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Abstract. Solving the momentum balance is the computationally expensive part of simulating the evolution of ice sheets.

The momentum balance is described by the nonlinear full-Stokes equations, which are solved iteratively. We use the Picard

iteration and Newton’s methods combined with Armijo step sizes and approximately exact step sizes, respectively, to solve

these equations. Only the approximately exact step sizes are used for the Picard iteration. We compare the Picard iteration and

the variants of Newton’s method in benchmark experiments, called ISMIP-HOM experiments A, B, E1, and E2. The ISMIP-5

HOM experiments consist of a more realistic domain and are designed to test the quality of ice models. For an even more

realistic test case, we simulate the experiments E1 and E2 with a time-dependent surface. We obtain that the Picard iteration

and Newton’s method with approximately exact step sizes greatly reduce the necessary number of iterations with nearly no

increase of the computation time for each iteration.

1 Introduction10

Simulating the evolution of the ice sheets in Greenland and Antarctica in adequate physics and resolution is a challenging

task. The dynamics of ice sheets is described as a fluid mechanical problem with the momentum balance reduced to a Stokes

problem as acceleration and Coriolis forces are negligible. In the past computational constraints led to the reduction of the

problem by approximating the momentum balance. If the spatial resolution cannot be choosen sufficiently large, the benefit

from solving the Stokes problem is lost. Consequently, in practical terms, Stokes models are leading to large problems and thus15

efficient solvers are inevitable. This is what this study is focusing on.

The full-Stokes equations are nonlinear partial differential equations described as shear thinning, which means that the

viscosity depends non-linearly on the symmetric gradient. More precisely, we consider the stationary variant of these equations

in the variational formulation. In ice models, the stationary equations are solved to calculate the velocity field. Then, the velocity

field is used to calculate the new shape of the glacier. The variational formulation is needed to calculate a solution with finite20

elements. A common method to calculate the solution of these equations is the Picard iteration, (see Colinge and Rappaz,

1999). The Picard iteration fixes the nonlinear viscosity, calculates a new velocity, and updates the viscosity.
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The Picard iteration is, for example, used in the ice model ISSM, Larour et al. (2012), and FELIX-S, Leng et al. (2012).

Elmer/Ice, Gagliardini et al. (2013), uses the Picard iteration for the first few iterations and the Newton method for the last

iterations. This approach was also extended to a nonlinear friction law. However, Elmer/Ice does not use a step size control.25

Thereby, Newton’s method does not converge from every initial point, Gagliardini et al. (2013). The ice models Elmer/Ice and

FELIX-S are compared in Zhang et al. (2017). For some glacier simulations COMSOL multiphysics is used, (see Rückamp et al.,

2022). Newton’s method in COMSOL multiphysics switches between choosing the negative gradient and Newton directions.

Additionally, a trust-region method is used to determine the step sizes. The trust-region radius is the maximum step size that

one would trust the step size to be a good choice, for more mathematical details, see (Dennis and Schnabel, 1996, section30

6.4.2). The trust-region method in COMSOL multiphysics uses the residual norm, see (COM, 2018, section The Fully Coupled

Attribute and the Double Dogleg Method). Instead, we will discuss another approach, which is algorithmically simpler and

uses the problem-specific information of a convex function. Additionally, the convex function allows us to use different step

size methods.

We employ Newton’s method by formulating the variational formulation as a root problem. If we start near the solution,35

Newton’s method is superlinear convergent, (Hinze et al., 2009). Thus, the error between the approximation and the real

solution reduces faster than the linear convergent Picard iteration (see Fraters et al., 2019). However, starting with an unsuitable

initial velocity field for Newton’s method could lead to a diverging velocity. A step size control guarantees convergence from

every initial guess. This step size control is constructed by defining a function that we want to minimize. One variant is

presented in Fraters et al. (2019). We consider another approach that only needs to calculate integrals. It allows us to use two40

different step size controls. Newton’s method with one of these step sizes converges from every initial guess to the solution,

(Schmidt, 2023). Additionally, we employ approximately exact step sizes for the Picard iteration to provide a possibility to

reduce the necessary number of iterations without implementing Newton’s method. The exact step sizes are the solution of

a one-dimensional minimization problem. As we can only approximate these step sizes arbitrarily precise, we called them

approximately exact and will call them exact step sizes for brevity.45

The computation of the step size is computationally cheap compared to solving the linear systems of equations in each

iteration. The work of Habbal et al. (2017) considers different solvers to reduce the simulation time for solving the system of

linear equations. Nonetheless, for all solvers, the system of linear equations is still the main computational effort. Our step size

control reduces the computation time by reducing the necessary number of iterations.

As a test case, we use the ISMIP-HOM experimentsA,B, E1, and E2. These experiments are designed to test the quality of50

glaciological models. They reflect a large domain of the glaciers, a large aspect ratio, and a sinusoidal bedrock and the Glacier

d’Arolla, respectively. We simulate the Glacier d’Arolla experiments E1 and E2 also time-dependent.

The manuscript has the following structure: In Sect. 2, we introduce the equations in the variational formulation and the

Picard iteration. In the subsequent section, we formulate Newton’s method. In Sect. 4, we introduce the new idea, the step

size control that decreases the number of iterations and verifies convergence from every initial guess. In Sect. 5, we discuss55

the stationary ISMIP-HOM experiments A and B and compare them with the results in Pattyn et al. (2008). In Sect. 6 , we
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solve instationary problems with and without sliding derived from the ISMIP-HOM experiments E1 and E2. Finally, we give

a summary in Sect. 7 and an outlook in Sect. 8.

2 The full-Stokes equations as a root problem

Let Ω⊆ RN with N ∈ {2,3}. For describing the movement of ice, we need the second-order tensor σ, the density ρ, and the60

gravitational acceleration g. These quantities describe the full-Stokes equations, the most complex equations for simulating

ice, by:

−divσ =−ρg,

divv = 0 (1)

on the domain Ω. We describe the stress tensor σ with the pressure p, the identity tensor (matrix) I , the symmetric gradient D,65

the velocity v, and the viscosity µ by σ := pI −µDv. We define the nonlinear viscosity µ as

µ=B
(
|Dv|2 + δ2

) 1−n
2n , (Dv)ij =

1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
, |Dv|2 :=Dv :Dv :=

N∑
i,j=1

|(Dv)ij |2 (2)

with n ∈ (1,∞) and B =B(x1,x2,x3), δ > 0. The constant δ > 0 guarantees µ <∞. We choose n= 3 for the experiments

as in Pattyn et al. (2008). The boundary consists of the bedrock Γb, the surface Γs, and the lateral boundary Γ`. Our boundary

conditions are:70

v = 0 on Γb ∪Γ`,

σ ·n= 0 on Γs (3)

with the outer normal vector n. Here, σ ·n is the inner tensor-product (matrix-vector multiplication).

We derive the variational formulation in infinite dimensions because we can implement it directly in FEniCS, (see Logg

et al., 2012). We determine the variational formulation by multiplying with test functions and using partial integration, and75

second, we explain the function spaces used. We define an operator G :H ×L→H∗×L∗ by

〈G(v,p),(φ,ψ)〉=

∫
Ω

B
(
|Dv|2 + δ2

) 1−n
2n Dv :∇φdx+µ0

∫
Ω

∇v :∇φdx−
∫
Ω

pdivφdx−
∫
Ω

divvψdx+

∫
Ω

ρg ·φdx, (4)

where v ∈H and p ∈ L are the solution, and φ ∈H and ψ ∈ L are test functions. The square brackets on the left-hand side of

the equation are used because, formally, we have a function that maps to the dual space. The dual space is denoted by the star

after the space, e.g., H∗ and L∗. The solution of the full-Stokes equations are (v,p) ∈H ×L with80

〈G(v,p),(φ,ψ)〉= 0 for all (φ,ψ) ∈H ×L (5)

We added the diffusive term µ0 > 0 to get a well-posed directional derivative and a well-posed Picard iteration, for details, see

Appendix A1. Additionally, we are now in a Hilbert space formulation and set H := {v ∈H1(Ω)N ; v|Γb∪Γ`
= 0}, where
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H1(Ω)N is the space of vector-valued square integrable functions with a square integrable derivative. We set L := {p ∈
L2(Ω);

∫
Ω
pdx= 0} for the space of square integrable functions with zero integral. There exists a unique solution to that85

problem for µ0 > 0, (see Schmidt, 2023). Nonetheless, we perform all experiments with µ0 = 0.

We formulate the problem in infinite-dimensional spaces H and L. In these infinite-dimensional spaces, mathematical con-

vergence properties are independent of the mesh resolution and the used finite elements, as long as the finite elements are a

subspace of the infinite-dimensional spaces. Ice models often use finite elements. Moreover, the formulation in discretized

spaces is identical, only the functions are from finite-dimensional spaces.90

A common method to solve the variational formulation of the full-Stokes equations in glaciological models is the Picard

iteration, see Algorithm 1. It is used in ISSM, see Larour et al. (2012) , FELIX-S, see Leng et al. (2012). Elmer/Ice can use the

Picard iteration and Newton’s method, which we will introduce in the next section. Elmer/Ice can use the Picard iteration to

get near the solution and then can use Newton’s method, see Gagliardini et al. (2013).

Algorithm 1 Picard iteration

1: Let v0 ∈H and p0 ∈ L be given.

2: for k = 0,1, . . . do

3: Calculate vk+1 ∈H and pk+1 ∈ L with∫
Ω

B
(
|Dvk|2 + δ2) 1−n

2n Dvk+1 :∇φdx+µ0

∫
Ω

∇vk+1 :∇φdx−
∫
Ω

pk+1divφdx−
∫
Ω

divvk+1ψdx=−
∫
Ω

ρg ·φdx

for all φ ∈H and ψ ∈ L.

4: end for

3 Newton’s method95

The Picard iteration converges slowly (see Fraters et al., 2019). Thus, it can be beneficial to consider faster converging algo-

rithms. Newton’s method is often superlinear convergent, also in infinite dimensions, (see Hinze et al., 2009). For Newton’s

method, the calculation of the derivative is necessary. Due to the variational formulation, we can only express the derivative of

G in terms of the direction and the test functions. The derivative of G in (v,p) in direction (w, q) is

〈G′(v,p)(w, q),(φ,ψ)〉=

∫
Ω

1−n
n

B
(
|Dv|2 + δ2

) 1−3n
2n (Dv :Dw)(Dv :∇φ)dx+µ0

∫
Ω

∇w :∇φdx100

+

∫
Ω

B
(
|Dv|2 + δ2

) 1−n
2n Dw :∇φdx−

∫
Ω

qdivφdx−
∫
Ω

divwψdx. (6)

A mathematical proof thatG is differentiable in all directions (w, q) is presented in Schmidt (2023). A more detailed deduction

of the derivative is in Subsect. A2.

Newton’s method can solve the full-Stokes equations by Algorithm 2. Because Newton’s method is only locally convergent,

we use a step size control in Algorithm 2. We explain the step size control in the next section.105
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Algorithm 2 Globalized Newton’s method

1: Let (v0,p0) be given.

2: for k = 0,1, . . . do

3: Calculate (wk, qk) with

〈G′(vk,pk)(wk, qk),(φ,ψ)〉=−〈G(vk,pk),(φ,ψ)〉 for all φ ∈H , ψ ∈ L.

4: Set vk+1 := vk +αkwk and pk+1 := pk +αkqk with a suitable αk > 0.

5: end for

4 Step size control

In this section, we derive a global convergent Newton method by using a step size control: We have the current velocity field v

and the direction w. Instead of setting our new field ṽ := v+w, we choose α > 0 with ṽ := v+αw. We want an algorithm

for choosing this α. Classical approaches for determining the step size α check, if the norm ‖G(vk+1,pk+1)‖ reduces enough

compared to ‖G(vk,pk)‖. What enough reduction means is, for example, discussed in Hinze et al. (2009). However, we use110

an alternative approach. Solving G(v,p) = 0 is equivalent to minimizing J :H → R

J(v) =

∫
Ω

n

1 +n
B
(
|Dv|2 + δ2

) 1+n
2n dx+

µ0

2

∫
Ω

|∇v|2 dx+

∫
Ω

ρg ·vdx−
∫
Ω

pdivvdx, (7)

see Schmidt (2023). We need the last summand because the time-dependent experiments lead to initial guesses for the velocity

field that are not divergence-free: We start with a divergence-free initial guess, calculate the velocity field, and use the velocity

field to calculate the new domain. (We explain the calculation of the new domain in subsect. 6.2.) The grid points with the115

velocity information are moved correspondingly to fit the new domain. On this new domain, our old velocity field is our initial

guess and slightly not divergence-free. (Despite divv being near 0, the step size control did not work without the last summand

in Eq. (7) for time-dependent problems.)

The convex functions were also used in Hirn (2013) for µ0 = 0 with Dirichlet boundary conditions, and Chen et al. (2013)

for δ = 0 and µ0 = 0 with more realistic boundary conditions. The equivalence between minimizing this convex function and120

solving the full-Stokes equations is clear because the minimizer of the function and the root of the derivative are at the same

point for strict convex functions.

A classical approach to determine a suitable step size α is the use of an Armijo step size as in Hinze et al. (2009), see

Algorithm 3. We describe the idea of Armijo step sizes: For a function, the negative gradient is the direction of the steepest

descent. To find the minimum, we need enough reduction compared to the steepest descent multiplied with the step size,125

and a factor between zero and one as we expect less reduction than the steepest descent. This condition is stated in line 4 of

Algorithm 3. Line 3 guarantees that the step size is not too small. For Newton’s method one chooses α := 1, (see Nocedal

and Wright, 2006, Algorithm 3.1). Newton’s method converges fast for γ ∈ (0,1/2), (see Nocedal and Wright, 2006, Theorem
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Algorithm 3 Armijo step size

1: Let γ ∈ (0,1/2).

2: for i= 0,1, . . . do

3: Set α := 1.

4: while J(v+αw)− J(v)> αγJ ′(v)w do

5: Set α := 0.5α.

6: end while

7: end for

8: return α

3.6). Typically, γ := 10−4 is chosen, see Nocedal and Wright (2006). However, we choose γ := 10−10 as 10−4 was to strict.

We only need a direction that reduces the function value to use Armijo step sizes.130

However, we can exploit the strict convexity of J for constructing other step sizes: We define the auxiliary function

Jk(α) := J(vk +αwk). (8)

The function Jk is strictly convex, J ′k(α) = J ′(vk +αwk)wk is negative for α= 0 and positive for big enough α because

of the choice of wk and the strict convexity of Jk. As J ′k is continuous, a simple bisection, see Algorithm 4, calculates the

minimum of Jk. In practice, we approximate the exact step size arbitrarily precise. Thus, we denote the approximate exact step135

size as the exact step size. Exact step sizes have the advantage that we really calculate the minimum in a direction instead of

just having some reduction. Nonetheless, the exact step size is only rarely used in practice. One needs more conditions on the

problem, here the strict convexity of J and Jk, respectively. We could not find the minimum of

‖G(vk +αwk,pk +αqk)‖

for the direction (wk, qk), because we have no information where the minimum is.140

For simplicity, we choose 25 iterations to approximate the exact step size. As we expect step sizes of length 1 to be often a

good choice, we chose the maximum step size of 4 in our implementation, we obtain an accuracy of 4/225 ≈ 10−7 for the step

size α. The calculation of α is computationally not expensive.

We modify the Picard iteration, see Algorithm 1, by a relaxation: We set

ṽk+1 := (1−αk)vk +αkvk+1, p̃k+1 := (1−αk)pk +αkpk+1 (9)145

and choose αk as α in Algorithm 4.

5 Stationary experiments

We analyze the four algorithms we introduced: The classical Picard iteration as a reference, exact step sizes for the Picard

iteration and Newton’s method, and Armijo step sizes for Newton’s method. We implemented all these algorithms in FEniCS
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Algorithm 4 Exact step size

1: Set a,b ∈ [0,∞) with a < b.

2: for i= 0,1, . . . do

3: if J ′
k((a+ b)/2)> 0 then

4: Set b := (a+ b)/2.

5: else

6: Set a := (a+ b)/2.

7: end if

8: end for

9: return α := (a+ b)/2

version 2019.1.0, (see Logg et al., 2012). FEniCS is a library that allows to implement variational formulations easily. Hence,150

it allows fast testing of algorithms without implementing them in complex codes. We determine the performance of these

algorithms by comparing each iteration step with a reference solution for the experiments ISMIP-HOM A and B, (see Pattyn

et al., 2008). The reference solution is calculated with 80 prescribed Picard iterations as the Picard iteration converges slowly

and the reference solution should be more accurate than the solutions calculated by the compared methods. In Pattyn et al.

(2008), the authors described the ISMIP-HOM experiments to analyze the quality of ice models. Moreover, they compared155

simulation results.

We set the physical variables according to Pattyn et al. (2008): B := 0.5 · (10−16)−1/3 (Pa)−3 a−1, ρ := 910 kg m−3, and

g := (0,9.81) m s−2.

We set the constant δ := 10−12a−1 and µ0 := 0 kg a m−1 s−2. We derive the unit for µ0 by [µ0|∇v|2] = [ρg ·v]. In the

experimental design, the nonlinear term is 2B(0.5|Dv|2 +δ2)(1−n)/(2n) instead ofB(|Dv|2 +δ2)(1−n)/(2n), (see Pattyn et al.,160

2008). We choose the constant δ such that δ is smaller than the typical magnitude of Dv, 3 · 10−4 a−1 and 3 a−1, multiplied

with the machine precision eps:

δ < eps
√

0.5|Dv| (10)

for typical values of |Dv|. We defined the infinite-dimensional algorithms for µ0 > 0 as they are not well-posed for µ0 = 0.

However, we do all simulations with µ0 = 0 because the additional diffusion term is not used in ice models and the diffusion165

term is not needed in the finite dimensional finite element spaces, Hirn (2013). In all experiments, we calculate the initial

velocity by replacing (0.5|Dv|2 +δ2)(1−n)/(2n) with 106 and solving this linear problem. As starting with |Dv|= 3 ·10−4 a−1

leads to (0.5|Dv|2 +δ2)(1−n)/(2n) ≈ 281 a2/3 and starting with a constant velocity field leads to (0.5|Dv|2 +δ2)(1−n)/(2n) =

108 a2/3, we chose 106 between both values.
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5.1 The original experiment ISMIP-HOMB170

In this subsection, we introduce details from Pattyn et al. (2008) that are specific to the experiment ISMIP-HOM B. This

experiment has a domain with a sinusoidal, slightly tilted (0.5◦), bottom. The boundaries at the left and right are vertical, and

the boundary at the top has a linear slope of 0.5◦. Furthermore, periodic boundary conditions are used at Γ`. The experiment

prescribes Dirichlet zero boundary conditions, v = 0 on Γb and σ ·n= 0 on Γs.

The length L := 5 km is the horizontal extent. The angle β := 0.5◦ describes a slight decline at the surface and the bottom175

by

zs(x) =−xtan(β), zb(x) = zs(x)− 1000 + 500 · sin(ωx) (11)

with ω := 2π/L.

5.2 Modifications to the experiment ISMIP-HOMB

Formulating the convex function J , see Eq. (7), that corresponds to periodic boundary conditions is complicated. Thus, we use180

the alternative introduced in the supplement of Pattyn et al. (2008), by copying the glacier to the right and the left. We have three

copies to the right and the left, see Fig. 1. At the lateral boundaries Γ`, we impose Dirichlet zero boundary conditions. Also,

the resolution at the outer copies is lower than for the original domain. This reduces for the two-dimensional experiment the

number of elements by 30 % and in three dimensions by 51 %. Nevertheless, the three-dimensional experiment was performed

on a high performance computer. In two dimensions, the local refinement has no relevant impact on the solution. Also, one can185

simulate the two-dimensional experiment on a laptop.

Figure 1. The domain with a grid with red dots and three copies to the right with green, purple, and blue dots.

Instead of the slope, we rotate the gravity. Thus, we should rotate the lateral boundaries Γ` of the domain. We neglect this

and stick to vertical boundaries at the left and the right.

5.3 Results for experiment ISMIP-HOMB

Our velocity fields at the surface (see Fig. 2) are close to the mean of the full-Stokes simulations in Pattyn et al. (2008).190

Also, all our methods produce very similar velocity fields at the surface, as displayed in Fig. 3. Next, we compare how many

iterations are necessary to reduce the relative difference and relative local difference compared to the reference solution. We

calculate the relative difference and the relative local difference for a velocity v and the reference solution vref by√∫
Ω
|v−vref |2 dx∫
Ω
|vref |2 dx

and

√√√√∫
Ω

|v−vref |2
max(|vref |2, c2)

dx (12)
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Figure 2. Simulated surface velocity for different solvers for ISMIP-HOM B. All our calculated velocity fields overlap each other. In grey

are plotted the mean and the standard deviation (std) from Pattyn et al. (2008) with 9 models. The mean and standard deviation have no

values at x= 0 and x= 1 due to missing values.

Figure 3. Relative difference of |v−vref |/vref for each grid point at the surface. The reference solution is the solution from 80 Picard

iterations.

with c= 1 mm a−1. Then, c is much smaller than 10m a−1 and below this velocity speed slight differences are seen as not195

so important, (Joughin et al., 2010, section 2.3). We use two error measurements because one method could be better for

one purpose and the other for another. The local relative difference reflects that regions with small velocities should also be

represented with a small relative error. Both error measurements consider the velocity field for the whole domain of the glacier.

In contrast, the original experiment (Pattyn et al., 2008) only considers the velocity field at the surface.
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Figure 4. Relative difference compared to the reference solution for ISMIP-HOM B.

Figure 4 displays the relative difference over the iteration number. The classic Picard iteration has a slow convergence rate.200

It needs 39 iterations to obtain a reduction to 10−6. Newton’s method using Armijo step sizes obtains this reduction after only

7 iterations. This reduces the necessary number of iterations by 82 %. We see this even better if we consider just the first 9

iterations (Fig. 5). After a few iterations, Newton’s method does not reduce the relative difference anymore. This could be seen

Figure 5. Relative difference compared to the reference solution for ISMIP-HOM B for the first 9 iterations.

as either a mistake in the step size control or Newton’s method. However, the Picard iteration with Armijo step sizes has the

same problem. It is identical to the Picard iteration up to iteration 39 and chooses then smaller step sizes to stall at a similar205

difference as Newton’s method.
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Figure 6. Experiments with 25, 49, 97, 193, and 385 grid poiints in x-direction and 3, 5, 9, 17, and 34 grid points in z-direction for the

experiment ISMIP-HOM B for Newton’s method with Armijo step sizes.

We think the reason for this behavior is that the discretized minimum of the convex functional and the root of the full-Stokes

equations are slightly different. To verify this claim, we solved the full-Stokes equations on one grid and refinements of it,

ensuring that all grid points on the coarser grids are also on the finer grids. We see the dependence on the resolution in Fig.

6. By halving the grid size, we reduce the relative difference by a bit more than a factor of 10. The increase in the relative210

difference from iteration 10 to 11 for the resolution with 193 grid points in the x-direction seems unintuitive. But, we remind

that the Armijo step size control tries to minimize the functional not to find the root. Imposing a minimal step size of 0.5 helps

to circumvent this problem. Then Newton’s method reduces the relative difference up to iteration 39.

Also, Hirn (2013) reports accuracy problems for a small value of δ. Hirn considered a channel flow with ρg = 0 and

N ∈ {2,10/3,5,10}. The stopping criterium is not reached for N = 10 and for N = 5 for higher resolutions. In the second215

experiment, Hirn introduced δ > 0 with δ = δ0h
2/(1+1/N) and δ0 ∈ {1,10} and the mesh size h. Both variants converged to

the wanted accuracy. Additionally, the calculated solutions for all resolutions were not too different from the analytical solu-

tion compared to the original problem with δ0 = 0. Finally, Hirn (2013) counted the number of Newton iterations to reach the

wanted accuracy: The variants with δ0 ∈ {1,10} converge always and need a lesser number of iterations compared to δ0 = 0.

Thus, a higher δ value could lead to the expected quadratic convergence. In contrast, the exact step sizes do not seem to220

have this problem as they do not rely on evaluating the functional. Newton’s method with exact step sizes has the advantage

that the error reduces even more without using a minimal step size. Thus, one less parameter needs to be selected. Even the

Picard iteration with exact step sizes is much better than the Picard iteration. It only needs 15 iterations to obtain the accuracy,

for which the Picard iteration needs 39 iterations. That corresponds to a reduction of 62 %. The latter approach also has the

advantage that there is no need to implement a new method to solve the problem. Only the relatively simple calculation of the225
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Figure 7. Relative local difference compared to the reference solution for ISMIP-HOM B.

Figure 8. Relative local difference compared to the reference solution for ISMIP-HOM B for the first 9 iterations.

step sizes needs to be implemented. The results are really similar for our second measure of the accuracy, the relative local

error, see Fig. 7.

All our algorithms are better than the classic Picard iteration in this measurement. The reduction with Newton’s approach

with both step size controls is 77 % now. The fast convergence is again impressive, especially for the first 9 iterations, see Fig.

8.230
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5.4 The experiment ISMIP-HOMA

Because real-world applications are three-dimensional, we consider experiment ISMIP-HOM A. This experiment extends

ISMIP-HOM B to three dimensions. All chosen constants are the same as in the experiment ISMIP-HOM B. The experiment

ISMIP-HOM A has a sinusoidal bottom in both horizontal dimensions. Again, we have three copies of the glacier in both

horizontal directions. Thus, we have in total 48 copies. We describe the surface and bottom by235

zs(x,y) =−xtan(β), zb(x,y) = zs(x,y)− 1000 + 500 · sin(ωx)sin(ωy). (13)

5.5 Results for experiment ISMIP-HOMA

All our methods produce very similar results and are overlapping, see Fig. 9 and Fig. 10. Our simulations reproduce the

surface velocity at y = L/4 from Pattyn et al. (2008) for the full-Stokes simulations for the majority of the glacier. But they

produce higher velocity values than the mean plus the standard deviation around x= L/3. Nonetheless, the maximum relative240

difference is less than 0.02, see Fig. 9.

Figure 9. Simulated surface velocity at y = L/4 in meters per year for different solvers for ISMIP-HOMA. All our calculated velocity fields

overlap each other. In grey are plotted the mean and the standard deviation from Pattyn et al. (2008) with 5 models. The mean and standard

deviation have no values at x= 0 and x= 1 due to missing values.

The general convergence behavior for the three-dimensional experiment is similar to the two-dimensional experiment. How-

ever, the Armijo step sizes are even better for Newton’s method in three dimensions, see Fig. 11. Again zooming to the first

few iterations states the benefit from Newton’s method and the step size control more impressing, see Fig. 12. The Picard

iteration needs 39 iterations to have the same accuracy as Newton’s method using Armijo step sizes after 6 iterations. Thus,245

the necessary number of iterations is reduced by more than 85 %. Again, a minimum step size of α= 0.5 helps to reduce the

relative difference after a few iterations. The exact step sizes for Newton’s method are even better. They decrease the relative

13



Figure 10. Relative difference of |v− vref |/vref for each grid point at the surface at y = L/4 for ISMIP-HOM A. The reference solution

is the solution from 80 Picard iterations. The relative difference for Newton with exact step sizes and Newton with Armijo step sizes and a

minimal step of 0.5 are nearly identical.

difference, see Fig. 11, and the relative local difference, see Fig. 13, further than the Armijo step sizes. Also, exact step sizes

improve the Picard iteration. Again it is interesting to consider the relative local difference for a few iterations, see Fig. 14.

This figure emphasizes that the Picard iteration converges slowly compared to the other methods. As this experiment is more

Figure 11. Relative difference compared to the reference solution for ISMIP-HOM A.

250

realistic regarding the number of grid points, we calculated the computation time for each iteration in experiment ISMIP-HOM

A, see Table 1. There are two key findings: The computation time for Newton’s method is about 20 % higher than for the Picard

iteration. Additionally, the step size control is computationally cheap compared to Newton’s method or the Picard iteration.
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Figure 12. Relative difference compared to the reference solution for ISMIP-HOM A for the first 9 iterations.

Figure 13. Relative local difference compared to the reference solution for ISMIP-HOM A.

However, the three-dimensional experiment has the additional uncertainty in precise computation times that we used the

same processor type but a different processor.255

6 Instationary experiments

In this section, we simulate a time-dependent version of the Haut Glacier d’Arolla without and with sliding. In a first step, we

verify that our model produces similar results as in the experiments ISMIP-HOM E1 and E2, see Pattyn et al. (2008). The top

and the bottom of the glacier are given by an input file. At the bottom, we have Dirichlet boundary conditions, and at the top,

σ ·n= 0. The domain is represented in Fig. 15. In contrast to the stationary problems in Sect. 5, we do not have a reference260
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Figure 14. Relative local difference compared to the reference solution for ISMIP-HOM A for the first 9 iterations.

Table 1. Computation time in seconds without diagnostic calculations like the residual norm for the complete iteration.

Complete iteration Step size calculation

Mean Standard deviation Mean Standard deviation

Picard 2226 20.3 - -

Picard with exact step sizes 2286 11.0 60.4 0.18

Newton with Armijo step sizes 2706 6.77 4.60 0.45

and minimum step size=0.5

Newton with exact step sizes 2757 18.5 60.1 0.24

Figure 15. Domain of the Haut Glacier d’Arolla without sliding.
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solution. A stopping criteria in (Gagliardini and Zwinger, 2008, section 2.4.2) is

2
|uk+1−uk|
|uk+1|+ |uk|

< 10−5. (14)

To include the step size, we would multiply the right-hand side with α. This criterion is suitable to stop the iteration in a real

simulation if the velocity field only has small changes. However, checking the relative difference let the Newton variants with

step size control stop earlier in our test simulation without decreasing the error ‖G(v,p)‖ as much as the Picard variants did.265

As we compare solvers, we need to check if G(vk,pk) is close enough to zero. Thus, we check if we are close enough to our

solution compared to the initial guess

‖G(vk,pk)‖/‖G(v0,p0)‖< ε

with ε := 10−3. A relative stopping criteria seems necessary to reduce dependence on the domain and the absolute velocities.

Thus, the calculated velocity field should have an error of 0.1 % compared to the initial guess after each time step. Our initial270

guess for time-dependent problems is the solution of a Stokes problem before the first step. After calculating a velocity field,

the surface velocity determines the new surface. The grid points are moved according to the new surface. The initial guess for

the velocity on the new domain is our velocity field shifted to the new domain. The stopping criterion has the advantage that

we count the number of iterations needed to reduce the error by a certain factor. Therefore, the wanted error reduction is the

same for all our solvers.275

We know G(vk,pk) ∈ (H ×L)∗. The Riesz isomorphism yields the existence of (ṽk, p̃k) ∈H ×L with∫
Ω

∇ṽk :∇φdx+

∫
Ω

div(φ)p̃k dx+

∫
Ω

qdiv(ṽk)dx= 〈G(vk,pk),(φ, q)〉V ∗
2 ,V2

for all (φ, q) ∈H ×L. (15)

Thus, we have to solve another Stokes problem in each iteration. Note that this Stokes problem is only diagnostic, and we do

not need to solve it in practice. As the numerical analysis focuses on the velocity field, we calculate our error by

‖ṽk‖V2
=

√√√√∫
Ω

|∇ṽk|2 dx. (16)280

For the experiment with sliding, we have to handle a difficulty arising in FEniCS: We can only force the boundary condition

v ·n= 0 on horizontal and vertical boundaries. Thus, we use a lot of small stairs at the bottom instead of the slope in the

original problem, see Fig. 16. On the bottom boundary with 2200< x < 2500, we employ the boundary condition vz = 0 for

v = (vx,vz).

6.1 Stationary solutions285

We only discuss the accuracy of our model in simulating the experiment ISMIP-HOM E1 and E2 without considering con-

vergence speed. We discuss the convergence speed for the time-dependent problems. The simulation of the velocity field is

quite similar to Pattyn et al. (2008), see Fig. 17. Our velocity field at the surface is mostly within the mean with the standard

deviation of the reference solutions, see Fig. 17. In some small parts, the velocity is slightly lower.
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Figure 16. Stair-shaped domain at the bottom.

Figure 17. Surface velocity field of the Haut Glacier d’Arolla without sliding.

The calculated velocity field is near the mean minus the standard deviation of the reference solutions in Pattyn et al. (2008),290

see Fig. 18. Often, it is even a bit less. However, it is still a suitable approximation, and we use both problems for the time-

dependent simulation.

6.2 Time dependent problem - mass transport

For the instationary problem, the surface develops dependent on the velocity field. In our case, we describe the height of the

glacier by295

∂z(x)

∂t
+ vx(x)

∂z(x)

∂x
− vz(x) = 0 for x ∈ (0,5000] (17)

see Pattyn et al. (2008). The height is fixed at x= 0. Let (xi)
N
i=0 be the discretization with x0 = 0 and xN = 5000. We

approximate the spatial differential quotient by an upwinding scheme:

vx(xi)
∂z(xi)

∂x
≈

vx(xi)
z(xi)−z(xi−1)

xi−xi−1
for vx(xi)> 0 and i > 0,

vx(xi)
z(xi+1)−z(xi))

xi+1−xi
for vx(xi)≤ 0 and i < N.

(18)
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Figure 18. Surface velocity field of the Haut Glacier d’Arolla with sliding.

The upwinding scheme stabilizes the solution of the discretized Eq. (17). Moreover, it helped in our experiments for the300

conversation of mass compared to the forward difference quotient and the central difference quotient. We use an explicit Euler

method in time and conclude for the k+ 1-th time step:

zk+1− zk

∆t
+ vkx(x)

∂zk(x)

∂x
− vkz (x) = 0. (19)

Together, we obtain for the k+ 1-th time step and the i-th grid point at the surface

zk+1
i = zki + ∆t

vkz (xi)−


vkx(xi)

zk(xi)−zk(xi−1)
xi−xi−1

for vx(xi)> 0 and i > 0,

vkx(xi)
zk(xi+1)−zk(xi)

xi+1−xi
for vx(xi)≤ 0 and i < N,

0 for i= 0.

 . (20)305

In our problem, the value z(x0) is fixed. Mathematically, we are not allowed to fix z(xN ) because this value is determined by

Eq. (17). Therefore, we add a grid point at (5000,2505), slightly above the bottom (5000,2500). We impose σ ·n= 0 on the

newly generated right boundary. Hence, the mass can flow outside the glacier or physically interpreted ice is melting.

We calculate over 30 years to simulate a changing velocity field with the highest surface velocity at the right edge of the

domain. We choose a time step size of 0.25 years to fulfill the CFL condition for the experiment E1. In experiment E2, we310

choose the same time step sizes to have a comparable experiment.

6.3 Time-dependent simulation without friction

In this subsection, we visualize the velocity field of the glacier at the surface over the time simulation and discuss the compu-

tational effort for the experiment without friction.
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Figure 19. Surface velocity fields for the Picard iteration, the Picard iteration with exact step sizes, Newton’s method with Armijo step sizes,

and Newton’s method with exact step sizes. The velocity fields for the different methods are nearly identical.

All simulations produce similar surface velocities over time, see Fig. 19. Thus, all methods seem to calculate the solution315

appropriately. Now, we discuss the computational effort. The number of iterations needed is shown in Fig. 20. We set the maxi-

mum number of iterations to 50. Newton’s method with Armijo step sizes and a minimum step size of 0.5 has the problem that

it does not always converge. Too small step sizes were chosen without the minimum step size, which yielded no convergence,

too. The necessary number of Newton steps with exact step sizes varies a lot from time step to time step compared with both

Picard variants. In Table 2, we see that Newton’s method with exact step sizes performs best. However, it has a larger standard320

deviation than the Picard variants. The Picard iteration with exact step sizes needs only about two more iterations. Newton’s

method with Armijo steps has a really large standard deviation.

We measured the computation time for the time-dependent experiment, see Table 3. The computation of the step sizes takes

9 % or less of the total computation time for each iteration. The computation time for calculating diagnostics like the residual

norm was not measured as it is unnecessary for the application.325
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Figure 20. Number of iterations to solve the full-Stokes equations between each time step.

Table 2. Number of iterations for solving the full-Stokes equations in each time step.

Time steps Mean Standard deviation

Picard 119 16.79 0.41

Picard with exact step sizes 119 9.29 0.46

Newton with Armijo step sizes 119 10.92 10.67

and minimum step size=0.5

Newton with exact step sizes 119 6.45 2.83

Table 3. Computation time in seconds for the complete iteration without diagnostic calculations like the residual norm.

Complete iteration Step size calculation

Iterations Mean Standard deviation Mean Standard deviation

Picard 1998 5.61 0.61 - -

Picard with exact step sizes 1106 6.00 0.59 0.48 0.03

Newton with Armijo step sizes 1299 5.73 0.60 0.02 0.01

and minimum step size=0.5

Newton with exact step sizes 767 6.01 0.57 0.48 0.03
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Figure 21. Surface velocity fields for the Picard iteration, the Picard iteration with exact step sizes, Newton’s method with Armijo step sizes,

and Newton’s method with exact step sizes. The velocity fields for the different methods are nearly identical.

6.4 Time-dependent simulation with friction

In this subsection, we visualize the velocity field of the glacier at the surface over the time simulation and discuss the compu-

tational effort for the experiment with friction.

All simulations produce similar surface velocities over time, see Fig. 21. Thus, all methods seem to calculate the solution

appropriately. Now, we discuss the computational effort. The number of iterations needed is shown in Fig. 22. We set the maxi-330

mum number of iterations to 50. Newton’s method with Armijo step sizes and a minimum step size of 0.5 has the problem that

it does not always converge. Too small step sizes were chosen without the minimum step size, which yielded no convergence,

too. The necessary number of Newton steps with exact step sizes varies a lot from time step to time step compared with both

Picard variants. Interestingly, the Picard variants need nearly the same number of iterations with sliding as without sliding.

There are also two time steps in which Newton’s method with exact step sizes does not converge. In Table 4, we see that the335

Picard iteration with exact step sizes performes best. It also has the lowest standard deviation.
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Figure 22. Number of iterations to solve the full-Stokes equations between each time step.

Table 4. Number of iterations for solving the full-Stokes equations in each time step.

Time steps Mean Standard deviation

Picard 119 16.72 0.55

Picard with exact step sizes 119 9.39 0.49

Newton with Armijo step sizes 119 24.70 20.64

and minimum step size=0.5

Newton with exact step sizes 119 10.42 7.48

We measured the computation time for the time-dependent simulation, see Table 5. The computation time for calculating

diagnostics like the residual norm was not measured as it is unnecessary for the application. The computation of the step sizes

takes 6.5 % or less of the total computation time for each iteration.

Table 5. Computation time in seconds for the complete iteration without diagnostic calculations like the residual norm.

Computation time each iteration Computation time step size

Iterations Mean Standard deviation Mean Standard deviation

Picard 1990 10.93 0.77 - -

Picard with exact step sizes 1118 11.31 0.85 0.30 0.01

Newton with Armijo step sizes 2939 11.22 0.86 0.03 0.01

and minimum step size=0.5

Newton with exact step sizes 1240 11.62 0.75 0.67 0.03
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7 Summary and conclusion340

Solving the full-Stokes equations is equivalent to minimizing a function. We use this function to introduce approximately exact

step sizes. For a comparison, we also use Armijo step sizes. We test the algorithms for benchmark experiments with a sinusoidal

bottom in two and three dimensions, for the Glacier d’Arolla benchmark experiment, and for a time-dependent variant of the

Glacier d’Arolla experiment with and without sliding.

We observe that our calculated solutions are similar to those in Pattyn et al. (2008). However, the approximately exact step345

sizes greatly improve the convergence speed of the Picard iteration and ensure convergence of Newton’s method for nearly

all situations except two cases in the time-dependent simulation with friction, see Fig. 22. Thus, the approximately exact step

sizes seem to be better than the Armijo step sizes.

The computation time of the step sizes is only a small part of the complete iteration. In our experiments, the time for

calculating the step sizes took 9 %, 6.5 %, and 3 %. The ratio is even smaller for higher resolutions. The concrete computation350

times in seconds are irrelevant as they depend on the hardware.

8 Outlook

The effort to implement the algorithms above is relatively low. For every additional boundary condition to those above, one has

to check if a convex function exists. One only needs to implement these convex functions, the directional derivatives, and the

Armijo and exact step sizes, respectively. The Picard iteration or Newton’s method should already be implemented for solving355

the full-Stokes equations.

There are a few possible directions to work on: The computation of the step size could be done more efficiently by paral-

lelizing the calculation of the integrals and testing how many bisections are necessary for calculating the exact step sizes.

Also, more realistic three-dimensional examples or different sliding laws could be tested. The mathematical theory for a

nonlinear sliding boundary condition is discussed in Schmidt (2023).360

The implementation in ice models is another way to check if the presented algorithms work in real-world applications.

Lastly, the step size control might reduce the number of iterations for the Higher-Order equations. Solving those equations is

also equivalent to finding the minimum of a convex function, (see Schoof, 2010).

Code and data availability. The model is available at https://doi.org/10.5281/zenodo.10618661. The latest version of the source code is

available at https://github.com/Niko-ich/FEniCS-full-Stokes.365
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Appendix A: Mathematical derivations

A1 The variational formulation

For the well-posedness of the Picard iteration, see Algorithm 1,

B
(
|Dvk|2 + δ2

) 1−n
2n Dvk+1 :∇φ (A1)

has to be integrable. Due to a bounded ice rheology B and δ > 0, follows the boundedness with c ∈ R and370

B
(
|Dvk|2 + δ2

) 1−n
2n < c. (A2)

Thus, we need for integrability Dvk+1 :∇φ ∈ L1(Ω). This is only fulfilled for Dvk+1 ∈ Lp(Ω)N×N and ∇φ ∈ Lq(Ω)N×N

with 1/p+ 1/q = 1. Hence, we can not use vk+1,φ ∈ {v ∈W 1,1+1/n(Ω)N ; v|Γb∪Γ`
= 0}, see (Belenki et al., 2012, section

2.3), which is the suitable space for µ0 = 0 as it allows the proof of existence and uniqueness of the solution.

However, expression (A1) is well-defined for vk+1,φ ∈H = {v ∈H1(Ω)N ; v|Γb∪Γ`
= 0}. The additional diffusion term375

with µ0 > 0 verifies that the solution of the full-Stokes equations is in H . Similar reasons make the diffusion term necessary

for Newton’s method: The directional derivative, see equation (6) is only defined for v,w,φ ∈H .

A2 The directional derivative ofG

In this subsection, we compute the derivative of G at the velocity v ∈H and pressure p ∈ L in the direction w ∈H and q ∈ L
with the diffusion µ0 > 0. Because we have a variational formulation, we can only interpret this derivative for test functions380

φ ∈H and ψ ∈ L. We calculate

〈G′(v,p)(w, q),(φ,ψ)〉

= lim
t→0

〈G(v+ tw,p+ tq),(φ,ψ)〉− 〈G(v,p),(φ,ψ〉
t

= lim
t→0

∫
Ω

B

t

((
|D(v+ tw)|2 + δ2

) 1−n
2n Dv−

(
|Dv|2 + δ2

) 1−n
2n Dv

)
:∇φdx

+ lim
t→0

∫
Ω

B

t

((
|D(v+ tw)|2 + δ2

)(1−n)/(2n)
tDw

)
:∇φdx

+ lim
t→0

µ0

∫
Ω

∇
(
v+ tw−v

t

)
:∇φdx−

∫
Ω

p+ tq− p
t

divφdx−
∫
Ω

div

(
v+ tw−v

t

)
ψdx. (A3)

The limits for the second and third lines on the right-hand side of the last equality are clear. For the first line, we use the Taylor

expansion. Therefore, we define the function fx : [0,∞)→ R,385

fx(t) =
(
|D(v(x) + tw(x))|2 + δ2

) 1−n
2n . (A4)

Its derivative is

f ′x(t) =
1−n
n

(
|D(v(x) + tw(x))|2 + δ2

) 1−3n
2n (Dv(x) :Dw(x) + t|Dw(x)|2). (A5)
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We calculate the derivative by assuming we can draw the limes into the integral. A detailed explanation of why we can do this

is in Schmidt (2023). We obtain with ξ : Ω→ [0, t] for the Taylor expansion390 ∫
Ω

lim
t→0

B

t

((
|D(v+ tw)|2 + δ2

) 1−n
2n Dv−

(
|Dv|2 + δ2

) 1−n
2n Dv

)
:∇φdx

=

∫
Ω

lim
t→0

B

t

(
fx(t)− fx(0)

)
Dv :∇φdx

=

∫
Ω

lim
t→0

B

t
f ′x(ξ(x))tDv :∇φdx

=

∫
Ω

lim
t→0

B
1−n
n

(
|Dv(x) + ξ(x)w(x)|2 + δ2

) 1−3n
2n (Dv(x) :Dw(x) + ξ(x)|Dw(x)|2)Dv(x) :∇φ(x)dx

=

∫
Ω

B
1−n
n

(
|Dv|2 + δ2

) 1−3n
2n (Dv :Dw)(Dv :∇φ)dx. (A6)
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and Zwinger, T.: Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP–HOM), The Cryosphere, 2, 95–108,440

https://doi.org/10.5194/tc-2-95-2008, 2008.

Rückamp, M., Kleiner, T., and Humbert, A.: Comparison of ice dynamics using full-Stokes and Blatter–Pattyn approximation: application to

the Northeast Greenland Ice Stream, The Cryosphere, 16, 1675–1696, https://doi.org/10.5194/tc-16-1675-2022, 2022.

Schmidt, N.: Global Convergence of the Infinite-Dimensional Newton’s Method for the Regularized P -Stokes Equations,

https://doi.org/10.21203/rs.3.rs-3354498/v1, 2023.445

Schoof, C.: Coloumb friction and other sliding laws in a higher-order glacier flow model, Mathematical Models and Methods in Applied

Sciences, 20, 157–189, https://doi.org/10.1142/s0218202510004180, 2010.

Zhang, T., Price, S., Ju, L., Leng, W., Brondex, J., Durand, G., and Gagliardini, O.: A comparison of two Stokes ice sheet models

applied to the Marine Ice Sheet Model Intercomparison Project for plan view models (MISMIP3d), The Cryosphere, 11, 179–190,

https://doi.org/10.5194/tc-11-179-2017, 2017.450

28

https://doi.org/10.5194/tc-2-95-2008
https://doi.org/10.5194/tc-16-1675-2022
https://doi.org/10.21203/rs.3.rs-3354498/v1
https://doi.org/10.1142/s0218202510004180
https://doi.org/10.5194/tc-11-179-2017

