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Abstract. Solving the momentum balance is the computationally expensive part of simulating the evolution of ice sheets.

The momentum balance is described by the nonlinear full-Stokes equations. As a nonlinear problem, they
:
,
:::::
which

:
are solved

iteratively. We solve these equations with
::
use

:::
the

::::::
Picard

:::::::
iteration

:::
and

:
Newton’s method. A step size control guarantees global

superlinear convergence. For the step size control, we need a minimization problem. Minimizing a specific convex function

is equivalent to solving the full-Stokes equations. We use two algorithms to determine the step size for Newton’s method:5

Armijo and the
:::::::
methods

:::::::::
combined

::::
with

:::::::
Armijo

:::
step

:::::
sizes

::::
and

::::::::::::
approximately

:::::
exact

::::
step

:::::
sizes,

:::::::::::
respectively,

::
to

:::::
solve

:::::
these

::::::::
equations.

:::::
Only

:::
the

::::::::::::
approximately

:
exact step sizes . Additionally, we use the latter

::
are

:::::
used for the Picard iteration. Finally,

we
:::
We

:
compare the Picard iteration and the variants of Newton’s method in two benchmark experiments, called ISMIP-

HOM experiments Aand B. These
:
,
::
B,

:::
E1,

::::
and

:::
E2.

::::
The

:::::::::::
ISMIP-HOM

:
experiments consist of a more realistic domain and are

designed to test the quality of ice models.
:::
For

::
an

::::
even

:::::
more

:::::::
realistic

:::
test

:::::
case,

:::
we

:::::::
simulate

:::
the

::::::::::
experiments

:::
E1

:::
and

:::
E2

::::
with

::
a10

::::::::::::
time-dependent

:::::::
surface.

:
We obtain that the Picard iteration and Newton’s method with

::::::::::::
approximately exact step sizes greatly

reduce the necessary number of iterations
:::
with

::::::
nearly

::
no

:::::::
increase

:::
of

::
the

:::::::::::
computation

::::
time

:::
for

::::
each

:::::::
iteration.

1 Introduction

Simulating the evolution of the ice sheets in Greenland and Antarctica in adequate physics and resolution is a challenging

task. The dynamics of ice sheets is described as a fluid mechanical problem with the momentum balance reduced to a Stokes15

problem as acceleration and Coriolis forces are negligible. In the past computational constraints led to the reduction of the

problem by approximating the momentum balance. If the spatial resolution cannot be choosen sufficiently large, the benefit

from solving the Stokes problem is lost. Consequently, in practical terms, Stokes models are leading to large problems and thus

efficient solvers are inevitable. This is what this study is focusing on.

The full-Stokes equations are nonlinear partial differential equations . These equations are also described as shear thinning,20

in which
:::::
which

::::::
means

:::
that the viscosity depends nonlinear

::::::::::
non-linearly on the symmetric gradient. More precisely, we consider

the stationary variant of these equations in the variational formulation. This
::
In

::
ice

:::::::
models,

:::
the

::::::::
stationary

::::::::
equations

:::
are

::::::
solved

::
to

1



:::::::
calculate

:::
the

:::::::
velocity

::::
field.

:::::
Then,

:::
the

:::::::
velocity

::::
field

::
is

::::
used

::
to

::::::::
calculate

::
the

::::
new

:::::
shape

::
of

:::
the

::::::
glacier.

::::
The

:::::::::
variational formulation

is needed to calculate a solution with finite elements. A standard
:::::::
common

:
method to calculate the solution of these equations

is the Picard iteration, (see Colinge and Rappaz, 1999). The Picard iteration fixes the nonlinear viscosity, calculates a new25

velocity, and updates the viscosity.

:::
The

::::::
Picard

:::::::
iteration

:::
is,

:::
for

::::::::
example,

:::::
used

::
in

:::
the

:::
ice

::::::
model

:::::
ISSM

:
,
::::::::::::::::
Larour et al. (2012)

:
,
:::
and

::::::::
FELIX-S

:
,
:::::::::::::::
Leng et al. (2012)

:
.
::::::::
Elmer/Ice

:
,
::::::::::::::::::::
Gagliardini et al. (2013),

:::::
uses

:::
the

::::::
Picard

:::::::
iteration

:::
for

::::
the

::::
first

:::
few

:::::::::
iterations

:::
and

:::
the

::::::::
Newton

::::::
method

:::
for

::::
the

:::
last

::::::::
iterations.

:::::::::
Elmer/Ice

:::
does

::::
not

:::
use

::
a

::::
step

:::
size

:::::::
control.

::::::::
Thereby,

::::::::
Newton’s

:::::::
method

::::
does

::::
not

::::::::
converge

::::
from

:::::
every

::::::
initial

:::::
point,

:::::::::::::::::::
Gagliardini et al. (2013)

:
.
::::
The

::
ice

:::::::
models

::::::::
Elmer/Ice

::
and

::::::::
FELIX-S

::
are

::::::::
compared

::
in
::::::::::::::::
Zhang et al. (2017)

:
.
:::
For

:::::
some

::::::
glacier30

:::::::::
simulations

:::::::::
COMSOL

::::::::::
multiphysics

:
is
:::::
used,

::::::::::::::::::::::
(see Rückamp et al., 2022).

:::::::::
Newton’s

::::::
method

::
in

:::::::::
COMSOL

::::::::::
multiphysics

:::::::
switches

:::::::
between

::::::::
choosing

:::
the

:::::::
negative

:::::::
gradient

::::
and

::::::
Newton

:::::::::
directions.

::::::::::::
Additionally,

:
a
::::::::::
trust-region

:::::::
method

::
is

::::
used

::
to

:::::::::
determine

:::
the

:::
step

:::::
sizes.

::::
The

::::::::::
trust-region

:::::
radius

::
is
:::
the

:::::::::
maximum

::::
step

::::
size

:::
that

::::
one

:::::
would

::::
trust

:::
the

::::
step

::::
size

::
to

:::
be

:
a
:::::
good

::::::
choice,

:::
for

:::::
more

:::::::::::
mathematical

::::::
details,

:::
see

:::::::::::::::::::::::::::::::::::
(Dennis and Schnabel, 1996, section 6.4.2)

:
.
:::
The

::::::::::
trust-region

:::::::
method

::
in

::::::::
COMSOL

:::::::::::
multiphysics

::::
uses

::
the

::::::::
residual

:::::
norm,

::::
see

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(COM, 2018, section The Fully Coupled Attribute and the Double Dogleg Method)

:
. Instead, we

:::
will35

::::::
discuss

::::::
another

:::::::::
approach,

:::::
which

::
is
:::::::::::::

algorithmically
:::::::
simpler

:::
and

:::::
uses

:::
the

::::::::::::::
problem-specific

::::::::::
information

::
of

::
a

::::::
convex

::::::::
function.

::::::::::
Additionally,

:::
the

:::::::
convex

:::::::
function

:::::
allows

:::
us

::
to

:::
use

:::::::
different

::::
step

::::
size

:::::::
methods.

:

:::
We employ Newton’s method by formulating the variational formulation as a root problem. If we start near the solution,

Newton’s method is superlinear convergent, (Hinze et al., 2009). Thus, the error between the approximation and the real

solution reduces faster than linear. In contrast, the Picard iteration converges only linearly
:::
the

:::::
linear

:::::::::
convergent

::::::
Picard

:::::::
iteration40

(see Fraters et al., 2019). However, starting with an unsuitable initial velocity field for Newton’s method could lead to a

diverging velocity. A step size control guarantees convergence from every initial guess. This step size control is constructed by

defining a function that we want to minimize. One variant is presented in Fraters et al. (2019). We consider another approach

that only needs to calculate integrals. It allows us to use two different step size controls. Newton’s method with one of these

step sizes converges from every initial guess superlinear to the solution, (Schmidt, 2023). Additionally, we employ the exact45

step size
:::::::::::
approximately

:::::
exact

::::
step

:::::
sizes for the Picard iteration to provide a possibility to reduce the necessary number of

iterations without implementing Newton’s method.
:::
The

:::::
exact

::::
step

::::
sizes

:::
are

::::
the

:::::::
solution

::
of

:
a
::::::::::::::

one-dimensional
::::::::::::

minimization

:::::::
problem.

:::
As

:::
we

:::
can

:::::
only

::::::::::
approximate

:::::
these

::::
step

::::
sizes

:::::::::
arbitrarily

:::::::
precise,

:::
we

:::::
called

:::::
them

::::::::::::
approximately

:::::
exact

:::
and

::::
will

::::
call

::::
them

::::::
exact

:::
step

:::::
sizes

:::
for

::::::
brevity.

:

The computation of the step size is computationally cheap compared to solving the linear systems of equations in each50

iteration. The work of Habbal et al. (2017) considers different solvers to reduce the simulation time for solving the system of

linear equations. Nonetheless, for all solvers, the system of linear equations is still the main computational effort. Our step size

control reduces the computation time by reducing the necessary number of iterations.

As a test case, we use the ISMIP-HOM experiments Aand ,
:
B,

::::
E1,

:::
and

::::
E2. These experiments are designed to test the

quality of glaciological models. They reflect a sinusoidal bedrock topography, a large domain of the glaciers, and a large aspect55

ratio,
::::
and

:
a
:::::::::
sinusoidal

:::::::
bedrock

:::
and

:::
the

:::::::
Glacier

::::::::
d’Arolla,

::::::::::
respectively.

:::
We

::::::::
simulate

:::
the

::::::
Glacier

::::::::
d’Arolla

::::::::::
experiments

:::
E1

::::
and

:::
E2

:::
also

:::::::::::::
time-dependent.
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The manuscript has the following structure: In Sect. 2, we introduce the equations in the variational formulation and the

Picard iteration. In the subsequent section, we formulate Newton’s method. In Sect. 4, we introduce the new idea, the step size

control that decreases the number of iterations and verifies convergence from every initial guess. In Sect. 5, we discuss our60

numerical solution of the
::
the

::::::::
stationary

:
ISMIP-HOM experiments A and B and compare them with the results in Pattyn et al.

(2008).
::
In

:::::
Sect.

:
6
:
,
:::

we
:::::
solve

::::::::::
instationary

::::::::
problems

::::
with

::::
and

:::::::
without

::::::
sliding

::::::
derived

:::::
from

:::
the

:::::::::::
ISMIP-HOM

:::::::::::
experiments

:::
E1

:::
and

:::
E2.

:
Finally, we give a summary in Sect. 7 and an outlook in Sect. 8.

2 The full-Stokes equations as a root problem

Let Ω⊆ RN with N ∈ {2,3}. For describing the movement of ice, we need the second-order tensor σ, the density ρ, and the65

gravitational acceleration g. These quantities describe the full-Stokes equations, the most complex equations for simulating

ice, by:

−divσ =−ρg,

divv = 0 (1)

on the domain Ω. We describe the stress tensor σ with the pressure p, the identity tensor (matrix) I , the symmetric gradient D,70

the velocity v, and the viscosity µ by σ := pI −µDv. We define the nonlinear viscosity µ as

µ=B
(
|Dv|2 + δ2

) 1−n
2n , (Dv)ij =

1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
, |Dv|2 :=Dv :Dv :=

N∑
i,j=1

|(Dv)ij |2 (2)

with n ∈ (1,∞) and B =B(x1,x2,x3), δ > 0. The constant δ > 0 guarantees µ <∞. We choose n= 3 , which is in the

typical range for glacier simulations, which is n ∈ [3,4]
:::
for

::
the

:::::::::::
experiments

::
as

::
in

::::::::::::::::
Pattyn et al. (2008). The boundary consists of

the bedrock Γb, the surface Γs, and the lateral boundary Γ`. Our boundary conditions are:75

v = 0 on Γb ∪Γ`,

σ ·n= 0 on Γs (3)

with the outer normal vector n. Here, σ ·n is the inner tensor-product (matrix-vector multiplication).

We want to consider
:::::
derive

:
the variational formulation . We set H := {v ∈H1(Ω)N ; v|Γb∪Γl

= 0}, where H1(Ω)N is the

space of vector-valued square integrable functions with a square integrable derivative. We set L := {p ∈ L2(Ω);
∫

Ω
pdx= 0}80

for the space of square integrable functions with zero integral
::
in

::::::
infinite

::::::::::
dimensions

:::::::
because

:::
we

:::
can

:::::::::
implement

::
it

:::::::
directly

::
in

::::::
FEniCS

:
,
::::::::::::::::::
(see Logg et al., 2012). We determine the variational formulation by multiplying with test functions and using partial

integration. We have a small diffusion term with µ0 > 0 as an aditional summand for mathematical properties. We want to

find v ∈H and p ∈ L and test with all φ ∈H and all ψ ∈ L,
::::
and

::::::
second,

:::
we

:::::::
explain

:::
the

:::::::
function

::::::
spaces

::::
used. We define an

operator G :H ×L→H∗×L∗ by85

〈G(v,p),(φ,ψ)〉=

∫
Ω

B
(
|Dv|2 + δ2

) 1−n
2n Dv :∇φdx+µ0

∫
Ω

∇v :∇φdx−
∫
Ω

pdivφdx−
∫
Ω

divvψdx+

∫
Ω

ρg ·φdx, (4)

3



where v ∈H and p ∈ L are the solution, and φ ∈H and ψ ∈ L are test functions. The square brackets on the left-hand side of

the equation are used because, formally, we have a function that maps to the dual space. The dual space is denoted by the star

after the space, e.g.
:
, H∗ and L∗.

:::
The

:::::::
solution

:::
of

:::
the

:::::::::
full-Stokes

::::::::
equations

:::
are

:::::::::::::
(v,p) ∈H ×L

::::
with

〈G(v,p),(φ,ψ)〉= 0 for all (φ,ψ) ∈H ×L
:::::::::::::::::::::::::::::::::::::

(5)90

:::
We

:::::
added

:::
the

::::::::
diffusive

::::
term

::::::
µ0 > 0

:::
to

:::
get

:
a
::::::::::
well-posed

:::::::::
directional

::::::::
derivative

::::
and

:
a
::::::::::

well-posed
::::::
Picard

:::::::
iteration,

:::
for

:::::::
details,

:::
see

::::::::
Appendix

:::
A1.

:::::::::::
Additionally,

:::
we

:::
are

::::
now

::
in

::
a

::::::
Hilbert

:::::
space

::::::::::
formulation

:::
and

:::
set

:::::::::::::::::::::::::::::
H := {v ∈H1(Ω)N ; v|Γb∪Γ`

= 0},
::::::
where

:::::::
H1(Ω)N

::
is

:::
the

:::::
space

::
of

:::::::::::
vector-valued

::::::
square

::::::::
integrable

::::::::
functions

::::
with

:
a
:::::
square

:::::::::
integrable

:::::::::
derivative.

:::
We

::
set

::::::::::::::::::::::::::
L := {p ∈ L2(Ω);

∫
Ω
pdx= 0}

::
for

:::
the

:::::
space

:::
of

:::::
square

:::::::::
integrable

::::::::
functions

::::
with

::::
zero

:::::::
integral.

:
There exists a unique solution to that problem for µ0 > 0, (see

Schmidt, 2023).
:::::::::::
Nonetheless,

::
we

:::::::
perform

:::
all

::::::::::
experiments

::::
with

:::::::
µ0 = 0.95

We formulate the problem in infinite-dimensional spaces H and L. In these infinite-dimensional spaces, mathematical con-

vergence properties are independent of the mesh resolution and the used finite elements, as long as the finite elements are a

subspace of the infinite-dimensional spaces. Ice models often use finite elements. Moreover, the formulation in discretized

spaces is identical, only the functions are from finite-dimensional spaces.

A standard
:::::::
common method to solve the variational formulation of the full-Stokes equations in glaciological models is100

the Picard iteration, see Algorithm 1.
::
It

::
is

::::
used

::
in

:::::
ISSM,

:::
see

:::::::::::::::::
Larour et al. (2012)

:
,
:::::::
FELIX-S

:
,
:::
see

:::::::::::::::
Leng et al. (2012).

:::::::::
Elmer/Ice

:::
can

:::
use

:::
the

::::::
Picard

:::::::
iteration

:::
and

:::::::::
Newton’s

:::::::
method,

:::::
which

:::
we

::::
will

::::::::
introduce

::
in

:::
the

::::
next

:::::::
section.

::::::::
Elmer/Ice

:::
can

:::
use

:::
the

::::::
Picard

:::::::
iteration

::
to

:::
get

::::
near

:::
the

::::::
solution

::::
and

::::
then

:::
can

:::
use

::::::::
Newton’s

:::::::
method,

:::
see

::::::::::::::::::::
Gagliardini et al. (2013)

:
. We need δ > 0 to guarantee

Algorithm 1 Picard iteration

1: Let v0 ∈H and p0 ∈ L be given.

2: for k = 0,1, . . . do

3: Calculate vk+1 ∈H and pk+1 ∈ L with∫
Ω

B
(
|Dvk|2 + δ2) 1−n

2n Dvk+1 :∇φdx+µ0

∫
Ω

∇vk+1 :∇φdx−
∫
Ω

pk+1divφdx−
∫
Ω

divvk+1ψdx=−
∫
Ω

ρg ·φdx

for all φ ∈H and ψ ∈ L.

4: end for

well-posedness of the nonlinear viscosity. Furthermore, we need δ > 0 to calculate derivatives. The variational formulation

also exists for δ = 0.105

3 Newton’s method

The Picard iteration converges slowly (see Fraters et al., 2019). Thus, it can be beneficial to consider faster converging al-

gorithms. Newton’s method is at least
::::
often

:
superlinear convergent, also in infinite dimensions, (see Hinze et al., 2009). For

Newton’s method, the calculation of the derivative is necessary. Due to the variational formulation, we can only express the
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derivative of G in terms of the direction and the test functions. The derivative of G in (v,p) in direction (w, q) is110

〈G′(v,p)(w, q),(φ,ψ)〉=

∫
Ω

1−n
n

B
(
|Dv|2 + δ2

) 1−3n
2n (Dv :Dw)(Dv :∇φ)dx+µ0

∫
Ω

∇w :∇φdx

+

∫
Ω

B
(
|Dv|2 + δ2

) 1−n
2n Dw :∇φdx−

∫
Ω

qdivφdx−
∫
Ω

divwψdx. (6)

A mathematical proof thatG is continuously differentiable
:::::::::::
differentiable

:
in
:::
all

::::::::
directions

::::::
(w, q) is presented in Schmidt (2023).

A more detailed deduction of the derivative is in Subsect. A2.

Newton’s method can solve the full-Stokes equations by Algorithm 2. Because Newton’s method is only locally convergent,115

we use a step size control in Algorithm 2. We explain the step size control in the next section.

Algorithm 2 Globalized Newton’s method

1: Let (v0,p0) be given.

2: for k = 0,1, . . . do

3: Calculate (wk, qk) with

〈G′(vk,pk)(wk, qk),(φ,ψ)〉=−〈G(vk,pk),(φ,ψ)〉 for all φ ∈H , ψ ∈ L.

4: Set vk+1 := vk +αkwk and pk+1 := pk +αkqk with a suitable αk > 0.

5: end for

4 Step size control

In this section, we derive a global convergent Newton method by using a step size control: We have the actual
::::::
current velocity

field v and the directionw. Instead of setting our new field ṽ := v+w, we choose α > 0 with ṽ := v+αw. We want an algo-

rithm for choosing this α. Classical approaches for determining the step size α check, if the euclidean norm ‖G(vk+1,pk+1)‖2120

::::
norm

:::::::::::::::
‖G(vk+1,pk+1)‖

:
reduces enough compared to ‖G(vk,pk)‖2::::::::::

‖G(vk,pk)‖. What enough reduction means is, for exam-

ple, discussed in Hinze et al. (2009). However, we use an alternative approach. SolvingG(v,p) = 0 is equivalent to minimizing

J :H → R

J(v) =

∫
Ω

n

1 +n
B
(
|Dv|2 + δ2

) 1+n
2n dx+

µ0

2

∫
Ω

|∇v|2 dx+

∫
Ω

ρg ·vdx−
∫
Ω

pdiv

::::::::::

vdx, (7)

see Schmidt (2023). Such types of
:::
We

::::
need

:::
the

:::
last

:::::::::
summand

:::::::
because

:::
the

:::::::::::::
time-dependent

::::::::::
experiments

::::
lead

::
to

:::::
initial

:::::::
guesses125

::
for

:::
the

:::::::
velocity

::::
field

::::
that

:::
are

:::
not

:::::::::::::
divergence-free:

:::
We

::::
start

::::
with

::
a
:::::::::::::
divergence-free

:::::
initial

:::::
guess,

::::::::
calculate

:::
the

:::::::
velocity

::::
field,

::::
and

:::
use

:::
the

:::::::
velocity

::::
field

::
to

::::::::
calculate

:::
the

::::
new

:::::::
domain.

::::
(We

::::::
explain

:::
the

::::::::::
calculation

::
of

:::
the

::::
new

:::::::
domain

::
in

:::::::
subsect.

::::
6.2.)

::::
The

::::
grid

:::::
points

::::
with

:::
the

:::::::
velocity

::::::::::
information

:::
are

::::::
moved

::::::::::::::
correspondingly

::
to

::
fit

:::
the

::::
new

:::::::
domain.

:::
On

:::
this

::::
new

:::::::
domain,

::::
our

:::
old

:::::::
velocity

5



::::
field

:
is
:::
our

::::::
initial

:::::
guess

:::
and

::::::
slightly

:::
not

::::::::::::::
divergence-free.

:::::::
(Despite

::::
divv

:::::
being

::::
near

::
0,

:::
the

::::
step

:::
size

:::::::
control

:::
did

:::
not

::::
work

:::::::
without

::
the

::::
last

::::::::
summand

::
in

:::
Eq.

:::
(7)

:::
for

:::::::::::::
time-dependent

:::::::::
problems.)

:
130

:::
The

:
convex functions were also used in Hirn (2013) for µ0 = 0 with Dirichlet boundary conditions, and Chen et al. (2013)

for δ = 0 and µ0 = 0 with more realistic boundary conditions. The equivalence
:::::::
between

:::::::::
minimizing

::::
this

::::::
convex

:::::::
function

::::
and

::::::
solving

:::
the

:::::::::
full-Stokes

::::::::
equations

:
is clear because the minimizer of the function and the root of the derivative are at the same

point for strict convex functions. At first glance, the equivalence seems only true in the divergence-free space without the

pressure term. However, with a divergence-free velocity and a derivative in a divergence-free direction the pressure terms do135

not change the solution. Thus, we have

J ′(v)w = 〈G(v,p),(w, q)〉

for all divergence-free v,w ∈H and p,q ∈ L. Because minimizing J and finding the root of G are equivalent, a natural choice

for a step size tries to minimize the problem

:
A
::::::::

classical
::::::::
approach

::
to

:::::::::
determine

::
a

:::::::
suitable

::::
step

:::
size

::
α
:::

is
:::
the

:::
use

:::
of

::
an

:::::::
Armijo

::::
step

:::
size

:::
as

::
in

::::::::::::::::
Hinze et al. (2009),

::::
see140

::::::::
Algorithm

::
3.
: ::

We
:::::::
describe

:::
the

::::
idea

:::
of

::::::
Armijo

::::
step

:::::
sizes:

:::
For

::
a
:::::::
function,

:::
the

::::::::
negative

:::::::
gradient

::
is

:::
the

::::::::
direction

::
of

:::
the

:::::::
steepest

Algorithm 3
::::::
Armijo

:::
step

::::
size

1:
::
Let

::::::::::
γ ∈ (0,1/2).

:

2: for
::::::::
i= 0,1, . . . do

3:
::
Set

::::::
α := 1.

:

4: while J(v+αw)− J(v)> αγJ ′(v)w do

5:
::
Set

:::::::::
α := 0.5α.

6: end while

7: end for

8: return
:
α

::::::
descent.

:::
To

::::
find

:::
the

::::::::
minimum,

:::
we

::::
need

:::::::
enough

::::::::
reduction

::::::::
compared

::
to

:::
the

:::::::
steepest

::::::
descent

:::::::::
multiplied

::::
with

:::
the

::::
step

::::
size,

:::
and

::
a

:::::
factor

:::::::
between

::::
zero

:::
and

:::
one

::
as

:::
we

::::::
expect

:::
less

::::::::
reduction

::::
than

:::
the

::::::
steepest

:::::::
descent.

::::
This

::::::::
condition

::
is

:::::
stated

::
in

:::
line

::
4
::
of

:::::::::
Algorithm

::
3.

::::
Line

:
3
:::::::::
guarantees

:::
that

:::
the

::::
step

:::
size

::
is

:::
not

:::
too

:::::
small.

:::
For

::::::::
Newton’s

::::::
method

::::
one

::::::
chooses

:::::::
α := 1,

::::::::::::::::::::::::::::::::::::::
(see Nocedal and Wright, 2006, Algorithm 3.1)

:
.
::::::::
Newton’s

:::::::
method

:::::::::
converges

:::
fast

:::
for

:::::::::::
γ ∈ (0,1/2),

::::::::::::::::::::::::::::::::::::::
(see Nocedal and Wright, 2006, Theorem 3.6)

:
.
::::::::
Typically,

::::::::::
γ := 10−4

::
is145

::::::
chosen,

:::
see

:::::::::::::::::::::::
Nocedal and Wright (2006)

:
.
::::::::
However,

:::
we

::::::
choose

::::::::::
γ := 10−10

:::
as

:::::
10−4

:::
was

:::
to

:::::
strict.

:::
We

:::::
only

::::
need

::
a
::::::::
direction

:::
that

:::::::
reduces

:::
the

:::::::
function

::::
value

:::
to

:::
use

::::::
Armijo

::::
step

:::::
sizes.

::::::::
However,

::
we

::::
can

::::::
exploit

:::
the

::::
strict

::::::::
convexity

:::
of

:
J
:::
for

:::::::::::
constructing

::::
other

::::
step

:::::
sizes:

:::
We

:::::
define

:::
the

::::::::
auxiliary

:::::::
function

:

min
α∈(0,∞)

Jk(α) := min
α∈(0,∞)

J(vk +αwk). (8)

in each iteration. The function Jk is strictly convex, which implies that
::::::::::::::::::::::
J ′k(α) = J ′(vk +αwk)wk::

is
:::::::
negative

:::
for

:::::
α= 0

::::
and150

::::::
positive

:::
for

:::
big

:::::::
enough

:
α
:::::::
because

::
of
:::

the
::::::
choice

::
of

::::
wk :::

and
:::
the

:::::
strict

::::::::
convexity

::
of

:::
Jk.

:::
As

:::
J ′k :

is
::::::::::
continuous,

:
a simple bisection,

6



see Algorithm 4, calculates the minimum of Jk. In practice, we calculate
::::::::::
approximate

:
the exact step size as precisely as

desired
::::::::
arbitrarily

::::::
precise. Thus, we denote the approximate exact step size as the exact step size.

:::::
Exact

::::
step

::::
sizes

:::::
have

:::
the

::::::::
advantage

::::
that

:::
we

:::::
really

::::::::
calculate

:::
the

::::::::
minimum

::
in

::
a

:::::::
direction

:::::::
instead

::
of

:::
just

::::::
having

:::::
some

:::::::::
reduction.

:::::::::::
Nonetheless,

:::
the

:::::
exact

:::
step

::::
size

::
is

::::
only

::::::
rarely

::::
used

::
in

::::::::
practice.

::::
One

:::::
needs

:::::
more

:::::::::
conditions

::
on

:::
the

::::::::
problem,

::::
here

::::
the

::::
strict

:::::::::
convexity

::
of

::
J

:::
and

::::
Jk,155

::::::::::
respectively.

:::
We

:::::
could

:::
not

::::
find

:::
the

::::::::
minimum

::
of

:

‖G(vk +αwk,pk +αqk)‖
:::::::::::::::::::::

::
for

:::
the

::::::::
direction

::::::::
(wk, qk),

:::::::
because

::
we

:::::
have

::
no

::::::::::
information

::::::
where

::
the

:::::::::
minimum

::
is.

:

:::
For

:::::::::
simplicity,

:::
we

::::::
choose

::
25

::::::::
iterations

::
to

:::::::::::
approximate

:::
the

::::
exact

::::
step

::::
size.

:::
As

:::
we

::::::
expect

:::
step

:::::
sizes

::
of

::::::
length

:
1
::
to

:::
be

::::
often

::
a

::::
good

::::::
choice,

:::
we

:::::
chose

:::
the

:::::::::
maximum

:::
step

::::
size

::
of

:
4
::
in
::::
our

:::::::::::::
implementation,

:::
we

:::::
obtain

:::
an

:::::::
accuracy

:::
of

:::::::::::
4/225 ≈ 10−7

:::
for

:::
the

::::
step160

:::
size

::
α.

::::
The

:::::::::
calculation

::
of

::
α
::
is

::::::::::::::
computationally

:::
not

:::::::::
expensive.

Algorithm 4 Exact step size

1: Set a,b ∈ [0,∞) with a < b.

2: for i= 0,1, . . . do

3: if J ′
k((a+ b)/2)> 0 then

4: Set b := (a+ b)/2.

5: else

6: Set a := (a+ b)/2.

7: end if

8: end for

9: return α := (a+ b)/2

An alternative classical approach is an Armijo step size as in Hinze et al. (2009), see Algorithm 3. This approach does not

use the convexity of Jk. Armijo step size Let γ ∈ (0,1/2). i= 0,1, . . .Set α := 1. Set α := 0.5α. α We modify the Picard

iteration, see Algorithm 1, by a relaxation: We set

ṽk+1 := (1−αk)vk +αkvk+1, p̃k+1 := (1−αk)pk +αkpk+1 (9)165

and choose αk as α in Algorithm 4.

5 Numerical
:::::::::
Stationary

:
experiments

We analyze the four algorithms we introduced: The classical Picard iteration as a reference, exact step sizes for the Picard

iteration and Newton’s method, and Armijo step sizes for Newton’s method. We implemented all these algorithms in FEniCS

version 2019.1.0, (see Logg et al., 2012). FEniCS is a library that allows to implement variational formulations easily. Hence,170

it allows fast testing of algorithms without implementing them in complex codes. We determine the performance of these
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algorithms by comparing each iteration step with a reference solution for the experiments ISMIP-HOM A and B, (see Pattyn

et al., 2008). The reference solution is calculated with 80 prescribed Picard iterations
::
as

:::
the

:::::
Picard

:::::::
iteration

:::::::::
converges

::::::
slowly

:::
and

:::
the

::::::::
reference

:::::::
solution

::::::
should

:::
be

:::::
more

:::::::
accurate

::::
than

:::
the

::::::::
solutions

:::::::::
calculated

::
by

:::
the

:::::::::
compared

:::::::
methods. In Pattyn et al.

(2008), the authors described the ISMIP-HOM experiments to analyze the quality of ice models. Moreover, they compared175

simulation results.

We set the physical variables according to Pattyn et al. (2008): B := 0.5 · (10−16)−1/3 (Pa)−3 a−1, ρ := 910 kg m−3, and

g := (0,9.81) m s−2.

We set the constant δ := 10−12a−1 and µ0 := 10−17 kg a m−1 s−2
::::::::::::::::::
µ0 := 0 kg a m−1 s−2. We derive the unit for µ0 by

[µ0|∇v|2] = [ρg ·v]. In the experimental design, the nonlinear term is 2B(0.5|Dv|2 + δ2)(1−n)/(2n) instead of B(|Dv|2 +180

δ2)(1−n)/(2n), (see Pattyn et al., 2008). We choose the constant δ such that δ is smaller than the typical magnitude of Dv,

3 · 10−4 a−1 and 3 a−1, multiplied with the machine precision eps:

δ < eps
√

0.5|Dv|. (10)

We choose µ0 such that

µ0

∫
Ω

|∇v|2 dx < eps

∫
Ω

B
(
0.5|Dv|2 + δ2

) 1−n
2n |Dv|2 dx185

for typical values of |Dv|. This choice verifies that δ and the diffusion term µ0∇v :∇φ do not influence the result for typical

values of |Dv|
:::
We

::::::
defined

:::
the

:::::::::::::::::
infinite-dimensional

::::::::::
algorithms

:::
for

::::::
µ0 > 0

:
as they are smaller than the machine precision.

Nonetheless, they guarantee that Newton’s method with Armijo step sizes converges, (see Schmidt, 2023). A more detailed

derivation of δ and µ0 is in Schmidt (2023).

In all methods
:::
not

:::::::::
well-posed

:::
for

:::::::
µ0 = 0.

::::::::
However,

:::
we

::
do

:::
all

:::::::::
simulations

:::::
with

::::::
µ0 = 0

::::::
because

:::
the

:::::::::
additional

::::::::
diffusion

::::
term190

:
is
::::

not
::::
used

::
in

:::
ice

:::::::
models.

:::
In

::
all

:::::::::::
experiments, we calculate the initial velocity by replacing (0.5|Dv|2 + δ2)(1−n)/(2n) with

106 and solving this linear problem.
::
As

::::::
starting

::::
with

:::::::::::::::::
|Dv|= 3 · 10−4 a−1

:::::
leads

::
to

:::::::::::::::::::::::::::::::
(0.5|Dv|2 + δ2)(1−n)/(2n) ≈ 281 a2/3

::::
and

::::::
starting

::::
with

:
a
::::::::
constant

:::::::
velocity

::::
field

::::
leads

::
to

::::::::::::::::::::::::::::::::
(0.5|Dv|2 + δ2)(1−n)/(2n) = 108 a2/3,

:::
we

:::::
chose

:::
106

:::::::
between

::::
both

::::::
values.

:

5.1 The original experiment ISMIP-HOMB

In this subsection, we introduce details from Pattyn et al. (2008) that are specific to the experiment ISMIP-HOM B. This195

experiment has a domain with a sinusoidal, slightly tilted (0.5◦), bottom. The boundaries at the left and right are vertical, and

the boundary at the top has a linear slope of 0.5◦. Furthermore, periodic boundary conditions are used at Γ`. The experiment

prescribes Dirichlet zero boundary conditions, v = 0
:::::
v = 0 on Γb and σ ·n= 0

::::::::
σ ·n= 0

:
on Γs.

The length L := 5 km is the horizontal extent. The angle β := 0.5◦ describes a slight decline at the surface and the bottom

by200

zs(x) =−xtan(β), zb(x) = zs(x)− 1000 + 500 · sin(ωx) (11)

with ω := 2π/L.
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5.2 Modifications to the experiment ISMIP-HOMB

Formulating the convex function J , see Eq. (7), that corresponds to periodic boundary conditions is complicated. Thus, we use

the alternative introduced in the supplement of Pattyn et al. (2008), by copying the glacier to the right and the left. We have three205

copies to the right and the left, see Fig. 1. At the lateral boundaries Γ`, we impose Dirichlet zero boundary conditions. Also,

the resolution at the outer copies is lower than for the original domain. This reduces for the two-dimensional experiment the

number of elements by 30 % and in three dimensions by 51 %. Nevertheless, the three-dimensional experiment was performed

on a high performance computer. In two dimensions, the local refinement has no relevant impact on the solution. Also, one can

simulate the two-dimensional experiment on a laptop.

Figure 1. The domain with a grid with red dots and three copies to the right with green, purple, and blue dots.
210

Instead of the slope, we rotate the gravity. Thus, we should rotate the lateral boundaries Γ` of the domain. We neglect this

and stick to vertical boundaries at the left and the right.

5.3 Results for experiment ISMIP-HOMB

Our velocity fields at the surface (see Fig. 2) are close to the mean of the
:::::::::
full-Stokes simulations in Pattyn et al. (2008).

Figure 2. Simulated surface velocity for different solvers for ISMIP-HOM B. All our calculated velocity fields overlap each other. In grey

are plotted the mean and the standard deviation (std) from Pattyn et al. (2008) with 6
:
9 models. The mean and standard deviation have no

values at x= 0 and x= 1 due to missing values.

Also, all our methods produce very similar velocity fields at the surface, as displayed in Fig. 3. Next, we compare how many215
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Figure 3. Relative difference of |v−vref |/vref for each grid point at the surface. The reference solution is the solution from 80 Picard

iterations.

iterations are necessary to reduce the relative difference and relative local difference compared to the reference solution. We

calculate the relative difference and the relative local difference for a velocity v and the reference solution vref by√∫
Ω
|v−vref |2 dx∫
Ω
|vref |2 dx

and

√√√√∫
Ω

|v−vref |2
max(|vref |2, c2)

dx (12)

with c= 1 mm a−1.
::::
Then,

::
c
::
is

:::::
much

:::::::
smaller

::::
than

:::::::
10m a−1

::::
and

:::::
below

::::
this

:::::::
velocity

:::::
speed

:::::
slight

::::::::::
differences

:::
are

::::
seen

:::
as

:::
not

::
so

:::::::::
important,

:::::::::::::::::::::::::::
(Joughin et al., 2010, section 2.3).

:
We use two error measurements because one method could be better for one220

purpose and the other for another. The local relative difference reflects that regions with small velocities should also be repre-

sented with a small relative error. Both error measurements consider the velocity field for the whole domain of the glacier. In

contrast, the original experiment (Pattyn et al., 2008) only considers the velocity field at the surface.

Relative difference compared to the reference solution for ISMIP-HOM B for the first 9 iterations. Relative local difference

compared to the reference solution for ISMIP-HOM B. Relative local difference compared to the reference solution for225

ISMIP-HOM B for the first 9 iterations. Figure 4 displays the relative difference over the iteration number. The classic Pi-

card iteration has a slow convergence rate. It needs 39 iterations to obtain a reduction to 10−6. Newton’s method using Armijo

step sizes obtains this reduction after only 7 iterations. This reduces the necessary number of iterations by 82 %. We see this

even better if we consider just the first 9 iterations (Fig. 5). After a few iterations, Newton’s method does not reduce the relative

difference anymore.
:::
This

:::::
could

:::
be

::::
seen

::
as

:::::
either

::
a

::::::
mistake

:::
in

:::
the

:::
step

::::
size

::::::
control

:::
or

::::::::
Newton’s

:::::::
method.

::::::::
However,

:::
the

::::::
Picard230

:::::::
iteration

::::
with

::::::
Armijo

::::
step

::::
sizes

:::
has

:::
the

:::::
same

::::::::
problem.

:
It
::
is

::::::::
identical

::
to

:::
the

:::::
Picard

:::::::
iteration

:::
up

::
to

:::::::
iteration

:::
39

:::
and

:::::::
chooses

::::
then

::::::
smaller

::::
step

::::
sizes

::
to

::::
stall

::
at

:
a
::::::
similar

:::::::::
difference

::::
than

::::::::
Newton’s

:::::::
method.

:::
The

::::::
reason

::
for

::::
this

:::::::
behavior

::
is

:::
that

:::
the

:::::::::
discretized

::::::::
minimum

::
of

:::
the

::::::
convex

:::::::::
functional

:::
and

:::
the

::::
root

::
of

::
the

::::::::::
full-Stokes

::::::::
equations

::
are

:::::::
slightly

::::::::
different.

::
To

::::::
verify

:::
this

:::::
claim,

:::
we

::::::
solved

:::
the

:::::::::
full-Stokes

::::::::
equations

:::
on

:::
one

::::
grid

:::
and

::::::::::
refinements

::
of

::
it,
::::::::
verifying

::::
that

10



Figure 4. Relative difference compared to the reference solution for ISMIP-HOM B.

Figure 5.
::::::
Relative

::::::::
difference

:::::::
compared

::
to
:::
the

:::::::
reference

::::::
solution

:::
for

::::::::::
ISMIP-HOM

::
B

::
for

:::
the

:::
first

::
9
:::::::
iterations.

::
all

::::
grid

:::::
points

:::
on

:::
the

::::::
coarser

:::::
grids

:::
are

::::
also

::
on

:::
the

:::::
finer

:::::
grids.

:::
We

:::
see

:::
the

::::::::::
dependence

:::
on

:::
the

::::::::
resolution

::
in
::::
Fig.

::
6.

:::
By

:::::::
halving235

::
the

::::
grid

::::
size,

:::
we

::::::
reduce

:::
the

:::::::
relative

::::::::
difference

:::
by

::
a

::
bit

:::::
more

::::
than

:
a
::::::

factor
::
of

:::
10.

::::
The

:::::::
increase

::
in

:::
the

:::::::
relative

::::::::
difference

:::::
from

:::::::
iteration

::
10

::
to

:::
11

:::
for

:::
the

::::::::
resolution

::::
with

::::
193

::::
grid

:::::
points

::
in

:::
the

::::::::::
x-direction

:::::
seems

::::::::::
unintuitive.

::::
But,

:::
we

::::::
remind

:::
that

:::
the

:::::::
Armijo

:::
step

::::
size

::::::
control

::::
tries

::
to

::::::::
minimize

:::
the

:::::::::
functional

:::
not

::
to

:::
find

:::
the

:::::
root. Imposing a minimal step size of 0.5 helps to circumvent

this problem. Then Newton’s method reduces the relative difference up to iteration 39.
:::::
Also,

::::::::::
Hirn (2013)

::::::
reports

::::::::
accuracy

:::::::
problems

:::
for

::
a

::::
small

:::::
value

::
of

::
δ.
:::::
Thus,

::
a

:::::
higher

::
δ

::::
value

:::::
could

::::
lead

::
to

:::
the

::::::::
expected

::::::::
quadratic

:::::::::::
convergence.

::
In

:::::::
contrast,

:::
the

:::::
exact240

:::
step

:::::
sizes

::
do

:::
not

:::::
seem

::
to

::::
have

::::
this

:::::::
problem

::
as

::::
they

::
do

::::
not

:::
rely

:::
on

::::::::
evaluating

:::
the

::::::::::
functional. Newton’s method with exact step

sizes is of similar quality. It has the advantage that the error reduces even more without using a minimal step size. Thus, one

11



Figure 6.
:::::::::
Experiments

:::
with

:::
25,

:::
49,

:::
97,

::::
193,

:::
and

:::
385

::::
grid

:::::
poiints

::
in
:::::::::

x-direction
:::
and

::
3,

::
5,

::
9,

:::
17,

:::
and

::
34

::::
grid

:::::
points

::
in

::::::::
z-direction

:::
for

:::
the

::::::::
experiment

::::::::::
ISMIP-HOM

::
B

:::
for

:::::::
Newton’s

::::::
method

:::
with

::::::
Armijo

:::
step

:::::
sizes.

Figure 7.
::::::
Relative

::::
local

::::::::
difference

:::::::
compared

::
to
:::
the

:::::::
reference

::::::
solution

:::
for

::::::::::
ISMIP-HOM

::
B.

less parameter needs to be selected. Even the Picard iteration with exact step sizes is much better than the Picard iteration.

It only needs 15 iterations to obtain the accuracy, for which the Picard iteration needs 39 iterations. That corresponds to a

reduction of 62 %. The latter approach also has the advantage that there is no need to implement a new method to solve the245

problem. Only the relatively simple calculation of the step sizes needs to be implemented.

The results are really similar for our second measure of the accuracy, the relative local error, see Fig. 7.
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Figure 8.
::::::
Relative

::::
local

::::::::
difference

:::::::
compared

::
to
:::
the

:::::::
reference

::::::
solution

:::
for

::::::::::
ISMIP-HOM

::
B

::
for

:::
the

:::
first

::
9

:::::::
iterations.

All our algorithms are better than the classic Picard iteration in this measurement. The reduction with Newton’s approach

with both step size controls is 77 % now. The fast convergence is again impressive, especially for the first 9 iterations, see Fig.

8.250

5.4 The experiment ISMIP-HOMA

Because real-world applications are three-dimensional, we consider experiment ISMIP-HOM A. This experiment extends

ISMIP-HOM B to three dimensions. All chosen constants are the same as in the experiment ISMIP-HOM B. The experiment

ISMIP-HOM A has a sinusoidal bottom in both horizontal dimensions. Again, we have three copies of the glacier in both

horizontal directions. Thus, we have in total 48 copies. We describe the surface and bottom by255

zs(x,y) =−xtan(β), zb(x,y) = zs(x,y)− 1000 + 500 · sin(ωx)sin(ωy). (13)

5.5 Results for experiment ISMIP-HOMA

All our methods produce very similar results and are overlapping, see Fig. 9 and Fig. 10. Our simulations reproduce the

surface velocity at y = L/4 from Pattyn et al. (2008) for the
::::::::
full-Stokes

::::::::::
simulations

:::
for

:::
the

:
majority of the glacier. But they

produce higher velocity values than the mean plus the standard deviation around x= L/3. Nonetheless, the maximum relative260

difference is less than 0.02, see Fig. 9.

The general convergence behavior for the three-dimensional experiment is similar to the two-dimensional experiment. How-

ever, the Armijo step sizes are even better for Newton’s method in three dimensions, see Fig. 11. Again zooming to the first

few iterations states the benefit from Newton’s method and the step size control more impressing, see Fig. 12. The Picard

iteration needs 39 iterations to have the same accuracy as Newton’s method using Armijo step sizes after 6 iterations. Thus,265

the necessary number of iterations is reduced by more than 85 %. Again, a minimum step size of α= 0.5 helps to reduce the
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Figure 9. Simulated surface velocity at y = L/4 in meters per year for different solvers for ISMIP-HOMA. All our calculated velocity fields

overlap each other. In grey are plotted the mean and the standard deviation from Pattyn et al. (2008) with 5 models. The mean and standard

deviation have no values at x= 0 and x= 1 due to missing values.

Figure 10. Relative difference of |v− vref |/vref for each grid point at the surface at y = L/4 for ISMIP-HOM A. The reference solution

is the solution from 80 Picard iterations.
:::
The

:::::
relative

::::::::
difference

:::
for

::::::
Newton

::::
with

::::
exact

:::
step

::::
sizes

:::
and

:::::::
Newton

:::
with

::::::
Armijo

:::
step

::::
sizes

:::
and

::
a

::::::
minimal

:::
step

::
of
:::
0.5

:::
are

:::::
nearly

:::::::
identical.

relative difference after a few iterations. The exact step sizes for Newton’s method are even better. They decrease the relative

difference, see Fig. 11, and the relative local difference, see Fig. 13, further than the Armijo step sizes. Also, exact step sizes

improve the Picard iteration. Again it is interesting to consider the relative local difference for a few iterations, see Fig. 14.

This figure emphasizes that the Picard iteration converges slowly compared to the other methods.
::
As

::::
this

:::::::::
experiment

::
is

:::::
more270

::::::
realistic

::::::::
regarding

:::
the

:::::::
number

::
of

::::
grid

:::::
points,

:::
we

:::::::::
calculated

:::
the

::::::::::
computation

::::
time

:::
for

::::
each

:::::::
iteration

::
in

::::::::::
experiment

:::::::::::
ISMIP-HOM

14



Figure 11. Relative difference compared to the reference solution for ISMIP-HOM A.

Figure 12. Relative difference compared to the reference solution for ISMIP-HOM A for the first 9 iterations.

::
A,

:::
see

:::::
Table

::
1.

:::::
There

:::
are

:::
two

:::
key

::::::::
findings:

:::
The

:::::::::::
computation

::::
time

:::
for

::::::::
Newton’s

::::::
method

::
is

:::::
about

::
20

::
%

::::::
higher

::::
than

::
for

:::
the

::::::
Picard

:::::::
iteration.

:::::::::::
Additionally,

:::
the

::::
step

:::
size

:::::::
control

:
is
::::::::::::::
computationally

:::::
cheap

::::::::
compared

:::
to

::::::::
Newton’s

::::::
method

::
or

:::
the

::::::
Picard

::::::::
iteration.

6 Summary and conclusion
::::::::::
Instationary

:::::::::::
experiments

We conclude for the
::
In

:::
this

:::::::
section,

:::
we

::::::::
simulate

:
a
:::::::::::::
time-dependent

:::::::
version

::
of

:::
the

:::::
Haut

:::::::
Glacier

:::::::
d’Arolla

:::::::
without

:::
and

:::::
with275

::::::
sliding.

::
In

::
a
::::
first

::::
step,

:::
we

:::::
verify

::::
that

:::
our

::::::
model

::::::::
produces

::::::
similar

::::::
results

::
as

::
in
:::

the
:::::::::::

experiments
:
ISMIP-HOM experiments A

and B: Our simulations are similar to the results in Pattyn et al. (2008) for two and three dimensions. The Picard iteration

converges considerably slower than
:::
E1

::::
and

:::
E2,

:::
see

::::::::::::::::
Pattyn et al. (2008)

:
.
::::
The

:::
top

:::
and

:::
the

:::::::
bottom

::
of

:::
the

::::::
glacier

:::
are

:::::
given

:::
by

15



Figure 13. Relative local difference compared to the reference solution for ISMIP-HOM A.

Figure 14. Relative local difference compared to the reference solution for ISMIP-HOM A for the first 9 iterations.

Table 1.
::::::::::
Computation

::::
time

:
in
:::::::
seconds

:::::
without

::::::::
diagnostic

:::::::::
calculations

::::
like

::
the

::::::
residual

:::::
norm

::
for

:::
the

:::::::
complete

:::::::
iteration.

Complete iteration Step size calculation

::::
Mean

: :::::::
Standard

:::::::
deviation

::::
Mean

: :::::::
Standard

:::::::
deviation

:::::
Picard

::::
2226

::::
20.3

:
- -

:

:::::
Picard

::::
with

::::
exact

:::
step

::::
sizes

: ::::
2286

::::
11.0

:::
60.4

::::
0.18

::::::
Newton

::::
with

:::::
Armijo

::::
step

:::
sizes

: ::::
2706

::::
6.77

:::
4.60

::::
0.45

:::
and

:::::::
minimum

::::
step

::::::
size=0.5

:

::::::
Newton

:::
with

::::
exact

::::
step

::::
sizes

::::
2757

::::
18.5

:::
60.1

::::
0.24
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Figure 15.
::::::
Domain

::
of

:::
the

::::
Haut

:::::
Glacier

:::::::
d’Arolla

::::::
without

::::::
sliding.

::
an

:::::
input

::::
file.

::
At

:::
the

:::::::
bottom,

:::
we

:::::
have

::::::::
Dirichlet

::::::::
boundary

:::::::::
conditions,

::::
and

::
at
:::

the
::::

top,
:::::::::
σ ·n= 0.

::::
The

:::::::
domain

::
is

::::::::::
represented

::
in

:::
Fig.

::::
15.

:::
In

:::::::
contrast

::
to
::::

the
::::::::
stationary

::::::::
problems

:::
in

:::::
Sect.

::
5,

:::
we

:::
do

:::
not

::::
have

::
a
::::::::
reference

::::::::
solution.

::
A
::::::::

stopping
::::::
criteria

:::
in280

::::::::::::::::::::::::::::::::::::::
(Gagliardini and Zwinger, 2008, section 2.4.2)

:
is
:

2
|uk+1−uk|
|uk+1|+ |uk|

< 10−5.

::::::::::::::::::::

(14)

::
To

:::::::
include

:::
the

:::
step

::::
size,

:::
we

::::::
would

:::::::
multiply

:::
the

:::::::::
right-hand

::::
side

::::
with

::
α.

::::
This

::::::::
criterion

::
is

::::::
suitable

:::
to

:::
stop

:::
the

::::::::
iteration

::
in

:
a
::::
real

::::::::
simulation

::
if
:::
the

:::::::
velocity

::::
field

::::
only

:::
has

:::::
small

::::::::
changes.

::::::::
However,

::::::::
checking

:::
the

::::::
relative

:::::::::
difference

::
let

:::
the

:::::::
Newton

:::::::
variants

::::
with

:::
step

::::
size

::::::
control

::::
stop

::::::
earlier

::
in

:::
our

:::
test

:::::::::
simulation

:::::::
without

:::::::::
decreasing

:::
the

:::::
error

::::::::
‖G(v,p)‖

::
as

:::::
much

:::
as

:::
the

:::::
Picard

:::::::
variants

::::
did.285

::
As

:::
we

::::::::
compare

::::::
solvers,

:::
we

::::
need

::
to
::::::

check
:
if
:::::::::
G(vk,pk)

::
is

:::::
close

::::::
enough

::
to

:::::
zero.

:::::
Thus,

:::
we

:::::
check

:
if
:::

we
:::
are

:::::
close

::::::
enough

:::
to

:::
our

::::::
solution

:::::::::
compared

::
to

:::
the

:::::
initial

:::::
guess

‖G(vk,pk)‖/‖G(v0,p0)‖< ε
::::::::::::::::::::::::

::::
with

:::::::::
ε := 10−3.

::
A

::::::
relative

:::::::
stopping

:::::::
criteria

:::::
seems

::::::::
necessary

::
to
::::::

reduce
::::::::::
dependence

:::
on

:::
the

::::::
domain

::::
and

:::
the

:::::::
absolute

:::::::::
velocities.

:::::
Thus,

::
the

:::::::::
calculated

:::::::
velocity

::::
field

::::::
should

::::
have

:::
an

::::
error

::
of

:::
0.1

:::
%

::::::::
compared

::
to

:::
the

:::::
initial

:::::
guess

::::
after

:::::
each

::::
time

::::
step.

::::
Our

:::::
initial290

::::
guess

:::
for

:::::::::::::
time-dependent

::::::::
problems

::
is
:::
the

:::::::
solution

::
of

::
a
::::::
Stokes

:::::::
problem

::::::
before

:::
the

:::
first

:::::
step.

::::
After

::::::::::
calculating

:
a
:::::::
velocity

:::::
field,

::
the

:::::::
surface

:::::::
velocity

:::::::::
determines

:::
the

::::
new

::::::
surface.

::::
The

::::
grid

:::::
points

:::
are

::::::
moved

:::::::::
according

::
to

:::
the

:::
new

:::::::
surface.

::::
The

:::::
initial

:::::
guess

:::
for

::
the

:::::::
velocity

:::
on

:::
the

::::
new

::::::
domain

::
is
::::
our

:::::::
velocity

::::
field

::::::
shifted

::
to

:::
the

::::
new

:::::::
domain.

:::
The

::::::::
stopping

:::::::
criterion

::::
has

:::
the

::::::::
advantage

::::
that

::
we

:::::
count

:::
the

:::::::
number

::
of

::::::::
iterations

:::::::
needed

::
to

::::::
reduce

:::
the

::::
error

:::
by

:
a
::::::
certain

::::::
factor.

:::::::::
Therefore,

:::
the

::::::
wanted

:::::
error

::::::::
reduction

::
is

:::
the

::::
same

:::
for

::
all

::::
our

::::::
solvers.

:
295

:::
We

:::::
know

:::::::::::::::::::
G(vk,pk) ∈ (H ×L)∗.

:::
The

:::::
Riesz

:::::::::::
isomorphism

:::::
yields

:::
the

::::::::
existence

:::
of

::::::::::::::
(ṽk, p̃k) ∈H ×L

::::
with

:∫
Ω

∇ṽk :∇φdx+

∫
Ω

div(φ)p̃k dx+

∫
Ω

qdiv(ṽk)dx= 〈G(vk,pk),(φ, q)〉V ∗
2 ,V2

for all (φ, q) ∈H ×L.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(15)

:::::
Thus,

::
we

:::::
have

::
to

::::
solve

:::::::
another

::::::
Stokes

:::::::
problem

::
in

::::
each

::::::::
iteration.

:::::
Note

:::
that

::::
this

:::::
Stokes

::::::::
problem

:
is
:::::

only
:::::::::
diagnostic,

:::
and

:::
we

:::
do

:::
not

::::
need

::
to

:::::
solve

:
it
::
in

::::::::
practice.

::
As

:::
the

:::::::::
numerical

:::::::
analysis

::::::
focuses

:::
on

:::
the

:::::::
velocity

::::
field,

:::
we

::::::::
calculate

:::
our

::::
error

:::
by

‖ṽk‖V2
=

√√√√∫
Ω

|∇ṽk|2 dx.

:::::::::::::::::::::

(16)300
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Figure 16.
:::::::::
Stair-shaped

::::::
domain

::
at

::
the

::::::
bottom.

Figure 17.
::::::
Surface

::::::
velocity

::::
field

::
of

::
the

::::
Haut

::::::
Glacier

::::::
d’Arolla

::::::
without

::::::
sliding.

:::
For

:::
the

:::::::::
experiment

::::
with

:::::::
sliding,

:::
we

::::
have

::
to

::::::
handle

::
a

:::::::
difficulty

:::::::
arising

::
in

:::::::
FEniCS:

:::
We

::::
can

::::
only

::::
force

:::
the

:::::::::
boundary

::::::::
condition

:::::::
v ·n= 0

:::
on

:::::::::
horizontal

:::
and

:::::::
vertical

::::::::::
boundaries.

:::::
Thus,

:::
we

::::
use

:
a
:::
lot

::
of

:::::
small

:::::
stairs

::
at
:::
the

:::::::
bottom

::::::
instead

::
of

:::
the

:::::
slope

:::
in

:::
the

::::::
original

::::::::
problem,

:::
see

::::
Fig.

:::
16.

::
On

:::
the

::::::
bottom

::::::::
boundary

::::
with

::::::::::::::::
2200< x < 2500,

::
we

:::::::
employ

:::
the

::::::::
boundary

::::::::
condition

::::::
vz = 0

:::
for

::::::::::
v = (vx,vz).

:

6.1
:::::::::
Stationary

::::::::
solutions305

:::
We

::::
only

:::::::
discuss

:::
the

::::::::
accuracy

::
of

::::
our

::::::
model

::
in

:::::::::
simulating

::::
the

:::::::::
experiment

::::::::::::
ISMIP-HOM

:::
E1

::::
and

::::
E2

:::::::
without

::::::::::
considering

::::::::::
convergence

:::::
speed.

::::
We

::::::
discuss

:::
the

::::::::::
convergence

:::::
speed

:::
for

:::
the

:::::::::::::
time-dependent

::::::::
problems.

::::
The

:::::::::
simulation

::
of

:::
the

:::::::
velocity

::::
field

::
is

::::
quite

::::::
similar

::
to

::::::::::::::::
Pattyn et al. (2008)

:
,
:::
see

:::
Fig.

:::
17.

:::::
Our

:::::::
velocity

::::
field

::
at

:::
the

::::::
surface

::
is

::::::
mostly

:::::
within

:::
the

:::::
mean

::::
with

:::
the

::::::::
standard

:::::::
deviation

:::
of

:::
the

:::::::
reference

:::::::::
solutions,

:::
see

:::
Fig.

:::
17.

:::
In

::::
some

:::::
small

:::::
parts,

:::
the

:::::::
velocity

::
is

::::::
slightly

::::::
lower.

:::
The

:::::::::
calculated

:::::::
velocity

::::
field

::
is

::::
near

:::
the

::::
mean

::::::
minus

:::
the

:::::::
standard

::::::::
deviation

::
of

:::
the

::::::::
reference

::::::::
solutions

::
in

::::::::::::::::
Pattyn et al. (2008)310

:
,
:::
see

::::
Fig.

:::
18.

::::::
Often,

::
it
::

is
:::::

even
:
a
:::

bit
::::
less.

:::::::::
However,

::
it

::
is

:::
still

::
a
:::::::
suitable

:::::::::::::
approximation,

::::
and

:::
we

:::
use

::::
both

::::::::
problems

::::
for

:::
the

::::::::::::
time-dependent

::::::::::
simulation.
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Figure 18.
::::::
Surface

::::::
velocity

::::
field

::
of

::
the

::::
Haut

::::::
Glacier

::::::
d’Arolla

::::
with

::::::
sliding.

6.2
::::
Time

:::::::::
dependent

::::::::
problem

:
-
:::::
mass

::::::::
transport

:::
For

:::
the

::::::::::
instationary

::::::::
problem,

:::
the

::::::
surface

::::::::
develops

::::::::
dependent

:::
on

:::
the

:::::::
velocity

:::::
field.

::
In

:::
our

:::::
case,

:::
we

:::::::
describe

:::
the

:::::
height

:::
of

:::
the

:::::
glacier

:::
by315

∂z(x)

∂t
+ vx(x)

∂z(x)

∂x
− vz(x) = 0 for x ∈ (0,5000

::::::::::::::::::::::::::::::::::::::::::

] (17)

:::
see

::::::::::::::::
Pattyn et al. (2008).

::::
The

::::::
height

::
is
:::::

fixed
::
at
::::::
x= 0.

::::
Let

:::::::
(xi)

N
i=0 ::

be
::::

the
:::::::::::
discretization

:::::
with

::::::
x0 = 0

::::
and

::::::::::
xN = 5000.

::::
We

::::::::::
approximate

:::
the

::::::
spatial

:::::::::
differential

:::::::
quotient

:::
by

::
an

:::::::::
upwinding

:::::::
scheme:

:

vx(xi)
∂z(xi)

∂x
≈

vx(xi)
z(xi)−z(xi−1)
xi−xi−1

for vx(xi)> 0 and i > 0,

vx(xi)
z(xi+1)−z(xi))

xi+1−xi
for vx(xi)≤ 0 and i < N.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(18)

:::
The

:::::::::
upwinding

:::::::
scheme

::::::::
stabilizes

::::
the

:::::::
solution

::
of

:::
the

::::::::::
discretized

:::
Eq.

:::::
(17).

:::::::::
Moreover,

::
it
::::::
helped

::
in
::::

our
::::::::::
experiments

::::
for

:::
the320

::::::::::
conversation

::
of

:::::
mass

::::::::
compared

::
to

:::
the

:::::::
forward

::::::::
difference

:::::::
quotient

::::
and

:::
the

::::::
central

::::::::
difference

::::::::
quotient.

:::
We

:::
use

::
an

:::::::
explicit

:::::
Euler

::::::
method

:::
in

::::
time

:::
and

::::::::
conclude

:::
for

:::
the

:::::::
k+ 1-th

::::
time

::::
step:

:

zk+1− zk

∆t
+ vkx(x)

∂zk(x)

∂x
− vkz (x) = 0.

::::::::::::::::::::::::::::::::

(19)
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Table 2.
::::::
Number

::
of
:::::::
iterations

:::
for

::::::
solving

::
the

:::::::::
full-Stokes

:::::::
equations

:::::
before

::::
each

::::
time

:::
step.

::::
Time

::::
steps

::::
Mean

: :::::::
Standard

:::::::
deviation

:::::
Picard

::
119

: ::::
16.79

: ::::
0.41

:::::
Picard

::::
with

::::
exact

:::
step

::::
sizes

: ::
119

: :::
9.29

::::
0.46

::::::
Newton

::::
with

:::::
Armijo

::::
step

:::
sizes

: ::
119

: ::::
10.92

: ::::
10.67

:::
and

:::::::
minimum

::::
step

::::::
size=0.5

:

::::::
Newton

:::
with

::::
exact

::::
step

::::
sizes

::
119

: :::
6.45

::::
2.83

:::::::
Together,

:::
we

::::::
obtain

:::
for

:::
the

:::::::
k+ 1-th

::::
time

:::
step

::::
and

:::
the

:::
i-th

::::
grid

::::
point

::
at
:::
the

:::::::
surface

zk+1
i = zki + ∆t

vkz (xi)−


vkx(xi)

zk(xi)−zk(xi−1)
xi−xi−1

for vx(xi)> 0 and i > 0,

vkx(xi)
zk(xi+1)−zk(xi)

xi+1−xi
for vx(xi)≤ 0 and i < N,

0 for i= 0.

 .
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(20)325

::
In

:::
our

::::::::
problem,

::
the

:::::
value

:::::
z(x0)

::
is
:::::
fixed.

::::::::::::::
Mathematically,

:::
we

::
are

::::
not

::::::
allowed

::
to
:::
fix

::::::
z(xN )

:::::::
because

:::
this

:::::
value

::
is

:::::::::
determined

:::
by

:::
Eq.

::::
(17).

:::::::::
Therefore,

:::
we

:::
add

::
a
::::
grid

::::
point

::
at

::::::::::::
(5000,2505),

::::::
slightly

:::::
above

:::
the

::::::
bottom

::::::::::::
(5000,2500).

:::
We

::::::
impose

::::::::
σ ·n= 0

:::
on

:::
the

:::::
newly

::::::::
generated

::::
right

:::::::::
boundary.

::::::
Hence,

:::
the

::::
mass

::::
can

::::
flow

::::::
outside

:::
the

::::::
glacier

::
or

:::::::::
physically

:::::::::
interpreted

:::
ice

::
is

:::::::
melting.

:::
We

:::::::
calculate

::::
over

:::
30

:::::
years

::
to

::::::::
simulate

:
a
::::::::
changing

:::::::
velocity

::::
field

::::
with

::::
the

::::::
highest

::::::
surface

:::::::
velocity

::
at
::::

the
::::
right

::::
edge

:::
of

:::
the

:::::::
domain.

::::
We

::::::
choose

:
a
:::::
time

:::
step

::::
size

::
of

::::
0.25

:::::
years

::
to
::::::

fulfill
:::
the

::::
CFL

::::::::
condition

:::
for

:::
the

::::::::::
experiment

:::
E1.

:::
In

:::::::::
experiment

::::
E2,

:::
we330

::::::
choose

::
the

:::::
same

::::
time

::::
step

::::
sizes

::
to

:::::
have

:
a
::::::::::
comparable

::::::::::
experiment.

6.3
:::::::::::::

Time-dependent
::::::::::
simulation

:::::::
without

:::::::
friction

::
In

:::
this

::::::::::
subsection,

:::
we

::::::::
visualize

::::
the

:::::::
velocity

::::
field

:::
of

:::
the

::::::
glacier

:::
at

:::
the

:::::::
surface

::::
over

:::
the

:::::
time

:::::::::
simulation

::::
and

::::::
discuss

::::
the

:::::::::::
computational

:::::
effort

:::
for

:::
the

::::::::::
experiment

::::::
without

:::::::
friction.

:

:::
All

:::::::::
simulations

:::::::
produce

::::::
similar

:::::::
surface

::::::::
velocities

::::
over

:::::
time,

:::
see

::::
Fig.

:::
19.

::::
Thus,

:::
all

:::::::
methods

:::::
seem

::
to

::::::::
calculate

:::
the

:::::::
solution335

:::::::::::
appropriately.

:::::
Now,

:::
we

::::::
discuss

::::
the

::::::::::::
computational

:::::
effort.

::::
The

:::::::
number

::
of

::::::::
iterations

:::::::
needed

::
is

:::::
shown

:::
in

::::
Fig.

:::
20.

:::
We

:::
set

:::
the

::::::::
maximum

:::::::
number

::
of
:::::::::

iterations
::
to

:::
50.

:::::::::
Newton’s

:::::::
method

::::
with

:::::::
Armijo

::::
step

::::
sizes

::::
and

::
a

::::::::
minimum

::::
step

::::
size

:::
of

:::
0.5

:::
has

::::
the

:::::::
problem

:::
that

::
it
::::
does

::::
not

::::::
always

::::::::
converge.

::::
Too

:::::
small

::::
step

::::
sizes

:::::
were

::::::
chosen

:::::::
without

:::
the

::::::::
minimum

::::
step

:::::
size,

:::::
which

:::::::
yielded

::
no

:::::::::::
convergence,

::::
too.

::::
The

::::::::
necessary

:::::::
number

::
of

:::::::
Newton

:::::
steps

::::
with

:::::
exact

::::
step

:::::
sizes

:::::
varies

::
a
:::
lot

::::
from

::::
time

::::
step

:::
to

::::
time

::::
step

::::::::
compared

::::
with

::::
both

::::::
Picard

:::::::
variants.

::
In

:::::
Table

::
2,

:::
we

:::
see

:::
that

:::::::::
Newton’s

::::::
method

::::
with

:::::
exact

::::
step

::::
sizes

::::::::
performs

::::
best.

::::::::
However,

::
it340

:::
has

:
a
:::::
larger

::::::::
standard

::::::::
deviation

::::
than

:::
the

:::::
Picard

::::::::
variants.

:::
The

::::::
Picard

:::::::
iteration

::::
with

:::::
exact

::::
step

::::
sizes

:::::
needs

:::::
only

:::::
about

:::
two

:::::
more

::::::::
iterations. Newton’s method

::::
with

::::::
Armijo

::::
steps

::::
has

:
a
:::::
really

::::
large

::::::::
standard

::::::::
deviation.

:
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Figure 19.
::::::
Surface

::::::
velocity

::::
fields

:::
for

::
the

:::::
Picard

:::::::
iteration,

:::
the

:::::
Picard

::::::
iteration

::::
with

::::
exact

:::
step

:::::
sizes,

:::::::
Newton’s

::::::
method

:::
with

::::::
Armijo

:::
step

:::::
sizes,

:::
and

:::::::
Newton’s

::::::
method

:::
with

:::::
exact

:::
step

::::
sizes.

::::
The

::::::
velocity

::::
fields

:::
for

::
the

:::::::
different

:::::::
methods

::
are

:::::
nearly

:::::::
identical.

Table 3.
::::::::::
Computation

::::
time

:
in
:::::::
seconds

:::::
without

::::::::
diagnostic

:::::::::
calculations

::::
like

::
the

::::::
residual

:::::
norm

::
for

:::
the

:::::::
complete

:::::::
iteration.

Complete iteration Step size calculation

:::::::
Iterations

::::
Mean

: :::::::
Standard

:::::::
deviation

::::
Mean

: :::::::
Standard

:::::::
deviation

:::::
Picard

:::
1998

: :::
5.61

::::
0.61

:
- -

:

:::::
Picard

::::
with

::::
exact

:::
step

::::
sizes

: :::
1106

: :::
6.00

::::
0.59

:::
0.48

::::
0.03

::::::
Newton

::::
with

:::::
Armijo

::::
step

:::
sizes

: :::
1299

: :::
5.73

::::
0.60

:::
0.02

::::
0.01

:::
and

:::::::
minimum

::::
step

::::::
size=0.5

:

::::::
Newton

:::
with

::::
exact

::::
step

::::
sizes

:::
767

:::
6.01

::::
0.57

:::
0.48

::::
0.03
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Figure 20.
::::::
Number

::
of

:::::::
iterations

::
to

::::
solve

:::
the

::::::::
full-Stokes

::::::::
equations

::::::
between

::::
each

:::
time

::::
step.

:::
We

::::::::
measured

:::
the

::::::::::
computation

::::
time

:::
for

:::
the

:::::::::::::
time-dependent

::::::::::
experiment,

:::
see

:::::
Table

::
3.

::::
The

::::::::::
computation

::
of

:::
the

::::
step

::::
sizes

:::::
takes

:
9
::
%

::
or

::::
less

::
of

:::
the

::::
total

:::::::::::
computation

::::
time

:::
for

::::
each

:::::::
iteration.

::::
The

:::::::::::
computation

::::
time

:::
for

:::::::::
calculating

:::::::::
diagnostics

::::
like

:::
the

:::::::
residual

::::
norm

::::
was

:::
not

::::::::
measured

::
as

::
it

::
is

::::::::::
unnecessary

:::
for

:::
the

::::::::::
application.345

6.4
:::::::::::::
Time-dependent

::::::::::
simulation

::::
with

:::::::
friction

::
In

:::
this

::::::::::
subsection,

:::
we

::::::::
visualize

::::
the

:::::::
velocity

::::
field

:::
of

:::
the

::::::
glacier

:::
at

:::
the

:::::::
surface

::::
over

:::
the

:::::
time

:::::::::
simulation

::::
and

::::::
discuss

::::
the

:::::::::::
computational

:::::
effort

:::
for

:::
the

::::::::::
experiment

::::
with

:::::::
friction.

:::
All

:::::::::
simulations

:::::::
produce

::::::
similar

:::::::
surface

::::::::
velocities

::::
over

:::::
time,

:::
see

::::
Fig.

:::
21.

::::
Thus,

:::
all

:::::::
methods

:::::
seem

::
to

::::::::
calculate

:::
the

:::::::
solution

:::::::::::
appropriately.

:::::
Now,

:::
we

::::::
discuss

::::
the

::::::::::::
computational

:::::
effort.

::::
The

:::::::
number

::
of

::::::::
iterations

:::::::
needed

::
is

:::::
shown

:::
in

::::
Fig.

:::
22.

:::
We

:::
set

:::
the350

::::::::
maximum

:::::::
number

::
of

::::::::
iterations

::
to
:::

50. A good choice of step sizes guarantees that Newton’s method always converges. The

::::
with

::::::
Armijo

::::
step

::::
sizes

:::
and

::
a
::::::::
minimum

::::
step

::::
size

::
of

:::
0.5

:::
has

:::
the

:::::::
problem

::::
that

:
it
:::::

does
:::
not

::::::
always

::::::::
converge.

::::
Too

:::::
small

:::
step

:::::
sizes

::::
were

::::::
chosen

:::::::
without

:::
the

::::::::
minimum

::::
step

::::
size,

:::::
which

:::::::
yielded

::
no

:::::::::::
convergence,

::::
too.

:::
The

:::::::::
necessary

::::::
number

::
of

:::::::
Newton

:::::
steps

::::
with

::::
exact

::::
step

::::
sizes

::::::
varies

:
a
:::
lot

::::
from

::::
time

::::
step

::
to
:::::
time

:::
step

:::::::::
compared

::::
with

::::
both

::::::
Picard

:::::::
variants.

:::::::::::
Interestingly,

:::
the

::::::
Picard

:::::::
variants

::::
need

:::::
nearly

:::
the

:::::
same

:::::::
number

::
of

::::::::
iterations

::::
with

::::::
sliding

:::
as

::::::
without

:::::::
sliding.

:::::
There

:::
are

::::
also

:::
two

::::
time

:::::
steps

::
in

::::::
which

::::::::
Newton’s355

::::::
method

::::
with

:::::
exact

::::
step

::::
sizes

:::::
does

:::
not

::::::::
converge.

:::
In

:::::
Table

::
4,

:::
we

:::
see

:::
that

::::
the

:::::
Picard

::::::::
iteration

::::
with

:::::
exact

:::
step

:::::
sizes

:::::::::
performes

::::
best.

:
It
::::
also

:::
has

:::
the

::::::
lowest

:::::::
standard

:::::::::
deviation.

:::
We

::::::::
measured

:::
the

:::::::::::
computation

::::
time

:::
for

:::
the

:::::::::::::
time-dependent

:::::::::
simulation,

::::
see

:::::
Table

::
5.

::::
The

::::::::::
computation

::::
time

:::
for

::::::::::
calculating

:::::::::
diagnostics

:::
like

:::
the

:::::::
residual

:::::
norm

:::
was

:::
not

:::::::::
measured

::
as

:
it
::
is
::::::::::
unnecessary

:::
for

:::
the

::::::::::
application.

::::
The

:::::::::::
computation

::
of

:::
the

:::
step

:::::
sizes

::::
takes

:::
6.5

::
%

::
or
::::
less

::
of

:::
the

::::
total

:::::::::::
computation

::::
time

:::
for

::::
each

:::::::
iteration.

:
360
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Figure 21.
::::::
Surface

::::::
velocity

::::
fields

:::
for

::
the

:::::
Picard

:::::::
iteration,

:::
the

:::::
Picard

::::::
iteration

::::
with

::::
exact

:::
step

:::::
sizes,

:::::::
Newton’s

::::::
method

:::
with

::::::
Armijo

:::
step

:::::
sizes,

:::
and

:::::::
Newton’s

::::::
method

:::
with

:::::
exact

:::
step

::::
sizes.

::::
The

::::::
velocity

::::
fields

:::
for

::
the

:::::::
different

:::::::
methods

::
are

:::::
nearly

:::::::
identical.

Table 4.
::::::
Number

::
of
:::::::
iterations

:::
for

::::::
solving

::
the

:::::::::
full-Stokes

:::::::
equations

:::::
before

::::
each

::::
time

:::
step.

::::
Time

::::
steps

::::
Mean

: :::::::
Standard

:::::::
deviation

::::
Picard

: ::
119

: ::::
16.72

: ::::
0.55

:::::
Picard

:::
with

:::::
exact

:::
step

::::
sizes

::
119

: :::
9.39

::::
0.49

::::::
Newton

:::
with

::::::
Armijo

:::
step

::::
sizes

: ::
119

: ::::
24.70

: ::::
20.64

:::
and

:::::::
minimum

::::
step

::::::
size=0.5

:

::::::
Newton

::::
with exact step sizes improve the

::
119

: ::::
10.42

: ::::
7.48
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Figure 22.
::::::
Number

::
of

:::::::
iterations

::
to

::::
solve

:::
the

::::::::
full-Stokes

::::::::
equations

::::::
between

::::
each

:::
time

::::
step.

Table 5.
::::::::::
Computation

::::
time

:
in
:::::::
seconds

:::::
without

::::::::
diagnostic

:::::::::
calculations

::::
like

::
the

::::::
residual

:::::
norm

::
for

:::
the

:::::::
complete

:::::::
iteration.

Computation time each iteration Computation time step size

:::::::
Iterations

::::
Mean

: :::::::
Standard

:::::::
deviation

::::
Mean

: :::::::
Standard

:::::::
deviation

Picard iteration
:::
1990

: ::::
10.93

: :::
0.77

:
- -

:

:::::
Picard

::::
with

::::
exact

:::
step

::::
sizes

: :::
1118

: ::::
11.31

: :::
0.85

:::
0.30

::::
0.01

::::::
Newton

::::
with

:::::
Armijo

::::
step

:::
sizes

: :::
2939

: ::::
11.22

: :::
0.86

:::
0.03

::::
0.01

:::
and

:::::::
minimum

::::
step

::::::
size=0.5

:

::::::
Newton

:::
with

::::
exact

::::
step

::::
sizes

:::
1240

: ::::
11.62

: :::
0.75

:::
0.67

::::
0.03

7
::::::::
Summary

::::
and

::::::::::
conclusion

:::
We

::::::::
conclude

:::
that

::::
our

:::::::::
simulations

::::
are

::::::
similar

::
to

:::
the

::::::
results

::
in
::::::::::::::::

Pattyn et al. (2008)
:
.
::::
The

:::::
exact

:::
step

:::::
sizes

::::::
greatly

::::::::
improve

:::
the

::::::::::
convergence

:::::
speed

::
of

:::
the

::::::
Picard

:::::::
iteration

:::
and

:::::
verify

:::::::::::
convergence

::
of

::::::::
Newton’s

::::::
method

:::
for

:::::
nearly

:::
all

::::::::
situations

::::::
except

:::
two

:::::
cases

::
in

:::
the

:::::::::::::
time-dependent

:::::::::
simulation

::::
with

:::::::
friction,

:::
see

::::
Fig.

:::
22.

:

:::
The

:::::::::::
computation

::
of

::::
the

::::
step

::::
sizes

:::
is

::::
only

::
a
:::::
small

::::
part

::
of

::::
the

::::::::
complete

::::::::
iteration.

::::
The

::::
ratio

::
is
:::::

even
:::::::
smaller

:::
for

::::::
higher365

:::::::::
resolutions.

::::
The

:::::::
concrete

:::::::::::
computation

:::::
times

::
in

:::::::
seconds

:::
are

::::::::
irrelevant

::
as

::::
they

::::::
depend

:::
on

:::
the

::::::::
hardware.

::::
The

:::::::::::::::
three-dimensional

:::::::::
experiment

:::
has

:::
the

:::::::::
additional

::::::::::
uncertainty

::
in

::::::
precise

:::::::::::
computation

:::::
times

:::
that

:::
we

::::
used

::::
the

::::
same

:::::::::
processor

::::
type

:::
but

:
a
::::::::
different

::::::::
processor.

::::
One

:::::
could

::::::::
decrease

:::
the

:::::::::::
computation

::::
time

:::
for

:::
the

::::
step

::::
sizes

:::
by

:::::::
splitting

:::
the

::::::::
domain,

::::
over

:::::
which

:::
we

::::::::
evaluate

:::
the

:::::::
function

::
for

:::
the

::::
step

::::
size

::::::
control

:::
for

:::
the

:::::::::
processors.

:::::::::::
Additionally,

:::
one

:::::
could

::::::::
optimize

:::
the

::::::
number

::
of

:::::::::
bisections

::
in

:::::::::
Algorithm

:
4.
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The effort to implement the algorithms above is relatively low. For every additional boundary condition to those above,370

one has to check if a convex functional
:::::::
function

:
exists. One only needs to implement these convex functionals

:::::::
functions, the

directional derivatives, and the Armijo and exact step sizes, respectively. The Picard iteration or Newton’s method should

already be implemented for solving the full-Stokes equations.

8 Outlook

The next step could be to test the step size control in a real ice model
:::::
There

:::
are

:
a
::::
few

:::::::
possible

:::::::::
directions

::
to

:::::
work

:::
on:

::::
The375

::::::::::
computation

::
of

:::
the

:::
step

::::
size

:::::
could

::
be

::::
done

:::::
more

::::::::
efficiently

:::
by

::::::::::
parallelizing

:::
the

:::::::::
calculation

::
of

:::
the

:::::::
integrals

:::
and

::::::
testing

::::
how

:::::
many

::::::::
bisections

:::
are

::::::::
necessary

:::
for

::::::::::
calculating

:::
the

::::
exact

::::
step

:::::
sizes. Also, one could include sliding boundary conditions to consider

step by step all physical boundary conditions that apply to a glacier in the real world
::::
more

:::::::
realistic

:::::::::::::::
three-dimensional

::::::::
examples

::
or

:::::::
different

::::::
sliding

::::
laws

:::::
could

:::
be

:::::
tested. The mathematical theory for a nonlinear sliding boundary condition is discussed in

Schmidt (2023). Furthermore
:::
The

:::::::::::::
implementation

::
in

:::
ice

:::::::
models

:
is
:::::::

another
::::
way

::
to

:::::
check

::
if
:::
the

:::::::::
presented

:::::::::
algorithms

:::::
work

::
in380

::::::::
real-world

:::::::::::
applications.

::::::
Lastly, the step size control might be used to reduce the number of iterations for the Higher-Order

equations. Solving those equations is also equivalent to finding the minimum of a convex function, (see Schoof, 2010).

Code and data availability. The model is available at https://doi.org/10.5281/zenodo.10618661. The latest version of the source code is

available at https://github.com/Niko-ich/FEniCS-full-Stokes.

Appendix A: Mathematical derivations385

A1
::::
The

::::::::::
variational

::::::::::
formulation

:::
For

:::
the

::::::::::::
well-posedness

:::
of

:::
the

:::::
Picard

::::::::
iteration,

:::
see

:::::::::
Algorithm

::
1,

B
(
|Dvk|2 + δ2

) 1−n
2n Dvk+1 :∇φ

:::::::::::::::::::::::::::
(A1)

:::
has

::
to

::
be

:::::::::
integrable.

::::
Due

::
to

:
a
::::::::
bounded

:::
ice

:::::::
rheology

::
B

::::
and

:::::
δ > 0,

:::::::
follows

::
the

:::::::::::
boundedness

::::
with

:::::
c ∈ R

::::
and

B
(
|Dvk|2 + δ2

) 1−n
2n < c.

::::::::::::::::::::
(A2)390

:::::
Thus,

::
we

:::::
need

::
for

:::::::::::
integrability

:::::::::::::::::::
Dvk+1 :∇φ ∈ L1(Ω).

::::
This

::
is

::::
only

:::::::
fulfilled

:::
for

::::::::::::::::::
Dvk+1 ∈ Lp(Ω)N×N

:::
and

::::::::::::::::
∇φ ∈ Lq(Ω)N×N

::::
with

::::::::::::
1/p+ 1/q = 1.

::::::
Hence,

:::
we

:::
can

:::
not

:::
use

:::::::::::::::::::::::::::::::::::::::
vk+1,φ ∈ {v ∈W 1,1+1/n(Ω)N ; v|Γb∪Γ`

= 0},
:::
see

:::::::::::::::::::::::::::
(Belenki et al., 2012, section 2.3)

:
,
:::::
which

::
is

:::
the

::::::
suitable

:::::
space

:::
for

::::::
µ0 = 0

::
as

::
it
::::::
allows

:::
the

::::
proof

:::
of

::::::::
existence

:::
and

:::::::::
uniqueness

::
of

:::
the

::::::::
solution.

::::::::
However,

:::::::::
expression

::::
(A1)

::
is
:::::::::::
well-defined

:::
for

::::::::::::::::::::::::::::::::::::::
vk+1,φ ∈H = {v ∈H1(Ω)N ; v|Γb∪Γ`

= 0}.
:::
The

:::::::::
additional

:::::::
diffusion

:::::
term

::::
with

::::::
µ0 > 0

::::::
verifies

::::
that

:::
the

:::::::
solution

::
of

:::
the

:::::::::
full-Stokes

:::::::::
equations

:
is
:::

in
::
H .

:::::::
Similar

::::::
reasons

:::::
make

:::
the

::::::::
diffusion

::::
term

:::::::::
necessary395

::
for

::::::::
Newton’s

::::::::
method:

:::
The

:::::::::
directional

:::::::::
derivative,

:::
see

:::::::
equation

:::
(6)

::
is
::::
only

:::::::
defined

:::
for

:::::::::::
v,w,φ ∈H .
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A2 The directional derivative ofG

In this appendix
::::::::
subsection, we compute the derivative of G at the velocity v ∈H and pressure p ∈ L in the direction w ∈H

and q ∈ L with the diffusion µ0 > 0. Because we have a variational formulation, we can only interpret this derivative for test

functions φ ∈H and ψ ∈ L. We calculate400

〈G′(v,p)(w, q),(φ,ψ)〉

= lim
t→0

〈G(v+ tw,p+ tq),(φ,ψ)〉− 〈G(v,p),(φ,ψ〉
t

= lim
t→0

∫
Ω

B

t

((
|D(v+ tw)|2 + δ2

) 1−n
2n Dv−

(
|Dv|2 + δ2

) 1−n
2n Dv

)
:∇φdx

+ lim
t→0

∫
Ω

B

t

((
|D(v+ tw)|2 + δ2

)(1−n)/(2n)
tDw

)
:∇φdx

+ lim
t→0

µ0

∫
Ω

∇
(
v+ tw−v

t

)
:∇φdx−

∫
Ω

p+ tq− p
t

divφdx−
∫
Ω

div

(
v+ tw−v

t

)
ψdx. (A3)

The limits for the second and third lines on the right-hand side of the last equality are clear. For the first line, we use the Taylor

expansion. Therefore, we define the function fx : [0,∞)→ R,

fx(t) =
(
|D(v(x) + tw(x))|2 + δ2

) 1−n
2n . (A4)405

Its derivative is

f ′x(t) =
1−n
n

(
|D(v(x) + tw(x))|2 + δ2

) 1−3n
2n (Dv(x) :Dw(x) + t|Dw(x)|2). (A5)

We calculate the derivative by assuming we can draw the limes into the integral. A detailed explanation of why we can do this

is in Schmidt (2023). We obtain with ξ : Ω→ [0, t] for the Taylor expansion∫
Ω

lim
t→0

B

t

((
|D(v+ tw)|2 + δ2

) 1−n
2n Dv−

(
|Dv|2 + δ2

) 1−n
2n Dv

)
:∇φdx

=

∫
Ω

lim
t→0

B

t

(
fx(t)− fx(0)

)
Dv :∇φdx

=

∫
Ω

lim
t→0

B

t
f ′x(ξ(x))tDv :∇φdx

=

∫
Ω

lim
t→0

B
1−n
n

(
|Dv(x) + ξ(x)w(x)|2 + δ2

) 1−3n
2n (Dv(x) :Dw(x) + ξ(x)|Dw(x)|2)Dv(x) :∇φ(x)dx

410

=

∫
Ω

B
1−n
n

(
|Dv|2 + δ2

) 1−3n
2n (Dv :Dw)(Dv :∇φ)dx. (A6)
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