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Abstract 12 

Flooding associated with Hurricane Maria in 2017 had devastating consequences for lives and livelihoods in 13 

Puerto Rico. Yet, an understanding of current and future flood risk in small islands like Puerto Rico is limited. 14 

Thus, efforts to build resilience to flooding associated with hurricanes remain constrained. Here, we take an 15 

event set of hurricane rainfall estimates from a synthetic hurricane rainfall simulator as the input to an event-16 

based rainfall-driven flood inundation model using hydrodynamic code LISFLOOD-FP. Validation of our 17 

model against High Water Mark data for Hurricane Maria demonstrates the suitability of this model for 18 

estimating flood hazard in Puerto Rico. We produce event-based flood hazard and population exposure 19 

estimates for the present day, and the future under the 1.5oC and 2oC Paris Agreement goals. Population 20 

exposure to flooding from hurricane rainfall in Puerto Rico for the present day climate is approximately 8-10% 21 

of the current population for 5-year return period, with an increase in population exposure to flooding by 2-15% 22 

and 1-20% under 1.5oC and 2oC futures (5-year return period). This research demonstrates the significance of 23 

the 1.5oC Paris Agreement goal for Small Island Developing States, providing the first event-based estimates of 24 

flooding from hurricane rainfall under climate change in a small island.  25 

1 Introduction 26 

Climate change is amplifying the probability of high intensity tropical cyclone events globally (Patricola and 27 

Wehner, 2018; Kossin et al., 2020; Mei and Xie, 2016; Knutson et al., 2020), compounding the rising social and 28 

economic costs associated with disasters due to increasing population and asset exposure (Jiménez Cisneros et 29 

al., 2014). The adoption of the Paris Agreement in 2015 aimed to limit global warming to well below 2°C above 30 

pre-industrial levels, and if possible to 1.5°C (United Nations Framework Convention on Climate Change, 31 

2015). Following this, numerous studies have investigated how these global temperature changes could impact 32 

societies, ecosystems, and places (IPCC, 2018; Mitchell et al., 2016). Under the upper Paris Agreement goal of 33 

2°C, there will likely be a higher proportion of tropical cyclones that become the most intense storms (i.e. 34 

Category 4 and 5 hurricanes), with an increase in precipitation intensity (Knutson et al., 2020). Whilst flooding 35 

accounts for the largest proportion of loss of life and economic damages from tropical cyclones (Rappaport, 36 

2014; Czajkowski et al., 2017), there is a lack of literature exploring how flooding might be affected by changes 37 

in tropical cyclone characteristics under climate change. This is particularly pertinent for Small Island 38 
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Developing States where the difference between the 1.5°C and 2°C temperature goals may be critically 39 

important (Hoegh-Guldberg et al., 2018). 40 

 41 

Small Island Developing States (SIDS) are a group of small island nations and territories with an acute risk of 42 

disasters and the impacts of climate change, who were an instrumental force in the implementation of the 1.5°C 43 

goal in the Paris Agreement (Ourbak and Magnan, 2018). Considering risk as a function of hazard, exposure and 44 

vulnerability (Terminology, 2019), high hazard frequency, high exposure in relation to size and underlying 45 

vulnerabilities drive the risk of hydrometeorological disasters and climate change in SIDS (Nurse et al., 2014; 46 

Mycoo et al., 2022). Climate change is likely to exacerbate current flood risk in SIDS (Joyette et al., 2014; 47 

Thomas et al., 2017) based on projected changes in tropical cyclone precipitation (Vosper et al., 2020), 48 

increased coastal storm surge heights (Knutson et al., 2020; Monioudi et al., 2018) and sea level rise (Storlazzi 49 

et al., 2018; Nicholls et al., 2018; Rasmussen et al., 2018). Yet, very little island-scale quantitative assessment of 50 

flood risk has been conducted in SIDS. This is largely due to the inadequacy of existing methods as well as 51 

insufficient data resolution and quality suitable for the scale of small island modelling (typically <10,000km2) 52 

(Thomas et al., 2019).  53 

 54 

Recent work by Vosper et al., (2020) demonstrates that total rainfall associated with tropical cyclones (also 55 

known as hurricanes) in the Caribbean will increase under both the 1.5oC and 2oC Paris Agreement goals in 56 

comparison to the present day climate. They also estimate that a 100-year return period event similar to 57 

Hurricane Maria in Puerto Rico would be twice as likely to occur under the 2oC scenario than the 1.5oC scenario 58 

(Vosper et al., 2020). Puerto Rico is an unincorporated territory of the United States located in the Greater 59 

Antilles islands of the Caribbean (see Figure 1). The urgent need to understand both current and future flood risk 60 

was recently reinforced following Hurricane Maria in 2017, which made landfall as a high-end Category 4 61 

hurricane, causing catastrophic wind and flood damage (Pasch et al., 2018). Hurricane Maria was the strongest 62 

hurricane to hit Puerto Rico since Hurricane San Felipe II in 1928, resulting in at least 2975 deaths (Audi et al., 63 

2018). The estimated economic loss of US$90 billion made it the third costliest disaster in US history (Pasch et 64 

al., 2018). Despite the underlying structural failures and inadequate emergency response that also contributed to 65 

the scale of the disaster in Puerto Rico (Towe et al., 2020; Rivera, 2020; Caban, 2019; Willison et al., 2019), the 66 

volume and intensity of the rainfall associated with Hurricane Maria was unprecedented and exacerbated the 67 

scale of the impact on communities on the island (Keellings and Hernández Ayala, 2019; Ramos-Scharrón and 68 

Arima, 2019). Historically, hurricane rainfall has been the key cause of flooding in Puerto Rico (Hernández 69 

Ayala et al., 2017; Smith et al., 2005). Consequently, it is pertinent that estimates of current and future rainfall-70 

driven flood risk associated with these hurricane rainfall events are developed to assist disaster risk management 71 

in Puerto Rico. Yet, there are currently no complete estimates of flooding associated with Hurricane Maria, or 72 

indeed for any other events in Puerto Rico. Dated FEMA flood zone maps do exist for larger river systems in 73 

Puerto Rico, but these do not include pluvial flooding which is a key focus of this paper. They are therefore 74 

likely to provide a considerable underestimate of risk (Wing et al., 2017). 75 
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 76 

Figure 1 - Map showing the island of Puerto Rico within the Caribbean region. 77 

 78 

Tropical cyclones can generate pluvial, fluvial and coastal floods, all of which interact. Of these pluvial flooding 79 

is a comparatively lesser modelled phenomenon (Blanc et al., 2012; Rözer et al., 2019; Tanaka et al., 2020). 80 

Pluvial flooding is defined here as ‘flooding resulting from rainfall-generated overland flow and ponding before 81 

the runoff enters any watercourse or drainage system, or cannot enter it because the network is full to capacity’ 82 

(Falconer et al., 2009, p.199). There has been a historical split between the modelling and assessment of pluvial 83 

and fluvial – or river - flooding. However, in reality both of these inland flood types are in a continuum, and 84 

both driven by rainfall. Thus, the distinction between the two is unhelpful in many cases. This is particularly 85 

true in small islands where much of the inland flooding is primarily driven by heavy rainfall (Jetten, 2016; 86 

Burgess et al., 2015). Pluvial flooding is also a contested term, with some defining it as including small river 87 

channels (Wing et al., 2018), and other defining it as completely independent of rivers (Rosenzweig et al., 2018; 88 

Hankin et al., 2008). The rain on grid approach documented here therefore overcomes this pluvial/fluvial 89 

distinction by explicitly modelling both flood types and their interactions. Here we define the flooding modelled 90 

in this approach as ‘rainfall-driven flooding’. 91 

 92 
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Rainfall-driven flood events can often occur with a high frequency but low magnitude. This can lead to a 93 

significant cumulative impact on a community’s resilience over time which can undermine efforts to reach the 94 

UN’s Sustainable Development Goals (Moftakhari et al., 2017; Hamdan, 2015; United Nations Office for 95 

Disaster Risk Reduction, 2019). However, most studies investigating flooding under climate change focus on 96 

changes in the 100-year flood extent because this is often used as a design standard (Hirabayashi et al., 2013; 97 

Arnell and Gosling, 2016; Lehner et al., 2006). This means the critical understanding of how smaller, more 98 

frequent events might vary under climate change remains, which have a crucial importance for improving the 99 

resilience-building and climate change adaptation needed in local communities (Moftakhari et al., 2017). This 100 

paper aims to address this gap by investigating how changing hurricane rainfall characteristics influence 101 

rainfall-driven flood risk estimates in Small Island Developing State Puerto Rico, with an emphasis on 102 

understanding changes in lower magnitude, higher frequency events (<30-year return period). 103 

 104 

Currently, the predominant method for understanding changes in flooding under climate change in small islands 105 

uses changes in precipitation as a proxy for changes in flood hazard, leading to uncertainty in flood hazard 106 

changes under climate change (Seneviratne et al., 2021; Ranasinghe et al., 2021). Examples of pluvial hydraulic 107 

flood modelling in small islands have previously relied on spatially uniform rainfall estimates derived from 108 

historical data for a set of design return period events (World Bank, 2015; Pratomo et al., 2016; Lumbroso et al., 109 

2011). This approach takes a set of rainfall intensity estimates for a given duration and return period, often 110 

derived from an Intensity-Duration-Frequency (IDF) curve using historical rainfall data. Rainfall is typically 111 

applied uniformally across a model domain to produce design event flood extents (World Bank, 2015). Yet, this 112 

approach does not necessarily represent flooding at a particular return period, as a flood is a signature of the 113 

rainfall, the topography and the topology of a catchment (Guerreiro et al., 2017; Skougaard Kaspersen et al., 114 

2017). More recently, studies have highlighted the importance of representing rainfall spatially and temporally 115 

for a more realistic representation of flooding (Aldridge et al., 2020; Bernet et al., 2019; Guerreiro et al., 2017; 116 

Schaller et al., 2020). One way of incorporating these features is through an ‘event set approach’, which 117 

involves utilizing an event set of synthetic rainfall events (Nuswantoro et al., 2016; Tanaka et al., 2020). 118 

Nonetheless, data such as this are still limited or non-existent – particularly in small islands – and thus the 119 

aformentioned traditional approach has until now the only way to represent flood hazards for small islands. 120 

Climate change is often assessed by applying an uplift factor to account for changes in rainfall associated with 121 

climate change projections (Sayers et al., 2020). However, this approach also fails to account for non-stationary 122 

effects of climate change on flooding, including changes to the different spatial and temporal characteristics of 123 

rainfall that are important for flood generation (Rosenzweig et al., 2018). 124 

 125 

This paper details the first example of an event-based assessment of flood hazard in a small island under current 126 

and future climate change. We utilise a synthetic hurricane rainfall data set (Vosper et al., 2020) as the input to 127 

an event-based rainfall-driven hydrodynamic flood model of Puerto Rico. We model rainfall-driven flood 128 

hazard and population exposure at the island scale in Puerto Rico (9100km2), at 20m resolution under present 129 

day, 1.5°C and 2°C climate change. As part of this work, we also include novel methodological developments, 130 

including the representation of rainfall and river channels in the model. The model is validated against flood 131 

hazard simulations using two estimates of Hurricane Maria observed rainfall (IMERG and NCEP Stage IV) and 132 
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High Water Mark data collected from the event. To our knowledge, these are the first published estimates of 133 

rainfall-driven flooding from Hurricane Maria. This work thus demonstrates a step-change in the capacity to 134 

estimate flood hazard in a small island, superseding the information available using the traditional approaches. 135 

Within this, two key questions will be investigated:  136 

1) What is the current rainfall-driven flood hazard and population exposure associated with hurricanes in 137 

Puerto Rico? 138 

2) How does population exposure to flooding change from present day under 1.5°C and 2°C climate 139 

change scenarios? 140 

2 Methods 141 

To address these questions, we first describe the application of the hurricane rainfall event set in Section 2.1. We  142 

explain how the event-based model was set up (Section 2.2), including the novel methodological applications of 143 

spatially-varying rainfall in the hydrodynamic model (Section 2.2.1), and the parameterization of river channel 144 

bathymetry using the input rainfall event set climatology (Section 2.2.2). In Section 2.3, we describe the 145 

combination of population estimates with the flood hazard data to derive population exposure estimates under 146 

present day, 1.5°C and 2°C climate change scenarios. The method for validating the model is described in 147 

Section 2.4. 148 

 149 

2.1 Hurricane Rainfall Data 150 

The synthetic hurricane rainfall event set was developed to estimate hurricane rainfall in the Caribbean under 151 

present day (2005-2016), 1.5oC and 2oC equilibrated climate change, using a physics-based tropical cyclone 152 

rainfall model (Vosper et al., 2020) – see Figure 2. The model produces spatial (10km resolution) and temporal 153 

(2-hourly) rainfall estimates along a synthetic hurricane track, considering four key rainfall-generating 154 

mechanisms: wind shear, topography, vortex stretching and surface frictional convergence. Inputs to the tropical 155 

cyclone rainfall model were atmospheric temperature, specific humidity, sea surface temperature and wind 156 

vectors, which are typically taken from global Global climate Climate modelsModels (GCM) or reanalysis 157 

products. This model has been validated against gauge-based and radar observations in several studies in the US 158 

- including in Puerto Rico - showing good agreement (Feldmann et al., 2019; Lu et al., 2018; Zhu et al., 2013).  159 

 160 
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 161 

Figure 2 - Diagram outlining the modelling steps involved in simulating the synthetic hurricane rainfall event set and its 162 
application in the event-based rainfall driven flood model. 163 

 164 

To provide driving climate model data to the synthetic hurricane rainfall events under current, 1.5°C and 2°C 165 

climate change, four climate models from the Half A degree additional warming, Prognosis and Projected 166 

Impacts (HAPPI) ensemble were utilised (CanAM4, CAM5-1-2-025degree, NorESM1-HAPPI, ECHAM6-3-167 

LR: (Mitchell et al., 2017)) - see Table 1. Representative Concentration Pathway (RCP) 2.6 was used for model 168 

boundary conditions at 1.5°C, using a weighted combination of RCP2.6 and RCP4.5 at 2°C. These were 169 

selected based on the availability of variables at the required atmospheric levels with at least daily temporal 170 

resolution for input into the hurricane rainfall model which are described in Figure 2. HAPPI was developed to 171 

document climate change impacts under 1.5°C and 2°C climate change above pre-industrial levels, and has been 172 

a key source of climate data for such studies, including the IPCC Special Report on 1.5°C (IPCC, 2018). 173 

 174 

Table 1 - Table outlining the resolution of the Global Climate Models used to drive the synthetic hurricane rainfall model 175 
from the HAPPI climate ensemble. 176 

HAPPI Climate Model Horizontal 

Resolution 

Number of simulated years of 

climate model data  

Reference 

Present 

day 

1.5°C 2°C 

CanAM4 2.81° x 2.81° 332 346 332 Wehner et al., (2014) 

CAM5-1-2-025degree 0.31° x 0.23° 409 365 396 Von Salzen et al., (2013) 

ECHAM6-3-LR 1.88° x 1.88° 427 378 383 Stevens et al., (2013) 

NorESM1-HAPPI 1.25° x 0.94° 423 382 351 Bentsen et al., (2013) 

Iversen et al., ( 2013) 

Kirkevåg et al., (2013) 
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 177 

 178 

The hurricane rainfall event set consists of 59,000 events, with each climate model scenario equivalent to 179 

between 332-427 simulated years of data depending on the climate model (Vosper et al., 2020). 59,000 events 180 

were generated corresponding to approximately 5000 events per climate model and climate scenario. For each 181 

climate model, the number of simulated years was calculated as the sum of the number of simulated events per 182 

year divided by the simulated annual frequency of events in the climate model data (see Table 1). The simulated 183 

time period for the present day is 2005-2016, representing a global average temperature of around 0.9°C higher 184 

than a pre-industrial climate. The 1.5°C and 2°C time periods are for 2106-2115. This future time period was 185 

selected in the HAPPI climate ensemble as the future time slice, chosen to represent a 1.5°C and 2°C world at 186 

around 2100 (which was the generally accepted time period for these temperature scenarios in the IPCC Special 187 

Report on 1.5°C (IPCC, 2018)), whilst also providing 100 years of simulated GCM data following the present 188 

day time slice (2006-2015) (Mitchell et al., 2017). Each synthetic hurricane rainfall event was simulated at a 2-189 

hour time step and 10km spatial resolution before being employed as the input to the event-based rainfall-driven 190 

flood model.  191 

2.2 Event-Based Rainfall-Driven Flood Model  192 

LISFLOOD-FP is the hydraulic engine used to simulate channel and floodplain flow in two dimensions in our 193 

rainfall-driven hydrodynamic model (Bates et al., 2010; LISFLOOD-FP Developers, 2020). Rainfall is the key 194 

input to the model, and water flow is routed in one of two ways. Firstly, very shallow (<1cm) overland flows are 195 

routed using a constant-velocity ‘rain on grid’ routing scheme (Sampson et al., 2013). Rain falls directly onto 196 

the cells and is routed through the model using a slope-dependent fixed velocity algorithm. Secondly, flow 197 

above 1cm deep (i.e. the majority) is routed hydraulically using the inertial form of the shallow water equations 198 

(Bates et al., 2010), with river and drainage channels represented using a subgrid approach (Neal et al., 2012). 199 

Typical channel (0.035) and floodplain (0.040) manning’s coefficient friction values were applied. As Puerto 200 

Rico is an island, all downstream boundaries are the ocean. The downstream boundary conditions in the model 201 

are set to sea level, and this could be used in future work to simulate sea level rise and storm surge.  202 

 203 

As Digital Elevation Data is the most important input to a hydrodynamic model (Hawker et al., 2018), LiDAR 204 

data was used as the Digital Elevation Model (DEM). LiDAR coverage for Puerto Rico is almost complete 205 

(>99%) (United States Geological Survey, 2017) and was resampled from its native 1m resolution to 20m, 206 

reprojected to WGS84 and hydrologically conditioned using the Priority-flood method (Zhou et al., 2016). The 207 

~55km2 of Puerto Rico not covered by LiDAR was patched with the globally-available MERIT DEM 208 

(Yamazaki et al., 2017). This area is mountainous and sparsely populated, meaning the use of MERIT here does 209 

not affect the exposure results.  210 

 211 

Whilst high resolution DEMs are important for simulating floods, halving the model grid resolution leads to an 212 

increase in simulation time by an order of magnitude (Savage et al., 2016). For example, run on a 2 x 2.6GHz 8-213 

core Intel E5-2670 one example model in this event set for the 9100km2 domain covering the entire island of 214 

Puerto Rico takes 3 minutes to run at 90m, 77 minutes at 20m, approximately 770 minutes (12.8 hours) at 10m 215 
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and 7700 minutes (5.3 days) at 1m resolution. As a result, and given we have thousands of events to simulate, 216 

the event set was run at 20m. This resolution balances the need for high resolution flood hazard outputs with the 217 

computational costs associated with employing a high-resolution event-based model at the island scale, and also 218 

reflects state-of-the-art model resolutions used in other locations, such as the UK (Bates et al., 2023). Our study 219 

is the first known study to employ an event set approach at such a high hydrodynamic model resolution over 220 

such a large domain. 221 

 222 

Infiltration was not included in this model approach for several reasons. As hurricanes take place during the 223 

hurricane season (North Atlantic: June – November), soils in Puerto Rico are often saturated meaning 224 

infiltration is low (Smith et al., 2005). Many pluvial modelling studies do not include infiltration as the 225 

appropriate parameter values are highly uncertain and vary widely across space and time (Bernet et al., 2018; 226 

Guerreiro et al., 2017; Hall, 2015). Although antecedent conditions are expected to vary, the infiltration is likely 227 

to be of lower importance relative to other factors since infiltration will be minimal under extreme rainfall 228 

events - such as those associated with hurricanes (Wehner and Sampson, 2021).  229 

  230 

To improve the representation of islands and hurricane rainfall in the model, two novel model developments 231 

were incorporated into the model set up. 232 

2.2.1 Spatially-varying Rainfall 233 

Spatiotemporal representation of rainfall is important for accurate simulation of pluvial flood events (Blanc et 234 

al., 2012). Previous pluvial models using LISFLOOD-FP covered only small domains and relied on time-235 

varying but spatially constant rainfall input (Sampson et al., 2013, 2015; Wing et al., 2019). This study 236 

demonstrates the first use of spatially and time-varying rainfall in a LISFLOOD-FP rainfall-driven 237 

hydrodynamic model, using a new routine to read spatiotemporal rainfall in NetCDF format. For each hurricane, 238 

a grid of rainfall at ~10km resolution across the island was input to the model domain at each timestep (2-239 

hourly), although the hydrodynamic model calculations are simulated with much shorter timesteps (order of 240 

seconds). To model all 59,000 hurricane rainfall events would be computationally intractable, and was not 241 

necessary considering many of the hurricane rainfall events produced no or very little rainfall. Thus, to select 242 

events to simulate in the model, all hurricane rainfall events above a threshold of 3.75mmhr-1 peak rainfall 243 

intensity were simulated - a total of 4909 events (8.3% of total). Within this, 1464 events were present day, 1801 244 

events were at 1.5°C and 1644 events were at 2°C. This threshold was selected as the minimum number of 245 

events necessary to calculate a robust estimate of the two-year return period flood hazard which is used as the 246 

lowest modelled return period event in the event set. Events below this threshold were not considered significant 247 

enough in terms of rainfall to run. An additional 8 hours of simulation time was added to the end of each 248 

simulation based on our inspection of the time it took for the rainfall to move through the model and reach either 249 

the ocean or the lowest points of the DEM. These decisions were based on trial and error and inspection of the 250 

rainfall and resulting flood hazard events. 251 

2.2.2 River Channels 252 

Including river channels in flood models is necessary to produce accurate estimates of flood hazard (Hall, 2015; 253 

Neal et al., 2021), but most pluvial flood models do not explicitly include river channels or drainage networks 254 
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(Blanc et al., 2012). Here, a subgrid approach was used to represent river channels and drainage networks in the 255 

rainfall-driven modelling framework (Neal et al., 2012). Rivers and drainage channels were represented using 256 

the US National Hydrography Dataset v2.1 (Simley and Carswell Jr, 2010). River widths in Puerto Rico are 257 

inadequately represented in global hydrographic datasets such as MERIT Hydro (Yamazaki et al., 2019) as most 258 

channels are smaller than the resolution of the DEM data used to create such products (e.g. MERIT at 90m in 259 

the case of MERIT-Hydro). As a result, width was estimated using a power law regression with upstream 260 

accumulated area (Leopold and Maddock, 1953). Widths used here were sampled using satellite imagery along 261 

the 13 main rivers across the island. Upstream accumulated area was calculated using the LiDAR DEM at 20m 262 

resolution by first generating a flow direction map, and then using the RichDEM algorithm outlined in (Barnes, 263 

2017).  264 

 265 

River depth estimates are also unavailable for Puerto Rico, as is typical in most locations globally (Sampson et 266 

al., 2015). To paramaterise the river channel depths, the present day synthetic hurricane rainfall events for each 267 

climate model (total: 1464) were first simulated through a model with arbitrarily deep river channels (-10m) to 268 

get estimates of channel water depth for each event. Using these, the water depth at a given return period was 269 

calculated empirically. Information on flood defences was also not available, so in this study we parametrize 270 

bankfull river depth by calculating the bed elevation to ensure that each channel conveyed the present day one-271 

in-two-year discharge (Pickup and Warner, 1976; Williams, 1978; Wolman and Miller, 1960) generated by the 272 

present day hurricane ensemble and subtracted from the bank height derived from the DEM to get a calibrated 273 

estimate of the channel depth value. Inevitably this means that in locations where rivers do have defences, the 274 

model is likely to overpredict flood hazard. If defence standard information were to become available, it would 275 

be a simple matter to retrospectively apply these to the output flood hazard layers.  276 

 277 

2.3 Population Exposure Estimates 278 

Population exposure was calculated for each flood event as the total number of people exposed to flood depths 279 

above 10cm. The WorldPop 90m top-down constrained population dataset (2020) was used to estimate the 280 

number of people per 90m grid cell (Tatem, 2017; Bondarenko et al., 2020). WorldPop was chosen because total 281 

population estimates are adjusted to 2020 UN population estimates, meaning out-migration trends following 282 

Hurricane Maria in 2017 are accounted for. The WorldPop data was downscaled from 90m to 20m to match the 283 

flood hazard data, using nearest neighbour resampling and assignment to 20m cells based on a proportional cell 284 

method, following (Lloyd et al., 2017). WorldPop has been validated and compared to other datasets extensively 285 

(Reed et al., 2018; Leyk et al., 2019; Tuholske et al., 2021), including for flood exposure applications 286 

(Mazzoleni et al., 2020; Smith et al., 2019). Smith et al., (2019) found that WorldPop produces larger exposure 287 

estimates in comparison to the High Resolution Settlement Layer (HRSL) (Tiecke et al., 2017), likely due to a 288 

combination of coarser resolution and assignment of population to buildings. Recently, Tuholske et al., (2021) 289 

identified the importance of conducting a sensitivity assessment of gridded population products to capture the 290 

inherent uncertainties in the use of gridded population estimates. However, HRSL, High Resolution Population 291 

Density Map (HRPDM) (Mapping the world to help aid workers, with weakly, semi-supervised learning, 2020) 292 

and WorldPop are likely to give different estimates in our case, not least due to the different dates of the datasets 293 

before and after Hurricane Maria, where approximately 8% (230,000) of the population is estimated to have 294 
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emigrated following the event (Audi et al., 2018). Total population estimates for the main island using HRPDM 295 

and HRSL population are 4.87million and 3.66million, which is considerably higher than the UN-adjusted 296 

WorldPop estimate of 2.70million, resulting in higher population exposure values. Future population was not 297 

considered due to a lack of available high-resolution datasets (<100m grid size) estimating changes in future 298 

population. For consistency, population exposure exceedance was calculated for each event using the same 299 

method as the hurricane rainfall as 1/Annual Exceedance Probability (Emanuel and Jagger, 2010; Feldmann et 300 

al., 2019; Vosper et al., 2020). 301 

 302 

2.4 Model Validation 303 

To determine the skill of our flood hazard estimation, we assessed model performance using high water mark 304 

(HWM) data collected by USGS following Hurricane Maria (available here: 305 

https://stn.wim.usgs.gov/FEV/#MariaSeptember2017). For more information about the suitability assessment of 306 

the HWM data for validation, see Text S1 and Table S2. See Figure S1 for the HWM locations used in this 307 

study. Ideally it would be better to validate the event set with a lower magnitude flood considering the focus of 308 

this work is primarily on on low-magnitude, high-frequency events. However, there is no known validation data 309 

for small hurricane rainfall-driven flood events in Puerto Rico. As a result, Hurricane Maria was chosen as the 310 

event to validate against despite its high magnitude.  311 

 312 

Firstly, to produce flood hazard estimates of Hurricane Maria for validating the model and event set, we ran the 313 

hydrodynamic model using two observational rainfall products (IMERG and NCEP Stage IV) that provide 314 

space-time varying estimates of Hurricane Maria rainfall through the flood inundation model. We use an 315 

identical hydrodynamic model set-up to the event set, only changing the input rainfall data. IMERG (IMERG: 316 

Integrated Multi-satellitE Retrievals for GPM | NASA Global Precipitation Measurement Mission, 2023) was 317 

run at ~10km spatial resolution, and at 30-min intervals, whilst NCEP Stage IV (NCEP/EMC 4KM Gridded 318 

Data (GRIB) Stage IV Data, 2023) was run at ~4km spatial resolution, with an hourly temporal resolution. 319 

NCEP Stage IV was used instead of the higher resolution Multi-Radar Multi-Sensor (MRMS) rainfall product as 320 

the landfall year of Hurricane Maria (2017) falls outside of the MRMS archive period (2020-onwards) (MRMS 321 

Operational Product Viewer, 2023). 322 

We compare the flood hazard produced using IMERG and NCEP Stage IV to understand the uncertainty in 323 

flood hazard estimates using the different observation inputs.  324 

 325 

IMERG has been widely compared to gauge-based rainfall data over many locations globally, demonstrating 326 

good performance in estimation of total rainfall (Freitas et al., 2020; Pradhan et al., 2022), as well as good 327 

representation of temporal (Yu et al., 2021) and spatial event structure (Omranian et al., 2018; Rios Gaona et al., 328 

2018; Pradhan et al., 2022). For example, Rios Gaona et al., (2017) shows IMERG has a low relative bias over 329 

the Netherlands (-1.51%), and Tan et al., (2017) reports a correlation coefficient of 0.78 against radar and 330 

gauge-based observations in the United States. IMERG has also been shown to perform well at capturing 331 

rainfall from tropical cyclones (Rios Gaona et al., 2018; Yu et al., 2021). For example, Omranian et al., (2018) 332 

found IMERG correctly predicted 62% of rainfall from Hurricane Harvey. Nonetheless, some studies have 333 

identified a tendency for IMERG data to underpredict rainfall intensity during extreme rainfall events (Freitas et 334 

https://stn.wim.usgs.gov/FEV/#MariaSeptember2017
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al., 2020; Mazza and Chen, 2023; Tian et al., 2018; Yu et al., 2021). For example, Yu et al., (2021) found that 335 

extreme precipitation rates from IMERG were 7.53% lower than gauge data for Typhoon Lekima in 2019.  336 

 337 

NCEP Stage IV is a ground-based gauge and radar observation product that is often used in multi-product 338 

comparison studies as the baseline observed dataset (Nelson et al., 2016). These studies have demonstrated that 339 

NCEP Stage IV produces good representation of overall rainfall rates across the United States (Nelson et al., 340 

2016; Prat and Nelson, 2015), as well as the spatial and temporal structure of rainfall (Habib et al., 2009); 341 

including for tropical cyclones (Gao et al., 2020; Villarini et al., 2011). Prat and Nelson, (2015) compare annual 342 

rain rate for the conterminous United States using NCEP Stage IV against gauge data, finding a correlation 343 

coefficient of 0.93 (R2). Gao et al., (2020) show that NCEP Stage IV only overestimated rainfall from Hurricane 344 

Harvey by 2%. However, underestimation of extreme rainfall has been shown in some studies due to an increase 345 

in the number of missed events as rain rate increases (Habib et al., 2009; Prat and Nelson, 2015). For example, 346 

Prat and Nelson, (2015) report that NCEP Stage IV has a tendency to underestimate rainfall in comparison to 347 

surface observations across the conterminous United States (-14%-  +1% depending on location). This is likely a 348 

product of the inherent limitations of radar-based precipitation products (see Nelson et al., (2016)).  349 

 350 

The model used to produce the synthetic hurricane rainfall event set utilized in this study has previously been 351 

compared to NCEP Stage IV data over Puerto Rico, showing very good agreement (Feldmann et al., 2019). This 352 

demonstrates the suitability of the use of NCEP Stage IV as an observation dataset for comparison against in 353 

this study. Omranian et al., (2018) showed IMERG was able to represent 62% of rainfall from Hurricane Harvey 354 

in comparison to NCEP Stage IV, thus suggesting that IMERG is also likely capable of adequately representing 355 

extreme rainfall associated with Hurricane Maria. However, the performance of IMERG and NCEP Stage IV 356 

data can be dependent on the number of gauge-based observations available (Tang et al., 2018; Tian et al., 357 

2018). 14 out of 24 USGS gauges were damaged during Hurricane Maria in Puerto Rico (Bessette-Kirton et al., 358 

2020). As a result, this is a key limitation of using observed data products to estimate tropical cyclone rainfall 359 

that should be considered when drawing conclusions about the accuracy of flood hazard associated with these 360 

rainfall products. 361 

 362 

Next, we compared the performance of the event set against the HWM data and the estimates from the observed 363 

rainfall products to sense check the model. Hurricane Maria-like events were identified across all model 364 

scenarios first by maximum total rainfall, and then by spatial characteristics of the hurricane track. Maximum 365 

total rainfall is defined as the highest total rainfall accumulation at a point on the island. This metric was used as 366 

opposed to mean total rainfall, as studies that have investigated Hurricane Maria rainfall describe the maximum 367 

total rainfall as the most significant anomaly in the historical record associated with the event (Ramos-Scharrón 368 

and Arima, 2019; Keellings and Hernández Ayala, 2019; Pokhrel et al., 2021). Maximum total rainfall is also 369 

the metric used to estimate the return period of Hurricane Maria rainfall; at least a 1-in-115-year rainfall event 370 

(Keellings and Hernández Ayala, 2019). Studies use different metrics to derive maximum total rainfall, 371 

including interpolation of rain gauge data and observation products such as NCEP Stage IV. This means that the 372 

maximum total rainfall for Hurricane Maria varies between studies, ranging between 733-1029mm (Pasch et al., 373 

2018; Keellings and Hernández Ayala, 2019; Ramos-Scharrón and Arima, 2019; Pokhrel et al., 2021). There are 374 
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a limited number of events in our event set with a >100-year return period magnitude maximum total rainfall 375 

(mean: 3.46 samples per climate model scenario) due to the comparatively short simulated time record of our 376 

event set (range: 332-427 years). However, Puerto Rico experiences on average one hurricane each year, and 377 

has a mean annual rainfall of over 4000mm in some locations (Hernández Ayala and Matyas, 2016). There are 378 

therefore many events in the event set with total mean rainfall (total accumulated rainfall averaged across the 379 

island) in the range of Hurricane Maria (range: 375-380mm (Pokhrel et al., 2021; Keellings and Hernández 380 

Ayala, 2019; Ramos-Scharrón and Arima, 2019)). However, these events have widely varying spatial 381 

characteristics and associated flood hazard and are therefore not all are Maria-like. Thus, it is also important to 382 

consider the spatial characteristics of the hurricane rainfall events so that events with similar rainfall and spatial 383 

characteristics to Hurricane Maria can be identified. Similarity to Hurricane Maria based on track location was 384 

assessed based on four criteria: i) direct landfall on the main island; ii) south-western trajectory; iii) makes 385 

landfall on the eastern portion of the main island; and iv) similar track trajectory across the island, whereby the 386 

event track and Hurricane Maria track intersect at at least one point on the island.  387 

3 Results 388 

3.1 Hurricane Maria Model Validation  389 

Figure 3 shows the flood hazard estimates produced by simulating the IMERG and NCEP Stage IV rainfall 390 

products spatiotemporally through the flood inundation model from the island to local scale. The RMSE 391 

between the modelled flood hazard and the HWM is 1.18m for IMERG and 1.22m for NCEP Stage IV (see 392 

Figure 4). This is comparable to post-event HWM validation done in other locations (Wing et al., 2021) (see 393 

Section 4.1 for discussion of this). There is a significant difference in the flood extents produced using IMERG 394 

and NCEP Stage IV, with larger areas flooded using NCEP Stage IV than IMERG. This highlights the 395 

uncertainty in so-called ‘observed’ flooding from Hurricane Maria.  396 
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 397 

In the event set, when the spatial characteristics of the hurricane rainfall events are considered in addition to the 398 

maximum total rainfall, events we select as Hurricane Maria-like events have some of the lowest RMSEs 399 

between the observed and modelled water surface elevations (range: 1.13-1.33m) as demonstrated in Figure 4. 400 

The track locations of these events are shown in Figure S2. The relationship between maximum total rainfall 401 

and RMSE for all events is expected, whereby as the intensity of the event increases, the sensitivity to the flood 402 

depths decreases as the floodplain fills and thus becomes less responsive to additional increases in rainfall 403 

(Wing et al., 2021). However, there are events in the event set with both much higher and lower rainfalls than 404 

Hurricane Maria that have both similar and very different RMSEs to the Maria-like events. This demonstrates 405 

the importance of the spatial characteristics of the events beyond just the rainfall. 406 

 407 

When comparing the flood estimates using IMERG and NCEP Stage IV against the High Water Mark data, the 408 

event set Maria-like events have similar RMSE scores (Figure 4). However, both observational rainfall products 409 

have different maximum total rainfalls than those found in the literature. In  particular, the IMERG maximum 410 

total rainfall is considerably lower. This is likely because satellite products such as IMERG often underestimate 411 

orographic rainfall such as that exhibited over Puerto Rico (Dinku et al., 2008).412 

Figure 3 - Map showing the differences between flood hazard estimates of Hurricane Maria produced using IMERG and NCEP Stage 

IV precipitation data from the island to local scale. 
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413 

3.2 Design Return Period Flood Hazard Maps 414 

The probability of inundation was calculated for each pixel in the model domain, calculating how many times 415 

each pixel would be inundated above a 10cm depth in each climate model temperature scenario. The return 416 

period of inundation in each pixel was then determined, by calculating how many times we expect a pixel to 417 

flood based on the number of years of data simulated (range: 332-427 years depending on the climate model). 418 

Using this, we derived a set of return period flood hazard maps, which provide a spatially explicit representation 419 

of a given return period flood event under present day, 1.5°C and 2°C warming. This supersedes any currently 420 

available hurricane rainfall-driven flood risk information in Puerto Rico, both under current and future climate 421 

change. This approach also moves beyond the traditional uplift approach often used in flood risk assessment 422 

under climate change, as it provides spatially explicit flood hazard information for a given return period at the 423 

island scale and at high resolution.  424 

 425 

Figure 5 highlights the scale and detail of flood hazard information using this approach, from the island scale 426 

(Figure 5a) to the local scale (Figure 5c). For example, Figure 5c shows flooding at the street level in Levittown, 427 

Toa Baja – a town significantly impacted by flooding from Hurricane Maria in 2017 (Major Hurricane Maria - 428 

September 20, 2017). 429 

 430 

Figure 4 - Graph showing the relationship between Root Mean Square Error (RMSE) and maximum total rainfall for all simulated events under 

all climate scenarios (4909 events total). Blue = all simulated events. Red = events identified with Hurricane Maria maximum rainfall totals and 

spatial characteristics (20 events). Red band = range of reported Hurricane Maria rainfall. Orange square = NCEP Stage IV model. Brown 

triangle = IMERG model. 
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 431 

Figure 5 - Map showing the 20-year return period flood based on probability of inundation under present day and 432 

1.5oC climate change for the ECHAM6-3-LR climate model. a) Flooding at the island scale. b) Flooding in the Toa 433 

Baja and Cataño districts. c) Flooding in Levittown, Toa Baja. For presentation purposes, only inundation 434 

probabilities at present day and 1.5°C are shown here. 435 

Based on this example for a 20-year return period flood hazard event using the ECHAM6-3-LR climate model, 436 

several schools and hospitals would likely be impacted under present day and 1.5°C climate change. The 437 

estimated flooded area of the 20-year return period flood increases under 1.5°C climate change in comparison to 438 

present day (2006-2015) (Figure 5c), meaning areas currently not at risk are affected at 1.5°C climate change. 439 

Changes at 2°C are similar to 1.5°C, but are not shown in Figure 5 for presentation purposes.  440 

 441 

Flooding in the northwest of the island shown in Figure 5a (latitude/longitude location: 18.3,-67.0 to 18.4,-66.5) 442 

is a feature of the topography and model structure, not data error. This area is dominated by karst hydrology 443 
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(Hughes and Schulz, 2020). Therefore, these areas of pooled water would likely not feature if karst processes 444 

were explicitly represented in the model set up. The inclusion of karst processes was beyond the scope of this 445 

study, and as this area is sparsely populated it is unlikely to impact the estimates of population exposure 446 

presented.447 

 448 

3.3 Characterising Changes in Population Exposure Under Present Day, 1.5°C and 2°C 449 

This research estimates changes in population exposure to hurricane rainfall-driven flooding for the island of 450 

Puerto Rico under present day, 1.5°C and 2°C climate change. The climate change scenarios are analysed for 451 

each individual climate model, as opposed to the aggregate results, as there are important differences between 452 

models that are obscured when using the mean. This is a way of investigating uncertainty explicitly, by 453 

understanding the differences between models. Studies such as Daron et al., (2021) have highlighted the 454 

importance of assessing individual model performance when climate models give a wide range of projections.  455 

 456 

Figure 6 shows the return period of a given exceedance of population exposure from hurricane rainfall-driven 457 

flooding in Puerto Rico under present day, 1.5°C and 2°C climate change. Return periods of population 458 

exposure exceedance above the 30-year return period are not considered and are thus faded in Figure 6. The 459 

number of samples for each climate model scenario above the 30-year return period is too small (mean: 12.7 460 

samples) to determine accurate estimates of population exposure above the 30-year return period (see Figure 6). 461 

Thus, changes in population exposure above the 30-year return period in this event set are subject to significant 462 

uncertainty resulting from limited samples at these event magnitudes and are therefore not considered further in 463 

this analysis. A much longer event set would be required to simulate robust changes in population exposure at 464 

higher magnitude return periods.   465 

 466 

Three of the four climate models show agreement in the direction of change between present and future climate 467 

change, with increases in population exposure associated with a given return period at 1.5°C and 2°C compared 468 

to present day. However, one climate model (CanAM4) shows the opposite trend above the 10-year return 469 

period (see Figure 7). One key reason for this is likely to be the differences in resolution of the underlying 470 

Global Climate Model (GCM) data: CanAM4 GCM has a coarser resolution (2.81°x2.81°) than the next most 471 

coarse GCM ECHAM6-3-LR (1.88°x1.88°) (see Table 1). As a result, the underlying variables driving extreme 472 

hurricane rainfall are less likely to be well-represented in CanAM4 compared to the other three climate models. 473 

It is well understood that higher-resolution GCMs are better able to simulate the underlying conditions 474 

important for the development of extreme rainfall and tropical cyclones (Knutson et al., 2020).  475 
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 476 

Present day population exposure to flooding from hurricane rainfall in Puerto Rico is approximately 2-5% at the 477 

two-year return period, rising to 8-10% at the five-year, 9-12% at the ten-year and 11-14% at the twenty-year 478 

return periods respectively (see Figure 6). These are the first published estimates of present day population 479 

exposure from flooding in Puerto Rico. It is difficult to corroborate population exposure estimates with those for 480 

previous events in Puerto Rico due to a lack of data, however these estimates are plausible given the universal 481 

island-wide flash flood warning given to Puerto Rico during Hurricane Maria (Pasch et al., 2018). 482 

 483 

As shown in Figure 7, the estimated number of people exposed to flooding from hurricane rainfall on average 484 

every two years would increase by the largest percentage across the different return periods (20-140% at 1.5°C; 485 

-3-85% at 2°). The lower bound here represents the results from the CanAM4 model, which has the lowest 486 

GCM resolution (see Table 1). The reason for the widest range at the two-year return period could be because 487 

of the different bed elevations sized at the historical two-year return period for each climate model. For a return 488 

period population exposure of five years as shown in Figure 8, the percentage increase in population exposure at 489 

1.5°C and 2°C ranges from 2-15% and 1-20%, respectively. This is a considerably lower range than the 490 

population exposure exceedance at the two-year return period, but also shows more agreement between the 491 

climate models.  492 

Figure 6 - Graph showing population exposure exceedance for present day, 1.5°C and 2°C climate change, as well as the number of samples in 

each climate model at a given return period (dotted line). Population exposure above the 30-year return period is faded to represent the 

uncertainty associated with the limited number of samples at these return periods.  
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As shown in Figure 7 there is a notable difference in population exposure exceedance between present day and 493 

1.5°C in three of the four climate models, but a less clear difference between 1.5°C and 2°C. In two of the four 494 

climate models (CAM5-1-2-025degree and ECHAM6-3-LR), the percentage of population exposed at a given 495 

return period is higher at 1.5°C compared to 2°C, and in one climate model (NorESM1-HAPPI), higher at 2°C 496 

compared to 1.5°C. In the CanAM4 climate model, depending on the return period, the percentage of population 497 

exposure varies between the three climate scenarios, and no consistent pattern is shown between the three across 498 

different return periods.  499 

 500 

501 

 502 

Figure 8 demonstrates that the range in absolute population exposure numbers estimated for a given return 503 

period between the four climate models is the same as or greater than the percentage uplift in population 504 

exposure associated with 1.5°C and 2°C, highlighting the range of possible absolute population exposure 505 

estimates. For the 5-year return period, present day absolute population exposure ranges from 217,000 506 

(ECHAM6-3-LR) to 264,000 (CAM5-1-2-025degree). This is a 21% difference, whereas the highest population 507 

exposure increase is 22% between present day and 2°C for the NorESM1-HAPPI climate model. This 508 

underlines the difficulty in estimating current population exposure to flooding. This is not only the case in data-509 

sparse areas such as Puerto Rico, but also in data-rich areas such as the conterminous US (Bates et al., 2021). 510 

However, the direction of change between the ‘present day’ and ‘future’ climate change (1.5°C and 2°C) is 511 

Figure 7 - Plot showing the percentage of population exposed to flooding under present day, 1.5°C and 2°C climate change, and the difference 

between the three scenarios for each HAPPI climate model. The green dot represents present day population exposure (as a percentage of the 

total population), with the orange and purple dots representing the population exposure (%) at 1.5°C and 2°C. The difference between the 

population exposure between the different scenarios is represented by the line between the dots.  

Commented [LA1]: Figure updated to reflect suggested 
changes in x-axis by Anonymous Referee #1 
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robust across three of the four climate models, meaning the signal in population exposure to flooding is 512 

observable when comparing present day and future climate change, despite the uncertainty in absolute terms.513 

 514 

 515 

Figure 8 - Bar graph showing the number of people exposed to flooding under present day, 1.5°C and 2°C climate 516 

change for the 5-year population exposure exceedance for each HAPPI climate model.517 
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4 Discussion  518 

Our estimates of flood hazard and population exposure driven by hurricane rainfall under current and future climate 519 

change supersedes previous efforts to estimate hurricane rainfall-driven flood risk in Puerto Rico. Previous estimates 520 

rely on local-scale FEMA fluvial assessments or the global large-scale assessments that most often neglect small 521 

islands through choice of scale. Although, the FEMA models will likely be more accurate locally where they exist, 522 

depending on the local river channel and flood defence information that was available to the model developers.  This 523 

research is one of the first known published studies which propagates spatially and temporally explicit hurricane 524 

rainfall through to the impact modelling of flood hazard and population exposure estimates, and the first in a small 525 

island. Utilising hydrodynamic flood models to understand changes in flooding under climate change is a critical 526 

gap in the literature, despite the widespread use of hydrodynamic models to assess current flood risk. The latest 527 

IPCC AR6 Working Group I report demonstrated that changes in rainfall were still the dominant method used to 528 

assess changes in pluvial flooding under climate change (Seneviratne et al., 2021). However, here we find that the 529 

changes in population exposure between present day and 1.5°C and 2°C climate change do not correspond linearly 530 

with changes in hurricane rainfall using the HAPPI climate models (Vosper et al., 2020) analysed here, and 531 

therefore this rainfall proxy method may not be appropriate when investigating changes in flooding from hurricane 532 

rainfall.  533 

4.1 Validating an Event-Based Model 534 

We present the first estimates of rainfall-driven flooding from Hurricane Maria using IMERG and NCEP Stage IV 535 

precipitation data. Comparison against HWM data from Hurricane Maria showed that the RMSE of these estimates 536 

was reasonable given the typical uncertainties in data of this type (IMERG: 1.18m, NCEP Stage IV: 1.22m). There 537 

is uncertainty associated with the HWM vertical datum transformation using VDatum (+-0.92m) which is likely to 538 

impact the RMSE. However, these RMSEs have a similar magnitude to studies conducted in data-rich regions with 539 

similar quality HWM data, such as the conterminous US (~1m) (Wing et al., 2021). This demonstrates that the 540 

model is capable of realistically simulating flood depths, and thus the suitability of the model for estimating flood 541 

hazard under current and future climate change. Inevitably, this finding should be considered alongside the inherent 542 

limitations when comparing flood estimates to High Water Mark data. For example, RMSEs in this study are higher 543 

than in studies such as Neal et al., (2009) (RMSE: 0.28m). Yet, the HWM data in this study is arguably lower 544 

quality data due to the catastrophic nature of the hurricane which limited accessibility for post-event assessment due 545 

to wide scale infrastructure failure (Main et al., 2021). HWMs in this study are concentrated in populated areas, and 546 

were probably constrained to where it was safe to travel immediately post-event. The performance of the model is 547 

likely biased towards these coastal, more populated areas. However, this is also where a considerable portion of the 548 

risk is on the island, as this is where the majority of the population resides.  549 

 550 

Moreover, there are limitations of the observation precipitation datasets used, which propagate into the flood 551 

estimates. Many studies have compared the performance of NCEP Stage IV and IMERG rainfall data (Li et al., 552 

2022; Mazza and Chen, 2023; Omranian et al., 2018; Villarini et al., 2011). Tropical cyclone precipitation in the 553 
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conterminous United States between 2002-2019 was much higher in NCEP Stage IV than in satellite products such 554 

as IMERG (Mazza and Chen, 2023). Other studies support this conclusion and find that the explanation for this 555 

difference is more likely an underestimation of other products, and not an overestimation bias in NCEP Stage IV 556 

itself (Villarini et al., 2011). For example, IMERG is likely to underestimate orographic rainfall, which could 557 

explain why the flood extent using IMERG is lower than using NCEP Stage IV (see Figure 3). This provides an 558 

incentive for the event set approach outlined in this study, as it allows a consideration of a wider range of plausible 559 

events to get a greater understanding of uncertainty than just the observed. 560 

 561 

Based on the events selected as Hurricane Maria-like highlighted in Figure 4, we find that our event set contains 562 

those like Hurricane Maria, and that these events have amongst the lowest RMSE in comparison to observed HWMs 563 

from Hurricane Maria (range: 1.13-1.33m). It was expected that given the extreme magnitude of Hurricane Maria 564 

(~115 year return period hurricane rainfall event: (Keellings and Hernández Ayala, 2019)), there would be a limited 565 

number of events in our event set with this magnitude due to the comparatively short, simulated time record of our 566 

event set (range: 332-427 years per climate model scenario). In our event set across all climate model scenarios, we 567 

find 20 events that we classify as Hurricane Maria-like based on maximum total rainfall and spatial characteristics. 568 

This finding firstly reinforces just how extreme Hurricane Maria was, following both the devastating impact on the 569 

population and infrastructure (Audi et al., 2018; Michaud and Kates, 2017; Main et al., 2021), as well as the 570 

literature examining the event in the context of the historical record (Keellings and Hernández Ayala, 2019; Ramos-571 

Scharrón and Arima, 2019). This also indicates that the model has the capacity to replicate events such as Hurricane 572 

Maria when both maximum total rainfall and spatial characteristics are considered. Two key conclusions can be 573 

taken from this.  Firstly, this highlights the importance of variables other than rainfall when estimating rainfall-574 

driven flooding, such as spatial characteristics of the hurricane including landfall location and trajectory. Just 575 

considering the rainfall was not sufficient to identify Maria-like events. As a result, simulating the spatial and 576 

temporal distribution of the rainfall in an event set is a crucial step needed to accurately represent the relationship 577 

between hurricane rainfall and flood hazard in Puerto Rico. This finding reinforces previous research which 578 

identifies the importance of hurricane landfall and spatial location on the generation of floods in Puerto Rico 579 

(Hernández Ayala et al., 2017; Hernández Ayala & Matyas, 2016; Smith et al., 2005). Secondly, considering there is 580 

uncertainty in so-called observed flooding from Hurricane Maria (see Figure 3), the event set provides the 581 

opportunity to assess many more realisations of events with similar characteristics to Hurricane Maria than available 582 

just using observations. This may allow a better understanding of uncertainty in rainfall-driven flooding for a given 583 

event, and thus a greater understanding of risk. Future research investigating changes in flooding from hurricane 584 

rainfall should thus take an event-based approach as outlined in this study.  585 

4.2 Current Population Exposure to Flooding from Hurricane Rainfall 586 

Our results highlight the first published estimates of population exposure to flooding in Puerto Rico under the 587 

present day climate, with approximately 8-10% of the population currently exposed to flooding from hurricane 588 

rainfall at the five year recurrence interval. This level of population exposure has important implications for 589 

resilience to floods. It also underlines the exposure to hydrometeorological hazards already experienced in SIDS, 590 
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which is a key reason for their high risk to climate change and disasters (Thomas et al., 2020). It is also worth noting 591 

that these population exposure estimates are for the present day (2005-2016) climate at around 0.9°C of global mean 592 

warming and therefore do not represent a pre-industrial climate. This means population exposure estimates for the 593 

present day identified in this study are likely to be already influenced by climate change, given the significant 594 

impact of climate change found on recent hurricane rainfall events in Puerto Rico such as Hurricane Maria 595 

(Keellings and Hernández Ayala, 2019; Patricola and Wehner, 2018).  596 

4.3 Population Exposure to Flooding from Hurricane Rainfall Under 1.5°C and 2°C Climate Change 597 

The results presented in this research estimate that population exposure to flooding from hurricane rainfall will be 598 

amplified under 1.5°C and 2°C in all but one of the four HAPPI climate models analysed. The Paris Agreement 599 

includes the 1.5°C target as the higher ambition goal and is often touted as our best chance to limit the impacts of 600 

climate change to within a ‘safe limit’. However, our analysis contributes to the discourse SIDS have been 601 

highlighting for some time now, which is that even a 1.5°C temperature rise above preindustrial levels leads to a 602 

serious threat to the adaptive capacity (Ourbak and Magnan, 2018; Mycoo, 2018; Hoegh-Guldberg et al., 2018; 603 

Mycoo et al., 2022). Here, we find that even at 1.5°C, the increase in population exposure associated with hurricane 604 

rainfall-driven flooding in Puerto Rico is enhanced for events with a return period below 30 years. This may have 605 

wide-reaching implications for the resilience of Puerto Rico’s population. Moreover, although the 1.5°C goal is 606 

technically feasible (IPCC, 2018, 2021), it is not currently the most likely temperature rise based on existing policy 607 

pledges. At the time of writing, global temperature increase has already reached ~1.1°C above pre-industrial levels 608 

(World Meteorological Organization, 2021). Based on our analysis, it is likely that flood hazard and population 609 

exposure would increase further still under higher warming scenarios. These changes are likely to vary between 610 

GCMs. 611 

 612 

Due to the range in both absolute population numbers and the relative changes in population exposure between 613 

present day, 1.5°C and 2°C across the four climate models in this event set, there is uncertainty in both how many 614 

people might be exposed to a particular flood event, as well as how much this may change in the future. Moreover, 615 

the range of present day absolute population numbers is often larger than the climate signal, which underlines the 616 

difficulty in understanding current population exposure (Bates et al., 2021). This demonstrates the importance in 617 

assessing a range of different climate model projections to understand the range of uncertainties, which taking an 618 

event set approach enables because it allows many more realisations of a given event magnitude than is likely to 619 

have occurred in the historical record to be considered. Overall, three of the four climate models utilized in this 620 

study show that there is a difference in the percentage of the population exposed at a given return period under 621 

1.5°C or 2°C climate change in comparison to present day. It is likely that the difference between 1.5°C and 2°C is 622 

too small to determine a robust directional change above variability, particularly as only four of the >50 HAPPI 623 

ensemble members are utilised in this analysis. Other studies have also shown a spread around the median in 624 

precipitation, flood hazard and population exposure estimates under future scenarios (Bates et al., 2021; Swain et al., 625 

2020; Lopez-Cantu et al., 2020), as well as uncertain differences between 1.5°C and 2°C given the influence of 626 

underlying uncertainty in the GCM and precipitation data (Uhe et al., 2019). 627 
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 628 

Other reasons for uncertainty in absolute population exposures likely stems from the choice of population data, and 629 

the corresponding methodology used to assign population to pixels, as well as the underlying population data used to 630 

inform the population totals. This is evidenced by the differences in total population between WorldPop, HRSL and 631 

HRPDM as discussed in Section 2.3. Moreover, flood defences are not included in the model due to a lack of 632 

available data, meaning the absolute population exposure numbers – particularly for the lower return periods where 633 

flood defences are most likely to provide protection – will probably be an overestimate in some locations. If flood 634 

defence information were available, the standards of protection could be applied to the exposure estimates provided 635 

in this dataset to estimate population exposure when flood defences are included. On the other hand, as this study 636 

does not include estimates of coastal flooding, the population exposure estimates may also be an underestimate. This 637 

means that it is important to consider that the exposure estimates outlined in this study are for inland rainfall-driven 638 

flooding only.  639 

4.4 Limitations of Event Set Size 640 

Population exposure estimates above the 30-year return period are subject to significant uncertainty due to the 641 

limited number of samples (mean of <12.7 samples across the four climate models) available in the event set with 642 

these return periods. As a result, the changes in population exposure between current, 1.5°C and 2°C above the 30-643 

year return period were not considered in this study. This was an acceptable trade off based on this current work, as 644 

this study was most focused on understanding changes in lower magnitude, higher frequency events. Flood events 645 

>30-year return period are often valley-filling, and therefore the impact of such events is already likely to be very 646 

significant for the population, as demonstrated during Hurricane Maria (Pasch et al., 2018). Larger events also often 647 

lead to a greater domestic and international response. However, smaller more frequent events lead to the erosion of 648 

resilience in communities over time, and do not receive the same level of relief or response (Hamdan, 2015; Bull-649 

Kamanga et al., 2003; Allen et al., 2017; United Nations Office for Disaster Risk Reduction, 2019). Research to date 650 

has also mostly focused on changes in the 100-year return period event (Arnell and Gosling, 2016; Lehner et al., 651 

2006; Hirabayashi et al., 2013). Therefore, assessing changes in lower magnitude, higher frequency events was a 652 

key aim of this study. To detect changes in the 100-year return period population exposure, a much longer event set 653 

would be required to detect a significant change between 1.5°C and 2°C. Although we have shown that 20 events 654 

like Hurricane Maria do occur in the event set overall, preferably there would be at least 30-50 events to have 655 

confidence in relative changes, as is shown in Figure 6. This would require at least 1000 years of synthetic data per 656 

climate model as a minimum. This should be considered in the future when producing event sets derived from 657 

GCMs with the intention to utilise these in flood impact modelling. Inevitably, running a much larger ensemble 658 

comes at the expense of computational cost, therefore a trade-off, particularly with inundation model resolution, is 659 

likely to be necessary. 660 

5 Conclusions 661 

We present the most detailed estimates of present day and future (1.5°C and 2°C) hurricane rainfall-driven flood 662 

hazard and population exposure estimates in Puerto Rico to date. This analysis quantifies present day population 663 
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exposure to flooding in Puerto Rico for small to medium sized events (<30-year return period). Population exposure 664 

to flooding is likely to increase under both 1.5°C and 2°C climate change. Estimates here suggest that for the present 665 

day 8-10% of the total population of Puerto Rico would be exposed to flooding (defined as residing at a location 666 

with inundation depth > 10cm) from hurricane rainfall every 5 years, increasing by 2-15% and 1-20% at 1.5°C and 667 

2°C, respectively. Increases in the number of people exposed to small to medium sized flood events (<30-year return 668 

period) could have a cumulative negative impact on the long-term resilience of the Puerto Rican population without 669 

appropriate adaptation. Uncertainty in absolute population exposure estimates, as well as the range in estimated 670 

percentage increases in flooding under 1.5°C and 2°C should be considered when using these estimates to inform 671 

appropriate adaptation.  672 

 673 

Through validation of our model in comparison with observed high water mark data for Hurricane Maria (~115-year 674 

return period rainfall event), we find that our model is able to replicate similar levels of flooding to that which 675 

occurred, and that there are events like Hurricane Maria in the event set when events with both similar maximum 676 

total rainfall and spatial track characteristics are considered. This has important implications for future research, as 677 

an event-based approach allows the assessment of many more plausible scenarios than is available in the observed 678 

historical record. 679 

 680 

Puerto Rico is predicted to experience increased population exposure to flooding associated with hurricane rainfall 681 

in the future under 1.5°C and 2°C climate change. These findings add to the growing body of research that 682 

highlights the critical and disproportionate risk climate change poses to Small Island Developing States, amidst the 683 

uncomfortable irony that they have contributed amongst the least greenhouse gas emissions responsible for 684 

anthropogenic climate change (Hoegh-Guldberg et al., 2018; Thomas et al., 2020). This highlights simultaneously 685 

the impact of every increment of global temperature increase for Small Island Developing States and thus the 686 

importance of high-ambition mitigation efforts, as well as the urgent need for increased climate change adaptation 687 

and disaster risk reduction in the region.  688 

 689 

Data Availability 690 

The HAPPI climate model data described in Mitchell et al., (2017) https://doi.org/10.5194/gmd-10-571-2017 can be 691 

found and downloaded under a Attribution-NonCommercial-ShareAlike 2.0 Generic License at: 692 

https://www.happimip.org/happi_data/  693 

The LiDAR data can be found on the USGS Data Access Viewer: 694 

https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=8630  695 

The LISFLOOD-FP hydraulic engine is available to download at: LISFLOOD-FP Developers. (2020). LISFLOOD-696 

FP 8.0 hydrodynamic model (Version 8.0). [Software]. Zenodo. https://doi.org/10.5281/zenodo.4073011 697 

The WorldPop population data can be found at: Bondarenko et al., (2020) doi:10.5258/SOTON/WP00684 under a 698 

Creative Commons Attribution 4.0 International License. 699 

https://doi.org/10.5194/gmd-10-571-2017
https://www.happimip.org/happi_data/
https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=8630
https://doi.org/10.5281/zenodo.4073011
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The High Water Mark data can be found on the USGS Flood Event Viewer: 700 

https://stn.wim.usgs.gov/FEV/#MariaSeptember2017  701 

IMERG data can be downloaded from the Global Precipitation Measurement database at: 702 

https://gpm.nasa.gov/data/imerg  703 

NCEP Stage IV data can be downloaded at: Du, J. 2011. NCEP/EMC 4KM Gridded Data (GRIB) Stage IV Data. 704 

Version 1.0. UCAR/NCAR - Earth Observing Laboratory. https://doi.org/10.5065/D6PG1QDD    705 

The probability of inundation and corresponding population exposure estimates maps are available via the data.bris 706 

Research Data Repository (doi available at final publication).  707 

The probability of inundation (event set) flood hazard maps from Archer et al., (2023) are available via the 708 

University of Bristol Research Data Repository (data.bris) at 709 

https://doi.org/10.5523/bris.2qtinf5lw52u52snyl5ruwekef under a Creative Commons "CC BY-NC 4.0" license  710 

Author contribution 711 

LA conceptualized, conducted the analysis, methodology and validation and wrote the manuscript; JN and PDB 712 

conceptualized, supervised and contributed to the analysis, methodology and validation; EV, DC and JS were 713 

involved in the data curation and methodology; DM was involved in conceptualization. All authors were involved in 714 

reviewing and editing the manuscript. 715 

 716 

Competing interests 717 

The authors declare that they have no conflict of interest. 718 

Acknowledgments 719 

Leanne Archer is supported by the UKRI NERC GW4+ Doctoral Training Partnership NE/S007504/1. Paul Bates is 720 

supported by a Royal Society Wolfson Research Merit award. Jeffrey Neal is supported by UKRI NERC grants 721 

NE/S003061/1 and NE/S006079/1. Emily Vosper is supported by the UKRI ERSPC Centre for Doctoral Training. 722 

  723 

References 724 

Aldridge, T., Gunawan, O., Moore, R. J., Cole, S. J., Boyce, G., and Cowling, R.: Developing an impact library for 725 

forecasting surface water flood risk, J Flood Risk Manag, 13, https://doi.org/10.1111/jfr3.12641, 2020. 726 

Allen, A., Zilbert Soto, L., Wesely, J., Belkow, T., Ferro, V., Lambert, R., Langdown, I., and Samanamú, A.: From 727 

state agencies to ordinary citizens: reframing risk-mitigation investments and their impact to disrupt urban risk traps 728 

in Lima, Peru, Environ Urban, 29, 477–502, https://doi.org/10.1177/0956247817706061, 2017. 729 

Puerto Rico Probability of Flood Inundation Maps:  730 

Arnell, N. W. and Gosling, S. N.: The impacts of climate change on river flood risk at the global scale, Clim 731 

Change, 134, 387–401, https://doi.org/10.1007/S10584-014-1084-5, 2016. 732 

Audi, C., Segarra, L., Irwin, C., Craig, P., Skelton, C., and Bestul, N.: Ascertainment of the Estimated Excess 733 

Mortality from Hurricane María in Puerto Rico, Washington D.C., 2018. 734 

Barnes, R.: Parallel non-divergent flow accumulation for trillion cell digital elevation models on desktops or 735 

clusters, Environmental Modelling & Software, 92, 202–212, https://doi.org/10.1016/J.ENVSOFT.2017.02.022, 736 

2017. 737 

Formatted: Font: 10 pt

https://stn.wim.usgs.gov/FEV/#MariaSeptember2017
https://gpm.nasa.gov/data/imerg
https://doi.org/10.5065/D6PG1QDD
https://doi.org/10.5523/bris.2qtinf5lw52u52snyl5ruwekef


  

 

 

26 

 

Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial formulation of the shallow water equations for 738 

efficient two-dimensional flood inundation modelling, J Hydrol (Amst), 387, 33–45, 739 

https://doi.org/10.1016/j.jhydrol.2010.03.027, 2010. 740 

Bates, P. D., Quinn, N., Sampson, C., Smith, A., Wing, O., Sosa, J., Savage, J., Olcese, G., Neal, J., Schumann, G., 741 

Giustarini, L., Coxon, G., Porter, J. R., Amodeo, M. F., Chu, Z., Lewis‐Gruss, S., Freeman, N. B., Houser, T., 742 

Delgado, M., Hamidi, A., Bolliger, I., McCusker, K., Emanuel, K., Ferreira, C. M., Khalid, A., Haigh, I. D., 743 

Couasnon, A., Kopp, R., Hsiang, S., and Krajewski, W. F.: Combined modelling of US fluvial, pluvial and coastal 744 

flood hazard under current and future climates, Water Resour Res, 57, https://doi.org/10.1029/2020wr028673, 2021.  745 

Bates, P. D., Savage, J., Wing, O., Quinn, N., Sampson, C., Neal, J., and Smith, A.: A climate-conditioned 746 

catastrophe risk model for UK flooding, Natural Hazards and Earth System Sciences, 23, 891–908, 747 

https://doi.org/10.5194/NHESS-23-891-2023, 2023. 748 

Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, 749 

I. A., Hoose, C., and Kristjánsson, J. E.: The Norwegian Earth System Model, NorESM1-M – Part 1: Description 750 

and basic evaluation of the physical climate, Geosci Model Dev, 6, 687–720, https://doi.org/10.5194/GMD-6-687-751 

2013, 2013. 752 

Bernet, D. B., Zischg, A. P., Prasuhn, V., and Weingartner, R.: Modeling the extent of surface water floods in rural 753 

areas: Lessons learned from the application of various uncalibrated models, Environmental Modelling and Software, 754 

109, 134–151, https://doi.org/10.1016/j.envsoft.2018.08.005, 2018. 755 

Bernet, D. B., Trefalt, S., Martius, O., Weingartner, R., Mosimann, M., Röthlisberger, V., and Zischg, A. P.: 756 

Characterizing precipitation events leading to surface water flood damage over large regions of complex terrain, 757 

Environmental Research Letters, 14, https://doi.org/10.1088/1748-9326/ab127c, 2019. 758 

Bessette-Kirton, E. K., Coe, J. A., Schulz, W. H., Cerovski-Darriau, C., and Einbund, M. M.: Mobility 759 

characteristics of debris slides and flows triggered by Hurricane Maria in Puerto Rico, Landslides, 17, 2795–2809, 760 

https://doi.org/10.1007/s10346-020-01445-z, 2020. 761 

Blanc, J., Hall, J. W., Roche, N., Dawson, R. J., Cesses, Y., Burton, A., and Kilsby, C. G.: Enhanced efficiency of 762 

pluvial flood risk estimation in urban areas using spatial-temporal rainfall simulations, J Flood Risk Manag, 5, 143–763 

152, https://doi.org/10.1111/j.1753-318X.2012.01135.x, 2012. 764 

Mapping the world to help aid workers, with weakly, semi-supervised learning: 765 

https://ai.facebook.com/blog/mapping-the-world-to-help-aid-workers-with-weakly-semi-supervised-learning, last 766 

access: 1 June 2020. 767 

Bondarenko, M., Kerr, D., Sorichetta, A., and Tatem, A. J.: Census/projection-disaggregated gridded population 768 

datasets for 189 countries in 2020 using Built-Settlement Growth Model (BSGM) outputs, WorldPop, University of 769 

Southampton, Southampton, https://doi.org/10.5258/SOTON/WP00684, 2020. 770 

Bull-Kamanga, L., Diagne, K., Lavell, A., Leon, E., Lerise, F., MacGregor, H., Maskrey, A., Meshack, M., Pelling, 771 

M., Reid, H., Satterthwaite, D., Songsore, J., Westgate, K., and Yitambe, A.: From everyday hazards to disasters: the 772 

accumulation of risk in urban areas, Environ Urban, 15, 193–204, https://doi.org/10.1177/095624780301500109, 773 

2003. 774 

Burgess, C. P., Taylor, M. A., Stephenson, T., Mandal, A., and Powell, L.: A macro-scale flood risk model for 775 

Jamaica with impact of climate variability, Natural Hazards, 78, 231–256, https://doi.org/10.1007/s11069-015-1712-776 

z, 2015. 777 

Caban, P.: Hurricane Maria’s Aftermath: Redefining Puerto Rico’ s Colonial Status, Current History, 118, 43–49, 778 

2019. 779 

Czajkowski, J., Villarini, G., Montgomery, M., Michel-Kerjan, E., and Goska, R.: Assessing Current and Future 780 

Freshwater Flood Risk from North Atlantic Tropical Cyclones via Insurance Claims, Sci Rep, 7, 1–10, 781 

https://doi.org/10.1038/srep41609, 2017. 782 

Daron, J., Lorenz, S., Taylor, A., and Dessai, S.: Communicating future climate projections of precipitation change, 783 

Clim Change, 166, 1–20, https://doi.org/10.1007/S10584-021-03118-9/FIGURES/5, 2021. 784 

Dinku, T., Chidzambwa, S., Ceccato, P., Connor, S. J., and Ropelewski, C. F.: Validation of high‐resolution satellite 785 

rainfall products over complex terrain, http://dx.doi.org/10.1080/01431160701772526, 29, 4097–4110, 786 

https://doi.org/10.1080/01431160701772526, 2008. 787 

NCEP/EMC 4KM Gridded Data (GRIB) Stage IV Data:  788 

Emanuel, K. and Jagger, T.: On Estimating Hurricane Return Periods, J Appl Meteorol Climatol, 49, 837–844, 789 

https://doi.org/10.1175/2009JAMC2236.1, 2010. 790 

Emanuel, K., DesAutels, C., Holloway, C., and Korty, R.: Environmental Control of Tropical Cyclone Intensity, J 791 

Atmos Sci, 61, 843–858, https://doi.org/10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2, 2004. 792 



  

 

 

27 

 

Emanuel, K., Sundararajan, R., and Williams, J.: Hurricanes and Global Warming: Results from Downscaling IPCC 793 

AR4 Simulations, Bull Am Meteorol Soc, 89, 347–368, https://doi.org/10.1175/BAMS-89-3-347, 2008. 794 

Falconer, R. H., Cobby, D., Smyth, P., Astle, G., Dent, J., and Golding, B.: Pluvial flooding: new approaches in 795 

flood warning, mapping and risk management, J Flood Risk Manag, 2, 198–208, https://doi.org/10.1111/j.1753-796 

318X.2009.01034.x, 2009. 797 

Feldmann, M., Emanuel, K., Zhu, L., and Lohmann, U.: Estimation of Atlantic Tropical Cyclone Rainfall Frequency 798 

in the United States, J Appl Meteorol Climatol, 58, 1853–1866, https://doi.org/10.1175/JAMC-D-19-0011.1, 2019. 799 

Freitas, E. da S., Coelho, V. H. R., Xuan, Y., Melo, D. de C. D., Gadelha, A. N., Santos, E. A., Galvão, C. de O., 800 

Ramos Filho, G. M., Barbosa, L. R., Huffman, G. J., Petersen, W. A., and Almeida, C. das N.: The performance of 801 

the IMERG satellite-based product in identifying sub-daily rainfall events and their properties, J Hydrol (Amst), 802 

589, 125128, https://doi.org/10.1016/J.JHYDROL.2020.125128, 2020. 803 

Gao, S., Zhang, J., Li, D., Jiang, H., and Fang, Z. N.: Evaluation of Multiradar Multisensor and Stage IV 804 

Quantitative Precipitation Estimates during Hurricane Harvey, Nat Hazards Rev, 22, 04020057, 805 

https://doi.org/10.1061/(ASCE)NH.1527-6996.0000435, 2020. 806 

Guerreiro, S. B., Glenis, V., Dawson, R. J., and Kilsby, C.: Pluvial flooding in European cities-A continental 807 

approach to urban flood modelling, Water (Switzerland), 9, https://doi.org/10.3390/w9040296, 2017. 808 

Habib, E., Larson, B. F., and Graschel, J.: Validation of NEXRAD multisensor precipitation estimates using an 809 

experimental dense rain gauge network in south Louisiana, J Hydrol (Amst), 373, 463–478, 810 

https://doi.org/10.1016/J.JHYDROL.2009.05.010, 2009. 811 

Hall, J.: Direct Rainfall Flood Modelling: The Good, the Bad and the Ugly, Australasian Journal of Water 812 

Resources, 19, 74–85, https://doi.org/10.7158/13241583.2015.11465458, 2015. 813 

Hamdan, F.: Intensive and extensive disaster risk drivers and interactions with recent trends in the global political 814 

economy, with special emphasis on rentier states, International Journal of Disaster Risk Reduction, 14, 273–289, 815 

https://doi.org/10.1016/j.ijdrr.2014.09.004, 2015. 816 

Hankin, B., Waller, S., Astle, G., and Kellagher, R.: Mapping space for water: screening for urban flash flooding, J 817 

Flood Risk Manag, 1, 13–22, https://doi.org/10.1111/j.1753-318x.2008.00003.x, 2008. 818 

Hawker, L., Bates, P., Neal, J., and Rougier, J.: Perspectives on Digital Elevation Model (DEM) Simulation for 819 

Flood Modeling in the Absence of a High-Accuracy Open Access Global DEM, Front Earth Sci (Lausanne), 6, 820 

https://doi.org/10.3389/feart.2018.00233, 2018. 821 

Hernández Ayala, J. J. and Matyas, C. J.: Tropical cyclone rainfall over Puerto Rico and its relations to 822 

environmental and storm-specific factors, International Journal of Climatology, 36, 2223–2237, 823 

https://doi.org/10.1002/joc.4490, 2016. 824 

Hernández Ayala, J. J., Keellings, D., Waylen, P. R., and Matyas, C. J.: Extreme floods and their relationship with 825 

tropical cyclones in Puerto Rico, Hydrological Sciences Journal, 62, 2103–2119, 826 

https://doi.org/10.1080/02626667.2017.1368521, 2017. 827 

Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., and Kanae, S.: 828 

Global flood risk under climate change, Nat Clim Chang, 3, 816–821, https://doi.org/10.1038/nclimate1911, 2013. 829 

Hoegh-Guldberg, O., Jacob, D., Taylor, M., Bindi, M., Brown, S., Camilloni, I., Diedhiou, A., and Djalante, R.: 830 

Chapter 3: Impacts of 1.5oC global warming on natural and human systems, in: Global warming of 1.5°C. An IPCC 831 

Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse 832 

gas emission pathways, in the context of strengthening the global response to the threat of climate change, edited by: 833 

Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate Change, Geneva, 175–311, 2018. 834 

Hughes, K. S. and Schulz, W. H.: Map Depicting Susceptibility to Landslides Triggered by Intense Rainfall. Open-835 

File Report 2020–1022, Denver, https://doi.org/https://doi.org/10.3133/ofr20201022., 2020. 836 

IPCC: Summary for Policymakers, in: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global 837 

warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of 838 

strengthening the global response to the threat of climate change, edited by: Masson-Delmotte, V., Zhai, P., Pörtner, 839 

H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., 840 

Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T., 841 

Cambridge University Press, Cambridge, 1–24, 2018. 842 

IPCC: Summary for Policymakers, in: Climate Change 2021: The Physical Science Basis. Contribution of Working 843 

Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-844 

Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. 845 

I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and 846 

Zhou, B., Cambridge University Press, Cambridge, 2021. 847 



  

 

 

28 

 

Iversen, T., Bentsen, M., Bethke, I., Debernard, J. B., Kirkevåg, A., Seland, Ø., Drange, H., Kristjansson, J. E., 848 

Medhaug, I., Sand, M., and Seierstad, I. A.: The Norwegian Earth System Model, NorESM1-M – Part 2: Climate 849 

response and scenario projections, Geosci Model Dev, 6, 389–415, https://doi.org/10.5194/GMD-6-389-2013, 2013. 850 

Jetten, V.: CHaRIM Project St Vincent National Flood Hazard Map Methodology and Validation Report, Enschede, 851 

The Netherlands, 2016. 852 

Jiménez Cisneros, B. E., Oki, T., Arnell, N. W., Benito, G., Cogley, J. G., Döll, P., Jiang, T., and Mwakalila, S. S.: 853 

Freshwater Resources, in: Climate Change 2014: Impacts,Adaptation, and Vulnerability. Part A: Global and Sectoral 854 

Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on 855 

Climate Change, edited by: Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., 856 

Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., 857 

Mastrandrea, P. R., and L.L.White, Cambridge University Press, Cambridge, 2014. 858 

Joyette, A. R. T., Nurse, L. A., and Pulwarty, R. S.: Disaster risk insurance and catastrophe models in risk-prone 859 

small Caribbean islands, Disasters, 39, 467–492, https://doi.org/10.1111/disa.12118, 2014. 860 

Keellings, D. and Hernández Ayala, J. J.: Extreme Rainfall Associated With Hurricane Maria Over Puerto Rico and 861 

Its Connections to Climate Variability and Change, Geophys Res Lett, 46, 2964–2973, 862 

https://doi.org/10.1029/2019GL082077, 2019. 863 

Kirkevåg, A., Iversen, T., Seland, Ø., Hoose, C., Kristjánsson, J. E., Struthers, H., Ekman, A. M. L., Ghan, S., 864 

Griesfeller, J., Nilsson, E. D., and Schulz, M.: Aerosol–climate interactions in the Norwegian Earth System Model – 865 

NorESM1-M, Geosci Model Dev, 6, 207–244, https://doi.org/10.5194/GMD-6-207-2013, 2013. 866 

Knutson, T., Camargo, S. J., Chan, J. C. L., Emanuel, K., Ho, C.-H., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., 867 

Walsh, K., and Wu, L.: Tropical Cyclones and Climate Change Assessment: Part II. Projected Response to 868 

Anthropogenic Warming, Bull Am Meteorol Soc, 101, E303–E322, https://doi.org/10.1175/bams-d-18-0194.1, 869 

2020. 870 

Kossin, J. P., Knapp, K. R., Olander, T. L., and Velden, C. S.: Global increase in major tropical cyclone exceedance 871 

probability over the past four decades, Proceedings of the National Academy of Sciences, 117, 11975–11980, 872 

https://doi.org/10.1073/PNAS.1920849117, 2020. 873 

Lehner, B., Döll, P., Alcamo, J., Henrichs, T., and Kaspar, F.: Estimating the Impact of Global Change on Flood and 874 

Drought Risks in Europe: A Continental, Integrated Analysis, Clim Change, 75, 273–299, 875 

https://doi.org/10.1007/S10584-006-6338-4, 2006. 876 

Leopold, L. B. and Maddock, T.: The Hydraulic Geometry of Stream Channels and Some Physiographic 877 

Implications, Washington D.C., 1953. 878 

Leyk, S., Gaughan, A. E., Adamo, S. B., De Sherbinin, A., Balk, D., Freire, S., Rose, A., Stevens, F. R., 879 

Blankespoor, B., Frye, C., Comenetz, J., Sorichetta, A., Macmanus, K., Pistolesi, L., Levy, M., Tatem, A. J., and 880 

Pesaresi, M.: The spatial allocation of population: a review of large-scale gridded population data products and their 881 

fitness for use, Earth Syst Sci Data, 11, 1385–1409, https://doi.org/10.5194/essd-11-1385-2019, 2019. 882 

Li, Z., Tang, G., Kirstetter, P., Gao, S., Li, J. L. F., Wen, Y., and Hong, Y.: Evaluation of GPM IMERG and its 883 

constellations in extreme events over the conterminous united states, J Hydrol (Amst), 606, 127357, 884 

https://doi.org/10.1016/J.JHYDROL.2021.127357, 2022. 885 

LISFLOOD-FP Developers: LISFLOOD-FP 8.0 hydrodynamic model (8.0), 886 

https://doi.org/https://doi.org/10.5281/zenodo.4073011, 2020. 887 

Lloyd, C. T., Sorichetta, A., and Tatem, A. J.: High resolution global gridded data for use in population studies, Sci 888 

Data, 4, 1–17, https://doi.org/10.1038/sdata.2017.1, 2017. 889 

Lopez-Cantu, T., Prein, A. F., and Samaras, C.: Uncertainties in Future U.S. Extreme Precipitation From 890 

Downscaled Climate Projections, Geophys Res Lett, 47, https://doi.org/10.1029/2019GL086797, 2020. 891 

Lu, P., Lin, N., Emanuel, K., Chavas, D., and Smith, J.: Assessing Hurricane Rainfall Mechanisms Using a Physics-892 

Based Model: Hurricanes Isabel (2003) and Irene (2011), Journal of Atmospheric Sciences, 75, 2337–2358, 893 

https://doi.org/10.1175/JAS-D-17-0264.1, 2018. 894 

Lumbroso, D., Boyce, S., Bast, H., and Walmsley, N.: The challenges of developing rainfall intensity-duration-895 

frequency curves and national flood hazard maps for the Caribbean, The Journal of Flood Risk Management, 4, 42–896 

52, 2011. 897 

Main, J. A., Dillard, M., Kuligowski, E. D., Davis, B., Dukes, J., Harrison, K., Helgeson, J., Johnson, K., Levitan, 898 

M., Mitrani-Reiser, J., Weaver, S., Yeo, D., Aponte-Bermúdez, L. D., Cline, J., Kirsch, T., and Ross, W. L.: 899 

Learning from Hurricane Maria’s Impacts on Puerto Rico: A Progress Report, Washington D.C., 900 

https://doi.org/10.6028/NIST.SP.1262, 2021. 901 

Marks, D. G.: The beta and advection model for hurricane track forecasting: NOAA Tech. Memo, NWS NMC 70, 902 

Camp Springs, 1992. 903 



  

 

 

29 

 

Mazza, E. and Chen, S. S.: Tropical Cyclone Rainfall Climatology, Extremes, and Flooding Potential from Remote 904 

Sensing and Reanalysis Datasets over the Continental United States, J Hydrometeorol, 24, 1549–1562, 905 

https://doi.org/10.1175/JHM-D-22-0199.1, 2023. 906 

Mazzoleni, M., Mård, J., Rusca, M., Odongo, V., Lindersson, S., and Di Baldassarre, G.: Floodplains in the 907 

Anthropocene: A global analysis of the interplay between human population, built environment and flood severity, 908 

Water Resour Res, https://doi.org/10.1029/2020WR027744, 2020. 909 

Mei, W. and Xie, S.-P.: Intensification of landfalling typhoons over the northwest Pacific since the late 1970s, 910 

Nature Geoscience 2016 9:10, 9, 753–757, https://doi.org/10.1038/ngeo2792, 2016. 911 

Michaud, J. and Kates, J.: Public Health in Puerto Rico after Hurricane Maria, San Francisco, 2017. 912 

Mitchell, D., James, R., Forster, P. M., Betts, R. A., Shiogama, H., and Allen, M.: Realizing the impacts of a 1.5 °C 913 

warmer world, Nat Clim Chang, 6, 735–737, https://doi.org/10.1186/s40665-015-0010-z, 2016. 914 

Mitchell, D., Achutarao, K., Allen, M., Bethke, I., Beyerle, U., Ciavarella, A., Forster, P. M., Fuglestvedt, J., Gillett, 915 

N., Haustein, K., Ingram, W., Iversen, T., Kharin, V., Klingaman, N., Massey, N., Fischer, E., Schleussner, C.-F., 916 

Scinocca, J., Seland, Ø., Shiogama, H., Shuckburgh, E., Sparrow, S., Stone, D., Uhe, P., Wallom, D., Wehner, M., 917 

and Zaaboul, R.: Half a degree additional warming, prognosis and projected impacts (HAPPI): background and 918 

experimental design, Geosci. Model Dev, 10, 571–583, https://doi.org/10.5194/gmd-10-571-2017, 2017. 919 

Moftakhari, H. R., AghaKouchak, A., Sanders, B. F., and Matthew, R. A.: Cumulative hazard: The case of nuisance 920 

flooding, Earths Future, 5, 214–223, https://doi.org/10.1002/2016EF000494, 2017. 921 

Monioudi, I., Asariotis, R., Becker, A., Bhat, C., Dowding-Gooden, D., Esteban, M., Feyen, L., Mentaschi, L., 922 

Nikolaou, A., Nurse, L., Phillips, W., Smith, D., Satoh, M., Trotz, U. O., Velegrakis, A. F., Voukouvalas, E., 923 

Vousdoukas, M. I., and Witkop, R.: Climate change impacts on critical international transportation assets of 924 

Caribbean Small Island Developing States (SIDS): the case of Jamaica and Saint Lucia, Reg Environ Change, 18, 925 

2211–2225, https://doi.org/10.1007/s10113-018-1360-4, 2018. 926 

Mycoo, M. A.: Beyond 1.5°C: vulnerabilities and adaptation strategies for Caribbean Small Island Developing 927 

States, Reg Environ Change, 18, 2341–2353, https://doi.org/10.1007/s10113-017-1248-8, 2018. 928 

Mycoo, M. A., Wairiu, M., Campbell, D., Duvat, V., Golbuu, Y., Maharaj, S., Nalau, J., Nunn, P., Pinnegar, J., and 929 

Warrick, O.: Small Islands, in: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of 930 

Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge 931 

University Press, Cambridge, 2022. 932 

IMERG: Integrated Multi-satellitE Retrievals for GPM | NASA Global Precipitation Measurement Mission: 933 

https://gpm.nasa.gov/data/imerg, last access: 17 May 2023. 934 

Major Hurricane Maria - September 20, 2017:  935 

Neal, J., Schumann, G., and Bates, P.: A subgrid channel model for simulating river hydraulics and floodplain 936 

inundation over large and data sparse areas, Water Resour Res, 48, https://doi.org/10.1029/2012WR012514, 2012.  937 

Neal, J., Hawker, L., Savage, J., Durand, M., Bates, P., and Sampson, C.: Estimating River Channel Bathymetry in 938 

Large Scale Flood Inundation Models, Water Resour Res, 57, https://doi.org/10.1029/2020wr028301, 2021. 939 

Neal, J. C., Bates, P. D., Fewtrell, T. J., Hunter, N. M., Wilson, M. D., and Horritt, M. S.: Distributed whole city 940 

water level measurements from the Carlisle 2005 urban flood event and comparison with hydraulic model 941 

simulations, J Hydrol (Amst), 368, 42–55, https://doi.org/10.1016/j.jhydrol.2009.01.026, 2009. 942 

Nelson, B. R., Prat, O. P., Seo, D. J., and Habib, E.: Assessment and Implications of NCEP Stage IV Quantitative 943 

Precipitation Estimates for Product Intercomparisons, Weather Forecast, 31, 371–394, https://doi.org/10.1175/WAF-944 

D-14-00112.1, 2016. 945 

Nicholls, R. J., Brown, S., Goodwin, P., Wahl, T., Lowe, J., Solan, M., Godbold, J. A., Haigh, I. D., Lincke, D., 946 

Hinkel, J., Wolf, C., and Merkens, J. L.: Stabilization of global temperature at 1.5°C and 2.0°C: Implications for 947 

coastal areas, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 948 

376, https://doi.org/10.1098/rsta.2016.0448, 2018. 949 

Nurse, L. A., McLean, R. F., Agard Trinidad, J., Pascal Briguglio, L., Duvat-Magnan, V., Pelesikoti, N., Tompkins, 950 

E., and Webb, A.: Small Islands, in: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional 951 

Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on 952 

Climate Change, edited by: Intergovernmental Panel on Climate Change, Cambridge, 1613–1654, 2014. 953 

Nuswantoro, R., Diermanse, F., and Molkenthin, F.: Probabilistic flood hazard maps for Jakarta derived from a 954 

stochastic rain-storm generator, J Flood Risk Manag, 9, 105–124, https://doi.org/10.1111/jfr3.12114, 2016. 955 

Omranian, E., Sharif, H. O., and Tavakoly, A. A.: How Well Can Global Precipitation Measurement (GPM) Capture 956 

Hurricanes? Case Study: Hurricane Harvey, Remote Sensing 2018, Vol. 10, Page 1150, 10, 1150, 957 

https://doi.org/10.3390/RS10071150, 2018. 958 



  

 

 

30 

 

Ourbak, T. and Magnan, A. K.: The Paris Agreement and climate change negotiations: Small Islands, big players, 959 

https://doi.org/10.1007/s10113-017-1247-9, 1 December 2018. 960 

Pasch, R. J., Penny, A. B., and Berg, R.: Hurricane Maria 16–30 September 2017, National Hurricane Center 961 

Tropical Cyclone Report, National Hurricane Center, Miami, 2018. 962 

Patricola, C. M. and Wehner, M. F.: Anthropogenic influences on major tropical cyclone events, Nature, 563, 339–963 

346, https://doi.org/10.1038/s41586-018-0673-2, 2018. 964 

Pickup, G. and Warner, R. F.: Effects of hydrologic regime on magnitude and frequency of dominant discharge, J 965 

Hydrol (Amst), 29, 51–75, https://doi.org/10.1016/0022-1694(76)90005-6, 1976. 966 

Pokhrel, R., Cos, S. del, Montoya Rincon, J. P., Glenn, E., and González, J. E.: Observation and modeling of 967 

Hurricane Maria for damage assessment, Weather Clim Extrem, 33, 100331, 968 

https://doi.org/10.1016/J.WACE.2021.100331, 2021. 969 

Pradhan, R. K., Markonis, Y., Vargas Godoy, M. R., Villalba-Pradas, A., Andreadis, K. M., Nikolopoulos, E. I., 970 

Papalexiou, S. M., Rahim, A., Tapiador, F. J., and Hanel, M.: Review of GPM IMERG performance: A global 971 

perspective, Remote Sens Environ, 268, 112754, https://doi.org/10.1016/J.RSE.2021.112754, 2022. 972 

Prat, O. P. and Nelson, B. R.: Evaluation of precipitation estimates over CONUS derived from satellite, radar, and 973 

rain gauge data sets at daily to annual scales (2002-2012), Hydrol. Earth Syst. Sci, 19, 2037–2056, 974 

https://doi.org/10.5194/hess-19-2037-2015, 2015. 975 

Pratomo, R. A., Jetten, V., and Alkema, D.: Rural Flash-flood Behavior in Gouyave Watershed, Grenada, 976 

Caribbbean Island, Geoplanning: Journal of Geomatics and Planning, 3, 161, 977 

https://doi.org/10.14710/geoplanning.3.2.161-170, 2016. 978 

Ramos-Scharrón, C. E. and Arima, E.: Hurricane María’s Precipitation Signature in Puerto Rico: A Conceivable 979 

Presage of Rains to Come, Sci Rep, 9, https://doi.org/10.1038/s41598-019-52198-2, 2019. 980 

Ranasinghe, R., Ruane, A. C., Vautard, R., Arnell, N., Coppola, E., Cruz, F. A., Dessai, S., Islam, A. S., Rahimi, M., 981 

Ruiz, D., Carrascal, Sillmann, J., Sylla, M. B., Tebaldi, C., Wang, W., and Zaaboul, R.: Climate Change Information 982 

for Regional Impact and for Risk Assessment, in: Climate Change 2021: The Physical 9 Science Basis. Contribution 983 

of Working Group I to the Sixth Assessment Report of the Intergovernmental 10 Panel on Climate Change, edited 984 

by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., 985 

Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., 986 

Yu, R., and Zhou, B., Cambridge University Press, Cambridge, 2021. 987 

Rappaport, E. N.: Fatalities in the United States from Atlantic Tropical Cyclones: New Data and Interpretation, Bull 988 

Am Meteorol Soc, 95, 341–346, https://doi.org/10.1175/BAMS-D-12-00074.1, 2014. 989 

Rasmussen, D. J., Bittermann, K., Buchanan, M. K., Kulp, S., Strauss, B. H., Kopp, R. E., and Oppenheimer, M.: 990 

Extreme sea level implications of 1.5 °C, 2.0 °C, and 2.5 °C temperature stabilization targets in the 21st and 22nd 991 

centuries, Environmental Research Letters, 13, 034040, https://doi.org/10.1088/1748-9326/AAAC87, 2018. 992 

Reed, F., Gaughan, A., Stevens, F., Yetman, G., Sorichetta, A., and Tatem, A.: Gridded Population Maps Informed 993 

by Different Built Settlement Products, Data (Basel), 3, 33, https://doi.org/10.3390/data3030033, 2018. 994 

Rios Gaona, M. F., Overeem, A., Brasjen, A. M., Meirink, J. F., Leijnse, H., and Uijlenhoet, R.: Evaluation of 995 

Rainfall Products Derived from Satellites and Microwave Links for the Netherlands, IEEE Transactions on 996 

Geoscience and Remote Sensing, 55, 6849–6859, https://doi.org/10.1109/TGRS.2017.2735439, 2017. 997 

Rios Gaona, M. F., Villarini, G., Zhang, W., and Vecchi, G. A.: The added value of IMERG in characterizing 998 

rainfall in tropical cyclones, Atmos Res, 209, 95–102, https://doi.org/10.1016/J.ATMOSRES.2018.03.008, 2018. 999 

Rivera, D. Z.: Disaster Colonialism: A Commentary on Disasters beyond Singular Events to Structural Violence, Int 1000 

J Urban Reg Res, https://doi.org/10.1111/1468-2427.12950, 2020. 1001 

Rosenzweig, B. R., McPhillips, L., Chang, H., Cheng, C., Welty, C., Matsler, M., Iwaniec, D., and Davidson, C. I.: 1002 

Pluvial flood risk and opportunities for resilience, WIREs Water, 5, https://doi.org/10.1002/wat2.1302, 2018. 1003 

Rözer, V., Kreibich, H., Schröter, K., Müller, M., Sairam, N., Doss‐Gollin, J., Lall, U., and Merz, B.: Probabilistic 1004 

Models Significantly Reduce Uncertainty in Hurricane Harvey Pluvial Flood Loss Estimates, Earths Future, 7, 384–1005 

394, https://doi.org/10.1029/2018EF001074, 2019. 1006 

Von Salzen, K., Scinocca, J. F., McFarlane, N. A., Li, J., Cole, J. N. S., Plummer, D., Verseghy, D., Reader, M. C., 1007 

Ma, X., Lazare, M., and Solheim, L.: The Canadian Fourth Generation Atmospheric Global Climate Model 1008 

(CanAM4). Part I: Representation of Physical Processes, Atmosphere-Ocean, 51, 104–125, 1009 

https://doi.org/10.1080/07055900.2012.755610, 2013. 1010 

Sampson, C. C., Bates, P. D., Neal, J. C., and Horritt, M. S.: An automated routing methodology to enable direct 1011 

rainfall in high resolution shallow water models, Hydrol Process, 27, 467–476, https://doi.org/10.1002/hyp.9515, 1012 

2013. 1013 



  

 

 

31 

 

Sampson, C. C., Smith, A. M., Bates, P. B., Neal, J. C., Alfieri, L., and Freer, J. E.: A high-resolution global flood 1014 

hazard model, Water Resour Res, 51, 7358–7381, https://doi.org/10.1002/2015WR016954, 2015. 1015 

Savage, J. T. S., Bates, P., Freer, J., Neal, J., and Aronica, G.: When does spatial resolution become spurious in 1016 

probabilistic flood inundation predictions?, Hydrol Process, 30, 2014–2032, https://doi.org/10.1002/hyp.10749, 1017 

2016. 1018 

Sayers, P. B., Horritt, M. S., Carr, S., Kay, A., Mauz, J., Lamb, R., and Penning-Rowsell, E.: Third UK Climate 1019 

Change Risk Assessment (CCRA3) Future flood risk Main Report Final Report prepared for the Committee on 1020 

Climate Change, UK, London, 2020. 1021 

Schaller, N., Sillmann, J., Müller, M., Haarsma, R., Hazeleger, W., Hegdahl, T. J., Kelder, T., van den Oord, G., 1022 

Weerts, A., and Whan, K.: The role of spatial and temporal model resolution in a flood event storyline approach in 1023 

western Norway, Weather Clim Extrem, 29, https://doi.org/10.1016/J.WACE.2020.100259, 2020. 1024 

Seneviratne, S. I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Luca, A. Di, Ghosh, S., Iskandar, I., Kossin, J., 1025 

Lewis, S., Otto, F., Pinto, I., Satoh, M., Vicente-Serrano, S. M., Wehner, M., and B. Zhou: Weather and Climate 1026 

Extreme Events in a Changing Climate, in: Climate Change 2021: The Physical Science Basis. Contribution of 1027 

Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: 1028 

Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., 1029 

Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., T. Waterfield, Yelekçi, O., 1030 

Yu, R., and Zhou, B., Cambridge University Press, Cambridge, 2021. 1031 

Simley, J. D. and Carswell Jr, W. J.: The National Map-Hydrography Using the Data: Fact Sheet 2009-3054, 2010. 1032 

Skougaard Kaspersen, P., Høegh Ravn, N., Arnbjerg-Nielsen, K., Madsen, H., and Drews, M.: Comparison of the 1033 

impacts of urban development and climate change on exposing European cities to pluvial flooding, Hydrol Earth 1034 

Syst Sci, 21, 4131–4147, https://doi.org/10.5194/HESS-21-4131-2017, 2017. 1035 

Smith, A., Bates, P. D., Wing, O., Sampson, C., Quinn, N., and Neal, J.: New estimates of flood exposure in 1036 

developing countries using high-resolution population data, Nat Commun, 10, 1814, https://doi.org/10.1038/s41467-1037 

019-09282-y, 2019. 1038 

Smith, J. A., Sturdevant-Rees, Paula., Baeck, M. Lynn., and Larsen, M. C.: Tropical cyclones and the flood 1039 

hydrology of Puerto Rico, Water Resour Res, 41, 1–16, https://doi.org/10.1029/2004WR003530, 2005. 1040 

Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S., Salzmann, M., Schmidt, H., Bader, J., 1041 

Block, K., Brokopf, R., Fast, I., Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and Roeckner, E.: 1042 

Atmospheric component of the MPI-M Earth System Model: ECHAM6, J Adv Model Earth Syst, 5, 146–172, 1043 

https://doi.org/10.1002/JAME.20015, 2013. 1044 

Storlazzi, C. D., Gingerich, S. B., Van Dongeren, A., Cheriton, O. M., Swarzenski, P. W., Quataert, E., Voss, C. I., 1045 

Field, D. W., Annamalai, H., Piniak, G. A., and Mccall, R.: Most atolls will be uninhabitable by the mid-21st 1046 

century because of sea-level rise exacerbating wave-driven flooding, Sci Adv, 4, 2018. 1047 

Swain, D. L., Wing, O. E. J., Bates, P. D., Done, J. M., Johnson, K., and Cameron, D. R.: Increased flood exposure 1048 

due to climate change and population growth in the United States, Earths Future, 8, 1049 

https://doi.org/10.1029/2020ef001778, 2020. 1050 

Tan, J., Petersen, W. A., Kirstetter, P. E., and Tian, Y.: Performance of IMERG as a Function of Spatiotemporal 1051 

Scale, J Hydrometeorol, 18, 307, https://doi.org/10.1175/JHM-D-16-0174.1, 2017. 1052 

Tanaka, T., Kiyohara, K., and Tachikawa, Y.: Comparison of fluvial and pluvial flood risk curves in urban cities 1053 

derived from a large ensemble climate simulation dataset: A case study in Nagoya, Japan, J Hydrol (Amst), 584, 1054 

https://doi.org/10.1016/j.jhydrol.2020.124706, 2020. 1055 

Tang, G., Behrangi, A., Long, D., Li, C., and Hong, Y.: Accounting for spatiotemporal errors of gauges: A critical 1056 

step to evaluate gridded precipitation products, J Hydrol (Amst), 559, 294–306, 1057 

https://doi.org/10.1016/J.JHYDROL.2018.02.057, 2018. 1058 

Tatem, A. J.: WorldPop, open data for spatial demography, https://doi.org/10.1038/sdata.2017.4, 31 January 2017. 1059 

Thomas, A., Pringle, P., Pfleiderer, P., and Schleussner, C.-F.: Tropical Cyclones: Impacts, the link to Climate 1060 

Change and Adaptation, New York, 2017. 1061 

Thomas, A., Shooya, O., Rokitzki, M., Bertrand, M., and Lissner, T.: Climate change adaptation planning in 1062 

practice: insights from the Caribbean, Reg Environ Change, 19, 2013–2025, https://doi.org/10.1007/s10113-019-1063 

01540-5, 2019. 1064 

Thomas, A., Baptiste, A. K., Baptiste, A., Martyr-Koller, R., Pringle, P., and Rhiney, K.: Climate Change and Small 1065 

Island Developing States, Annu Rev Environ Resour, 45, https://doi.org/10.1146/annurev-environ-012320-083355, 1066 

2020. 1067 



  

 

 

32 

 

Tian, F., Hou, S., Yang, L., Hu, H., and Hou, A.: How Does the Evaluation of the GPM IMERG Rainfall Product 1068 

Depend on Gauge Density and Rainfall Intensity?, J Hydrometeorol, 19, 339–349, https://doi.org/10.1175/JHM-D-1069 

17-0161.1, 2018. 1070 

Tiecke, T. G., Liu, X., Zhang, A., Gros, A., Li, N., Yetman, G., Kilic, T., Murray, S., Blankespoor, B., Prydz, E. B., 1071 

and Dang, H.-A. H.: Mapping the world population one building at a time, Washington D.C., 2017. 1072 

Towe, V., Petrun Sayers, E., Chan, E., Kim, A., Tom, A., Chan, W., Marquis, J., Robbins, M., Saum-Manning, L., 1073 

Weden, M., and Payne, L.: Community Planning and Capacity Building in Puerto Rico After Hurricane Maria: 1074 

Predisaster Conditions, Hurricane Damage, and Courses of Action, RAND Corporation, Santa Monica, 1075 

https://doi.org/10.7249/RR2598, 2020. 1076 

Tuholske, C., Gaughan, A. E., Sorichetta, A., de Sherbinin, A., Bucherie, A., Hultquist, C., Stevens, F., 1077 

Kruczkiewicz, A., Huyck, C., and Yetman, G.: Implications for Tracking SDG Indicator Metrics with Gridded 1078 

Population Data, Sustainability, 13, 7329, https://doi.org/10.3390/su13137329, 2021. 1079 

Uhe, P. F., Mitchell, D. M., Bates, P. D., Sampson, C. C., Smith, A. M., and Islam, A. S.: Enhanced flood risk with 1080 

1.5 °C global warming in the Ganges–Brahmaputra–Meghna basin, Environmental Research Letters, 14, 074031, 1081 

https://doi.org/10.1088/1748-9326/ab10ee, 2019. 1082 

United Nations Framework Convention on Climate Change: Adoption of the Paris Agreement, Paris, 2015. 1083 

United Nations Office for Disaster Risk Reduction: Global Assessment Report on Disaster Risk Reduction (5th ed.), 1084 

Geneva, 2019. 1085 

Terminology: https://www.unisdr.org/we/inform/terminology, last access: 28 October 2019. 1086 

United States Geological Survey: Commonwealth of Puerto Rico QL2 Lidar Report Produced for U.S. Geological 1087 

Survey, Tampa, 2017. 1088 

MRMS Operational Product Viewer: https://mrms.nssl.noaa.gov/qvs/product_viewer/, last access: 22 November 1089 

2023. 1090 

Villarini, G., Smith, J. A., Baeck, M. L., Marchok, T., and Vecchi, G. A.: Characterization of rainfall distribution 1091 

and flooding associated with U.S. landfalling tropical cyclones: Analyses of Hurricanes Frances, Ivan, and Jeanne 1092 

(2004), Journal of Geophysical Research: Atmospheres, 116, 23116, https://doi.org/10.1029/2011JD016175, 2011. 1093 

Vosper, E. L., Mitchell, D., and Emanuel, K.: Extreme Hurricane Rainfall affecting the Caribbean mitigated by the 1094 

Paris Agreement Goals, Environmental Research Letters, 15, https://doi.org/10.1088/1748-9326/ab9794, 2020. 1095 

Wehner, M. and Sampson, C.: Attributable human-induced changes in the magnitude of flooding in the Houston, 1096 

Texas region during Hurricane Harvey, Clim Change, 166, 20, https://doi.org/10.1007/s10584-021-03114-z, 2021. 1097 

Wehner, M. F., Reed, K. A., Li, F., Prabhat, Bacmeister, J., Chen, C. T., Paciorek, C., Gleckler, P. J., Sperber, K. R., 1098 

Collins, W. D., Gettelman, A., and Jablonowski, C.: The effect of horizontal resolution on simulation quality in the 1099 

Community Atmospheric Model, CAM5.1, J Adv Model Earth Syst, 6, 980–997, 1100 

https://doi.org/10.1002/2013MS000276, 2014. 1101 

Williams, G. P.: Bank-full discharge of rivers, Water Resour Res, 14, 1141–1154, 1102 

https://doi.org/10.1029/WR014I006P01141, 1978. 1103 

Willison, C. E., Singer, P. M., Creary, M. S., and Greer, S. L.: Quantifying inequities in US federal response to 1104 

hurricane disaster in Texas and Florida compared with Puerto Rico, BMJ Glob Health, 4, 1105 

https://doi.org/10.1136/BMJGH-2018-001191, 2019. 1106 

Wing, O. E. J., Bates, P. D., Sampson, C. C., Smith, A. M., Johnson, K. A., and Erickson, T. A.: Validation of a 30 1107 

m resolution flood hazard model of the conterminous United States, Water Resour Res, 53, 7968–7986, 1108 

https://doi.org/10.1002/2017WR020917, 2017. 1109 

Wing, O. E. J., Bates, P. D., Smith, A. M., Sampson, C. C., Johnson, K. A., Fargione, Joseph., and Morefield, 1110 

Philip.: Estimates of present and future flood risk in the conterminous United States, Environmental Research 1111 

Letters, 13, https://doi.org/10.1088/1748-9326/aaac65, 2018. 1112 

Wing, O. E. J., Sampson, C. C., Bates, P. D., Quinn, N., Smith, A. M., and Neal, J. C.: A flood inundation forecast 1113 

of Hurricane Harvey using a continental-scale 2D hydrodynamic model, J Hydrol (Amst), 4, 1114 

https://doi.org/10.1016/j.hydroa.2019.100039, 2019. 1115 

Wing, O. E. J., Smith, A. M., Marston, M. L., Porter, J. R., Amodeo, M. F., Sampson, C. C., and Bates, P. D.: 1116 

Simulating historical flood events at the continental scale: observational validation of a large-scale hydrodynamic 1117 

model, Natural Hazards and Earth System Sciences, 21, 559–575, https://doi.org/10.5194/nhess-21-559-2021, 2021. 1118 

Wolman, M. G. and Miller, J. P.: Magnitude and Frequency of Forces in Geomorphic Processes, J Geol, 68, 54–74, 1119 

1960. 1120 

World Bank: Flood Hazards: Methodology Book, CHARIM: Caribbean Handbook on Disaster Risk Management, 1121 

2015. 1122 

World Meteorological Organization: State of the Global Climate 2021: WMO Provisional Report, Geneva, 2021. 1123 



  

 

 

33 

 

Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O’Loughlin, F., Neal, J. C., Sampson, C. C., Kanae, S., 1124 

and Bates, P. D.: A high-accuracy map of global terrain elevations, Geophys Res Lett, 44, 5844–5853, 1125 

https://doi.org/10.1002/2017GL072874, 2017. 1126 

Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., and Pavelsky, T. M.: MERIT Hydro: A High-1127 

Resolution Global Hydrography Map Based on Latest Topography Dataset, Water Resour Res, 55, 5053–5073, 1128 

https://doi.org/10.1029/2019WR024873, 2019. 1129 

Yu, C., Hu, D., Di, Y., and Wang, Y.: Performance evaluation of IMERG precipitation products during typhoon 1130 

Lekima (2019), J Hydrol (Amst), 597, 126307, https://doi.org/10.1016/J.JHYDROL.2021.126307, 2021. 1131 

Zhou, G., Sun, Z., and Fu, S.: An efficient variant of the Priority-Flood algorithm for filling depressions in raster 1132 

digital elevation models, Comput Geosci, 90, 87–96, https://doi.org/10.1016/j.cageo.2016.02.021, 2016. 1133 

Zhu, L., Quiring, S. M., and Emanuel, K. A.: Estimating tropical cyclone precipitation risk in Texas, Geophys Res 1134 

Lett, 40, 6225–6230, https://doi.org/10.1002/2013GL058284, 2013. 1135 

  1136 

 1137 

(Marks, 1992; Emanuel et al., 2008, 2004) 1138 


