return period). 103 

 104 

Currently, the predominant method for understanding changes in flooding under climate change in small islands 105 

uses changes in precipitation as a proxy for changes in flood hazard, leading to uncertainty in flood hazard 106 

changes under climate change (Seneviratne et al., 2021; Ranasinghe et al., 2021). Examples of pluvial hydraulic 107 

flood modelling in small islands have previously relied on spatially uniform rainfall estimates derived from 108 

historical data for a set of design return period events (World Bank, 2015; Pratomo et al., 2016; Lumbroso et al., 109 

2011). This approach takes a set of rainfall intensity estimates for a given duration and return period, often 110 

derived from an Intensity-Duration-Frequency (IDF) curve using historical rainfall data. Rainfall is typically 111 

applied uniformally across a model domain to produce design event flood extents (World Bank, 2015). Yet, this 112 

approach does not necessarily represent flooding at a particular return period, as a flood is a signature of the 113 

rainfall, the topography and the topology of a catchment (Guerreiro et al., 2017; Skougaard Kaspersen et al., 114 

2017). More recently, studies have highlighted the importance of representing rainfall spatially and temporally 115 

for a more realistic representation of flooding (Aldridge et al., 2020; Bernet et al., 2019; Guerreiro et al., 2017; 116 

Schaller et al., 2020). One way of incorporating these features is through an ‘event set approach’, which 117 

involves utilizing an event set of synthetic rainfall events (Nuswantoro et al., 2016; Tanaka et al., 2020). 118 

Nonetheless, data such as this are still limited or non-existent – particularly in small islands – and thus the 119 

aformentioned traditional approach has until now the only way to represent flood hazards for small islands. 120 

Climate change is often assessed by applying an uplift factor to account for changes in rainfall associated with 121 

climate change projections (Sayers et al., 2020). However, this approach also fails to account for non-stationary 122 

effects of climate change on flooding, including changes to the different spatial and temporal characteristics of 123 

rainfall that are important for flood generation (Rosenzweig et al., 2018). 124 

 125 

This paper details the first example of an event-based assessment of flood hazard in a small island under current 126 

and future climate change. We utilise a synthetic hurricane rainfall data set (Vosper et al., 2020) as the input to 127 

an event-based rainfall-driven hydrodynamic flood model of Puerto Rico. We model rainfall-driven flood 128 

hazard and population exposure at the island scale in Puerto Rico (9100km2), at 20m resolution under present 129 

day, 1.5°C and 2°C climate change. As part of this work, we also include novel methodological developments, 130 

including the representation of rainfall and river channels in the model. The model is validated against flood 131 

hazard simulations using two estimates of Hurricane Maria observed rainfall (IMERG and NCEP Stage IV) and 132 
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High Water Mark data collected from the event. To our knowledge, these are the first published estimates of 133 

rainfall-driven flooding from Hurricane Maria. This work thus demonstrates a step-change in the capacity to 134 

estimate flood hazard in a small island, superseding the information available using the traditional approaches. 135 

Within this, two key questions will be investigated:  136 

1) What is the current rainfall-driven flood hazard and population exposure associated with hurricanes in 137 

Puerto Rico? 138 

2) How does population exposure to flooding change from present day under 1.5°C and 2°C climate 139 

change scenarios? 140 

2 Methods 141 

To address these questions, we first describe the application of the hurricane rainfall event set in Section 2.1. We  142 

explain how the event-based model was set up (Section 2.2), including the novel methodological applications of 143 

spatially-varying rainfall in the hydrodynamic model (Section 2.2.1), and the parameterization of river channel 144 

bathymetry using the input rainfall event set climatology (Section 2.2.2). In Section 2.3, we describe the 145 

combination of population estimates with the flood hazard data to derive population exposure estimates under 146 

present day, 1.5°C and 2°C climate change scenarios. The method for validating the model is described in 147 

Section 2.4. 148 

 149 

2.1 Hurricane Rainfall Data 150 

The synthetic hurricane rainfall event set was developed to estimate hurricane rainfall in the Caribbean under 151 

present day (2005-2016), 1.5oC and 2oC equilibrated climate change, using a physics-based tropical cyclone 152 

rainfall model (Vosper et al., 2020). The model produces spatial (10km resolution) and temporal (2-hourly) 153 

rainfall estimates along a synthetic hurricane track, considering four key rainfall-generating mechanisms: wind 154 

shear, topography, vortex stretching and surface frictional convergence. Inputs to the tropical cyclone rainfall 155 

model were atmospheric temperature, specific humidity, sea surface temperature and wind vectors, which are 156 

typically taken from global climate models or reanalysis products. This model has been validated against gauge-157 

based and radar observations in several studies in the US - including in Puerto Rico - showing good agreement 158 

(Feldmann et al., 2019; Lu et al., 2018; Zhu et al., 2013).  159 

 160 

To provide driving climate model data to the synthetic hurricane rainfall events under current, 1.5°C and 2°C 161 

climate change, four climate models from the Half A degree additional warming, Prognosis and Projected 162 

Impacts (HAPPI) ensemble were utilised (CanAM4, CAM5-1-2-025degree, NorESM1-HAPPI, ECHAM6-3-163 

LR: (Mitchell et al., 2017)). These were selected based on the availability of variables at the required 164 

atmospheric levels with at least daily temporal resolution for input into the hurricane rainfall model. HAPPI was 165 

developed to document climate change impacts under 1.5°C and 2°C climate change above pre-industrial levels, 166 

and has been a key source of climate data for such studies, including the IPCC Special Report on 1.5°C (IPCC, 167 

2018). The hurricane rainfall event set consists of 59,000 events, with each climate model scenario equivalent to 168 

between 332-427 simulated years of data depending on the climate model (Vosper et al., 2020). 59,000 events 169 

were generated corresponding to approximately 5000 events per climate model and climate scenario. For each 170 

climate model, the number of simulated years was calculated as the sum of the number of simulated events per 171 

year divided by the simulated annual frequency of events in the climate model data. The simulated time period 172 
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for the present day is 2005-2016, representing a global average temperature of around 0.9°C higher than a pre-173 

industrial climate. The 1.5°C and 2°C time periods are for 2106-2115. Each synthetic hurricane rainfall event 174 

was simulated at a 2-hour time step and 10km spatial resolution before being employed as the input to the event-175 

based rainfall-driven flood model.  176 

2.2 Event-Based Rainfall-Driven Flood Model  177 

LISFLOOD-FP is the hydraulic engine used to simulate channel and floodplain flow in two dimensions in our 178 

rainfall-driven hydrodynamic model (Bates et al., 2010; LISFLOOD-FP Developers, 2020). Rainfall is the key 179 

input to the model, and water flow is routed in one of two ways. Firstly, very shallow (<1cm) overland flows are 180 

routed using a constant-velocity ‘rain on grid’ routing scheme (Sampson et al., 2013). Rain falls directly onto 181 

the cells and is routed through the model using a slope-dependent fixed velocity algorithm. Secondly, flow 182 

above 1cm deep (i.e. the majority) is routed hydraulically using the inertial form of the shallow water equations 183 

(Bates et al., 2010), with river and drainage channels represented using a subgrid approach (Neal et al., 2012). 184 

Typical channel (0.035) and floodplain (0.040) manning’s coefficient friction values were applied. As Puerto 185 

Rico is an island, all downstream boundaries are the ocean. The downstream boundary conditions in the model 186 

are set to sea level, and this could be used in future work to simulate sea level rise and storm surge.  187 

 188 

As Digital Elevation Data is the most important input to a hydrodynamic model (Hawker et al., 2018), LiDAR 189 

data was used as the Digital Elevation Model (DEM). LiDAR coverage for Puerto Rico is almost complete 190 

(>99%) (United States Geological Survey, 2017) and was resampled from its native 1m resolution to 20m, 191 

reprojected to WGS84 and hydrologically conditioned using the Priority-flood method (Zhou et al., 2016). The 192 

~55km2 of Puerto Rico not covered by LiDAR was patched with the globally-available MERIT DEM 193 

(Yamazaki et al., 2017). This area is mountainous and sparsely populated, meaning the use of MERIT here does 194 

not affect the exposure results.  195 

 196 

Whilst high resolution DEMs are important for simulating floods, halving the model grid resolution leads to an 197 

increase in simulation time by an order of magnitude (Savage et al., 2016). For example, run on a 2 x 2.6GHz 8-198 

core Intel E5-2670 one example model in this event set for the 9100km2 domain covering the entire island of 199 

Puerto Rico takes 3 minutes to run at 90m, 77 minutes at 20m, approximately 770 minutes (12.8 hours) at 10m 200 

and 7700 minutes (5.3 days) at 1m resolution. As a result, and given we have thousands of events to simulate, 201 

the event set was run at 20m. This resolution balances the need for high resolution flood hazard outputs with the 202 

computational costs associated with employing a high-resolution event-based model at the island scale, and also 203 

reflects state-of-the-art model resolutions used in other locations, such as the UK (Bates et al., 2023). Our study 204 

is the first known study to employ an event set approach at such a high hydrodynamic model resolution over 205 

such a large domain. 206 

 207 

Infiltration was not included in this model approach for several reasons. As hurricanes take place during the 208 

hurricane season (North Atlantic: June – November), soils in Puerto Rico are often saturated meaning 209 

infiltration is low (Smith et al., 2005). Many pluvial modelling studies do not include infiltration as the 210 

appropriate parameter values are highly uncertain and vary widely across space and time (Bernet et al., 2018; 211 

Guerreiro et al., 2017; Hall, 2015). Although antecedent conditions are expected to vary, the infiltration is likely 212 
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to be of lower importance relative to other factors since infiltration will be minimal under extreme rainfall 213 

events - such as those associated with hurricanes (Wehner and Sampson, 2021).  214 

  215 

To improve the representation of islands and hurricane rainfall in the model, two novel model developments 216 

were incorporated into the model set up. 217 

2.2.1 Spatially-varying Rainfall 218 

Spatiotemporal representation of rainfall is important for accurate simulation of pluvial flood events (Blanc et 219 

al., 2012). Previous pluvial models using LISFLOOD-FP covered only small domains and relied on time-220 

varying but spatially constant rainfall input (Sampson et al., 2013, 2015; Wing et al., 2019). This study 221 

demonstrates the first use of spatially and time-varying rainfall in a LISFLOOD-FP rainfall-driven 222 

hydrodynamic model, using a new routine to read spatiotemporal rainfall in NetCDF format. For each hurricane, 223 

a grid of rainfall at ~10km resolution across the island was input to the model domain at each timestep (2-224 

hourly), although the hydrodynamic model calculations are simulated with much shorter timesteps (order of 225 

seconds). To model all 59,000 hurricane rainfall events would be computationally intractable, and was not 226 

necessary considering many of the hurricane rainfall events produced no or very little rainfall. Thus, to select 227 

events to simulate in the model, all hurricane rainfall events above a threshold of 3.75mmhr-1 peak rainfall 228 

intensity were simulated - a total of 4909 events (8.3% of total). Within this, 1464 events were present day, 1801 229 

events were at 1.5°C and 1644 events were at 2°C. This threshold was selected as the minimum number of 230 

events necessary to calculate a robust estimate of the two-year return period flood hazard which is used as the 231 

lowest modelled return period event in the event set. Events below this threshold were not considered significant 232 

enough in terms of rainfall to run. An additional 8 hours of simulation time was added to the end of each 233 

simulation based on our inspection of the time it took for the rainfall to move through the model and reach either 234 

the ocean or the lowest points of the DEM. These decisions were based on trial and error and inspection of the 235 

rainfall and resulting flood hazard events. 236 

2.2.2 River Channels 237 

Including river channels in flood models is necessary to produce accurate estimates of flood hazard (Hall, 2015; 238 

Neal et al., 2021), but most pluvial flood models do not explicitly include river channels or drainage networks 239 

(Blanc et al., 2012). Here, a subgrid approach was used to represent river channels and drainage networks in the 240 

rainfall-driven modelling framework (Neal et al., 2012). Rivers and drainage channels were represented using 241 

the US National Hydrography Dataset v2.1 (Simley and Carswell Jr, 2010). River widths in Puerto Rico are 242 

inadequately represented in global hydrographic datasets such as MERIT Hydro (Yamazaki et al., 2019) as most 243 

channels are smaller than the resolution of the DEM data used to create such products (e.g. MERIT at 90m in 244 

the case of MERIT-Hydro). As a result, width was estimated using a power law regression with upstream 245 

accumulated area (Leopold and Maddock, 1953). Widths used here were sampled using satellite imagery along 246 

the 13 main rivers across the island. Upstream accumulated area was calculated using the LiDAR DEM at 20m 247 

resolution by first generating a flow direction map, and then using the RichDEM algorithm outlined in (Barnes, 248 

2017).  249 

 250 
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River depth estimates are also unavailable for Puerto Rico, as is typical in most locations globally (Sampson et 251 

al., 2015). To paramaterise the river channel depths, the present day synthetic hurricane rainfall events for each 252 

climate model (total: 1464) were first simulated through a model with arbitrarily deep river channels (-10m) to 253 

get estimates of channel water depth for each event. Using these, the water depth at a given return period was 254 

calculated empirically. Information on flood defences was also not available, so in this study we parametrize 255 

bankfull river depth by calculating the bed elevation to ensure that each channel conveyed the present day one-256 

in-two-year discharge (Pickup and Warner, 1976; Williams, 1978; Wolman and Miller, 1960) generated by the 257 

present day hurricane ensemble and subtracted from the bank height derived from the DEM to get a calibrated 258 

estimate of the channel depth value. Inevitably this means that in locations where rivers do have defences, the 259 

model is likely to overpredict flood hazard. If defence standard information were to become available, it would 260 

be a simple matter to retrospectively apply these to the output flood hazard layers.  261 

 262 

2.3 Population Exposure Estimates 263 

Population exposure was calculated for each flood event as the total number of people exposed to flood depths 264 

above 10cm. The WorldPop 90m top-down constrained population dataset (2020) was used to estimate the 265 

number of people per 90m grid cell (Tatem, 2017; Bondarenko et al., 2020). WorldPop was chosen because total 266 

population estimates are adjusted to 2020 UN population estimates, meaning out-migration trends following 267 

Hurricane Maria in 2017 are accounted for. The WorldPop data was downscaled from 90m to 20m to match the 268 

flood hazard data, using nearest neighbour resampling and assignment to 20m cells based on a proportional cell 269 

method, following (Lloyd et al., 2017). WorldPop has been validated and compared to other datasets extensively 270 

(Reed et al., 2018; Leyk et al., 2019; Tuholske et al., 2021), including for flood exposure applications 271 

(Mazzoleni et al., 2020; Smith et al., 2019). Smith et al., (2019) found that WorldPop produces larger exposure 272 

estimates in comparison to the High Resolution Settlement Layer (HRSL) (Tiecke et al., 2017), likely due to a 273 

combination of coarser resolution and assignment of population to buildings. Recently, Tuholske et al., (2021) 274 

identified the importance of conducting a sensitivity assessment of gridded population products to capture the 275 

inherent uncertainties in the use of gridded population estimates. However, HRSL, High Resolution Population 276 

Density Map (HRPDM) (Mapping the world to help aid workers, with weakly, semi-supervised learning, 2020) 277 

and WorldPop are likely to give different estimates in our case, not least due to the different dates of the datasets 278 

before and after Hurricane Maria, where approximately 8% (230,000) of the population is estimated to have 279 

emigrated following the event (Audi et al., 2018). Total population estimates for the main island using HRPDM 280 

and HRSL population are 4.87million and 3.66million, which is considerably higher than the UN-adjusted 281 

WorldPop estimate of 2.70million, resulting in higher population exposure values. Future population was not 282 

considered due to a lack of available high-resolution datasets (<100m grid size) estimating changes in future 283 

population. For consistency, population exposure exceedance was calculated for each event using the same 284 

method as the hurricane rainfall as 1/Annual Exceedance Probability (Emanuel and Jagger, 2010; Feldmann et 285 

al., 2019; Vosper et al., 2020). 286 

 287 
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2.4 Model Validation 288 

To determine the skill of our flood hazard estimation, we assessed model performance using high water mark 289 

(HWM) data collected by USGS following Hurricane Maria (available here: 290 

https://stn.wim.usgs.gov/FEV/#MariaSeptember2017). For more information about the suitability assessment of 291 

the HWM data for validation, see Text S1 and Table S2. See Figure S1 for the HWM locations used in this 292 

study. Ideally it would be better to validate the event set with a lower magnitude flood considering the focus of 293 

this work is primarily on on low-magnitude, high-frequency events. However, there is no known validation data 294 

for small hurricane rainfall-driven flood events in Puerto Rico. As a result, Hurricane Maria was chosen as the 295 

event to validate against despite its high magnitude.  296 

 297 

Firstly, to produce flood hazard estimates of Hurricane Maria for validating the model and event set, we ran the 298 

hydrodynamic model using two observational rainfall products (IMERG and NCEP Stage IV) that provide 299 

space-time varying estimates of Hurricane Maria rainfall through the flood inundation model. We use an 300 

identical hydrodynamic model set-up to the event set, only changing the input rainfall data. IMERG (IMERG: 301 

Integrated Multi-satellitE Retrievals for GPM | NASA Global Precipitation Measurement Mission, 2023) was 302 

run at ~10km spatial resolution, and at 30-min intervals, whilst NCEP Stage IV (NCEP/EMC 4KM Gridded 303 

Data (GRIB) Stage IV Data, 2023) was run at ~4km spatial resolution, with an hourly temporal resolution. We 304 

compare the flood hazard produced using IMERG and NCEP Stage IV to understand the uncertainty in flood 305 

hazard estimates using the different observation inputs.  306 

 307 

Next, we compared the performance of the event set against the HWM data and the estimates from the observed 308 

rainfall products to sense check the model. Hurricane Maria-like events were identified across all model 309 

scenarios first by maximum total rainfall, and then by spatial characteristics of the hurricane track. Maximum 310 

total rainfall is defined as the highest total rainfall accumulation at a point on the island. This metric was used as 311 

opposed to mean total rainfall, as studies that have investigated Hurricane Maria rainfall describe the maximum 312 

total rainfall as the most significant anomaly in the historical record associated with the event (Ramos-Scharrón 313 

and Arima, 2019; Keellings and Hernández Ayala, 2019; Pokhrel et al., 2021). Maximum total rainfall is also 314 

the metric used to estimate the return period of Hurricane Maria rainfall; at least a 1-in-115-year rainfall event 315 

(Keellings and Hernández Ayala, 2019). Studies use different metrics to derive maximum total rainfall, 316 

including interpolation of rain gauge data and observation products such as NCEP Stage IV. This means that the 317 

maximum total rainfall for Hurricane Maria varies between studies, ranging between 733-1029mm (Pasch et al., 318 

2018; Keellings and Hernández Ayala, 2019; Ramos-Scharrón and Arima, 2019; Pokhrel et al., 2021). There are 319 

a limited number of events in our event set with a >100-year return period magnitude maximum total rainfall 320 

(mean: 3.46 samples per climate model scenario) due to the comparatively short simulated time record of our 321 

event set (range: 332-427 years). However, Puerto Rico experiences on average one hurricane each year, and 322 

has a mean annual rainfall of over 4000mm in some locations (Hernández Ayala and Matyas, 2016). There are 323 

therefore many events in the event set with total mean rainfall (total accumulated rainfall averaged across the 324 

island) in the range of Hurricane Maria (range: 375-380mm (Pokhrel et al., 2021; Keellings and Hernández 325 

Ayala, 2019; Ramos-Scharrón and Arima, 2019)). However, these events have widely varying spatial 326 

characteristics and associated flood hazard and are therefore not all are Maria-like. Thus, it is also important to 327 
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consider the spatial characteristics of the hurricane rainfall events so that events with similar rainfall and spatial 328 

characteristics to Hurricane Maria can be identified. Similarity to Hurricane Maria based on track location was 329 

assessed based on four criteria: i) direct landfall on the main island; ii) south-western trajectory; iii) makes 330 

landfall on the eastern portion of the main island; and iv) similar track trajectory across the island, whereby the 331 

event track and Hurricane Maria track intersect at at least one point on the island.  332 

3 Results 333 

3.1 Hurricane Maria Model Validation  334 

Figure 2 shows the flood hazard estimates produced by simulating the IMERG and NCEP Stage IV rainfall 335 

products spatiotemporally through the flood inundation model from the island to local scale. The RMSE 336 

between the modelled flood hazard and the HWM is 1.18m for IMERG and 1.22m for NCEP Stage IV (see 337 

Figure 3). This is comparable to post-event HWM validation done in other locations (Wing et al., 2021) (see 338 

Section 4.1 for discussion of this). There is a significant difference in the flood extents produced using IMERG 339 

and NCEP Stage IV, with larger areas flooded using NCEP Stage IV than IMERG. This highlights the 340 

uncertainty in so-called ‘observed’ flooding from Hurricane Maria.  341 

 342 

Figure 2 - Map showing the differences between flood hazard estimates of Hurricane Maria produced using IMERG and NCEP Stage 

IV precipitation data from the island to local scale. 
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In the event set, when the spatial characteristics of the hurricane rainfall events are considered in addition to the 343 

maximum total rainfall, events we select as Hurricane Maria-like events have some of the lowest RMSEs 344 

between the observed and modelled water surface elevations (range: 1.13-1.33m) as demonstrated in Figure 3. 345 

The track locations of these events are shown in Figure S2. The relationship between maximum total rainfall 346 

and RMSE for all events is expected, whereby as the intensity of the event increases, the sensitivity to the flood 347 

depths decreases as the floodplain fills and thus becomes less responsive to additional increases in rainfall 348 

(Wing et al., 2021). However, there are events in the event set with both much higher and lower rainfalls than 349 

Hurricane Maria that have both similar and very different RMSEs to the Maria-like events. This demonstrates 350 

the importance of the spatial characteristics of the events beyond just the rainfall. 351 

 352 

When comparing the flood estimates using IMERG and NCEP Stage IV against the High Water Mark data, the 353 

event set Maria-like events have similar RMSE scores (Figure 3). However, both observational rainfall products 354 

have different maximum total rainfalls than those found in the literature. In  particular, the IMERG maximum 355 

total rainfall is considerably lower. This is likely because satellite products such as IMERG often underestimate 356 

orographic rainfall such as that exhibited over Puerto Rico (Dinku et al., 2008).357 

358 

Figure 3 - Graph showing the relationship between Root Mean Square Error (RMSE) and maximum total rainfall for all simulated events under 

all climate scenarios (4909 events total). Blue = all simulated events. Red = events identified with Hurricane Maria maximum rainfall totals and 

spatial characteristics (20 events). Red band = range of reported Hurricane Maria rainfall. Orange square = NCEP Stage IV model. Brown 

triangle = IMERG model. 
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3.2 Design Return Period Flood Hazard Maps 359 

The probability of inundation was calculated for each pixel in the model domain, calculating how many times 360 

each pixel would be inundated above a 10cm depth in each climate model temperature scenario. The return 361 

period of inundation in each pixel was then determined, by calculating how many times we expect a pixel to 362 

flood based on the number of years of data simulated (range: 332-427 years depending on the climate model). 363 

Using this, we derived a set of return period flood hazard maps, which provide a spatially explicit representation 364 

of a given return period flood event under present day, 1.5°C and 2°C warming. This supersedes any currently 365 

available hurricane rainfall-driven flood risk information in Puerto Rico, both under current and future climate 366 

change. This approach also moves beyond the traditional uplift approach often used in flood risk assessment 367 

under climate change, as it provides spatially explicit flood hazard information for a given return period at the 368 

island scale and at high resolution.  369 

 370 

Figure 4 highlights the scale and detail of flood hazard information using this approach, from the island scale 371 

(Figure 4a) to the local scale (Figure 4c). For example, Figure 4c shows flooding at the street level in Levittown, 372 

Toa Baja – a town significantly impacted by flooding from Hurricane Maria in 2017 (Major Hurricane Maria - 373 

September 20, 2017). 374 

 375 
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 376 

Figure 4 - Map showing the 20-year return period flood based on probability of inundation under present day and 377 

1.5oC climate change for the ECHAM6-3-LR climate model. a) Flooding at the island scale. b) Flooding in the Toa 378 

Baja and Cataño districts. c) Flooding in Levittown, Toa Baja. For presentation purposes, only inundation 379 

probabilities at present day and 1.5°C are shown here. 380 

Based on this example for a 20-year return period flood hazard event using the ECHAM6-3-LR climate model, 381 

several schools and hospitals would likely be impacted under present day and 1.5°C climate change. The 382 

estimated flooded area of the 20-year return period flood increases under 1.5°C climate change in comparison to 383 

present day (2006-2015) (Figure 4c), meaning areas currently not at risk are affected at 1.5°C climate change. 384 

Changes at 2°C are similar to 1.5°C, but are not shown in Figure 4 for presentation purposes.  385 

 386 

Flooding in the northwest of the island shown in Figure 4a (latitude/longitude location: 18.3,-67.0 to 18.4,-66.5) 387 

is a feature of the topography and model structure, not data error. This area is dominated by karst hydrology 388 
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(Hughes and Schulz, 2020). Therefore, these areas of pooled water would likely not feature if karst processes 389 

were explicitly represented in the model set up. The inclusion of karst processes was beyond the scope of this 390 

study, and as this area is sparsely populated it is unlikely to impact the estimates of population exposure 391 

presented.392 

 393 

3.3 Characterising Changes in Population Exposure Under Present Day, 1.5°C and 2°C 394 

This research estimates changes in population exposure to hurricane rainfall-driven flooding for the island of 395 

Puerto Rico under present day, 1.5°C and 2°C climate change. The climate change scenarios are analysed for 396 

each individual climate model, as opposed to the aggregate results, as there are important differences between 397 

models that are obscured when using the mean. This is a way of investigating uncertainty explicitly, by 398 

understanding the differences between models. Studies such as Daron et al., (2021) have highlighted the 399 

importance of assessing individual model performance when climate models give a wide range of projections.  400 

 401 

Figure 5 shows the return period of a given exceedance of population exposure from hurricane rainfall-driven 402 

flooding in Puerto Rico under present day, 1.5°C and 2°C climate change. Return periods of population 403 

exposure exceedance above the 30-year return period are not considered and are thus faded in Figure 5. The 404 

number of samples for each climate model scenario above the 30-year return period is too small (mean: 12.7 405 

samples) to determine accurate estimates of population exposure above the 30-year return period (see Figure 5). 406 

Thus, changes in population exposure above the 30-year return period in this event set are subject to significant 407 

uncertainty resulting from limited samples at these event magnitudes and are therefore not considered further in 408 

this analysis. A much longer event set would be required to simulate robust changes in population exposure at 409 

higher magnitude return periods.   410 

 411 

Three of the four climate models show agreement in the direction of change between present and future climate 412 

change, with increases in population exposure associated with a given return period at 1.5°C and 2°C compared 413 

to present day. However, one climate model (CanAM4) shows the opposite trend above the 10-year return 414 

period (see Figure 6). One key reason for this is likely to be the differences in resolution of the underlying 415 

Global Climate Model (GCM) data: CanAM4 GCM has a coarser resolution (2.81°x2.81°) than the next most 416 

coarse GCM ECHAM6-3-LR (1.88°x1.88°). As a result, the underlying variables driving extreme hurricane 417 

rainfall are less likely to be well-represented in CanAM4 compared to the other three climate models. It is well 418 

understood that higher-resolution GCMs are better able to simulate the underlying conditions important for the 419 

development of extreme rainfall and tropical cyclones (Knutson et al., 2020).  420 
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 421 

Present day population exposure to flooding from hurricane rainfall in Puerto Rico is approximately 2-5% at the 422 

two-year return period, rising to 8-10% at the five-year, 9-12% at the ten-year and 11-14% at the twenty-year 423 

return periods respectively (see Figure 5). These are the first published estimates of present day population 424 

exposure from flooding in Puerto Rico. It is difficult to corroborate population exposure estimates with those for 425 

previous events in Puerto Rico due to a lack of data, however these estimates are plausible given the universal 426 

island-wide flash flood warning given to Puerto Rico during Hurricane Maria (Pasch et al., 2018). 427 

 428 

As shown in Figure 6, the estimated number of people exposed to flooding from hurricane rainfall on average 429 

every two years would increase by the largest percentage across the different return periods (20-140% at 1.5°C; 430 

-3-85% at 2°). The lower bound here represents the results from the CanAM4 model, which has the lowest 431 

GCM resolution. The reason for the widest range at the two-year return period could be because of the different 432 

bed elevations sized at the historical two-year return period for each climate model. For a return period 433 

population exposure of five years as shown in Figure 7, the percentage increase in population exposure at 1.5°C 434 

and 2°C ranges from 2-15% and 1-20%, respectively. This is a considerably lower range than the population 435 

exposure exceedance at the two-year return period, but also shows more agreement between the climate models.  436 

Figure 5 - Graph showing population exposure exceedance for present day, 1.5°C and 2°C climate change, as well as the number of samples in 

each climate model at a given return period (dotted line). Population exposure above the 30-year return period is faded to represent the 

uncertainty associated with the limited number of samples at these return periods.  

https://doi.org/10.5194/egusphere-2023-1574
Preprint. Discussion started: 6 October 2023
c© Author(s) 2023. CC BY 4.0 License.



  

 

 

16 

 

As shown in Figure 6 there is a notable difference in population exposure exceedance between present day and 437 

1.5°C in three of the four climate models, but a less clear difference between 1.5°C and 2°C. In two of the four 438 

climate models (CAM5-1-2-025degree and ECHAM6-3-LR), the percentage of population exposed at a given 439 

return period is higher at 1.5°C compared to 2°C, and in one climate model (NorESM1-HAPPI), higher at 2°C 440 

compared to 1.5°C. In the CanAM4 climate model, depending on the return period, the percentage of population 441 

exposure varies between the three climate scenarios, and no consistent pattern is shown between the three across 442 

different return periods.  443 

 444 

445 

 446 

Figure 7 demonstrates that the range in absolute population exposure numbers estimated for a given return 447 

period between the four climate models is the same as or greater than the percentage uplift in population 448 

exposure associated with 1.5°C and 2°C, highlighting the range of possible absolute population exposure 449 

estimates. For the 5-year return period, present day absolute population exposure ranges from 217,000 450 

(ECHAM6-3-LR) to 264,000 (CAM5-1-2-025degree). This is a 21% difference, whereas the highest population 451 

exposure increase is 22% between present day and 2°C for the NorESM1-HAPPI climate model. This 452 

underlines the difficulty in estimating current population exposure to flooding. This is not only the case in data-453 

sparse areas such as Puerto Rico, but also in data-rich areas such as the conterminous US (Bates et al., 2021). 454 

However, the direction of change between the ‘present day’ and ‘future’ climate change (1.5°C and 2°C) is 455 

Figure 6 - Plot showing the percentage of population exposed to flooding under present day, 1.5°C and 2°C climate change, and the difference 

between the three scenarios for each HAPPI climate model. The green dot represents present day population exposure (as a percentage of the 

total population), with the orange and purple dots representing the population exposure (%) at 1.5°C and 2°C. The difference between the 

population exposure between the different scenarios is represented by the line between the dots. 
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robust across three of the four climate models, meaning the signal in population exposure to flooding is 456 

observable when comparing present day and future climate change, despite the uncertainty in absolute terms.457 

 458 

 459 

Figure 7 - Bar graph showing the number of people exposed to flooding under present day, 1.5°C and 2°C climate 460 

change for the 5-year population exposure exceedance for each HAPPI climate model.461 
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4 Discussion  462 

Our estimates of flood hazard and population exposure driven by hurricane rainfall under current and future climate 463 

change supersedes previous efforts to estimate hurricane rainfall-driven flood risk in Puerto Rico. Previous estimates 464 

rely on local-scale FEMA fluvial assessments or the global large-scale assessments that most often neglect small 465 

islands through choice of scale. Although, the FEMA models will likely be more accurate locally where they exist, 466 

depending on the local river channel and flood defence information that was available to the model developers. This 467 

research is one of the first known published studies which propagates spatially and temporally explicit hurricane 468 

rainfall through to the impact modelling of flood hazard and population exposure estimates, and the first in a small 469 

island. Utilising hydrodynamic flood models to understand changes in flooding under climate change is a critical 470 

gap in the literature, despite the widespread use of hydrodynamic models to assess current flood risk. The latest 471 

IPCC AR6 Working Group I report demonstrated that changes in rainfall were still the dominant method used to 472 

assess changes in pluvial flooding under climate change (Seneviratne et al., 2021). However, here we find that the 473 

changes in population exposure between present day and 1.5°C and 2°C climate change do not correspond linearly 474 

with changes in hurricane rainfall using the HAPPI climate models (Vosper et al., 2020) analysed here, and 475 

therefore this rainfall proxy method may not be appropriate when investigating changes in flooding from hurricane 476 

rainfall.  477 

4.1 Validating an Event-Based Model 478 

We present the first estimates of rainfall-driven flooding from Hurricane Maria using IMERG and NCEP Stage IV 479 

precipitation data. Comparison against HWM data from Hurricane Maria showed that the RMSE of these estimates 480 

was reasonable given the typical uncertainties in data of this type (IMERG: 1.18m, NCEP Stage IV: 1.22m). There 481 

is uncertainty associated with the HWM vertical datum transformation using VDatum (+-0.92m) which is likely to 482 

impact the RMSE. However, these RMSEs have a similar magnitude to studies conducted in data-rich regions with 483 

similar quality HWM data, such as the conterminous US (~1m) (Wing et al., 2021). This demonstrates that the 484 

model is capable of realistically simulating flood depths, and thus the suitability of the model for estimating flood 485 

hazard under current and future climate change. Inevitably, this finding should be considered alongside the inherent 486 

limitations when comparing flood estimates to High Water Mark data. For example, RMSEs in this study are higher 487 

than in studies such as Neal et al., (2009) (RMSE: 0.28m). Yet, the HWM data in this study is arguably lower 488 

quality data due to the catastrophic nature of the hurricane which limited accessibility for post-event assessment due 489 

to wide scale infrastructure failure (Main et al., 2021). HWMs in this study are concentrated in populated areas, and 490 

were probably constrained to where it was safe to travel immediately post-event. The performance of the model is 491 

likely biased towards these coastal, more populated areas. However, this is also where a considerable portion of the 492 

risk is on the island, as this is where the majority of the population resides. Moreover, there are limitations of the 493 

observation precipitation datasets used, which propagate into the flood estimates. For example, IMERG is likely to 494 

underestimate orographic rainfall, which could explain why the flood extent using IMERG is lower than using 495 

NCEP Stage IV (see Figure 2). This provides an incentive for the event set approach outlined in this study, as it 496 
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allows a consideration of a wider range of plausible events to get a greater understanding of uncertainty than just the 497 

observed. 498 

 499 

Based on the events selected as Hurricane Maria-like highlighted in Figure 3, we find that our event set contains 500 

those like Hurricane Maria, and that these events have amongst the lowest RMSE in comparison to observed HWMs 501 

from Hurricane Maria (range: 1.13-1.33m). It was expected that given the extreme magnitude of Hurricane Maria 502 

(~115 year return period hurricane rainfall event: (Keellings and Hernández Ayala, 2019)), there would be a limited 503 

number of events in our event set with this magnitude due to the comparatively short, simulated time record of our 504 

event set (range: 332-427 years per climate model scenario). In our event set across all climate model scenarios, we 505 

find 20 events that we classify as Hurricane Maria-like based on maximum total rainfall and spatial characteristics. 506 

This finding firstly reinforces just how extreme Hurricane Maria was, following both the devastating impact on the 507 

population and infrastructure (Audi et al., 2018; Michaud and Kates, 2017; Main et al., 2021), as well as the 508 

literature examining the event in the context of the historical record (Keellings and Hernández Ayala, 2019; Ramos-509 

Scharrón and Arima, 2019). This also indicates that the model has the capacity to replicate events such as Hurricane 510 

Maria when both maximum total rainfall and spatial characteristics are considered. Two key conclusions can be 511 

taken from this.  Firstly, this highlights the importance of variables other than rainfall when estimating rainfall-512 

driven flooding, such as spatial characteristics of the hurricane including landfall location and trajectory. Just 513 

considering the rainfall was not sufficient to identify Maria-like events. As a result, simulating the spatial and 514 

temporal distribution of the rainfall in an event set is a crucial step needed to accurately represent the relationship 515 

between hurricane rainfall and flood hazard in Puerto Rico. This finding reinforces previous research which 516 

identifies the importance of hurricane landfall and spatial location on the generation of floods in Puerto Rico 517 

(Hernández Ayala et al., 2017; Hernández Ayala & Matyas, 2016; Smith et al., 2005). Secondly, considering there is 518 

uncertainty in so-called observed flooding from Hurricane Maria (see Figure 2), the event set provides the 519 

opportunity to assess many more realisations of events with similar characteristics to Hurricane Maria than available 520 

just using observations. This may allow a better understanding of uncertainty in rainfall-driven flooding for a given 521 

event, and thus a greater understanding of risk. Future research investigating changes in flooding from hurricane 522 

rainfall should thus take an event-based approach as outlined in this study.  523 

4.2 Current Population Exposure to Flooding from Hurricane Rainfall 524 

Our results highlight the first published estimates of population exposure to flooding in Puerto Rico under the 525 

present day climate, with approximately 8-10% of the population currently exposed to flooding from hurricane 526 

rainfall at the five year recurrence interval. This level of population exposure has important implications for 527 

resilience to floods. It also underlines the exposure to hydrometeorological hazards already experienced in SIDS, 528 

which is a key reason for their high risk to climate change and disasters (Thomas et al., 2020). It is also worth noting 529 

that these population exposure estimates are for the present day (2005-2016) climate at around 0.9°C of global mean 530 

warming and therefore do not represent a pre-industrial climate. This means population exposure estimates for the 531 

present day identified in this study are likely to be already influenced by climate change, given the significant 532 
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impact of climate change found on recent hurricane rainfall events in Puerto Rico such as Hurricane Maria 533 

(Keellings and Hernández Ayala, 2019; Patricola and Wehner, 2018).  534 

4.3 Population Exposure to Flooding from Hurricane Rainfall Under 1.5°C and 2°C Climate Change 535 

The results presented in this research estimate that population exposure to flooding from hurricane rainfall will be 536 

amplified under 1.5°C and 2°C in all but one of the four HAPPI climate models analysed. The Paris Agreement 537 

includes the 1.5°C target as the higher ambition goal and is often touted as our best chance to limit the impacts of 538 

climate change to within a ‘safe limit’. However, our analysis contributes to the discourse SIDS have been 539 

highlighting for some time now, which is that even a 1.5°C temperature rise above preindustrial levels leads to a 540 

serious threat to the adaptive capacity (Ourbak and Magnan, 2018; Mycoo, 2018; Hoegh-Guldberg et al., 2018; 541 

Mycoo et al., 2022). Here, we find that even at 1.5°C, the increase in population exposure associated with hurricane 542 

rainfall-driven flooding in Puerto Rico is enhanced for events with a return period below 30 years. This may have 543 

wide-reaching implications for the resilience of Puerto Rico’s population. Moreover, although the 1.5°C goal is 544 

technically feasible (IPCC, 2018, 2021), it is not currently the most likely temperature rise based on existing policy 545 

pledges. At the time of writing, global temperature increase has already reached ~1.1°C above pre-industrial levels 546 

(World Meteorological Organization, 2021). Based on our analysis, it is likely that flood hazard and population 547 

exposure would increase further still under higher warming scenarios. These changes are likely to vary between 548 

GCMs. 549 

 550 

Due to the range in both absolute population numbers and the relative changes in population exposure between 551 

present day, 1.5°C and 2°C across the four climate models in this event set, there is uncertainty in both how many 552 

people might be exposed to a particular flood event, as well as how much this may change in the future. Moreover, 553 

the range of present day absolute population numbers is often larger than the climate signal, which underlines the 554 

difficulty in understanding current population exposure (Bates et al., 2021). This demonstrates the importance in 555 

assessing a range of different climate model projections to understand the range of uncertainties, which taking an 556 

event set approach enables because it allows many more realisations of a given event magnitude than is likely to 557 

have occurred in the historical record to be considered. Overall, three of the four climate models utilized in this 558 

study show that there is a difference in the percentage of the population exposed at a given return period under 559 

1.5°C or 2°C climate change in comparison to present day. It is likely that the difference between 1.5°C and 2°C is 560 

too small to determine a robust directional change above variability, particularly as only four of the >50 HAPPI 561 

ensemble members are utilised in this analysis. Other studies have also shown a spread around the median in 562 

precipitation, flood hazard and population exposure estimates under future scenarios (Bates et al., 2021; Swain et al., 563 

2020; Lopez-Cantu et al., 2020), as well as uncertain differences between 1.5°C and 2°C given the influence of 564 

underlying uncertainty in the GCM and precipitation data (Uhe et al., 2019). 565 

 566 

Other reasons for uncertainty in absolute population exposures likely stems from the choice of population data, and 567 

the corresponding methodology used to assign population to pixels, as well as the underlying population data used to 568 

inform the population totals. This is evidenced by the differences in total population between WorldPop, HRSL and 569 
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HRPDM as discussed in Section 2.3. Moreover, flood defences are not included in the model due to a lack of 570 

available data, meaning the absolute population exposure numbers – particularly for the lower return periods where 571 

flood defences are most likely to provide protection – will probably be an overestimate in some locations. If flood 572 

defence information were available, the standards of protection could be applied to the exposure estimates provided 573 

in this dataset to estimate population exposure when flood defences are included.  574 

4.4 Limitations of Event Set Size 575 

Population exposure estimates above the 30-year return period are subject to significant uncertainty due to the 576 

limited number of samples (mean of <12.7 samples across the four climate models) available in the event set with 577 

these return periods. As a result, the changes in population exposure between current, 1.5°C and 2°C above the 30-578 

year return period were not considered in this study. This was an acceptable trade off based on this current work, as 579 

this study was most focused on understanding changes in lower magnitude, higher frequency events. Flood events 580 

>30-year return period are often valley-filling, and therefore the impact of such events is already likely to be very 581 

significant for the population, as demonstrated during Hurricane Maria (Pasch et al., 2018). Larger events also often 582 

lead to a greater domestic and international response. However, smaller more frequent events lead to the erosion of 583 

resilience in communities over time, and do not receive the same level of relief or response (Hamdan, 2015; Bull-584 

Kamanga et al., 2003; Allen et al., 2017; United Nations Office for Disaster Risk Reduction, 2019). Research to date 585 

has also mostly focused on changes in the 100-year return period event (Arnell and Gosling, 2016; Lehner et al., 586 

2006; Hirabayashi et al., 2013). Therefore, assessing changes in lower magnitude, higher frequency events was a 587 

key aim of this study. To detect changes in the 100-year return period population exposure, a much longer event set 588 

would be required to detect a significant change between 1.5°C and 2°C. Although we have shown that 20 events 589 

like Hurricane Maria do occur in the event set overall, preferably there would be at least 30-50 events to have 590 

confidence in relative changes, as is shown in Figure 5. This would require at least 1000 years of synthetic data per 591 

climate model as a minimum. This should be considered in the future when producing event sets derived from 592 

GCMs with the intention to utilise these in flood impact modelling. Inevitably, running a much larger ensemble 593 

comes at the expense of computational cost, therefore a trade-off, particularly with inundation model resolution, is 594 

likely to be necessary. 595 

5 Conclusion 596 

We present the most detailed estimates of present day and future (1.5°C and 2°C) hurricane rainfall-driven flood 597 

hazard and population exposure estimates in Puerto Rico to date. This analysis quantifies present day population 598 

exposure to flooding in Puerto Rico for small to medium sized events (<30-year return period). Population exposure 599 

to flooding is likely to increase under both 1.5°C and 2°C climate change. Estimates here suggest that for the present 600 

day 8-10% of the total population of Puerto Rico would be exposed to flooding (defined as residing at a location 601 

with inundation depth > 10cm) from hurricane rainfall every 5 years, increasing by 2-15% and 1-20% at 1.5°C and 602 

2°C, respectively. Increases in the number of people exposed to small to medium sized flood events (<30-year return 603 

period) could have a cumulative negative impact on the long-term resilience of the Puerto Rican population without 604 

appropriate adaptation. Uncertainty in absolute population exposure estimates, as well as the range in estimated 605 
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percentage increases in flooding under 1.5°C and 2°C should be considered when using these estimates to inform 606 

appropriate adaptation.  607 

 608 

Through validation of our model in comparison with observed high water mark data for Hurricane Maria (~115-year 609 

return period rainfall event), we find that our model is able to replicate similar levels of flooding to that which 610 

occurred, and that there are events like Hurricane Maria in the event set when events with both similar maximum 611 

total rainfall and spatial track characteristics are considered. This has important implications for future research, as 612 

an event-based approach allows the assessment of many more plausible scenarios than is available in the observed 613 

historical record. 614 

 615 

Puerto Rico is predicted to experience increased population exposure to flooding associated with hurricane rainfall 616 

in the future under 1.5°C and 2°C climate change. These findings add to the growing body of research that 617 

highlights the critical and disproportionate risk climate change poses to Small Island Developing States, amidst the 618 

uncomfortable irony that they have contributed amongst the least greenhouse gas emissions responsible for 619 

anthropogenic climate change (Hoegh-Guldberg et al., 2018; Thomas et al., 2020). This highlights simultaneously 620 

the impact of every increment of global temperature increase for Small Island Developing States and thus the 621 

importance of high-ambition mitigation efforts, as well as the urgent need for increased climate change adaptation 622 

and disaster risk reduction in the region.  623 

 624 

Data Availability 625 

The HAPPI climate model data described in Mitchell et al., (2017) doi:10.5194/gmd-10-571-2017 can be found and 626 

downloaded under a Attribution-NonCommercial-ShareAlike 2.0 Generic License at: 627 

https://www.happimip.org/happi_data/  628 

The LiDAR data can be found on the USGS Data Access Viewer: 629 

https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=8630  630 

The LISFLOOD-FP hydraulic engine is available to download at: LISFLOOD-FP Developers. (2020). LISFLOOD-631 

FP 8.0 hydrodynamic model (Version 8.0). [Software]. Zenodo. https://doi.org/10.5281/zenodo.4073011 632 

The WorldPop population data can be found at: Bondarenko et al., (2020) doi:10.5258/SOTON/WP00684 under a 633 

Creative Commons Attribution 4.0 International License. 634 

The High Water Mark data can be found on the USGS Flood Event Viewer: 635 

https://stn.wim.usgs.gov/FEV/#MariaSeptember2017  636 

IMERG data can be downloaded from the Global Precipitation Measurement database at: 637 

https://gpm.nasa.gov/data/imerg  638 

NCEP Stage IV data can be downloaded at: Du, J. 2011. NCEP/EMC 4KM Gridded Data (GRIB) Stage IV Data. 639 

Version 1.0. UCAR/NCAR - Earth Observing Laboratory. https://doi.org/10.5065/D6PG1QDD   640 

The probability of inundation and corresponding population exposure estimates maps are available via the data.bris 641 

Research Data Repository (doi available at final publication).  642 
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