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Abstract. Over the past few years, a diverse range of automatic real-time instruments has been developed to respond to the 12 

needs of end users in terms of information about atmospheric bioaerosols. One of them, the SwisensPoleno Jupiter, is an 13 

airflow cytometer used for operational automatic bioaerosol monitoring. The instrument records holographic images and 14 

fluorescence information for single aerosol particles, which can be used for identification of several aerosol types, in particular 15 

different pollen taxa. To improve the pollen identification algorithm applied to the SwisensPoleno Jupiter and currently based 16 

only on the holography data, we explore the impact of merging fluorescence spectra measurements with holographic images. 17 

We demonstrate, using measurements of aerosolised pollen, that combining information from these two sources results in a 18 

considerable improvement in the classification performance compared to using only a single source (balanced accuracy of 19 

0.992 vs. 0.968 and 0.878). This increase in performance can be ascribed to the fact that often classes which are difficult to 20 

resolve using holography alone can be well identified using fluorescence and vice versa. We also present a detailed statistical 21 

analysis of the features of the pollen grains that are measured and provide a robust, physically-based insight into the algorithm’s 22 

identification process. The results are expected to have a direct impact on operational pollen identification models, particularly 23 

improving the recognition of taxa responsible for respiratory allergies. 24 

1. Introduction 25 

Over the past decades a considerable increase in aeroallergen-related diseases such as asthma or allergic rhinitis has been      26 

observed (Ring et al. 2001; Woolcock et al. 2001; Woolcock et Peat 2007). This has resulted in a rise in associated direct and 27 

indirect health costs in terms of hospitalisation, medication costs and absence from work (Zuberbier et al. 2014; Greiner et al. 28 

2011). Currently, the prevalence of pollen allergy ranges between 10 to 30% of the population in Westernised countries and 29 

up to 40% of children in high-income countries (Pawankar et al. 2011). In future, the relevance of pollen as an allergen may 30 

increase further as a result of climate change, which perturbs the life cycle of plants through drier environmental conditions 31 

and increased temperatures. Stressed plants tend to have an earlier and/or longer blooming season (Ziello et al. 2012) and 32 
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produce more pollen with higher concentrations of allergens (Damialis et al. 2019; Beggs 2016; D’Amato et al. 2016), possibly 33 

further contributing to the increase and severity of allergic diseases. For these reasons, systems to measure airborne pollen 34 

concentrations are essential to meet public health challenges associated with respiratory allergies. Through real-time 35 

measurements and the development of forecast models (Chappuis et al. 2020), they can help reduce health costs with better 36 

diagnosis and prevention, thus helping patients to better manage their symptoms. 37 

 38 

Most European countries started monitoring pollen in the second half of the 20th century using Hirst-type instruments (Hirst 39 

1952) with manual identification and counting part of the process (Clot 2003; Spieksma 1990). However, this method provides 40 

data at low time resolution, typically daily mean values, after a processing time of up to 10 days. The spread of pollen grains 41 

on the collection band and the limited sampling (Oteros et al. 2017) mean that data at higher temporal resolutions, or at low 42 

concentrations (below 10 pollen grains/m3), have considerably increased uncertainty (Adamov et al. 2021). Although little 43 

data is available to study atmospheric pollen phenomena at high temporal resolutions, it is widely expected that pollen 44 

production and dispersal processes take place at sub-daily scales since they are highly influenced by local meteorological 45 

environmental conditions (Rojo et al. 2015; Rantio-Lehtimäki 1994). Provision of real-time pollen data is also crucial for 46 

forecasting purposes, since models can then integrate these real-time data to deliver considerably improved forecasts (Sofiev 47 

2019). 48 

 49 

Over the past few years, several instruments designed for real-time pollen monitoring have come onto the market (Crouzy et 50 

al. 2016; Oteros et al. 2015), as comprehensively reviewed in previous work (Huffman et al. 2020; Buters et al. 2022; Maya-51 

Manzano et al. 2023). Among the most promising instruments are airflow cytometers which allow the characterisation of 52 

particles almost in real-time as they pass through the instrument and enable continuous monitoring with high temporal 53 

resolution (10 minutes as for weather parameters or below) over a whole season. In particular, the SwisensPoleno Jupiter 54 

(developed by Swisens AG, Switzerland) is an instrument for bioaerosol identification which can take in-flight holographic 55 

images of particles and measure their fluorescence (FL hereafter) (Sauvageat et al. 2020; Tummon et al. 2021; Lieberherr et 56 

al. 2021). Coupled with a machine learning (ML) algorithm, it has been shown to perform well for pollen monitoring even if 57 

the algorithm uses just the holographic data (Sauvageat et al. 2020; Crouzy et al. 2022; Maya-Manzano et al. 2023). 58 

  59 

 The FL data has to date not been used for pollen identification with the SwisensPoleno Jupiter. Sauvageat et al. 2020 reached 60 

an accuracy above 96% for eight of the main allergenic pollen species in central Europe (Ambrosia artemisiifolia, Corylus 61 

avellana, Dactylis glomerata, Fagus sylvatica, Fraxinus excelsior, Pinus sylvestris, Quercus robur and Urtica dioica) using 62 

only holographic images. However, some species have similar morphologies which can cause misclassifications and thus lower 63 

the algorithm performance, as previously identified in Sauvageat et al. 2020. In this paper, we investigate whether FL helps 64 

discriminate single pollen grains between different allergenic taxa based on their chemical compositions to reduce the level of 65 
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confusion resulting from their similar shapes. Moreover, we also verify whether the FL measurements are consistent for each 66 

species when using different SwisensPoleno units. 67 

2. Material and Methods 68 

In this work we investigate the impact of including the set of FL measurements, constituting the particle FL spectra, as input 69 

for pollen identification using artificial neural networks. We trained and assessed the performance of three neural networks 70 

with the same dataset but using different inputs: only holographic images (holo), only FL spectra (FL), or both (combined). 71 

The performance of each model is evaluated using classical metrics, here the balanced accuracy, the F1-score, and Matthew’s 72 

Correlation Coefficient (MCC) as defined in Chicco et al. 2020, as well as the (relative) error rate derived from the accuracy. 73 

2.1. Pollen holography and fluorescence dataset 74 

The SwisensPoleno Jupiter measures particles in flight, in the size range from 0.5 to 300 µm, as they pass through the 75 

instrument. When a particle triggers the detector, holographic images are taken by two cameras which are both orthogonal to 76 

the direction of flight and at 90° to each other. These images are greyscale with a resolution of 200 by 200 pixels after numerical 77 

reconstruction and cropping, with each pixel representing a square of 0.595 x 0.595 𝜇𝜇m in the physical domain. Right after the 78 

holographic images, FL is measured using the Laser Induced Fluorescence (LIF) method. FL is then sequentially induced by 79 

three excitation sources and captured in five different wavelength channels, for a total of 15 measured FL intensities. For each 80 

source, the FL is induced by shooting at the particle at the moment it passes the detector and the FL subsequently emitted by 81 

the particle is captured by Silicon Photomultipliers (SiPM). The FL lifetime is also measured but is not used in the present 82 

work. The three different excitation wavelengths are 405, 365, and 280 nm, while the reception wavebands are 333-381, 411-83 

459, 465-501, 539-585, and 658-694 nm. In the following, we will refer to each waveband by its central wavelength, i.e., 357, 84 

435, 483, 562, and 676 nm. Note that the first measurement channel is saturated by scattered light when the 365 nm excitation 85 

source is activated. Also, for single-photon excitation, we expect to measure no signal in the first measurement channel when 86 

the 405 nm source is active. This effectively reduces the useful intensity measurements to 13. The FL data requires additional 87 

pre-processing to simplify its usability and improve robustness. More details on these steps are provided in Section 2.2. Finally, 88 

the SwisensPoleno Jupiter also performs polarised scattered light measurements, which are however not used in the present 89 

work. We therefore limit the analysis to characterisation of particle morphology using digital holography and chemical 90 

composition with FL intensity measurements. From hereon, we refer to the set of holographic images and FL measurements 91 

for each individual particle as "an event". A more extensive description of the data collection process is provided in Sauvageat 92 

et al. 2020. 93 

 94 

This study is based on a pollen dataset created by aerosolising freshly collected pollen at the Swiss Federal Office of 95 

Meteorology and Climatology MeteoSwiss (hereafter MeteoSwiss) station in Payerne, Switzerland. In total, the dataset 96 

consists of measurements from 57'300 pollen grains distributed among seven different wind-pollinated and allergy relevant 97 



4 
 

plant taxa as reported in Table 1. For simplicity, we will refer to these taxa also as "classes" and only the genus name will be 98 

used to refer to each of them. In Figure 1, we present examples of reconstructed images for the different classes considered in 99 

this work. To compare results across different instruments (of the same type), all measurements were performed using two 100 

SwisensPoleno Jupiter systems denoted P4 and P5. The counts for each pollen taxa and SwisensPoleno are also given in Table 101 

1. 102 

 103 

The pollen samples were collected from a single tree for Alnus, Betula, Corylus, Fagus, and Quercus, from two different trees 104 

for Fraxinus, and from a few neighbouring stems for the grass Cynosurus. After collection, pollen was brought to the outdoor 105 

measurement site and aerosolised. This was achieved using a SwisensAtomizer which disperses particles using a vibrating 106 

membrane and an airstream. Samples are thus scattered in a chamber and drawn into the instrument, producing a regular flow 107 

of pollen grains. To prevent the pollen from drying out, plants that were not more than 15 km away from the MeteoSwiss 108 

station were selected, which means it was possible to aerosolise samples soon after collection (usually within one hour). Pollen 109 

samples were analysed using two instruments one after another implying a time lag between the data for P4 and P5, which 110 

ranges from just 35 minutes for Alnus to 80 minutes for Quercus (the mean time lag is 60 minutes). For Fraxinus there is no 111 

such lag since the data come from two different samples that were measured on different days. Datasets for all the considered 112 

pollen taxa were created in 2020, except Alnus and Corylus which are from early 2021. 113 

 114 

Class (common name) Latin scientific name Number of events 
for P4 

Number of events 
for P5 

Alder Alnus glutinosa 8416 2643 
Birch Betula pendula 6128 5458 
Hazel Corylus avellana 4714 4444 

Crested Dog's-Tail (Grass) Cynosurus cristatus 5895 2117 

Beech Fagus sylvatica 2178 2827 
Ash Fraxinus excelsior 2557 4837 
Oak Quercus robur 3036 2050 
 TOTAL 32924 24376 

Table 1: Distribution of pollen counts per taxa and Poleno. 115 

 116 

2.2. Data pre-processing 117 

The datasets required to train the algorithms were generated as follows. First, the holographic data for each class were cleaned 118 

to eliminate any non-pollen events or events associated with other pollen taxa. This was achieved with additional filters on 119 

shape properties (image features computed after binarisation as described in Sauvageat et al. 2020), which were appropriately 120 

selected for every class by heuristic visual inspection of the holographic images. Thereafter, for each event the background 121 
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signal caused by scattered light was subtracted from the raw FL measurement. This background especially disturbs the low FL 122 

intensity measurements where the scattered light dominates relative to the particle signal. The background signal was obtained 123 

by conducting measurements with no particles present in the measurement chamber, leaving just the scattered light induced 124 

by the excitation source. If the subtraction caused the final signal to be negative due to noise, the resulting value was set to 125 

zero to avoid numerical instabilities that our ML model would not be able to deal with. Finally, since the absolute FL 126 

compensated by the scattered light is still dependent on the measuring system, the particle size, and the particle position within 127 

the measurement volume, we transformed it into relative FL. Namely, the relative fluorescence intensity 𝑟𝑟𝑖𝑖𝑖𝑖  for measurement 128 

channel 𝑖𝑖 and excitation source 𝑗𝑗 is obtained by dividing the absolute FL intensity 𝑎𝑎𝑖𝑖𝑖𝑖  by the sum of the FL intensities on all 129 

channels 𝑘𝑘 for the same excitation source 𝑗𝑗 : 130 

𝑟𝑟𝑖𝑖𝑖𝑖 =
𝑎𝑎𝑖𝑖𝑖𝑖

∑𝑘𝑘 𝑎𝑎𝑘𝑘𝑘𝑘
 131 

Using relative FL, although we lose the absolute FL intensities, allows measurement systems to be compared without specific 132 

data modification. The inter-compatibility aspect is especially important when considering a measurement network. Thanks to 133 

this standardisation, the same algorithm can be used for all systems in the network rather than adjusting the classification 134 

algorithm individually for each measurement system. 135 

2.3. Data exploration 136 

Before applying any ML algorithm, it is important to explore the data to better understand their characteristics. In the following, 137 

the distributions of the various holographic image features as well as typical relative FL spectra for the different pollen types 138 

are investigated. We also explore the structure of the data using dimension reduction. 139 

 140 

To get other characteristic features from the reconstructed holographic images, further image processing steps are conducted 141 

using the Python package "Scikit" (Van der Walt et al. 2014). Physically-based particle features, such as the minor and major 142 

axes, the area, the eccentricity, and the particle brightness (mean intensity of the pixels reproducing the particle) are computed 143 

for each image separately. Other statistics were calculated based on image features, e.g., the equivalent area diameter defined 144 

as the diameter of a circle with the same area as the particle. The distribution of these features for each pollen class and each 145 

measurement system were analysed separately and are presented in the Results section. 146 

 147 

As previously discussed, alongside the holography images, relative FL spectra are used for enhanced characterisation of the 148 

pollen grains. During data exploration, we observed inconsistent results for the 405 nm laser excitation, which upon further 149 

inspection revealed a misalignment of this laser in one of the measurement systems. For this reason, we will only use the 280 150 

nm and 365 nm excitation throughout the rest of the present work. The distributions of the valid FL spectra are presented and 151 

discussed in the Results section. 152 

 153 
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As a way to explore all the features of the dataset at once, we performed dimensionality reduction. We used the Uniform 154 

Manifold Approximation and Projection (McInnes et al. 2018), called UMAP, on the input data of each model (holo, FL and 155 

combined). This technique allows us to plot multidimensional data as points on a plane, therefore it gives an insight on how 156 

similar/different data points are depending on how far from another they are in the plane. 157 

2.4. Machine Learning Model 158 

To handle the classification task, we randomly split the data into training (75%) and test (25%) sets and chose a multi-layer 159 

"deep'' artificial neural network to learn how to identify pollen grains based on the training set. This network maps input data 160 

from the holographic images and relative FL spectra to the different pollen classes. The full network, built using the ML 161 

framework Keras (Chollet et al. 2015), is shown in Figure 2. To handle the image input, an EfficientNet B0 model pre-trained 162 

on ImageNet is used (Tan et Le 2019). It achieves state-of-the-art performance for classification tasks. For treating the spectral 163 

information, a single fully connected (denoted FC hereafter) hidden layer with 255 neurons is used. As a pre-trained model, 164 

the parameters of EfficientNet B0 are frozen and therefore not modified in the training on the pollen dataset. However, the 165 

parameters of the layers after it are optimised according to the training data. The results of the two feature extraction networks 166 

are concatenated, then dropout is added and finally the result is passed to the decision layer. The width of this FC decision 167 

layer matches the number of classes (seven in this case). Lastly, the output is normalised by a softmax layer to obtain a 168 

probability distribution. To compute the loss, we used the cross-entropy function between the predicted and reference classes. 169 

To ensure a fair comparison, each model was trained for exactly 200 epochs. In training runs where only images or only relative 170 

FL spectra were used, the path not used was removed from the model graph (Figure 2). The figure shows the model with both 171 

features active. 172 

The models were evaluated using a test set consisting of 25% of the data from both instruments, sampled randomly. We used 173 

balanced accuracy, F1 score and Matthew’s Correlation Coefficient (MCC) as metrics to assess the model performance. For 174 

accuracy, the corresponding confidence intervals were calculated via normal approximation as explained in Raschka 2020. It 175 

is important to note that the model used here is a baseline and has not undergone hyper-parameter optimisation, therefore no 176 

validation set has been defined in order to keep a maximum of data for training. This means that a degradation of scores is 177 

possible when applying the model to operational data as all sorts of pollen taxa can be encountered considering that other 178 

particles are filtered out before the classification. Nonetheless, the present study does not aim to provide an operational model 179 

but simply investigate the potential of using FL as a complement to holography for single particle identification. 180 

3. Results 181 

3.1. Feature observations 182 

Important observations can already be made by looking at basic geometrical features derived from holographic images. As an 183 

example, we consider the distributions of equivalent area diameter and eccentricity in Figure 3 (a) and (b). Note that for 184 
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geometrical features, the value associated with each particle is the largest result obtained for the pair of holographic images. 185 

Regarding the equivalent area diameter, its distribution provides information about the size of the pollen grains for a given 186 

class. As illustrated in Figure 3 (a), Fagus pollen grains are typically large with a maximum equivalent area diameter of 45-55 187 

μm, which corresponds to the literature (Halbritter et al. 2021) and is clearly larger than all other classes we considered in our 188 

study. Conversely, the distribution of the eccentricity gives an insight on how round the pollen grains are. In that case, 189 

Cynosurus pollen grains have the roundest shape with a maximal eccentricity between 0.4 and 0.55 (0 representing a circle 190 

and 1 an ellipse), whereas Quercus’ values are in the range 0.8-0.9 due to its more elliptical shape. These characteristics can 191 

also be observed on the holographic images in Figure 1. While the eccentricity is used to give a hint on the symmetry of the 192 

pollen grain, further metrics could be introduced to further quantify symmetry. This was not implemented in the present study 193 

as feature extraction is done automatically by the convolutional neural network. 194 

 195 

The distributions of the relative FL spectra allow us to identify some classes that have distinct FL signatures. Figure 3 (c) and 196 

(d) show the distribution of the relative FL for the two excitation-emission combinations where the differences between taxa 197 

are the largest. The excitation sources are at 280 and 365 nm with emission channels at 357 and 435 nm respectively. In Figure 198 

3, we observe, for both plot (c) and (d), clear differences in relative FL for Cynosurus, which presents considerably higher 199 

values compared to the other taxa. In addition, differences between instruments show that P4 and P5 have similar 200 

measurements in the 280/357 nm but P5 has significantly lower measurements for Corylus and Cynosurus in the 365/435 nm. 201 

Overall, all combinations of excitation sources and emission channels provide relevant information for pollen characterisation 202 

and the ones presented in Figure 3 (c) and (d) represent well the type of patterns that can be observed. 203 

 204 

Finally, the UMAP plots, given in the left column of Figure 4, show how different or similar are the image and FL features of 205 

each taxon. We observe a clear distinction based on morphology (Figure 4 (a)) for Fagus and Quercus, with Cynosurus also 206 

having only little overlap with Corylus. However, the latter and especially Betula and Alnus are clearly mixed up. In Figure 4 207 

(b), the UMAP on FL spectra does not exhibit the same group structure as for morphology. Here, Fagus and Cynosurus are 208 

plainly detached from the remaining groups which are themselves imbricated. Ultimately, all groups are fully separated when 209 

building the UMAP on both morphology and FL features. We observe a correspondence between the separation of groups on 210 

the UMAPs and the capacity of the ML model to classify those classes correctly. 211 

3.2. Classification performance 212 

The classification results for each model are given as confusion matrices in Figure 4 and summarised in Table 2. We observe 213 

in these results that the holo model globally performs better than the FL model when training on a single modality. The FL 214 

model indeed encounters difficulties distinguishing some classes such as Quercus and Fraxinus or Betula and Corylus (Figure 215 

4 (b)) which exhibit similar relative FL spectra. When considering the morphology of Quercus and Fraxinus (Figure 3 (a) and 216 

(b)), it is not surprising that the holography model performs better at differentiating these classes as they present significantly 217 
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distinct shapes. As the performance for the single-input models here is already (very) high, minor dips in performance can 218 

make a notable difference. Combining holography and FL improves the performance compared to the single input models for 219 

every taxon considered, except for Fagus and Cynosurus that already obtain perfect scores with single input models. The 220 

performance gain is noteworthy as the combined model achieves an overall balanced accuracy of 99.2% compared to either 221 

96.8% or 87.8% for the individual holography or FL models respectively. As a complement, the confidence intervals associated 222 

with the accuracy of each model for each taxon are displayed in Figure 5. The non-overlapping of the confidence intervals 223 

indicates a statistical difference between accuracies. The combined model outperforms both single-input models for five of the 224 

seven taxa, namely, Alnus, Betula, Corylus, Fraxinus and Quercus. Thus, logically, the balanced accuracies of the holo and 225 

FL models are significantly lower than that of the combined model (see Table 2). It follows that the absolute error rates, defined 226 

as 1 minus the accuracy, of the holo- (3.2%) and FL-only (12.2%) models are respectively 4 and 15 times higher than that of 227 

the combined model (0.8%). This indicates that mistakes in particle identification occur for roughly 3 particles over 100 for 228 

the holo model, 12 particles over 100 for the FL model but less than 1 particle over 100 for the combined model. 229 

 230 

Model Balanced accuracy F1-score MCC 
Holography only 0.968, [0.965; 0.970] 0.964 0.958 
FL only 0.878, [0.874; 0.882] 0.890 0.874 
Combined 0.992, [0.991; 0.993]       0.992 0.991 

Table 2: Classification performance of each model. The balanced accuracy, with its associated 95% confidence interval, 231 
represents the average of the recalls (ratio of correct prediction over total count for each class), ranging from 0 to 1. 232 
The F1-score is the harmonic mean of the precision and recall, ranging from 0 to 1 and MCC stands for Matthew’s 233 
Correlation Coefficient and is a robust metric for classification performance, ranging from -1 to 1. 234 

4. Discussion 235 

The results, based on measurements of aerosolised pollen grains, show that combining FL with holography leads to a 236 

substantial identification performance gain. The differences between the combined model accuracy and both single-input 237 

models confirm the findings from the UMAPs. This demonstrates that by combining the two inputs, the complementary 238 

morphological and biochemical properties of pollen grains can be used for a better classification. Although it seems small, the 239 

gain in accuracy is important for the field of aerobiology and specifically pollen monitoring since pollen grains only represent 240 

a minor part of all the particles in the air. Since pollen concentrations typically range from a few grains (< 10) to a few hundred 241 

grains per cubic metre, and the thresholds for allergy symptoms are usually around a few tens of grains per cubic metre (Gehrig 242 

Bichsel et al. 2017; Pollen.lu 2003), misclassifications can have an impact on the information provided to allergic people. 243 

Above all, high identification accuracy is particularly important for plants with highly allergenic pollen such as Ambrosia 244 

artemisiifolia (common ragweed) as a few grains are sufficient to cause allergy symptoms. 245 

 246 
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Not only is the combined model’s accuracy superior to the other models, but this gain is specifically important for some key 247 

pollen taxa. Indeed, the group of Alnus, Betula and Corylus, all from the Betulaceae family, is known to be difficult to classify 248 

accurately and presents a very high allergic potency with possible cross-reactivity in central and northern Europe (Puc et 249 

Kasprzyk 2013). Thus, the excellent classification performance obtained here opens the gate towards better monitoring by 250 

using holography together with fluorescence data. In addition, the consistent FL signal in between instruments and the available 251 

excitation sources and measurement channels characterise single pollen grains precisely even though the 405 nm excitation 252 

source was set aside. Also, the combinations of excitation and emission wavelengths used in the Poleno correspond to the most 253 

prominent fluorescence modes for a variety of dry pollen studied in (Pöhlker et al. 2013). The coherence between our results 254 

and those from Pöhlker et al. 2013 brings confidence into our measurements and the stability of the Poleno. In future work, 255 

the 405 nm excitation source needs to be included to verify its potential for improvement. 256 

 257 

When working with images, choosing neural networks for classification is the obvious solution to be sure not to lose 258 

information by using the image itself as input. However, the discrimination of pollen taxa using the UMAP dimension 259 

reduction method shows that working with features derived from the holographic images is also a possibility for pollen 260 

classification. Future work testing other machine learning methods on image features and fluorescence spectra needs to be 261 

conducted as other classifiers may perform similarly while being cheaper in terms of computational resources. In addition, the 262 

main limitation of this study, focusing on a reduced number of pollen taxa and manually aerosolised pollen, should be 263 

overcome in following work by gathering more data to train a broader model and test it on operational data. 264 

 265 

In the end, we expect the benefit of combining holography with FL measurements for pollen classification to have a positive 266 

impact on the capacity of models to discriminate different pollen taxa. Moreover, in an operational setup, the benefit of using 267 

FL in addition to holography could be even higher as it would allow for an easy distinction between biological and non-268 

biological particles (e.g. water droplets, sand particles or dust) assuming that they do not fluoresce. Yet, the extent of the gain 269 

in the real case scenario remains to be quantified as the dataset used in this study probably does not catch all the environmental 270 

variability. For example, in ambient air, pollen can break into fragments also impacting allergy sufferers but not currently 271 

monitored. 272 

5. Conclusion 273 

The present study demonstrates the potential of using FL measurements as a complementary input to holographic images for 274 

single-grain pollen identification using the SwisensPoleno and ML algorithms for the most important allergy causing pollen 275 

taxa in Central Europe. The capacity of the ML model to identify pollen grains depends on both inputs and they compensate 276 

each other when one does not provide enough information for accurate identification. As a result, the performance of the 277 

combined model is systematically higher than either of the models trained with a single input. The restricted and artificially 278 
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aerosolisedpollen dataset used in this study has several limitations, but it still provides strong evidence for the complementary 279 

role of FL and holography. 280 

 281 

In conclusion, we recommend the use of relative FL as a secondary input for automatic pollen identification using the 282 

SwisensPoleno Jupiter. In this study, we tested its contribution on a restricted dataset, showing that the contribution of FL is 283 

of great value for operational networks where similar pollen taxa can be encountered. Finally, the use of relative FL for 284 

automatic pollen identification further opens the door towards a larger and more precise monitoring of bioaerosols. For 285 

example, objects which are challenging to identify using holographic imaging only, such as fungal spores, could be added to 286 

the panel of particles. 287 
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Figures 398 

 399 

Figure 1: Holographic images of pollen after numerical reconstruction: (a) Alnus glutinosa (b) Betula pendula, (c) 400 
Corylus avellana, (d) Cynosurus cristatus, (e) Fagus sylvatica, (f) Fraxinus excelsior, (g) Quercus robur  401 
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 402 

Figure 2: ML model structure used to classify the pollen data. The top path handles the holographic image data while 403 
the bottom path processes the relative FL spectra data. The numbers on the connecting lines denote the dimensions of 404 
the data.  405 
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 406 

Figure 3: Distribution of holographic image features (upper plots) and relative FL (bottom plots) for each pollen class 407 
and measurement system. (a) Maximum equivalent area diameter in 𝝁𝝁m, defined as the diameter of a circle with the 408 
same area as the particle, (b) Maximum eccentricity, defined as the deviation of the ellipse fitted to the particle from a 409 
perfect circle, ranging from 0 for a circle to close to 1 for an ellipse. (c) Measured relative FL intensity with 280 nm 410 
excitation and detector with centre wavelength 357 nm and (d) with 365 nm excitation and detector 562 nm.  411 
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 412 

Figure 4: Left side: Uniform Manifold Approximation and Projection (UMAP) of particle features (morphology or/and 413 
FL features) of all the data. Right side: Confusion matrices indicating the performance of each model on the test set. 414 
Line (a) holography only, line (b) relative FL only and line (c) combined relative FL and holography. UMAP settings: 415 
neighbours = 15, minimum distance = 0.001, random state = 42. 416 

  417 
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Figure 5: Accuracy of each model for each taxon. The error bars represent the 95% confidence intervals.  418 
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