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Abstract. Over the past few years, a diverse range of automatic real-time instruments has been developed to respond to the 12 

needs of end users in terms of information about atmospheric bioaerosols. One of them, the SwisensPoleno Jupiter, is an 13 

airflow cytometer used for operational automatic bioaerosol monitoring. The instrument records holographic images and 14 

fluorescence information for single aerosol particles, which can be used for identification of several aerosol types, in particular 15 

different pollen taxa. To improve the pollen identification algorithm applied to the SwisensPoleno Jupiter and currently based 16 

only on the holography data, we explore the impact of merging fluorescence spectra measurements with holographic images. 17 

We demonstrate that combining information from these two sources results in a considerable improvement in the classification 18 

performance compared to using only a single source (balanced accuracy of 0.992 vs. 0.968 and 0.878). This increase in 19 

performance can be ascribed to the fact that often classes which are difficult to resolve using holography alone can be well 20 

identified using fluorescence and vice versa. We also present a detailed statistical analysis of the features of the pollen grains 21 

that are measured and provide a robust, physically-based insight into the algorithm’s identification process. The results are 22 

expected to have a direct impact on operational pollen identification models, particularly improving the recognition of taxa 23 

responsible for respiratory allergies. 24 

1. Introduction 25 

Over the past decades a considerable increase in aeroallergen-related diseases such as asthma or allergic rhinitis has been      26 

observed (Ring et al. 2001; Woolcock et al. 2001; Woolcock et Peat 2007). This has resulted in a rise in associated direct and 27 

indirect health costs in terms of hospitalisation, medication costs and absence from work (Zuberbier et al. 2014; Greiner et al. 28 

2011). Currently, the prevalence of pollen allergy ranges between 10 to 30% of the population in Westernised countries and 29 

up to 40% of children in high-income countries (Pawankar et al. 2011). In future, the relevance of pollen as an allergen may 30 

increase further as a result of climate change, which perturbs the life cycle of plants through drier environmental conditions 31 

and increased temperatures. Stressed plants tend to have an earlier and/or longer blooming season (Ziello et al. 2012) and 32 
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produce more pollen with higher concentrations of allergens (Damialis et al. 2019; Beggs 2016; D’Amato et al. 2016), possibly 33 

further contributing to the increase and severity of allergic diseases. For these reasons, systems to measure airborne pollen 34 

concentrations are essential to meet public health challenges associated with respiratory allergies. Through real-time 35 

measurements and the development of forecast models (Chappuis et al. 2020), they can help reduce health costs with better 36 

diagnosis and prevention, thus helping patients to better manage their symptoms. 37 

 38 

Most European countries started monitoring pollen in the second half of the 20th century using Hirst-type instruments (Hirst 39 

1952) with manual identification and counting part of the process (Clot 2003; Spieksma 1990). However, this method provides 40 

data at low time resolution, typically daily mean values, after a processing time of up to 10 days. The spread of pollen grains 41 

on the collection band and the limited sampling (Oteros et al. 2017) mean that data at higher temporal resolutions, or at low 42 

concentrations (below 10 pollen grains/m3), have considerably increased uncertainty (Adamov et al. 2021). Although little 43 

data is available to study atmospheric pollen phenomena at high temporal resolutions, it is widely expected that pollen 44 

production and dispersal processes take place at sub-daily scales since they are highly influenced by local meteorological 45 

environmental conditions (Rojo et al. 2015; Rantio-Lehtimäki 1994). Provision of real-time pollen data is also crucial for 46 

forecasting purposes, since models can then integrate these real-time data to deliver considerably improved forecasts (Sofiev 47 

2019). 48 

 49 

Over the past few years, several instruments designed for real-time pollen monitoring have come onto the market (Crouzy et 50 

al. 2016; Oteros et al. 2015), as comprehensively reviewed in previous work (Huffman et al. 2020; Buters et al. 2022; Maya 51 

Manzano et al. 2023). Among the most promising instruments are airflow cytometers which allow the characterisation of 52 

particles almost in real-time as they pass through the instrument and enable continuous monitoring with high temporal 53 

resolution (10 minutes as for weather parameters or below) over a whole season. In particular, the SwisensPoleno Jupiter 54 

(developed by Swisens AG, Switzerland) is an instrument for bioaerosol identification which can take in-flight holographic 55 

images of particles and measure their fluorescence (FL hereafter) (Sauvageat et al. 2020; Tummon et al. 2021; Lieberherr et 56 

al. 2021). Coupled with a machine learning (ML) algorithm, it has been shown to perform well for pollen monitoring even if 57 

the algorithm uses just the holographic data (Sauvageat et al. 2020; Crouzy et al. 2022; Maya Manzano et al. 2023). 58 

  59 

 The FL data has to date not been used for pollen identification with the SwisensPoleno Jupiter. Sauvageat et al. 2020 reached 60 

an accuracy above 96% for the main allergenic pollen species (Ambrosia artemisiifolia, Corylus avellana, Dactylis glomerata, 61 

Fagus sylvatica, Fraxinus excelsior, Pinus sylvestris, Quercus robur and Urtica dioica) using only holographic images. 62 

However, some species have similar morphologies which can cause misclassifications and thus lower the algorithm 63 

performance, as previously identified in Sauvageat et al. 2020. In this paper, we investigate whether FL helps discriminate 64 

single pollen grains between different allergenic taxa based on their chemical compositions to reduce the level of confusion 65 

https://doi.org/10.5194/egusphere-2023-1572
Preprint. Discussion started: 14 August 2023
c© Author(s) 2023. CC BY 4.0 License.



3 
 

resulting from their similar shapes. Moreover, we also verify whether the FL measurements are consistent for each species 66 

when using different SwisensPoleno units. 67 

2. Material and Methods 68 

In this work we investigate the impact of including the set of FL measurements, constituting the particle FL spectra, as input 69 

for pollen identification using artificial neural networks. We trained and assessed the performance of three neural networks 70 

with the same dataset but using different inputs: only holographic images (holo), only FL spectra (FL), or both (combined). 71 

The performance of each model is evaluated using classical metrics, here the balanced accuracy, the F1-score, and Matthew’s 72 

Correlation Coefficient (MCC) as defined in Chicco et al. 2020, as well as the (relative) error rate derived from the accuracy. 73 

2.1. Pollen holography and fluorescence dataset 74 

The SwisensPoleno Jupiter measures particles in flight as they pass through the instrument. When a particle triggers the 75 

detector, holographic images are taken by two cameras which are both orthogonal to the direction of flight and at 90° to each 76 

other. These images are greyscale with a resolution of 200 by 200 pixels after numerical reconstruction and cropping, with 77 

each pixel representing a square of 0.595 x 0.595 𝜇𝜇m in the physical domain. FL is then sequentially induced by three excitation 78 

sources and captured in five different wavelength channels, for a total of 15 measured FL intensities. The FL lifetime is also 79 

measured but is not used in the present work. The three different excitation wavelengths are 405, 365, and 280 nm, while the 80 

reception wavebands are 333-381, 411-459, 465-501, 539-585, and 658-694 nm. In the following, we will refer to each 81 

waveband by its central wavelength, i.e., 357, 435, 483, 562, and 676 nm. Note that the first measurement channel is saturated 82 

by scattered light when the 365 nm excitation source is activated. Also, for single-photon excitation, we expect to measure no 83 

signal in the first measurement channel when the 405 nm source is active. This effectively reduces the useful intensity 84 

measurements to 13. The FL data requires additional pre-processing to simplify its usability and improve robustness. More 85 

details on these steps are provided in Section 2.2. Finally, the SwisensPoleno Jupiter also performs polarised scattered light 86 

measurements, which are however not used in the present work. We therefore limit the analysis to characterisation of particle 87 

morphology using digital holography and chemical composition with FL intensity measurements. From hereon, we refer to 88 

the set of holographic images and FL measurements for each individual particle as "an event". A more extensive description 89 

of the data collection process is provided in Sauvageat et al. 2020. 90 

 91 

This study is based on a pollen dataset created by aerosolising freshly collected pollen at the Swiss Federal Office of 92 

Meteorology and Climatology MeteoSwiss (hereafter MeteoSwiss) station in Payerne, Switzerland. In total, the dataset 93 

consists of measurements from 57'300 pollen grains distributed among seven different wind-pollinated and allergy relevant 94 

plant taxa as reported in Table 1. For simplicity, we will refer to these taxa also as "classes" and only the genus name will be 95 

used to refer to each of them. In Figure 1, we present examples of reconstructed images for the different classes considered in 96 

this work. To compare results across different instruments (of the same type), all measurements were performed using two 97 
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SwisensPoleno Jupiter systems denoted P4 and P5. The counts for each pollen taxa and SwisensPoleno are also given in Table 98 

1. 99 

 100 

The pollen samples were collected from a single tree for Alnus, Betula, Corylus, Fagus, and Quercus, from two different trees 101 

for Fraxinus, and from a few neighbouring stems for the grass Cynosurus. After outdoor collection, pollen was brought to the 102 

measurement site and aerosolised. This was achieved using a SwisensAtomizer which disperses particles using a vibrating 103 

membrane and an airstream. Samples are thus scattered in a chamber and drawn into the instrument, producing a regular flow 104 

of pollen grains. To prevent the pollen from drying out, plants that were not more than 15 km away from the MeteoSwiss 105 

station were selected, which means it was possible to aerosolise samples soon after collection (usually within one hour). Pollen 106 

samples were analysed using two instruments one after another implying a time lag between the data for P4 and P5, which 107 

ranges from just 35 minutes for Alnus to 80 minutes for Quercus (the mean time lag is 60 minutes). For Fraxinus there is no 108 

such lag since the data come from two different samples that were measured on different days. Datasets for all the considered 109 

pollen taxa were created in 2020, except Alnus and Corylus which are from early 2021. 110 

 111 

Common name Latin scientific name 
Number of events 

for P4 

Number of events 

for P5 

Alder Alnus glutinosa 8416 2643 

Birch Betula pendula 6128 5458 

Hazel Corylus avellana 4714 4444 

Crested Dog's-Tail (Grass) Cynosurus cristatus 5895 2117 

Beech Fagus sylvatica 2178 2827 

Ash Fraxinus excelsior 2557 4837 

Oak Quercus robur 3036 2050 

 TOTAL 32924 24376 

Table 1: Distribution of pollen counts per taxa and Poleno. 112 

 113 

2.2. Data pre-processing 114 

The datasets required to train the algorithms were generated as follows. First, the holographic data for each class were cleaned 115 

to eliminate any non-pollen events or events associated with other pollen taxa. This was achieved with additional filters on 116 

shape properties (image features computed after binarisation as described in Sauvageat et al. 2020), which were appropriately 117 

selected for every class by heuristic visual inspection of the holographic images. Thereafter, for each event the background 118 

signal caused by scattered light was subtracted from the raw FL measurement. This background especially disturbs the low FL 119 
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intensity measurements where the scattered light dominates relative to the particle signal. The background signal was obtained 120 

by conducting measurements with no particles present in the measurement chamber, leaving just the scattered light induced 121 

by the excitation source. If the subtraction caused the final signal to be negative due to noise, the resulting value was set to 122 

zero. Finally, since the absolute FL compensated by the scattered light is still dependent on the measuring system, the particle 123 

size, and the particle position within the measurement volume, we transformed it into relative FL. Namely, the relative 124 

fluorescence intensity 𝑟𝑟𝑖𝑖𝑖𝑖  for measurement channel 𝑖𝑖 and excitation source 𝑗𝑗 is obtained by dividing the absolute FL intensity 125 

𝑎𝑎𝑖𝑖𝑖𝑖  by the sum of the FL intensities on all channels 𝑘𝑘 for the same excitation source 𝑗𝑗 : 126 

𝑟𝑟𝑖𝑖𝑖𝑖 =
𝑎𝑎𝑖𝑖𝑖𝑖

∑𝑘𝑘 𝑎𝑎𝑘𝑘𝑖𝑖
 127 

Using relative FL, although we lose the absolute FL intensities, allows measurement systems to be compared without specific 128 

data modification. The inter-compatibility aspect is especially important when considering a measurement network. Thanks to 129 

this standardisation, the same algorithm can be used for all systems in the network rather than adjusting the classification 130 

algorithm individually for each measurement system. 131 

2.3. Data exploration 132 

Before applying any ML algorithm, it is important to explore the data to better understand their characteristics. In the following, 133 

the distributions of the various holographic image features as well as typical relative FL spectra for the different pollen types 134 

are investigated. We also explore the structure of the data using dimension reduction. 135 

 136 

To get other characteristic features from the reconstructed holographic images, further image processing steps are conducted 137 

using the Python package "Scikit" (Van der Walt et al. 2014). Physically-based particle features, such as the minor and major 138 

axes, the area, the eccentricity, and the particle brightness (mean intensity of the pixels reproducing the particle) are computed 139 

for each image separately. Other statistics were calculated based on image features, e.g., the equivalent area diameter defined 140 

as the diameter of a circle with the same area as the particle. The distribution of these features for each pollen class and each 141 

measurement system were analysed separately and are presented in the Results section. 142 

 143 

As previously discussed, alongside the holography images, relative FL spectra are used for enhanced characterisation of the 144 

pollen grains. During data exploration, we observed inconsistent results for the 405 nm laser excitation, which upon further 145 

inspection revealed a misalignment of this laser in one of the measurement systems. For this reason, we will only use the 280 146 

nm and 365 nm excitation throughout the rest of the present work. The distributions of the valid FL spectra are presented and 147 

discussed in the Results section. 148 

 149 

As a way to explore all the features of the dataset at once, we performed dimensionality reduction. We used the Uniform 150 

Manifold Approximation and Projection (McInnes et al. 2020), called UMAP, on the input data of each model (holo, FL and 151 
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combined). This technique allows us to plot multidimensional data as points on a plane, therefore it gives an insight on how 152 

similar/different data points are depending on how far from another they are in the plane. 153 

2.4. Machine Learning Model 154 

To handle the classification task, we randomly split the data into training (75%) and test (25%) sets and chose a multi-layer 155 

"deep'' artificial neural network to learn how to identify pollen grains based on the training set. This network maps input data 156 

from the holographic images and relative FL spectra to the different pollen classes. The full network, built using the ML 157 

framework Keras (Chollet et al. 2015), is shown in Figure 2. To handle the image input, an EfficientNet B0 model pre-trained 158 

on ImageNet is used (Tan et Le 2019). It achieves state-of-the-art performance for classification tasks. For treating the spectral 159 

information, a single fully connected (denoted FC hereafter) hidden layer with 255 neurons is used. As a pre-trained model, 160 

the parameters of EfficientNet B0 are frozen and therefore not modified in the training on the pollen dataset. However, the 161 

parameters of the layers after it are optimised according to the training data. The results of the two feature extraction networks 162 

are concatenated, then dropout is added and finally the result is passed to the decision layer. The width of this FC decision 163 

layer matches the number of classes (seven in this case). Lastly, the output is normalised by a softmax layer to obtain a 164 

probability distribution. To compute the loss, we used the cross-entropy function between the predicted and reference classes. 165 

To ensure a fair comparison, each model was trained for exactly 200 epochs. In training runs where only images or only relative 166 

FL spectra were used, the path not used was removed from the model graph (Figure 2). The figure shows the model with both 167 

features active. 168 

The models were evaluated using a test set consisting of 25% of the data from both instruments, sampled randomly. We used 169 

balanced accuracy, F1 score and Matthew’s Correlation Coefficient (MCC) as metrics to assess the model performance. For 170 

accuracy, the corresponding confidence intervals were calculated via normal approximation as explained in Raschka 2020. It 171 

is important to note that the model used here is a baseline and has not undergone hyper-parameter optimisation, therefore no 172 

validation set has been defined in order to keep a maximum of data for training. This means that a degradation of scores is 173 

possible when applying the model to operational data. Nonetheless, the present study does not aim to provide an operational 174 

model but simply investigate the potential of using FL as a complement to holography for single particle identification. 175 

3. Results 176 

3.1. Feature observations 177 

Important observations can already be made by looking at basic geometrical features derived from holographic images. As an 178 

example, we consider the distributions of equivalent area diameter and eccentricity in Figure 3 (a) and (b). Note that for 179 

geometrical features, the value associated with each particle is the largest result obtained for the pair of holographic images. 180 

Regarding the equivalent area diameter, its distribution provides information about the size of the pollen grains for a given 181 

class. As illustrated in Figure 3 (a), Fagus pollen grains are typically large with a maximum equivalent area diameter of 45-55 182 
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μm, which corresponds to the literature (Halbritter et al. 2021) and is clearly superior to all other classes we considered in our 183 

study. Conversely, the distribution of the eccentricity gives an insight on how round the pollen grains are. In that case, 184 

Cynosurus pollen grains have the roundest shape with a maximal eccentricity between 0.4 and 0.55 (0 representing a circle 185 

and 1 an ellipse), whereas Quercus’ values are in the range 0.8-0.9 due to its more elliptical shape. These characteristics can 186 

also be observed on the holographic images in Figure 1. 187 

 188 

The distributions of the relative FL spectra allow us to identify some classes that have distinct FL signatures. Figure 3 (c) and 189 

(d) show the distribution of the relative FL for the two excitation-emission combinations where the differences between taxa 190 

are the largest. The excitation sources are at 280 and 365 nm with emission channels at 357 and 435 nm respectively. In Figure 191 

3, we observe, for both plot (c) and (d), clear differences in relative FL for Cynosurus, which presents considerably higher 192 

values compared to the other taxa. In addition, differences between instruments show that P4 and P5 have similar 193 

measurements in the 280/357 nm but P5 has significantly lower measurements for Corylus and Cynosurus in the 365/435 nm. 194 

Overall, all combinations of excitation sources and emission channels provide relevant information for pollen characterisation 195 

and the ones presented in Figure 3 (c) and (d) represent well the type of patterns that can be observed. 196 

 197 

Finally, the UMAP plots, given in the left column of Figure 4, show how different or similar are the image and FL features of 198 

each taxon. We observe a clear distinction based on morphology (Figure 4 (a)) for Fagus and Quercus, with Cynosurus also 199 

having only little overlap with Corylus. However, the latter and especially Betula and Alnus are clearly mixed up. In Figure 4 200 

(b), the UMAP on FL spectra does not exhibit the same group structure as for morphology. Here, Fagus and Cynosurus are 201 

plainly detached from the remaining groups which are themselves imbricated. Ultimately, all groups are fully separated when 202 

building the UMAP on both morphology and FL features. We observe a correspondence between the separation of groups on 203 

the UMAPs and the capacity of the ML model to classify those classes correctly. 204 

3.2. Classification performance 205 

The classification results for each model are given as confusion matrices in Figure 4 and summarised in Table 2. We observe 206 

in these results that the holo model globally performs better than the FL model when training on a single modality. The FL 207 

model indeed encounters difficulties distinguishing some classes such as Quercus and Fraxinus or Betula and Corylus (Figure 208 

4 (b)) which exhibit similar relative FL spectra. When considering the morphology of Quercus and Fraxinus (Figure 3 (a) and 209 

(b)), it is not surprising that the holography model performs better at differentiating these classes as they present significantly 210 

distinct shapes. As the performance for the single-input models here is already (very) high, minor dips in performance can 211 

make a notable difference. Combining holography and FL improves the performance compared to the single input models for 212 

every taxon considered, except for Fagus and Cynosurus that already obtain perfect scores with single input models. The 213 

performance gain is noteworthy as the combined model achieves an overall balanced accuracy of 99.2% compared to either 214 

96.8% or 87.8% for the individual holography or FL models respectively. As a complement, the confidence intervals associated 215 
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with the accuracy of each model for each taxon are displayed in Figure 5. The non-overlapping of the confidence intervals 216 

indicates a statistical difference between accuracies. The combined model outperforms both single-input models for five of the 217 

seven taxa, namely, Alnus, Betula, Corylus, Fraxinus and Quercus. Thus, logically, the balanced accuracies of the holo and 218 

FL models are significantly lower than that of the combined model (see Table 2). It follows that the absolute error rates, defined 219 

as 1 minus the accuracy, of the holo- (3.2%) and FL-only (12.2%) models are respectively 4 and 15 times higher than that of 220 

the combined model (0.8%). This indicates that mistakes in particle identification occur for roughly 3 particles over 100 for 221 

the holo model, 12 particles over 100 for the FL model but less than 1 particle over 100 for the combined model. 222 

 223 

Model Balanced accuracy F1-score MCC 

Holography only 0.968, [0.965; 0.970] 0.964 0.958 

FL only 0.878, [0.874; 0.882] 0.890 0.874 

Combined 0.992, [0.991; 0.993]       0.992 0.991 

Table 2: Classification performance of each model. The balanced accuracy, with its associated 95% confidence interval, 224 
represents the average of the recalls (ratio of correct prediction over total events for each class), ranging from 0 to 1. 225 
The F1-score is the harmonic mean of the precision and recall, ranging from 0 to 1 and MCC stands for Matthew’s 226 
Correlation Coefficient and is a robust metric for classification performance, ranging from -1 to 1. 227 

4. Discussion 228 

The results show that combining FL with holography leads to a substantial identification performance gain. The differences 229 

between the combined model accuracy and both single-input models confirm the findings from the UMAPs. This demonstrates 230 

that by combining the two inputs, the complementary morphological and biochemical properties of pollen grains can be used 231 

for a better classification. Although it seems small, the gain in accuracy is important for the field of aerobiology and specifically 232 

pollen monitoring since pollen grains only represent a minor part of all the particles in the air. Since pollen concentrations 233 

typically range from a few grains (< 10) to a few hundred grains per cubic metre, and the thresholds for allergy symptoms are 234 

usually around a few tens of grains per cubic metre (Gehrig Bichsel et al. 2017; Pollen.lu 2003), misclassifications can have 235 

an impact on the information provided to allergic people. Above all, high identification accuracy is particularly important for 236 

plants with highly allergenic pollen such as Ambrosia artemisiifolia (common ragweed) as a few grains are sufficient to cause 237 

allergy symptoms. 238 

 239 

Not only is the combined model’s accuracy superior to the other models, but this gain is specifically important for some key 240 

pollen taxa. Indeed, the group of Alnus, Betula and Corylus, all from the Betulaceae family, is known to be difficult to classify 241 

accurately and presents a very high allergic potency with possible cross-reactivity in central and northern Europe (Puc et 242 

Kasprzyk 2013). Thus, the excellent classification performance obtained here opens the gate towards better monitoring by 243 

using holography together with fluorescence data. In addition, the consistent FL signal in between instruments and the available 244 
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excitation sources and measurement channels characterise single pollen grains precisely even though the 405 nm excitation 245 

source was set aside. Also, the combinations of excitation and emission wavelengths used in the Poleno correspond to the most 246 

prominent fluorescence modes for a variety of dry pollen studied in (Pöhlker et al. 2013). Then, the coherence of the 247 

fluorescence spectra obtained here with the measurements of the latter study, brings confidence into our measurements and 248 

the measurement instrument per se. In future work, the 405 nm excitation source needs to be included to verify its potential 249 

for improvement. 250 

 251 

When working with images, choosing neural networks for classification is the obvious solution to be sure not to lose 252 

information by using the image itself as input. However, the discrimination of pollen taxa using the UMAP dimension 253 

reduction method shows that working with features derived from the holographic images is also a possibility for pollen 254 

classification. Future work testing other machine learning methods on image features and fluorescence spectra needs to be 255 

conducted as other classifiers may perform similarly while being cheaper in terms of computational resources. 256 

 257 

In the end, we expect the benefit of combining holography with FL measurements for pollen classification to have a positive 258 

impact on the capacity of models to discriminate different pollen taxa. Moreover, in an operational setup, the benefit of using 259 

FL in addition to holography could be even higher as it would allow for an easy distinction between biological and non-260 

biological particles (e.g. water droplets, sand particles or dust) assuming that they do not fluoresce. Yet, the extent of the gain 261 

in the real case scenario remains to be quantified as the dataset used in this study probably does not catch all the environmental 262 

variability. 263 

5. Conclusion 264 

The present study demonstrates the benefit of using FL measurements as a complementary input to holographic images for 265 

single-grain pollen identification using the SwisensPoleno and ML algorithms for the most important allergy causing pollen 266 

taxa in Central Europe. The capacity of the ML model to identify pollen grains depends on both inputs and they compensate 267 

each other when one does not provide enough information for accurate identification. As a result, the performance of the 268 

combined model is systematically higher than either of the models trained with a single input. The restricted and manually 269 

created dataset used in this study has several limitations, but it still provides strong evidence for the complementary role of FL 270 

and holography. 271 

 272 

In conclusion, we recommend the use of relative FL as a secondary input for automatic pollen identification using the 273 

SwisensPoleno Jupiter. In this study, we tested its contribution on a restricted dataset, showing that the contribution of FL is 274 

of great value for operational networks where similar pollen taxa can be encountered. Finally, the use of relative FL for 275 

automatic pollen identification further opens the door towards a larger and more precise monitoring of bioaerosols. For 276 
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example, objects which are challenging to identify using holographic imaging only, such as fungal spores, could be added to 277 

the panel of particles. 278 
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Figures 394 

 395 

Figure 1: Holographic images of pollen after numerical reconstruction: (a) Alnus glutinosa (b) Betula pendula, (c) 396 
Corylus avellana, (d) Cynosurus cristatus, (e) Fagus sylvatica, (f) Fraxinus excelsior, (g) Quercus robur  397 
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 398 

Figure 2: ML model structure used to classify the pollen data. The top path handles the holographic image data while 399 
the bottom path processes the relative FL spectra data. The numbers on the connecting lines denote the dimensions of 400 
the data.  401 
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 402 

Figure 3: Distribution of holographic image features (upper plots) and relative FL (bottom plots) for each pollen class 403 
and measurement system. (a) Maximum equivalent area diameter in 𝝁𝝁m, defined as the diameter of a circle with the 404 
same area as the particle, (b) Maximum eccentricity, defined as the deviation of the ellipse fitted to the particle from a 405 
perfect circle, ranging from 0 for a circle to close to 1 for an ellipse. (c) Measured relative FL intensity with 280 nm 406 
excitation and detector with centre wavelength 357 nm and (d) with 365 nm excitation and detector 562 nm.  407 
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 408 

Figure 4: Left side: Uniform Manifold Approximation and Projection (UMAP) of event features (morphology or/and 409 
FL features). Right side: Confusion matrices indicating the performance of each model on the test set. Line (a) 410 
holography only, line (b) relative FL only and line (c) combined relative FL and holography. UMAP settings: 411 
neighbours = 15, minimum distance = 0.001, random state = 42. 412 

  413 
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Figure 5: Accuracy of each model for each taxon. The error bars represent the 95% confidence intervals.  414 
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